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Abstract: For CNN-based visual action recognition, the accuracy may be increased if local key action regions are focused on. 
The task of self-attention is to focus on key features and ignore irrelevant information. So, self-attention is useful for action 
recognition. However, the current self-attention methods usually ignore correlations among local feature vectors at spatial 
positions in feature maps in CNNs. In this paper, we propose an effective interaction-aware self-attention model which can extract 
information about the interactions between feature vectors to learn attention maps. Since the different layers in a network capture 
feature maps at different scales, we introduce a spatial pyramid with the feature maps at different layers to attention modeling. 
The multi-scale information is utilized to obtain more accurate attention scores. These attention scores are used to weight the 
local feature vectors of the feature maps and then calculate the attention feature maps. Since the number of feature maps input to 
the spatial pyramid attention layer is unrestricted, we easily extend this attention layer to a spatio-temporal version. Our model 
can be embedded into any general CNN to form a video-level end-to-end attention network for action recognition. Besides using 
the RGB stream alone, several methods are investigated to combine the RGB and flow streams for the final prediction of the 
classes of human actions. Experimental results show that our method achieves state-of-the-art results on the datasets UCF101, 
HMDB51, Kinetics-400, and untrimmed Charades. 
Index terms: Action recognition, Attention networks, Interaction-aware, Spatio-temporal pyramid. 
 

1. Introduction 

Recognition of human actions in videos occupies a 
significant position in computer vision [1, 2, 3, 4, 5, 6, 54, 55, 
61, 76, 77, 78, 79, 80, 82]. It has a very wide arrange of 
applications, such as intelligent video surveillance, patient or 
the-aged monitoring, human-computer interaction, automatic 
drive, intelligent robots, virtual reality, smart home, intelligent 
security, athletes’ auxiliary training, content-based video 
retrieval, and smart video compression. It has attracted a large 
amount of attention. The research on action recognition has 
developed from regular simple actions under controlled 
scenarios to complex actions in realistic scenes. The methods 
for action recognition have developed from the local feature-
based to attribute-based and then to deep learning-based. The 
local feature-based methods extract points of interest and use 
local features to describe the 3D cubes of the points. The local 
features are encoded into vectors which are utilized to train a 
classifier for action recognition. The local feature-based 
methods are not dependent on human body detection. They 
perform well on simple datasets with actions under control. As 
the datasets become more complicated and larger, the 
accuracy of these methods decreases. The attribute-based 
methods utilize a series of semantic action attributes to 
describe human actions in videos. Action attribute graphs are 
constructed to map human actions to an attribute space in 
which action classification is carried out. The attribute-based 
methods decompose a human body into multiple components 
which are discriminant for actions. These methods conform to 
human perception. They are relatively robust to variations in 
illumination and occlusion. After the great progress of the 
CNN (convolutional neural networks) [7, 8, 9, 10] in image 
classification, deep learning-based methods has become 
popular for action recognition. As there are more labeled 
images to train the networks than labeled video data, many 
methods apply image-based classifiers to frames in videos in 
order to recognize actions. However, videos contain much 
information irrelevant for action recognition. The action 
recognition accuracy may be increased for the end-to-end 

deep learning-based methods if local key action regions or 
points are focused on. 

The attention mechanism [11, 12] discards irrelevant 
information so as to focus on the key information in images. 
For action recognition, the attention mechanism combining 
with LSTM (long short-term memory) [13, 14] has been 
utilized to model the channel-level or frame-level local 
features extracted by CNN or RNN (recurrent neural 
networks). Besides the feature maps from CNN, the weights 
for convolutional features of different regions obtained from 
the previous frame are used as the input for the LSTM to 
predict the attention scores for the current frame. The 
computation of the weights may involve optical flow 
estimation [14]. This incurs a substantial computational cost. 
Although LSTM specializes in sequential modeling, it does 
not achieve high classification accuracy because of the 
similarity between consecutive frames. Self-attention [12] is 
one kind of the attention mechanism and also a special form 
of the non-local networks [15]. Self-attention uses attention 
scores to weight all feature vectors in order to identify salient 
feature vectors. Self-attention has lower computational cost 
compared with other attention mechanisms. The local feature 
vectors at neighboring spatial positions in feature maps of 
CNN have high correlations since their receptive fields highly 
overlap. However, the inherent interactions between feature 
vectors are ignored in self-attention because each attention 
score of a feature vector is calculated by the weighted sum (or 
other functions) of internal elements of the feature vector. 

In order to include the correlations between feature 
vectors in self-attention, we propose an interaction-aware 
spatio-temporal pyramid attention layer [50]. It can be 
embedded into general CNNs to generate attention networks 
which are more discriminative for video action classification. 
The main components and contributions of our work are 
outlined as follows: 
 An interaction-aware self-attention layer inspired by 

PCA: The attention mechanism enables extraction of key 
feature vectors with high attention scores, while PCA 
extracts key feature vectors with principal components. 
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By minimizing the trace of the covariance matrix, PCA 
utilizes the interaction information among feature 
vectors to remove the correlations between feature 
vectors and obtain basis projection vectors of principal 
components. We incorporate the idea of PCA into self-
attention and propose to use interaction information 
between feature vectors to obtain their attention scores. 

 A spatial feature pyramid for obtaining more 
accurate attention maps using multi-scale 
information: The feature pyramid [16, 17] stacks the 
feature maps from different layers and provides multi-
resolution feature representation. We introduce the 
feature pyramid into our attention layer. The interaction-
aware self-attention layer models the channel-level 
features in the pyramid and yield more accurate attention 
scores. The attention scores are used to aggregate the 
feature maps of the top layer of the pyramid to obtain 
more discriminative attentional feature maps. 

 A spatio-temporal version of the interaction-aware 
self-attention model allowing for any number of 
frames: Spatio-temporal detection-based methods [18, 
19] have good performance for action recognition. This 
indicates that attention is useful for detecting salient 
spatio-temporal regions in videos. We extend the spatial 
pyramid attention model to a spatio-temporal version to 
detect and utilize the key information in videos, with the 
determined architecture and parameters of the attention 
layer. Our model is independent of the temporal sequence 
order of the video frames and is compatible with any 
number of frames. 

Besides using single RGB stream CNN, multiple stream 
CNNs are utilized to combine the information about 
appearance and motion for action recognition. We embed our 
attention network layer into four baseline networks, VGGNet-
16, BN-Inception, Inception-ResNet-V2, and ResNet-50. Its 
effectiveness is validated on the UCF101, HMDB51, 
Kinetics-400, and untrimmed Charades datasets. State-of-the-
art results are obtained. 

The rest of the paper is organized as follows: Section 2 
reviews the related work. Section 3 proposes our interaction-
aware spatio-temporal pyramid attention layer. Section 4 
presents our action recognition method based on fusion of 
appearance and motion information. Section 5 reports the 
experimental results. Section 6 concludes the paper. 

2. Related Work 

We briefly review deep neural networks and attention 
methods for action recognition, in order to provide the context 
for our work. 

2.1. Deep neural networks 
CNN-based methods have made great progress in image 

recognition compared with methods based on hand-crafted 
features [20, 21, 22, 23, 24, 25]. Two-Stream ConvNet [26] 
uses image-based methods to represent videos from RGB and 
optical flow streams. The weighted average of the 
classification scores of the two streams is used for the action 
prediction. Some researchers [30, 31, 32] directly extend the 
2D ConvNet to the 3D ConvNet which is trained end-to-end 
using entire videos. The extension requires abundant 
computations and pre-training on a larger dataset such as 
Kinetics [32]. One of the representative action recognition 
frameworks uses the recurrent neural network (RNN) [35] or 
its variants such as LSTM [36, 37, 38, 39] to model the 
temporal structure of the deep action features extracted from 
each frame. For instance, CNNs are used to extract low-level 
visual features and then LSTM is used to carry out high level 
modeling of the low-level features. Temporal segment 
networks [28] divide a video into multiple segments. For each 

