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Abstract 

Onsite generation system (OGS) with renewable sources for modern manufacturing plant is considered as a critical alternative energy source for the 
manufacturers. Prosumer community can be formed by aggregating such manufacturers to achieve a mutual goal of sustainable and resilient power 
system. As the sustainability of the network depends on the reliable operations of each component in the network, it is required to monitor the 
performance and lifetime of the components existed in the network. One of the critical as well as costly components used to enhance the reliability 
and performance of the network is the battery energy storage system (BESS). The paper proposes a lifetime estimation model for the BESS using an 
integrated approach of cellular automata and system dynamic (SD) to prevent any sudden power outage and build a reliable energy management 
framework for the community. The major factors such as energy demand of the manufacturing plant, intermittent generation from the OGS, energy 
sharing capability of the prosumers etc. are considered to simulate the model and determine the amount of battery degradation. Based on the 
estimated lifetime of the battery, the manufacturers further can control the energy management plan (charging/discharging scheme) to prolong the 
battery lifetime and ensure a reliable operation for the community. A numerical case study is simulated to illustrate the effectiveness of the model. 
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1. Introduction 

To satisfy the growing demand of electric power through strengthening the resilience and mitigating the disturbances of electricity 
grid, the onsite generation system (OGS) has been considered a reliable solution [1], [2]. Instead of relying on a centralized scheme, 
the customer itself can build the OGS to reduce the amount purchased from grid and during period of excess generation, the customer 
can sell back the excess energy to the grid. This type of customers who not only consume energy but also generate the energy and 
share with the utility grid or with other energy consumers is known as prosumer [3], [4]. The most promising OGS built by the 
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prosumer (especially manufacturer) consists of solar PV, wind turbine, and battery energy storage system (BESS) [5-7]. The BESS is 
used as the backup resources for the OGS to address the intermittency of the renewable sources [8], [9]. 

To smooth out the unpredictable fluctuation from the OGS, the BESS usually experiences irregular charge and discharge cycles. 
As the lifetime of the BESS mainly depends on the depth of discharge and number of charging/discharging cycles, it is required to 
control the charging/discharging scheme and monitor the battery health for reliable power management of the prosumer. Typically, 
prosumers determine the remaining life of the BESS based on the standard operating conditions (constant temperature, current, and 
depth of discharge) provided (quoted) by manufacturers and develop their optimal energy management plan [10-12]. However, the 
actual operating conditions are quite different from the standard ones. Therefore, in such a scenario where both demand and 
generation are stochastic, optimally designing the energy management plan using the standard condition can lead to gross errors and 
may result in a higher system cost due to the early failure. Therefore, to establish a cost-effective and reliable energy management 
infrastructure for the prosumer, accurate battery life estimation is imperative considering the actual energy dynamics of the system.    

A significant number of researches can be reported to estimate and improve the lifetime of BESS for reliable operation in hybrid 
OGS [13-15]. For example, Drouilhet et al. proposed a battery life prediction method to investigate the effects of varying depths of 
discharge and rates of discharge in hybrid power applications [14]. Layadi et al. developed a battery aging model using rain flow 
method to estimate the lifetime of lead–acid batteries for hybrid power sources design [15]. The literatures on estimating the battery 
life are mostly focused on the residential and commercial sectors where the manufacturing industry is underexplored. As the energy 
demand is comparatively very high and stochastic in manufacturing industry and reliability is crucial, it is significantly important to 
monitor the performance and estimate the remaining lifetime of the BESS to schedule the repair and maintenance plan in advance to 
prevent any sudden failure. However, it is quite challenging to estimate the remaining lifetime for the manufacturers with OGS due to 
the stochastic nature in model parameters and their structural interdependency. The estimation is even more challenging if such 
prosumers create a community through sharing their energy. Due to the interdependency and interrelationship, the level of complexity 
grows substantially with the increase of the number of the neighbors and participants in the community. In such a network, the 
decision of charging/discharging not only relies on the individual’s demand, generation, and storing capacity but also depends on the 
energy sharing capability of the neighbors. Therefore, it is required to develop a model to estimate the remaining lifetime of BESS 
considering all the factors mentioned earlier for reliable power management of the community. To best of our knowledge, no such 
research exists where all the factors are considered concurrently to estimate the remaining lifetime of BESS for such a prosumer 
community of manufacturers.  

The paper proposes a model to estimate the remaining lifetime of BESS using an integrated approach of cellular automata and 
system dynamic (SD). The cellular automata model investigates the complex dynamic of energy sharing capability (offer excess 
energy or demand the shortage of generation) of the neighboring manufacturers while participating as a member in the community. 
Considering the energy sharing capability of the neighbors along with the generation from OGS, demand of the manufacturer, and the 
price of grid electricity at any interval, the manufacturer can take the decision of charging/discharging of the battery and 
corresponding depth of discharge. The degradation due to the decision of charging/discharging is analyzed through a simulation 
model based on the principles of the system dynamics methodology. Based on the results, the prosumers can optimally plan for the 
maintenance/replacement schedule as well as control the charging/discharging scheme to prolong the battery lifetime and thus, ensure 
a reliable energy management infrastructure for the community. 