segment, two-stream ConvNets are used separately to model 
the temporal sequence. Deep ConvNets [27] fuse features 
from different layers. Training on a large-scale dataset, such 
as Sports-1M, is required. The ST-ResNet [29] uses ResNet [7] 
as the base of the network structure to carry out the fusion of 
the two-streams for action recognition. Wang et al. [19] 
propose trajectory-pooled deep-convolutional descriptors for 
action recognition. The networks in [33, 34] explore video 
representations based on spatio-temporal convolutions. 
Feichtenhofer et al. [64] present an excellent very lightweight 
SlowFast network which includes a slow pathway and a fast 
pathway for video recognition. The SlowFast network is 
appropriate for both fast and slow actions. However, the slow-
fast network is computationally expensive to deal with the 
dynamics and the temporal scale of actions at the input frame 
level [65, 66]. Zhang et al. [67] propose an efficient temporal 
reasoning graph for action recognition by simultaneously 
capturing the appearance features and temporal relations 
between video sequences at multiple time scales. The 
temporal reasoning graph extracts discriminative features for 
action recognition. The lack of fusion of low-level and high-
level semantics may be detrimental for reducing the video 
semantic gap. Ji et al. [68] propose a representation that 
decomposes actions into spatio-temporal scene graphs. They 
only utilize homogeneous graphs as scene graphs. 
Heterogeneous graphs are not the constructed. Ghadiyaram et 
al. [69] use a large volume of web videos for pre-training 
models for action recognition. This weakly-supervised 
method substantially improves the state-of-the-art on some 
challenging public action recognition datasets. Li et al. [70] 
propose a weakly-supervised method based on multi-instance 
multi-label learning for multi-person action recognition in 
360◦ videos. Multiple actions in a video are recognized and 
localized using only video-level action labels as supervision. 
Wang et al. [71] propose an excellent weakly supervised 
architecture to directly learn action recognition models from 
untrimmed videos without the requirement of temporal 
annotations of action instances. The merit of the weakly 
supervised methods is the avoidance of heavy reliance on a 
large-scale of labeled trimmed videos which are expensive 
and time-consuming to acquire. The weakly supervised 
methods are usually utilized to localize actions in videos. 
Zhuang et al. [72] propose a video instance embedding 
framework, which trains deep nonlinear embedding on video 
sequence inputs. The deep neural embedding is promising for 
unsupervised video learning for action recognition. However, 
the obtained recognition accuracy is not high. Some action 
recognition methods focus on detecting key elements related 
to object classes, global and local motion, as well as global 
context etc. Wang and Gupta [73] represent videos as spatio-
temporal graphs whose nodes are detected object regions from 
different frames. Action reasoning is carried out via graph 
convolutional networks. Baradel et al. [74] reason about 
semantically meaningful spatio-temporal interactions using 
object detection networks. Huang et al. [75] propose dynamic 
graph modules for modeling object-object interactions for 
action recognition. The limitation of the detection-based 
methods is their dependence on object detection which 
requires prior knowledge. If object detection is inaccurate, the 
accuracy of action recognition may substantially decrease. 
Zhou et al. [81] propose an effective and interpretable network 
module, the temporal relation network (TRN), to learn and 
reason about temporal dependencies between video frames at 
multiple time scales. The network is carried out on activity 
recognition tasks. Most of the above methods mainly treat 
equally the information from different frames or spatio-
temporal regions. The performance is limited because it is 
hard to differentiate key features. 
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2.2. Attention methods 
Attention methods are divided into hard and soft methods. 

Hard attention methods make hard binary choices. Training 
hard methods is difficult. It is often necessary to add extra 
supervised information about attention regions to enhance the 
original model. Mnih et al. [41] and Ba et al. [42] make hard 
binary choices to select regions using attention RNNs for 
objection recognition. Gkioxari et al. [43] use an auxiliary box 
to encode context in addition to the human bounding box. The 
action-specific models and the feature maps are trained jointly. 
Mallya and Lazebnik [44] use the entire image as the context 
and use multiple instance learning to detect all humans in the 
image and then predict an action label for the image. Soft 
attention uses weighted averages instead of hard selection. Li 
et al. [14] propose an end-to-end sequence learning model 
called VideoLSTM for action recognition. Sharma et al. [13] 
propose a soft-attention LSTM on top of the RNNs to pay 
attention to salient parts of the video frames for action 
classification. However, these soft attention models require 
auxiliary information from other frames to guide the weighted 
averages for the current frame. Girdhar and Ramanan [46] 
propose an unconstrained self-attention pooling operation 
added at the last layer of a CNN to generate a global 
representation of the CNN. Long et al. [47] propose a method 
based on attention clusters to integrate local features of each 
frame by self-attention. Ma et al. [48] propose a model based 
on key image-level representations to summarize the entire 
video sequence using attention LSTM. Previous attention-
based methods often focus on the frame-level deep network. 
This reduces the average performance. It is required to model 
the interactions between channel vectors of feature maps for 
constructing a self-attention mechanism and extending the 
attention model to video-level-based action classification. 

3. Interaction-Aware Spatio-temporal 
Pyramid Attention 

We propose an interaction-aware spatial pyramid 
attention layer inspired by PCA. This layer can be embedded 
into a general CNN to form an end-to-end attention network 
and generate discriminative attention feature maps. A new loss 
function is given for our network. The embedded layer is 
extended to a temporal version for aggregating temporal 
sequences for action classification. 

3.1. Spatial pyramid attention layer 
The CNN extracts feature maps by passing convolutional 

kernels over the image and treating every local region equally. 

An attention layer is added into the general CNN after one 

convolutional layer to emphasize the features of the key local 

regions and further improve the performance of the network. 

Let 
 

 i i iW H C

i
 denote a group of feature maps at the i-

th layer of a network when a frame is input, where i iW H  

is the spatial size and Ci is the number of the channels in the 

feature maps. We flatten i   into a matrix

1 2[ , ,..., ]


  i i i

i i

C W Hi i i

i W HX x x x  , where the column vector 
1

 iCi

kx  (k=1, 2, …,
i iW H ) is the channel vector for the k-th 

spatial position of i . The vector 
i

kx  represents the local 

feature vector of its receptive field in the input image. We 

introduce the feature pyramid into attention modeling. An 

interaction-aware spatial pyramid attention layer is embedded 

after the i-th layer and before the i+1th layer of the CNN. This 

pyramid attention layer generates 
i iW H   discriminative 

feature vectors 


 i i iC W H

iM   based on local feature 

vectors 
1{ } 

i iw hi

k kx  . We then reshape 
iM   into a set of 

attentional feature maps   i i iW H C

i
 . In this way, the 

architecture of the CNN behind the i-th layer is preserved 

unchanged. 

As shown in Fig. 1, we use feature maps of a pyramid of 

N layers including the i-th layer (the top layer) and the N-1 

layers before the i-th layer in the CNN to construct a feature 

pyramid 
1{ }j j jW H C i

j j i N

 

    . We down-sample the 

feature maps in the N-1 layers before the top layer to fit the 

spatial size of the top layer: 

( ), 1, ..., 1,

,

j

j

i

j i N i

j i

   
  

 ，
      (1) 

where (•) is a down-sampling function. A self-attention 

estimation is carried out on the channel vectors { }j
x . In this 

way, different numbers of channels in multiple feature maps 

1{ }i

j j i N  
   are adapted to. We flatten 

j
  into matrix 


 j i iC W H

jX . Each spatial position m in the feature maps of 

the j-th layer has a trainable weigh vector 
1

 jCj

mw  and a 

trainable bias value 
j

mb  . Let 
1{ }



 j i i i i
C W H W Hj

j m mw   denote 

the trainable weight matrix of the j-th layer. Let 
1

1{ }


 i i i iW H W Hj

j m mbb   denote the trainable bias row vector. 

Let 1
 i iW Hj

my  denote the attention score vector of spatial 

position m in the j-th layer’s feature maps. Let 

1 2[ , ..., ]


  i i i i

i i

W H W Hj j j

j W HY y y y   denote the attention score 

 
Fig. 1. Our interaction-aware spatial pyramid attention layer: The feature maps of different sizes in different layers are used to construct a 

multi-scale attention layer to obtain more accurate spatial attention. 
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matrix for all the spatial positions in the j-th layer. Each 

attention score in 
jY  is obtained by individually computing 

the sum of the weighted elements of the corresponding 

channel vector in 
jX : 

 T

j j j jY X b ,               (2) 

where the symbol ⊕  denotes that each row of 


 i i i iW H W HT

j jX   adds 
jb  . The k-th score in the column 

attention vector 
j

my   for the m-th spatial position is 

individually calculated by jT j j

k m mbx w . This means that the 

element in the score vector 
j

my  for 
j

kx  is calculated by just 

weighting the elements in 
j

kx , i.e., independently of all the 

channel vectors { } 

j

d d kx  in the j-th layer except for 
j

kx . 

The N attention score matrices 1{ }i

j j i N  Y   of the N 

layers in the spatial pyramid are fused into a matrix which is 

then normalized into an attention score matrix 


 i i i iW H W H

iA  for the entire spatial pyramid attention layer. 

All the m-th column vectors 1

1{ }


   i iW Hj i

m j i Ny   in the 

attention matrices 1{ }i

j j i N  Y   for all the layers in the 

pyramid are used to calculate a vector 1
 i iW Hi

ma   in the 

following way: 
1 1soft max( ( , ... , , ))i i N i i

m m m m

  a y y y ,      (3) 

where  is a function for fusing column vectors into one 

vector. We investigate the following three fusion functions: 

element-wise maximum, element-wise sum, and element-wise 

multiplication. In (3), 
i

ma   is L1-normalized due to the 

softmax. We further carry out L2-normalization on 
i

ma  : 

2 normalization( )i i

m mL  a a . Then, 
i

ma  is L2-normalized [49] 

to preserve 1i T i

m ma a   and a normalized attention score 

matrix
1 2[ , ,..., ]

i i

i i i

i w hA a a a  is obtained. It is noted that the 

normalization in (3) relates feature vectors, where each feature 

attention competes with others. This kind of comparative 

interaction simultaneously increases or decreases the 

components of each attention score vector. It does not directly 

model the inherent interactions among feature vectors for 

attention modeling. 

The matrix 


 i i i iW H W H

iA   is used to aggregate the 

flattened feature maps 


 i i iC W H

iX   of the i-th layer to 

obtain a more discriminative representation 


 i i iC W H

iM  

for the i-th layer as follows: 

i i iM X A .                 (4) 

3.2. PCA-inspired interaction-aware 
modeling 

The attention mechanism extracts key feature vectors 
from the set of all feature vectors by using the attention scores 
to weight the feature vectors. Each weight score for a local 
feature vector is obtained by the weighted sum of the internal 
elements in the local feature vector. The inherent interactions 
between feature vectors are not directly modeled. PCA 
extracts key feature vectors by using a set of basis vectors on 
which feature vectors are projected. The interactions between 
feature vectors are modeled in PCA. We give a new insight 
into the self-attention process using a PCA to model the 
interactions between feature vectors for the self-attention. 

We flatten i  into i i iW H CT

i


X  which consists of 

the stacked feature map vectors of the channels: 

1 2[ , ,..., ]
i

T i i i

i CX v v v  , where 
1

 i iW Hi

ov   is a flattened 

global feature map of the o-th channel ( 1  io C ). PCA is 

used to generate the key feature vectors 
  i i iW H C

iM  with 

principal dimensions from the stacked columns 
1{ } 

iCi

o ov . The 

matrix 
i
M   consist of discriminative features for 

T

iX  . 

Correspondingly, the matrix ( ) i i iC W HT

i i

 M M   consist 

of discriminative features for 
iX  . Let 

1 2[ , ,..., ]
i iW HS e e e  

be a set of orthogonal basis vectors where 1
 i iW H

ne

(n=1,2,…, i iW H ). The vectors 
1{ } 

iCi

o ov  are projected onto S 

in order to extract principal components. PCA yields 


  i i iC W H

i iM X S . This is the same as the form of Mi in 

(4). 
There exists a subtle correspondence between PCA and 

the attention mechanism. The following points are noted: 

 The attention score vector 
1

 i iW H
a   corresponds to 

the basis vector 
1

 i iW H
e  even though the ways for 

computing a and e are different. 

 An attention process extracts key feature vectors from Xi 

by treating Xi as stacked channel-level feature vectors. 

PCA extracts principal components from Xi by treating 

Xi as stacked features divided by channels. 

 the data central processing “⊕bj ” in (2) corresponds to 

the subtraction of the mean in PCA. 
The self-attention process doesn’t consider the 

interactions between feature vectors since it weights each 
feature vector independently to obtain its attention scores. As 
described in the analysis of (2), the attention scores for a 
feature vector x are obtained by weighting x itself. However, 
PCA usually obtains an orthonormal basis S by eigenvalue 
decomposition of the covariance matrix. In this way it utilizes 
the non-local interactions among feature vectors. Inspired by 
PCA, we incorporate the non-local interaction information 
among channel features {x} into the self-attention processing, 
in order to generate an interaction-aware spatial pyramid 
attention layer. 

We refer to an equivalent form [51] of PCA for 

calculating S. The project of the o-th column vector ov  on 

the n-th project basis vector ne  is  o T

n n oe v . To maximize 

the variance of the projected vectors, the first project basis 

vector 
1e  satisfies 

2 2

1 1

2

arg max ( ) arg max ( )

arg max arg max ,

o T

o

o o

T T T T

i i i

 

 

 
e e

e e

e e v

e X e X X e

    (5) 

where 1e  . Considering all the basis vectors in S, the 

matrix trace is used to equivalently represent the optimization 

of S: 

arg min ( )  T T

i itr
S

S S X X S ,          (6) 

where
T SS I   ( I   is an identity matrix). The non-local 

interactions among feature vectors are modeled in (6). Since 
there is close correspondence between S and 

iA , we replace 
S in (6) with 

iA   to utilize the non-local interaction 
information among channel features for the self-attention 
processing: 

arg min ( ) 
i

T T

i i i i itr
A

A A X X A ,          (7) 

where 
T

i i A A I . We add (7) into the loss function. 

3.3. Loss function 
The loss function of our network includes the PCA 

inspired interaction-aware loss, the pyramid attention loss, 
and the classification loss. The individual losses and the final 
loss are defined below. 
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The specific form of our interaction-aware loss inspired 

by PCA includes a differentiable form into which (7) is 

changed and the constraint 
T

i i A A I  . Let 


 i i i iW H W H
1  

be a matrix of all ones. Let 


 i i i iW H W H
I   be the identity 

matrix. The interaction-aware loss is defined as: 

(( ) ) (( ) ( ))T T T

interactive i i i i i i   A X X A I A A 1 I , (8) 

where ◦ is element-wise multiplication,  is the operation of 

sum of elements, and  is the operation of quadratic sum 

of elements. Because the column vectors in 
iA   are L2-

normalized, the diagonal elements of 
T

i iA A  are all equal to 

one. This ensures that minimizing the second term in the right-

hand of the equality sign in (8) yields the constraint 
T

i i A A I . 

The pyramid attention loss is a regularization of the 

attention scores in order to enhance the attention maps. The 

set { }i

ma  represents the attention scores calculated from all 

the scales of the spatio-temporal pyramid and { }j

my  

represents the attention scores obtained by the j-th scale of the 

pyramid. The softmax is used to normalize the vector 
j

my : 

softmax( )j

my . To utilize the information at different scales 

of the pyramid and ensure that the characteristics at each scale 

is focused on as far as possible, we maximize the distance 

[0,1]j

m   between 
i

ma  and softmax( )j

my : 

|| softmax( ) ||, 1, ...,   j i j

m m m i im W Ha y .    (9) 

Maximizing 
j

m   is equivalent to minimizing 
21   . 

Subsequently, we define the specific form of our pyramid 

attention loss as: 

2(1 ( ) )j

attn m

j m

  .          (10) 

The classification loss is defined using the cross-entropy 

loss. Let cl  be a one-hot label of the current sample , i.e., cl  

equals 1 if the ground truth label of the sample is c, otherwise 

cl   equals 0 . Let ˆ
cl   be the probability that the input is 

predicted to class c. The classification loss is defined as the 

cross entropy: 

1

ˆlogclass c c

c

l l


  ,            (11) 

where C is the number of classes. 
The final loss is defined a weighted sum of the 

classification loss, the interaction-aware loss, the pyramid 
attention loss, and a regularization of the network parameters. 
Let w  be the trainable parameters of the neural network. 
The final loss is defined as: 

2

interactivfinal class attne 


       w ,   (12) 

where ,  , and  are weight decay coefficients. The 2  -
norm of the network parameters is incorporated into the loss 
function in order to regularize the network for better 
generalization. 

3.4. Temporal aggregation 
We extend the above interaction-aware spatial pyramid 

attention layer for a single image to multiple frames. The 
extended layer models temporal sequences and detects key 
spatio-temporal information. 

We sample K frames from a video, and then input them 

into the network. At the i-th layer, K groups of feature maps 
  

 i i iK W H C

i  are extracted. These feature maps i  are 

flattened into a matrix


 i i iC KW H

iX . To preserve unchanged 

the parameters and architecture of the network after the i-th 

layer, we aggregate i   into a group of attention feature 

maps   i i iW H C

i
 which have the same size as i . A 

feature pyramid is constructed using 
1{ }   

i

j j i N . We still set 


 j i iC W H

j
  and 1

 i iW H

jb  , i.e., 
j
  and 

jb   for 

multiple frames have the same forms as those for a single 

frame, as in (2). This is because 
j
 is used to weight the 

channels of the feature maps. The size of the output attention 

maps is fixed to i iW H , which is also the size of the i-th 

layer in the original CNN. By replacing i  with i  and 

replacing 
 j i iC W H

jX   with 
 j i iC KW H

jX  , (2) 

becomes 
1

1{ }
 

    i i i i i i i iKW H W H KW H W Hj T

j m m j j jY y X b ,  (13) 

where 
j

my  is the attention score vector for the m-th position 

at the j-th layer. The normalized attention score matrix 

becomes 


 i i i iKW H W H

iA   where its m-th column vector 

ma  is the normalized attention score vector for the m-position 

in the feature maps. Then, we obtain the aggregated attention 

feature matrix by 


  i i iC W H

i i iM X A   which is then 

reshaped to attention feature maps 
  i i iW H C

i
. Fig. 2 

shows the pipeline of aggregating K groups of feature maps 

into one group of feature maps. 
We correspondingly modify the loss function. 

Considering K input frames, the pyramid attention loss 
becomes 

2

,(1 ( ) ),

1,2,..., , 1, ..., ,

 

 

 j

attn m t

j m t

i it K m W H

         (14) 

where 

, , ,|| softmax( ) ||j i j

m t m t m t  a y .         (15) 

The cross-entropy loss becomes 

, ,

1 1

1 ˆlog
 

  
K

class t c t c

t c

l l
K

.          (16) 

Then, we can use sequences with different numbers of 
frames to train and test the networks. With the defined final 
loss function, the training samples are used to train the 
weights { }j  and the bias vectors { }jb . 