The major contributions of the research can be summarized as follows: 
1. The dynamics of the energy sharing capability of the neighbours in such a manufacturer-based prosumer community is 

investigated through the cellular automata model. 
2. The effect of the charging/discharging on battery health under an actual operating condition is investigated through SD 

model while participating in such a community.  
The rest of the paper is organized as follows. Section 2 demonstrates the integrative modeling approach. Section 3 implements the 

proposed model through a hypothetical case study to illustrate the effectiveness of the model. Section 4 analyzes the results and 
sensitivity analysis.  Section 5 concludes the paper and discusses the future work. 

2. Model Description 

The model developed to estimate the remaining lifetime of the BESS is discussed into two subsections: (a) Identifying the energy 
sharing capability of the neighbors using cellular automata model, and (b) Estimating the remaining lifetime of BESS using SD 
Simulation. The subsections are described below: 
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2.1. Identifying the energy sharing capability of the neighbors using cellular automata model 

To build a self-sufficient, cost-effective, and sustainable community, the prosumers develop a network through sharing their 
surplus electricity to the neighbors during the period of excess generation. The sharing capability of each prosumer depends on the 
energy demand of its manufacturing plant, generation from the OGS, charging state of the BESS etc. Besides, the prosumer can also 
share energy (purchase the shortage of electricity or sell back the excess generation) with the grid based on its energy state, electricity 
demand of the neighbors, price of electricity etc. Such a community with a representative manufacturer is shown in Fig. 1  

 
 

Fig. 1. Grid connected prosumer community of manufacturers with OGS   
  
Like other components in this network, the energy dynamics of the BESS will be influenced by not only the states 

(excess/shortage of generation, corresponding amount, state of charge of BESS) of the individual but also the states of its immediate 
neighbors. Therefore, to determine the energy sharing capability of each prosumer through investigating the interaction and temporal 
dynamics of the neighbors, cellular automata model is implemented.  

In cellular automata model, the state of the BESS control scheme for the representative prosumer is a function of the state of 
energy status of the prosumer and its neighborhood in accordance with a set of transition rules which can be represented by: 

( , , , )t t t
ij ij ijCB f ES C NP      (1) 

where t
ijCB , t

ijES , and t
ij are the control schemes (charging/discharging and depth of discharge) of the battery, energy state, 

neighborhood evaluation function for the manufacturer at cell ij at decision epoch t, respectively. f is the transition function. C and 
NP are constraints for feasible power flow and number of participants in the community, respectively.    

2.1.1. Cell and its state definitions 

The square-lattice represents the prosumer community while the 2D-regular square grid illustrates each manufacturer in the 
cellular automata framework. The possible states of each manufacturer (prosumer) can be characterized by: 

State 1: the cell representing manufacturer are able to share.  

State 2: the cell representing manufacturer are not able to share 

State 3: the cell representing manufacturer are not participating.  

2.1.2. Transition rules 

 In this model, the state of each cell (each manufacturer) evolves in discrete time steps based on the transition rules defined as 
follow:   

Rule 1. If the representative manufacturer (RM) has excess generation, RM can share electricity with any of the neighbors if the neighbor has shortage of 

electricity.  

Rule 2. If everyone meets their demand in the community, no sharing will happen among themselves. 

Rule 3. If the neighbours have excess generation and RM has less generation than demand, RM will take electricity from the neighbours. 
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2.2. Estimating the battery lifetime using SD Simulation 

The SD simulation model is developed to determine the health state of BESS and corresponding degradation periodically to 
estimate the remaining lifetime considering the actual operating conditions mentioned earlier.  

 2.2.1. Model variables 

The structure of a SD model contains stock and flow variables. In this model, stock variables represent the energy states within the 
system. The flow variables represent the flows in the system (i.e. power), which result from the decision-making process. The model 
variables (stock and flow) and parameters are defined below with their explanation and corresponding units: 

current_gen: current generation from the solar and wind (kW) 

available_gen: available generation considering both current generation and amount of energy shared by the neighbors (kW) 

gen_stat: generation status which defines the excess or shortage of the generation compared to the demand (kW) 

grid: available grid power (kW) 

sold_back: sold back amount (kW) 

battery_state: status of the charge of the BESS (kW) 

charging: amount of energy available for charging in BESS (kW) 

discharging: amount of energy available for discharging in BESS (kW) 

battery_health: status of the battery health (%) 

Total_degradation: amount of battery health degraded (%) 