 

Fig. 2. The process of aggregating K groups of feature maps   
 i i iK W H C

i  into one group of feature maps   i i iW H C

i
. 
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4. Action Recognition 

We incorporate the proposed interaction-aware spatio-
temporal pyramid attention layer into general CNNs to form 
end-to-end attention networks for action classification. RGB 
images and optical flow gray images [56] are input to train, 
respectively, two CNNs with the same structure. The RGB 
stream extracts spatial appearance information from videos. 
The optical flow stream extracts temporal motion information 
from videos. The framework of the proposed attention 
network-based framework for one stream is shown in Fig. 3. 
By inserting an interaction-aware spatio-temporal pyramid 
attention layer into the CNN, K group of feature maps from K 
frames are aggregated into one group of feature maps. Multi-
scale feature maps are utilized to accurately focus on the 
salient regions. Information fusion of the RGB and flow 
streams is carried out for the final prediction of the classes of 
human actions. The following fusion modes are investigated 
(See the appendix for details): 
 late fusion of the scores of the final layers of the RGB 

and flow streams: combining the classification results of 
the RGB and flow streams to yield the final classification 
result [92]; 

 attention layer-based fusion: using the spatio-temporal 
interaction-aware attention pyramid layer to combine the 
information in the middle layers in the RGB and flow 
streams; 

 combination with motion compensation: combining the 
two-stream neural networks with optical flow 
compensation which is introduced to handle optical flow 
produced by camera motion [28]; 

 combination with motion reinforcement: incorporating 
motion reinforcement to give attention scores to the RBG 
branch for action recognition in order to enhance 
interactions and associations between the RGB branch 
and the optical flow branch [29, 93]; 

 combination with iDT (improved dense trajectories): 
combining our action recognition method with the 
traditional iDT method [18] to further improve the 
recognition accuracy [33]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Our interaction-aware spatio-temporal attention-based 

framework for one stream for action recognition. 
 

5. Experiments 

Our methods were implemented in TensorFlow with 
TITAN Xp×2 GPUs. We investigated VGGNet-16 [9], BN-
Inception [52], Inception-ResNet-V2 [10], and ResNet-50 [7]. 
We evaluated our models on the following four challenging 
action classification benchmarks: the UCF101 dataset [6], the 
HMDB51 dataset [5], the Kinetics-400 dataset [94], and the 
untrimmed Charades dataset [39]. For the UCF101 and 
HMDB51 datasets, the original evaluation scheme was 
followed using three different training and test splits. Split 1 

was used for ablation analysis and the final performance was 
assessed by the average classification accuracy over the three 
splits. For the Charades dataset, the evaluation pipeline of [39] 
was followed. For the Kinetics-400 dataset, the training set 
was used to train our model and the validation set was used to 
estimate performance of action recognition methods. 

Max pooling was used as the down-sampling (•) in (1). 
This is because our experiments show that max pooling is 
marginally superior to average pooling and down-sampling 
convolution. In addition, max pooling doesn’t have any new 
parameters. In the RGB stream, the dropout was set to 0.5 
which yields good performance. Since RGB images are the 
inputs, the models trained on the ImageNet [53] were used to 
initialize the parameters of the networks. In the flow stream, a 
dropout of 0.7 was used to avoid over-fitting on small flow 
datasets. The optical flow stream was initialized using the 
RGB model [28]. The parameters of the first convolutional 
layer in the RGB pre-training model were modified to adapt 
the number of input frames in the optical flow model, i.e., an 
averaging operation was carried out on the RGB channels and 
the averaged channels were duplicated to obtain the same 
number of inputs as the optical flow stream. Data 
augmentation was carried out by random cropping and 
flipping for both the RGB frames and the flow frames. The 
mini-batch stochastic gradient descent (SGD) method with 
momentum of 0.9 was used to optimize the network model. 
For the weight decay coefficients in (12),  was set to 4e−5 and 
both  and  were set to 1e−4. The batch size for network 
training was set to 64. To fairly compare with the competing 
methods, the learning rates were set differently for different 
backbones: 
 VGGNet-16, BN-Inception, and Inception-ResNet-V2: 

For the spatial network, the learning rate was initialized 
as 0.001 and decreased by a factor 1/10 every 4000 
iterations. The entire training procedure stopped at 12000 
iterations. For the temporal network, the learning rate 
was initialized as 0.005 and decreased by factor 1/10 
after 12000 and 24000 iterations. The maximum number 
of iterations was set to 30000. 

 ResNet-50: The learning rate was initialized as 1e-2 and 
decreased by 1/10 at epoch 40 and 80. A total of 100 
epochs of training were used. 
In order to fairly compare with the different baselines, the 

following three sampling strategies in the baselines were 
utilized: 
 The first strategy follows the segment setting in [28, 40] 

for training the neural networks. That is, a video was 
divided into 3 equal length segments, and a frame was 
randomly chosen from each segment. Then, a sequence 
of three frames (K=3) was formed as the input of the 
networks. In addition, we also evaluated the performance 
when K=1 for training. During the test process, we 
investigated the effects of K on the performance of the 
RGB and flow streams. We used K=25 frames for test 
and compared the results with other standard state-of-
the-art methods with the same setting. The performance 
for larger number of frames (>25) was also investigated. 

 The second strategy, for training, uniformly divides each 
video into 8 segments and one frame was sampled 
randomly from each segment, in the same way as in [45]. 
For testing, 25 frames were uniformly sampled from each 
video. 

 The third strategy, in the same way as in [32], for training, 
randomly chooses 64 consecutive frames from each 
video and 8 frames were uniformly sampled from these 
64 frames and used as the input to the neural networks. 
For testing, each video was uniformly divided into 10 
clips. From the first 64 consecutive frames of each clip, 
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8 frames were uniformly sampled. The final prediction 
result for a video was determined by the average of the 
prediction scores for all the 10 clips. 
The following evaluations were made: 

 evaluation of the proposed interaction-aware attention 
layer, 

 evaluation of the temporal aggregation in the attention 
layer, 

 evaluation of the number of the parameters in the 
interaction-aware attention layer, 

 analysis of the differences between confusion matrices, 
 evaluation of the strategies for fusing the RGB stream 

and the optical flow stream, 
 visualization of salient human action regions following 

the attention feature maps, 
 comparison with the-state-of-the-art methods. 

5.1. Evaluation of the interaction-aware 
attention layer 

Our interaction-aware spatio-temporal pyramid attention 
layer was investigated in the following six ways: 
 the layer position of feature maps used for aggregation 

with attention, 
 the number of layers in the pyramid, 
 different fusion functions  in (3) for a pyramid, 
 effects of the components in the attention model, 
 action class analysis for attention-based models, 
 the embedding of the proposed interaction-aware 

attention layer in different popular deep networks, 
including VGGNet-16 [9], BN-Inception [52], and 
Inception-ResNet-V2 [10].  

5.1.1. Layer position used for attention aggregation 
To determine which layer of feature maps is suitable for 

aggregation with attention weights, the following four 
different layers were investigated: 
 the last layers of Inception-ResNet-A, B, and C without 

activation (the sizes of these three layers are 35×35×320, 
17×17×1088, and 8×8×2080, respectively), 

 the last fully-connected layer which is denoted as 
1536 1

X (
1536 1 , 

1536 1b ). 
The pyramid is 1-scale, i.e., it has only one layer for evaluation. 
The results are shown in Table 1. It is seen that using the last 
convolutional layer of Block C as the top layer yields a better 
performance than using the last fully connected layer and the 
last layers of Inception-ResNet-A and B as the top layer. The 
reason is that the fully-connected layer loses much 
information about the spatial locations. The large spatial sizes 
of the feature maps in the last layers of Inception-ResNet-A 
and B cause that the features in these maps are less 
representative. 

Table 1. Evaluation of positions of the interaction-aware attention layer 
on the UCF101 split 1 dataset: K=3 for training and K=25 for testing 

Block (Inception-ResNet-V2) RGB stream Flow stream 

Block A (35×35×320) 85.8% 83.5% 

Block B (17×17×1088) 86.1% 83.7% 

Block C (8×8×2080) 86.3% 84.0% 

Fully Connected (1536) 85.5% 83.4% 
 

5.1.2. The number of layers in the pyramid 
The performances of our spatio-temporal pyramid 

attention layer were compared between 1 scale (only using the 
top layer of the pyramid), 2 scales (using 2 layers), 3 scales, 
and 4 scales. Table 2 shows the results for which the last 
convolutional layer of Inception-ResNet-Block C was used as 
the top layer of the pyramid, together with the results without 
the attention layer (0 scales). The following points are noted: 
 Compared with the basic model without the attention 

layer, the 1-scale attention layer improves the accuracy 

by 1.1% and 0.9% on the RGB stream and the flow 
stream respectively. This indicates that the attention 
mechanism increases the classification performance of 
the networks by paying attention to more discriminative 
image regions and inhibiting the influence of background 
disturbances to some extent. 

 The performance is further promoted when the number 
of scales is increased to 3. The 3 scales improve the 
accuracy by 2.1% and 2.4% on the RGB and flow 
streams respectively. This indicates that the spatio-
temporal pyramid attention is effective because more 
information from multi-scale feature maps of different 
receptive fields is used for the aggregation of local 
features. 

 When a fourth scale was added by using Conv2d 4a 3x3 
(71×71×92) in Inception-ResNet-V2, the performance 
drops. The reason is that when feature maps with larger 
sizes are used, the receptive fields of the feature maps 
become narrow. Too narrow receptive fields increase the 
effect of noise on the local feature vectors. Hence, the 
architecture of 3 layers (3 scales) is appropriate for 
constructing the spatio-temporal pyramid. 

Table 2. Evaluation of different numbers of scales with Inception-
ResNet-V2 on the UCF101 split 1 dataset: K=3 for training and K=25 
for testing 

Scale RGB stream Flow stream 

0 scales 85.2% 83.1% 

1 scale 86.3% 84.0% 

2 scales 86.8% 84.8% 

3 scales 87.3% 85.5% 

4 scales 86.5% 85.0% 
 

5.1.3. Different fusion functions  for a pyramid 
We evaluated different types of the fusion function  in 

(3) for feature maps in the pyramid on the RGB stream. Table 
3 compares the results of different fusion strategies when the 
last convolutional layer of Inception-ResNet-Block C was 
used as the top layer of the pyramid with 3 scales. It is seen 
that element-wise multiplication performs better than 
element-wise maximum and element-wise sum. Therefore, the 
element-wise multiplication was selected as the default fusion 
function. A similar conclusion was obtained for the TLE 
networks in [40], showing that element-wise multiplication is 
more appropriate for fusion encoding of feature maps 
extracted from different frames. 

Table 3. Performance of different fusion functions with 3 scales on the 
UCF101 split 1 dataset: K=3 for training and K=25 for testing 

Fusion function () Accuracy #RGB 

Element-wise maximum 85.7% 

Element-wise sum 86.4% 

Element-wise multiplication 87.3% 
 

5.1.4. Effects of components in the attention model 
We investigated the effectiveness of the new attention 

method by fixing the temporal modeling settings and 
comparing the experimental results with and without the 
interaction-aware pyramid attention on the action recognition 
datasets (video-level datasets). Because the temporal 
modeling settings are the same, the results describe the effect 
of our interaction-aware pyramid attention on image-level 
recognition. We also tested the effectiveness of the 
interaction-aware pyramid attention on the CIFAR 100 image 
classification dataset (an image-level dataset). 

We separately investigated the effect of the proposed 
PCA-inspired interaction-aware attention and the spatial 
pyramid attention. The proposed PCA-inspired interaction-
aware attention is described by our interaction-aware loss 
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interactive in (8). The spatial pyramid attention is described by 
the pyramid attention loss attn in (14). We compared the 
results of i) using both the interaction-aware attention and the 
spatial pyramid attention, ii) using either the interaction-aware 
attention or the spatial pyramid attention alone, and iii) not 
using either the interaction-aware attention or the spatial 
pyramid attention. The results are shown in Table 4, for which 
the last layers of Inception-ResNet-A, B, and C without 
activation were chosen to construct a 3-scale interaction-
aware spatio-temporal pyramid attention layer. The RGB 
stream, the flow stream, and the late fusion [26, 28, 39, 40] 
were considered. The results show that, compared with the 
results without both the interaction-aware attention and the 
spatial pyramid attention, using both the interaction-aware 
attention and the spatial pyramid attention improves the 
performance by 0.9%, 1.0%, and 0.9% on the RGB stream 
alone, the flow stream alone, and the late fusion of the two 
streams. Using either the interaction-aware attention or the 
spatial pyramid attention alone improves the performance 
individually. Using the interaction-aware attention alone 
slightly outperforms using the spatial pyramid attention alone. 
The combination of the interaction-aware attention and the 
spatial pyramid attention yields more accurate results. 

Table 4. Evaluation of the components of the attention model with 
Inception-ResNet-V2 and the attention layer: K=3 for training and K=25 
for testing on the UCF101 split 1 dataset. 

Stream or 

fusion 

Using the 
interaction-

aware 
attention 

Using the 
spatial 

pyramid 
attention 

alone 

Without both the 
interaction-aware 
attention and the 
spatial pyramid 

attention 

Using both the 
interaction-aware 
attention and the 
spatial pyramid 

attention 

RGB alone 87.8% 87.5% 87.3% 88.2% 

Flow alone 86.1% 85.7% 85.5% 86.5% 

Late fusion 94.7% 94.4% 94.2% 95.1% 
 

The 1 scale in Table 2 corresponds to the vanilla attention 
method obtained by removing the feature pyramid from the 
attention modeling (i.e., only using one layer of feature maps) 
and removing the PCA-inspired interaction-aware modeling. 
From Tables 2 and 4, it is seen that our attention methods with 
the feature pyramid attention or with the interaction-aware 
modeling yield more accurate results than the vanilla attention 
method. 

We compared our attention model with the attention 
model which uses 1x1 convolutions shared across all the 
spatial locations. The use of 1x1 convolutions shared across 
all the spatial locations yields an attention map in which each 
position has an attention score. In contrast, our attention 
modeling method has an attention score vector (an attention 
kernel) at each spatial position. We implemented the method 
which uses 1x1 convolutions by replacing the attention score 
vector in each location in our method with the attention score 
obtained by using 1x1 convolutions shared across all the 
spatial locations. Using 1x1 convolutions shared across all 
spatial locations is simple and efficient. However, the 
correlations between spatial locations are not modeled and 
described. As shown in Table 5, our method obtains more 
accurate results than the method that uses 1x1 convolutions. It 
effectively models the attention correlations between spatial 
locations. 

Table 5. Comparison with using 1x1 convolutions shared across all the 
spatial locations on the UCF101 split 1 dataset 

Method Accuracy 

Our method (25frames for test + Inception-ResNet-V2) 95.1% 

Using 1x1 convolutions shared across all the locations 94.2% 
 

We also tested the effectiveness of the interaction-aware 
pyramid attention on the CIFAR 100 image classification 
dataset (an image-level dataset), The CIFAR100 database 

contains 60,000 color images. These images were divided into 
a training set with 50000 images and a test set with 10000 
images. CIFAR100 has 20 large classes. It was further 
subdivided into 100 small classes. The comparison between 
the interaction-aware pyramid attention layer and the baseline 
network is shown in Table 6, where CIFAR100+ means that 
the images were augmented with padding and cropping 
randomly. The results show that the interaction-aware 
pyramid attention layer increases the recognition rate by 2.2% 
compared with the baseline Inception-ResNet-V2. It is seen 
that the new attention method works well on the image-level 
task. This supports that it works well in the video-level task 
when combining with spatial-temporal modeling. 

Table 6. Recognition rate (top-1) of the interaction-aware pyramid 
attention layer and the baseline network on the CIFAR 100+ image 
dataset. 

Method 
The interaction-aware 

pyramid attention 

Inception-

ResNet-V2 

Accuracy 81.7% 79.5% 
 
5.1.5. Class analysis for the attention-based models 

We analyzed the performance of the attention-based 
models on different action classes. The classes, for which the 
classification accuracies are low (less than 52%) from the 
RGB stream, are “Nunchucks”, “JumpRope”, “HighJump”, 
“JumpingJack”, and “Hammering”. In “Nunchucks”, in both 
indoor and outdoor scenes, humans are rotating nunchucks 
continually. It is impossible to see the motion of the nunchucks 
clearly with the naked eye. The RGB branch alone (i.e. 
without motion information) cannot effectively distinguish 
these actions from other actions. The actions “JumpRope” and 
“JumpingJack” both have sub-actions “hands up” and 
“jumping up”. Moreover, the rope in “JumpRope” cannot be 
distinguished in the image, because of its fast movement. The 
RGB branch alone cannot clearly distinguish these two classes 
of actions without the support of motion information. The 
classification accuracy rates for these two action classes are 
low if the RGB branch alone is used. 

The classes with low classification accuracies (less than 
51%) using only the optical flow stream are “BrushingTeeth”, 
“CricketBowling”, “PizzaTossing”, “Hammering”, and 
“FieldHockeyPenalty”. As an example, the accuracy for 
“BrushingTeeth” is low because the actions “BrushingTeeth” 
are easily misclassified as the actions “Shaving”. For both 
“BrushingTeeth” and “Shaving”, the main motion in the scene 
is the small movement of single hand. Optical information 
alone cannot distinguish whether a toothbrush or shaver is 
held in the hand. 

We checked the effect of the fusion of the RGB branch 
and the flow branch on different action classes. It is seen that 
in all the action classes except for the BrushingTeeth class, the 
fusion of the two branches yields more accurate results than 
the single branch alone. For the BrushingTeeth class, the 
fusion accuracy is lower than the accuracy of the RGB branch 
because of the large differences in the accuracies of the RGB 
branch and the flow branch. The accuracies for most of the 
action classes are higher than 70%. This verifies that the two-
stream network effectively fuses the appearance information 
from the RGB branch and the motion information from the 
flow branch.  