 
The parameters used in the SD simulation are given below: 

solar_gen: amount of solar generation (kW) 

wind_gen: amount of wind generation (kW) 

ca_decision: decisions from cellular automata model whether the neighbors have the capability to share energy or not (binary decision; 0: not capable to share, 

1: capable to share) 

neigh_share: amount that can be shared by the neighbors (kW) 

demand_manf: demand of the manufacturing system (kW) 

cost_chack: grid electricity cost ($/kW) 

capacity_grid: capacity of the grid (kW) 

sold_back_rate: rate of sold back electricity ($/kW) 

initial_charge: initial state of charge in BESS at the beginning of the simulation (kW) 

battery capacity: capacity of the BESS (kW) 

initial_helath: health status of the BESS at the beginning of simulation 

 

2.2.2. System Dynamics (SD) diagram 

The first step of building a SD model is to construct a SD diagram based on the interrelationships among the system operations. 
Fig. 2 illustrates the SD simulation model for the system developed in Anylogic platform. The diagram is constructed using three 
building blocks: stocks, flows, and parameters. The stock variables (symbolized by rectangles) represent the state over time, flow 
variables (symbolized by arrow with valves) represent the rates of change in stock variables used to fill in or drain the stock 
variables. 
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Fig. 2. SD model diagram 
 

2.2.3. Physical constraints for the SD model  

The next step of SD methodology includes the physical constraints which are required to develop the feasible model based on the 
interrelationships existed among the variables. The stock-flow diagram can be easily translated to a system of differential equations. 
The state of the stock variables can be defined by  

0

0

( ) [ ( ) ( )] ( )t

tStock t Inflowt Outflow t dt Stock t

        (2) 

( )Inflow t and ( )Outflow t represent the value of the inflow and outflow at any time t between the initial time 
0t and current time t .  

The energy flow constraints in the model are determined as follows: 

( _ )
_ _ _

d current gen
solar gen wind gen gen rate

dt
       (3) 

( _ )
_ _

d available gen
gen rate neigh share

dt
      (4) 

( _ )
_ _

d gen stat
grid pow usage rate

dt
      (5) 

The power generation from different sources, battery degradation estimation, and important model assumptions are presented 
below: 

The power generated by the solar PV, 
mt

r , can be calculated by 

/1000
m mt tr a I        (6) 

where
mt

I is the solar irradiance at interval mt  (W/m2) and m represents the month.  

The power generated by the wind turbine, 
mt

w , can be calculated by 

2 31
/ 1000

2m mt t t gw r v h                 (7) 

where 
mt

v  is the wind speed at interval mt .  
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The state of charge in BESS must be bounded within a given range, which can be formulated as 

min maxmt
SOC SOC SOC      (8) 

where SOCmax and SOCmin are the maximum and minimum states of charge of the BESS (%).
1mt

SOC 
can be calculated recursively as 

follows 

1

1
m m m mt t c t t

d

SOC e SOC e bc t bd t
                (9) 

where c and d are the charging and discharging efficiencies, respectively. e is the battery capacity. 
mt

bc and 
mt

bd  are the charging 

and discharging rate at decision epoch mt . 

 
As the degradation of BESS depends on the charging-discharging cycles, depth of discharge, and corresponding capacity of the 

BESS, it can be calculated by 

1 max min

( )

2 ( )

m

m m

m

m

T
t t

t
m t

bc bd t
degradation

Ne SOC SOC

  
  

 
     (10) 

where N is the maximum number of recommended charging/discharging cycle for the battery. 

3. Implementation of the proposed model: 

A hypothetical manufacturing prosumer community is used to build the case study. Total number of prosumers participated in the 
study is 100. The temporal horizon selected for the study is 50 months based on the cyclic performance of the battery for 50% depth 
of discharge mentioned in reference [16]. The location used for the weather data is Chicago, Illinois.  

The manufacturing plant is assumed to be operated with twenty-four hours per day, seven days per week, and all the weeks per 
year. The energy-related parameters are shown in Table 1 for illustration. 

  
Table 1. Rated power of the manufacturing machines in RMA 

Machine Name Rated Power (kW) 
OP10 Turn-1 105 
OP20 Turn-2 105 
OP30 Turn-3 105 

OP40 Window milling 155 
OP50 Turn-4 120 

 
For simplicity, it is assumed that every prosumer has similar size of OGS; area of the solar PV: 2000 m2, number of wind turbine: 

2, and capacity of BESS: 1000 kW. Initially, the BESS is charged by 10%. The maximum number of cycles the battery can go for 
full depth of discharge is considered as 5000 cycles. The power generation profile from the solar and wind turbine as well as the 
energy demand of the manufacturing system used for the SD simulation model are shown in Fig. 3. 