We checked the effect of the attention mechanism of the 
RGB branch on the classification accuracies of different 
action classes. Table 7 shows the five action classes for which 
the attention mechanism increases the classification accuracy 
by the largest amount on the RGB branch. Table 8 shows the 
five action classes for which the attention mechanism reduces 
the classification accuracy by the largest amount on the RGB 
branch. It is seen that when the attention mechanism is 
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incorporated, on the RGB branch the accuracies for the actions 
of “Lunges” and “LongJump”, etc, are obviously increased 
and the accuracies for the actions “MopppingFloor” and 
“BlowDryHair”, etc, are reduced to some extent. The reason 
is that the actions “Lunges” and “LongJump” only include 
movements of human bodies themselves, without interaction 
with objects in the background. Although the video 
backgrounds are complex, they are useless for identifying 
these actions. As human motion is the core in the dataset, the 
attention mechanism ensures that the trained networks pay 
more attention to human bodies and reduces the influence of 
the background to some extent. Then, the actions of these 
classes have higher classification accuracy rates. However, the 
actions “MopppingFloor” and “BlowDryHair” include 
interactions between human bodies and objects in the 
background. While the video backgrounds are relatively 
simple, the external objects are important for classifying these 
actions. On decreasing the attention to objects that interact 
with human bodies, the classification accuracy rates of these 
actions decrease to some extent. 

Table 7. The five action classes for which the attention mechanism 
increases the classification accuracy by the largest amount on the RGB 
branch 

Action class Classification accuracy increase rate (%) 

HammerThrow 24.4 

Lunges 24.3 

FrontCrawl 21.6 

LongJump 20.5 

FieldHockeyPenalty 15.0 
 

Table 8. The five action classes for which the attention mechanism 
reduces the classification accuracy by the largest amount on the RGB 
branch 

Action class Classification accuracy loss rate (%) 

MoppingFloor 17.6 

Archery 12.2 

Nunchucks 11.4 

Rowing 11.1 

BlowDryHair 10.5 
 

5.1.6. Extension of the interaction-aware attention 
layer for different deep networks 

To investigate the extension of our attention layer to 
different networks, we incorporated it into VGGNet-16 and 
BN-Inception besides Inception-Resnet-V2. For VGGNet-16, 
the outputs without activation of the last layers of conv3, 
conv4, and conv5 (i.e., conv3_3 (28×28×512), conv4_3 
(14×14×512), and conv5_3 (7×7×512)) were used to construct 
an interaction-aware spatio-temporal attention pyramid layer 
with 3 scales. For BN-inception, the outputs without 
activation of the last layers of inception-3 (28×28×480), 
inception-4 (14×14×832), and inception-5 (7×7×1024) were 
used to construct a pyramid layer with 3 scales. For Inception-
ResNet-V2, the last layers of Inception-ResNet-A, B, and C 
without activation were used to construct a 3-scale interaction- 
aware spatio-temporal pyramid attention layer. Table 9 
compares the results with and without our attention layer for 
the RGB stream, the flow stream, and the late fusion of the 
RGB and Flow streams. The results without our attention layer 
are obtained by the two-stream [26] standard process. It is seen 
that for the RGB stream, the flow stream, and the late fusion 
of the two streams our attention network improves the 
performance by 
 3.4%, 1.6%, and 2.1% respectively, for VGGNet-16, 
 2.2%, 0.7%, and 2.6% respectively, for BN-Inception, 
 3.0%, 3.4%, and 2.5% respectively, for Inception-

Resnet-V2. 
The improvement of our attention layer for all the three types 

of deep networks proves the generalizability of our layer for 
general deep CNNs. 

Table 9. Performance of the proposed attention layer on popular 
networks, VGGNet-16, BN-Inception, and Inception-ResNet-V2 on the 
UCF101 split 1 dataset: K=3 for training and K=25 for testing; both 
interactive and attn were used. 

Stream 
With or without 

attention 
VGGNet-16 BN-Inception 

Inception-

ResNet-V2 

RGB 

alone 

Without attention 80.4% 84.5% 85.2% 

With attention 83.8% 86.7% 88.2% 

Flow 

alone 

Without attention 85.5% 87.2% 83.1% 

With attention 87.1% 87.9% 86.5% 

Late 

fusion 

Without attention 90.7% 92.0% 92.6% 

With attention 92.8% 94.6% 95.1% 
 

5.2. Evaluation of temporal aggregations 
We investigated how the number K of sampled frames for 

training and testing affects our interaction-aware attention 
layer on the UCF101 split1 dataset. The 3-scale spatio-
temporal interaction-aware attention pyramid with Inception-
ResNet-V2 was used to recognize actions in videos. In the 
following, the effect of different numbers of sampled frames 
per video is shown for training first and then for testing. 
 

 

 

 

 

 

 

 

 

 

 

 
(A) K for training 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B) K for testing 
Fig. 4. Comparisons of the results between different numbers of sampled 
frames per video for training (A) and testing (B) respectively on the 
UCF101 split1 dataset: (A) {K=1, 3} frames for training and (B) {K=1, 
5, 10, 15, 20, 25, 30} frames for testing. 
 

The effect of the number of frames for training was 
estimated by changing the number K of frames from 1 to 3 for 
training and fixing K to 25 for testing. For K=1, a frame was 
randomly sampled from a video. For K=3, a video was divided 
into 3 equal segments and a frame was randomly sampled 
from each of the 3 segments. Then, a sequence of the 3 
sampled frames was input to the neural networks. The results 
of comparison of using different numbers K of sampled frames 
per video for training is shown in Fig. 4 (A). It is seen that 
training the model using temporal sequences increases the 
accuracy. This is consistent with the results obtained by the 
temporal segment networks in [28]. For a fair comparison, K 
was set to 3 for training by default for the ablation study, 
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taking account of the runtime and the limited GPU memory. 
Dense sampling decreases training speed and requires a large 
GPU memory. It is necessary to sample multiple videos in 
order to obtain a minimum number of samples for batch 
normalization. If too many frames are sampled from each 
video, then the GPU memory may overflow. 

To evaluate the effect of the number K of the sampled 
frames for testing, we compared the accuracy of action 
recognition when K is changed for testing and fixed for 
training. Fig. 4(B) shows the results when K was set to 1, 5, 
10, 15, 20, 25, and 30 for testing and fixed to 3 for training. 
Because of the limited GPU memory, the maximum number 
of frames for testing was set to 30. It is seen that the action 
recognition accuracy gradually increases when more frames 
are sampled per video. Although more frames may introduce 
irreverent information or even noise for action recognition, 
our attention layer is able to extract the effective spatio-
temporal information for action recognition. A higher 
accuracy was obtained when K was set to 30. If a GPU with 
higher memory capacity is used, the accuracy of our model 
may further increase. For fair comparison, K was set to 25 
frames for testing by default for the ablation study as in [26, 
28, 39] and the K frames were uniformly sampled from each 
video. 

5.3. Number of parameters 
The main computational cost for our interaction-aware 

attention layer is from the multiplication of two matrices in (2) 
and (4). Therefore, the computational complexity of our 
interaction-aware attention layer is ( )i i iO CW H  . The most 
popular method for investigating the computational cost of an 
attention layer is to compare the number of the parameters in 
the networks into which the attention layer is incorporated 
with the number of the parameters in the corresponding 
original networks. It has been shown that embedding the 
proposed attention layer into VGGNet16, BN-Inception, and 
Inception-ResNet-V2 improves the recognition accuracies 
over these three original networks. The results shown in Table 
10 compare the number of the parameters between the 
networks into which the interaction-aware attention layer was 
incorporated and the original networks. The following points 
are apparent: 
 While the original VGGNet16 has 138.56 million 

parameters, our 3-scale spatio-temporal pyramid 
attention network has additional 0.26 million parameters. 
This is only 0.19% of the parameters in the networks. 

 While the original BN-Inception has 10.26 million 
parameters, our 3-scale spatio-temporal pyramid 
attention network has additional 0.12 million parameters. 
This is only 1.17% of the parameters in the networks. 

 While the original Inception-ResNet-V2 has 57.11 
million parameters, our 3-scale spatio-temporal pyramid 
attention network has additional 0.22 million parameters. 
This is only 0.38% of the parameters in the networks. 

In summary, only a small proportion of new parameters are 
added when our attention layer is incorporated into the 
original networks. Therefore, our interaction-aware attention 
layer improves the recognition accuracy but does not increase 
the computational cost by much. 

Table 10. The numbers (in millions) of the parameters in the networks 
with or without the proposed interaction-aware attention layer: 1 scale, 
2 scales, and 3 scales in a spatio-temporal pyramid were considered. 

Scale VGGNet-16 BN-Inception Inception-ResNet-V2 
Original 138.56 10.26 57.11 
1 scale 138.62 10.31 57.24 
2 scales 138.69 10.36 57.31 
3 scales 138.82 10.38 57.33 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Comparison between 1 scale and no attention 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B) Comparison between 2 scales and 1 scale 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(C) Comparison between 3 scales and 2 scales 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(D) Comparison between 3 scales and no attention 
Fig. 5. Difference of confusion matrices for the RGB stream on the 
UCF101 split1 dataset: (A) between 1 scale and no attention layer; (B) 
between 2 scales and 1 scale; (C) between 3 scales and 2 scales; (D) 
between 3 scales and no attention layer: The larger negative changes on 
the diagonal and the larger positive changes on the off-diagonal denote 
the higher improvement; It is expected that the color denoting negative 
changes is on the diagonal and the color denoting positive changes is on 
the off-diagonal. 
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5.4. Analysis of difference of confusion 
matrices 

In order to visualize the difference between the results of 
our interaction-aware spatio-temporal pyramid attention 
layers with different scales and the original networks without 
the attention layer, we examined the difference of their 
confusion matrices. A confusion matrix is a square matrix with 
both the numbers of rows and columns equal to the number of 
classes. Each row represents the class predictions for the 
samples. Each column represents the true labels of the samples. 
From the matrix, it is easy to see whether any two classes are 
confused with each other. The difference of confusion 
matrices was obtained by the subtraction of the corresponding 
elements of the two confusion matrices. We computed the 
confusion matrices of the Inception-ResNet-V2 networks with 
1, 2, and 3 scale spatio-temporal pyramid attention layers and 
without the attention layer. The difference of two of these 
confusion matrices was computed. 

Fig. 5 shows four difference matrices. Fig. 5(A) is the 
matrix of the difference between the confusion matrices of the 
networks with the 1-scale spatio-temporal pyramid attention 
layer and without the attention layer. Fig. 5(B) is the matrix of 
the difference between the confusion matrices of the networks 
with the 1 and 2 scale spatio-temporal pyramid attention layers. 
Fig. 5(C) is the matrix of the difference between the confusion 
matrices of the networks with the 2 and 3 scale spatio-
temporal pyramid attention layers. Fig. 5(D) is the matrix of 
the difference between the confusion matrices of the networks 
with the 3-scale spatio-temporal pyramid attention layer and 
without the attention layer. In these figures, arrows mark some 
pairs of classes to show the change in the predicted action 
classes at different scales. The arrows are directed from the 
class into which samples are misclassified to the class into 
which the same samples are correctly classified. It is seen that 
our attention layer with different scales corrects some errors 
in the classifications for different classes. For example, it 
corrects the wrongly classified actions “Nunchucks”, 
“CleanAndJerk”, “Basketball” to “ApplyLipstick”, 
“BenchPress”, “soccerJuggling” when a spatio-temporal 
pyramid attention layer with 1 scale was used. When layers of 
more scales were used, the performance is further improved 
by correcting more errors in clarifying actions. It is 
demonstrated that the networks with our spatio-temporal 
pyramid attention layer is more effective than the networks 
without the attention layer. The inclusion of more scales yields 
higher recognition accuracy. Our 3-scale spatio-temporal 
pyramid attention layer significantly improves the 
performance on most of the classes on UCF101 split 1. 

5.5. Fusion of the RGB and flow streams 
We compared the performances of the late fusion and the 

attention fusion of the RGB and flow streams, and estimated 
the performances of the combinations with motion 
compensation and motion reinforcement (see the appendix for 
detail). Table 11 shows the results of different strategies for 
fusing the RGB channel and the optical flow channel 
evaluated on the UCF101 split 1 dataset. The following points 
are apparent: 
 The proposed attention fusion method effectively fuses 

the data from different types of channels. It yields more 
accurate results than the traditional late fusion method. 
This further indicates the generalizability and 
effectiveness of the proposed attention network layer. 
However, the attention fusion method requires more 
memory and runs much slower than the late fusion 
method. Since the accuracy of the attention fusion is not 
much larger than the accuracy of the late fusion, the late 
fusion is used by default. 

 The motion compensated flow stream increases the 
classification accuracy. The reason is that the motion 
compensated flows reduce the influence of background 
disturbances caused by camera motion and more 
accurately describe the foreground motion patterns in 
videos. 

 The fusion of the motion reinforced RGB stream with the 
original flow stream and the motion compensated flow 
stream increases the classification accuracy, compared 
with the fusion of the original RGB stream with the two 
flow streams. This indicates that motion reinforcement 
gives the RGB branch useful motion information 
obtained from the optical flow sequence. Features of the 
foreground motion parts in RGB images are reinforced 
and then the extracted feature maps are more 
discriminative. 

Table 11. Comparison between different strategies for fusing the RGB 
channel and the optical flow channel on the UCF101 split 1 dataset 

Fusion strategy Accuracy 

Attention fusion (25frames for each test + Inception-
ResNet-V2) 

95.4% 

Late fusion (25frames for each test + Inception-
ResNet-V2) 

95.1% 

Fusion of the RGB stream, the original flow stream, 
and the motion compensated flow. 

95.8% 

Fusion of the motion reinforced RGB stream with the 
original flow stream and the motion compensated 

flow stream 
96.2% 

 

5.6. Visualization analysis 
We visualized the salient regions that the proposed 

attention layer extracts from different spatial positions of the 

feature maps over the frames. Let 
1

( , , )
i

n n

C

t w h


x   denote 

the channel vector of position ( , )n nw h   for frame t in the 

feature maps   
 i i iK W H C

i  . It is a local feature vector 

describing the receptive field centered at the position 

( , )n nw h   in the t-th frame. As stated in Section 3.4, an 

element 
,n n m mt w h w ha   

 in A ( {1,2,.., }t K , , [1, ]m n iw w W , 

, [1, ]m n ih h H  ) represents the attention score that local 

feature vector 
( , , )n nt w hx   contributes to the spatial position 

(wm, hm) in the attention maps i i iC W H

i

  . The receptive 

fields with high attention scores are defined as salient 

receptive fields. 
We visualized the salient receptive fields that the K input 

frames contribute to the fixed position (wm, hm) in the feature 
maps i  . For one frame, the salient receptive fields are 
centered at the positions satisfying: 

,{( , ) | , 1,..., , 1, 1}
n n m mn n t w h w h m mw h a threshold t K w h       .(17) 

The threshold in (17) was set to 0.5 to show salient attention 
regions for 5 input frames. Fig. 6 shows some results including 
the salient regions obtained by the proposed attention layer 
with 1 scale, 2 scales, and 3 scales (See the supplied video 
“Fig. 6.mp4”). It is seen that our attention layer pays attention 
to different salient regions related to human actions over the 
frames. Using 3 scales pays attention to more specific and 
accurate action regions in every frame. 

For one fixed input frame, we visualized the salient 
receptive fields contributing to different positions (wm, hm) in 
the attention feature maps i

  . For one position, every 
salient spatial region centered at the position satisfies 

,{( , ) | ,

1, 1,..., , 1,..., }.

n n m mn n t w h w h

m i m i

w h a threshold

t w W h H

   

  
        (18) 

We set a higher threshold of 0.7 for stronger discrimination. 
Some results are shown in Fig. 7 (See the supplied video “Fig. 
7.mp4”). It is seen that different positions (wm, hm) have 
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different scopes of attention. For example, in Fig. 7(a) for the 
action ‘PlayingGuitar’, different parts (‘microphone’, parts of 
‘guitar’, hands) receive attention from different positions in 
the attention feature maps. Similar results can be seen in Fig. 
7(b)-(d). 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Sampled RGB frames per video 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B) Flow frames per video 
Fig. 6. Visualization of salient receptive fields in different frames from 
the appearance (RGB) and motion (Flow) streams: Each row shows 5 
frames from videos, and blue, green, and red regions correspond to the 
centers of salient receptive fields obtained by using 1 scale, 2 scales, and 
3 scales respectively; a), b) and c) and g), h) and i) show the results of 
action ‘ApplyEyeMakeup’ from the RGB and Flow streams respectively; 
d), e) and f) and j), k) and l) show the results of action ‘iceDancing’ from 
the RGB and Flow streams respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Visualization of salient receptive fields for different positions in 
the attention feature maps from the appearance (RGB) stream: a) 
‘PlayingGuitar’, b) ‘PlayingFlute’, c) ‘ParallelBars’, d) ‘Skijet’. Three 
scales of attention were used; Each image shows the results from 
different positions (wm, hm). 
 

5.7. Comparison with the-state-of -the-art 
Comparison with the-state-of -the-art was carried out on 

the UCF101, HMDB51, Kinetics-400, and Charades datasets. 

5.7.1. On the UCF101 and HMDB51 datasets 
Table 12 compares, on the UCF101 and HMDB51 

datasets, the results of incorporating our interaction-aware 
attention layer into BN-Inception and Inception-Resnet-V2 
with the results of recent state-of-the-art methods and with the 
results of comparable methods. The following points are noted: 

Table 12. Comparisons with the-state-of-the art methods on the 
UCF101 and HMDB51 datasets over 3 splits 

Algorithm UCF101 HMDB51 

C3D [34] 85.2% -- 

Soft Attention + LSTM [13] -- 41.3% 

Two-Stream + LSTM [38] 88.6% -- 

TDD+FV [19] 90.3% 63.2% 

RNN+FV [58] 88.0% 54.3% 

LTC [33] 91.7% 64.8% 

ST-ResNet [29] 93.5% 66.4% 

TSN (BN-Inception) [28] 94.0% 68.5% 

TSN (Journal version) [78] 94.9% 71.0% 

AdaScan [59] 89.4% 54.9% 

ActionVLAD [39] 92.7% 66.9% 

TLE (BN-Inception) [40] 95.6% 71.1% 

Attention Cluster (ResNet-152) [47] 94.6% 69.2% 

TesNet (ImageNet pre-trained) [84] 95.2% 71.5% 

Two-in-one two stream [85] 92.0% -- 

R(2+1) [86] 85.8% 54.8% 

3D-SqueezeNet [87] 74.9% -- 

Algorithm in [88](Pre-trained on Kinetics) 61.2% 33.4% 

TSM [89] 95.9% 73.5% 

T-STFT [90] 94.7% 71.5% 

TEA [91] 96.9% 73.3% 

Ours (25 frames+BN-Inception) 94.8% 69.6% 

Ours (25 frames+Inception-ResNet-V2) 95.3% 70.5% 

Ours (30 frames+Inception-ResNet-V2) 95.5% 70.7% 

Fusion of the RGB stream, the original flow 

stream, and the motion compensated flow. 
96.0% 71.1% 

Fusion of the motion reinforced RGB stream 
with the original flow stream and the motion 

compensated flow stream 
96.3% 71.4% 

 

 The results of our methods are much better than the result 
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of the attention-based method, soft attention + LSTM 
[13]. 