 
  

Fig. 3a. Power generation profile from the OGS Fig. 3b. Power demand profile for manufacturing 

Fig. 3. Power generation and demand profile for the simulation 

 
Based on the simulated demand and generation from the OGS, the energy status (excess generation, or shortage of generation, or 

equal to the demand) of each prosumer is determined and used as the input for the cellular automata model. It is considered that each 
prosumer has eight neighbors and each of the neighbors has also eight neighbors. Therefore, in cellular automata, while the energy 
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sharing capability of the representative prosumer is determined, not only the energy status of the representative prosumer but also the 
energy sharing capability of their neighbors are also considered.  

4. Result and sensitivity analysis: 

Result analysis 

As the energy sharing capability of each prosumer changes over time based on the parameters (energy demand of manufacturing, 
generation from OGS, price of the grid electricity, and state of BESS), the state of the prosumer in square-lattice (energy sharing 
capability of the capability) will be changed accordingly. Based on the result obtained from the cellular automata model, the state of 
the representative manufacturer (blue dot: able to share; white cell: not able to share) at two different intervals are shown in Fig. 4.  

The dynamics of the energy sharing capability of each prosumer obtained from the cellular automata is used as the input of the SD 
model. Considering the energy sharing capability of the neighbors of representative manufacturer along with other factors (demand 
of the representative manufacturer, generation from his OGS, price of the grid electricity, and state of BESS), the SD model is 
simulated to estimate the degradation over time. The degradation or battery health profile obtained from the model is shown in Fig. 5.  

 

  
Fig. 4a. Neigboring state of the RM at decision epoch t Fig. 4b. Neigboring state of the RM at decision epoch t+1 

Fig. 4. Sharing capability of the neighbors of representative manufacturer at different decision epoch 
 

 
 

Fig. 5. Battery health and degradation profile 
 
From Fig. 4, it can be seen that the estimated life of BESS is 43 months based on the stopping criteria (10 percent of the battery 

life) while the expected battery life is 50 months. This is happening due to actual operating condition (irregular charging/discharging 
cycle and depth of discharge) which is quite different from the standard ones. Again, the actual conditions are influenced by the 
stochastic parameters such as the generation from the OGS, energy demand of manufacturer, sharing capability of the neighbors etc.  

Sensitivity analysis 

To determine the impact of the variations of the critical parameters on battery degradation and further, extend the lifetime of the 
BESS through controlling those parameters, the sensitivity analysis is conducted in this study. The critical parameters considered for 
the analysis are the available renewable sources and sold back price of the electricity. The results obtained based from the sensitivity 
analysis are shown in Table 2 and Table 3. The table 2 follows the intuition. Due to high generation from the renewable sources, the 
number of charging and discharging is increased. Therefore, the degradation rate is higher which leads to a reduced lifetime of the 
BESS. From Table 3, it is noted that the battery degradation is sensitive with the sold back price. When the sold back price is high, it 
is more cost-effective to sell the excess energy rather than storing for future. Therefore, the number of charging/discharging cycles is 
reduced, and the lifetime of the BESS is increased.  
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Table 2. Comparison of the battery health and degradation profile based on the available renewable sources    

Scenarios 

Description 

of the 

scenario 

Percentage 
Lifetime 

(months) 
Battery health and degradation profile 

I 

High 

renewable 

sources 

90% 49 

 

II 

Baseline 

renewable 

sources 

100% 43 

 

III 

low 

renewable 

sources 

110% 41 

 

 
Table 3. Comparison of the battery health and degradation profile based on different sold back price of electricity    

Scenarios 

Description 

of the 

scenario 

Percentage 
Lifetime 

(months) 
Battery health and degradation profile 

I 
High sold 

back cost 
110% 48 

 

II 

Baseline 

sold back 

cost 

100% 43 

 

III 
Low sold 

back cost 
90% 42 

 

5. Conclusion and Future work 

The proposed model will help the prosumers to estimate the battery life more accurately considering the actual operating 
conditions. The dynamics of the neighboring effect for any prosumer is investigated by the cellular automata model. Considering the 
effect along with the critical factors of prosumers, the health state of BESS and corresponding degradation can be determined 
periodically. Therefore, the estimation of remaining battery life will be more accurate and based on the estimation, the prosumer can 
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control the battery management plan (charging/discharging scheme) accordingly to ensure a reliable energy infrastructure for the 
prosumer community.   

The model can be further improved in several aspects. Along with the number of charging/discharging and depth of discharge, the 
battery operating condition such as temperature, the size of the battery, interval between the two-consecutive charging/discharging 
cycle can be incorporated into the model to develop better battery life estimation model for the complex network. In addition to the 
estimation, the control scheme such as demand response program for the prosumers based on the critical parameters is required to 
develop to prolong the battery life as well as to build a reliable energy management framework for the community.  
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