 Our method with BN-Inception as the backbone 
outperforms the conference version of TSN [28] with 
BN-Inception as the backbone by 0.8% and 1.1% on the 
UCF101 and HMDB51 datasets respectively, where both 
the methods uniformly sample 25 frames from each 
video for testing. Our method performs slightly worse 
than the journal version of TSN [78]. The reason is that 
our method sets the number K of sampled frames per 
video to 3 for training as does the conference version of 
TSN [28]. The journal version of TSN [78] sets K to 7 for 
training, which increases the accuracy but requires more 
runtime. The TSN is currently one of the most effective 
action recognition methods. Our method yields 
performance comparable to TSN. This indicates the 
effectiveness of the proposed method. 

 Our method with BN-Inception as the backbone 
outperforms the attention cluster method with ResNet-
152 [47] as the backbone, although ResNet-152 [7] 
yields more accurate classification results than BN-
Inception [52] on the ImageNet dataset [53]. 

 Our method with Inception-ResNet-V2 as the backbone 
has a performance which is comparable to the best 
performance obtained by the TLE method in [40]. 

 On increasing the number of sampled frames per video 
from 25 to 30, the performance of our method with 
Inception-ResNet-v2 as the backbone slightly increases. 

 Although many non-trivial adjustments used in the 
competing algorithms cannot be duplicated in our 
algorithms, the results of our algorithms are better than 
the results of most of the competing algorithms and 
comparable to the results of the competing algorithms 
which were pre-trained using large datasets [84, 88]. 

 Our method uses the multi-scale feature fusion to obtain 
more accurate attention scores. It uses the semantic 
features in the top level to classify actions, as in other 
methods, such as Two stream, ActionVLAD, and 
Attention Clusters. More accurate attention scores make 
the semantic features more accurate. Therefore, the 
comparison with other state of the art results indicates the 
effectiveness of the new attention method. 

Table 13. Comparisons with the methods that use iDT [62] and the 
hybrid methods on the UCF101 and HMDB51 datasets 

Algorithm UCF101 HMDB51 

DT+MVSV [60] 83.5% 55.9% 

iDT+FV [18] 85.9% 57.2% 

C3D+iDT [34] 90.4% -- 

LTC+iDT [33] 92.7% 67.2% 

ST-ResNet+iDT [29] 94.6% 70.3% 

AdaScan+iDT [59] 91.3% 61.0% 

ActionVLAD+iDT [39] 93.6% 69.8% 

TSN (3-modality) [28] 94.2% 69.4% 

AdaScan+iDT+C3D [59] 93.2% 66.9% 

Ours (25 frames+Inception-ResNet-

V2+iDT) 
95.8% 71.8% 

Ours (30 frames+Inception-ResNet-

V2+iDT) 
95.9% 72.0% 

 

Fusion with iDT scores [18] is usually able to increase 
the accuracy of action recognition. The iDT features [18] were 
obtained by combining the trajectory-based MBH, HOG, and 
HOF features. An SVM classifier was used to yield the iDT 
scores for classifying actions. Table 13 compares the results of 
our method fused with iDT with the results of the methods that 
use iDT [62] and the hybrid methods on the UCF101 and 
HMDB51 datasets. The following points are shown: 
 Fusion of our method with the iDT increases the 

accuracy of action recognition. 

 The results of our method fused with iDT are more 
accurate than the results of the competing methods that 
use iDT [62] and the hybrid methods. 

 Increasing the number of sampled frames per video from 
25 to 30 slightly increases the accuracy of our method 
fused with iDT. 

5.7.2. On the Kinetics-400 dataset 
On the Kinetics-400 dataset, in order to fairly compare 

with the state of the art methods, we used ResNet-50 with the 
temporal shift module as the backbone, which has a good 
balance between accuracy and speed. Similar to the setups on 
the UCF-101 and HMDB-51 datasets, we embedded our 
interaction-aware pyramid attention layer after stage 5 in 
ResNet-50. The feature maps output from the last res-blocks 
in stages 3-5 were used to construct the feature pyramid. 

Because of the large volume of the Kinetics-400 dataset, 
its optical flow extraction and recognition consume too much 
computation and storage space. Therefore, only RGB frames 
were utilized as the input. We randomly initialized the 
parameters of the interaction-aware pyramid attention layer. 
The pre-trained model on ImageNet was used to initialize the 
backbone. When our attention layer was combined with the 
TSN version in [45], the sampling settings in [45] were 
followed. Namely, for training, each video was uniformly 
divided into 8 segments and one frame was sampled randomly 
from each segment. For testing, 25 frames were uniformly 
sampled from each video. When our attention layer was 
combined with TSM, the dense sampling settings in [32] were 
followed. Namely, for training, 64 consecutive frames were 
randomly chosen from each video and 8 frames were 
uniformly sampled from these 64 frames. For testing, each 
video was uniformly divided into 10 clips. From the first 64 
consecutive frames of each clip, 8 frames were uniformly 
sampled. 

The results on the Kinetics-400 dataset are shown in 
Table 14. It is seen that embedding our interaction-aware 
spatio-temporal pyramid attention layer into TSN increases 
the accuracy by 1.1%. Embedding our attention layer into 
TSM increases the accuracy by 0.8%. The results of our 
method are more accurate than the result of the R(2+1)D 
method and comparable to the results of the non-local 
networks [15]. These clearly validate the effectiveness of our 
attention model. Although the accuracy of our method is less 
than some 3D convolution-based methods, such as the 
SlowFast networks-based method [64], these 3D convolution-
based methods require many more network parameters and 
much more computation than our 2D convolution-based 
method. 

Table 14. The state of the art results on the Kinetics-400 dataset 

Methods Backbone Frames×Crops×Clips Top-1(%) 

TSN[45](RGB) 
BN-Inception 

25 × 10 × 1 
69.1 

ResNet-50 71.8 

R(2+1)D [95] ResNet-34 32 × 1 × 10 72.0 

STM [83] ResNet-50 16 × 3 × 10 73.7 

TSM [89] ResNet-50 8 × 3 × 10 73.8 

I3D [32] 3D Inception-v1 64 × N/A × N/A 72.1 

Non-local 

networks [15] 

2D ResNet-50 
32x3x10 

73.8 

3D ResNet-50 74.9 

SlowFast [64] 3D ResNet-50 8 × 3 × 10 77.0 

TSN+ours ResNet-50 25 × 10 × 1 72.9 

TSM+ours ResNet-50 8 × 3 × 10 74.6 

 

5.7.3. On the Charades dataset 
We evaluated our method on the challenging untrimmed 

Charades dataset by following the pipeline of another spatio-
temporal aggregation method ActionVLAD [39]. Since a 
video in the Charades dataset can have multiple labels, the 
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evaluation was carried out using mean average precision 
(mAP) and weighted average precision (wAP). For each class, 
average precision was computed. Mean average precision 
(mAP) is the mean of the average precision of all the classes. 
Weighted average precision (wAP) is the average precision 
across all the classes, weighted by the number of test samples 
in each class. For our method, two backbones into which our 
attention layer was embedded were used: 
 One is BN-inception without pre-training. The sampling 

mode in TSN was used. 
 The other is the ResNet-50 pre-trained on the Kinetics-

400 dataset. For training, 64 consecutive frames were 
randomly chosen from each video and 8 frames were 
uniformly sampled from these 64 frames. For testing, 
each video was uniformly divided into 10 clips. From the 
first 64 consecutive frames of each clip, 8 frames were 
uniformly sampled as the input to the neural networks. 

Because of the multiple labels for each video in the Charades 
dataset, during the training the per-category sigmoid loss was 
used. The comparison results are shown in Table 15, where the 
results of both versions of the temporal relation network (TRN) 
in [81] and [57] are shown. The following points are noted: 
 Using BN-inception as the backbone, our method with 3 

scales and the entire loss exceeds the TSN method by 3.4% 
of mAP and 5.4% of wAP. Our method outperforms the 
ActionVLAD method by 2.6% of mAP and 3.4% of wAP. 
It is clear that on this dataset our interaction-aware loss 
and multi-scale attention loss have better performance 
gains than on the other datasets. There is more 
information irrelevant to human actions in the videos in 
this dataset and our attention network effectively 
localizes and detects key regions of human actions and 
extracts from them more discriminative information for 
action recognition. 

 The mAP of our method with ResNet-50 as the backbone 
is higher than those of the 2D convolution-based 
methods, Two-stream [4], ActionVLAD [39], and Asyn-
TF [63]. This validates the effectiveness of our attention 
layer. This mAP of our method is comparable to those of 
the TRN in [81, 57]. While our method specializes in 
image information interaction and fusion, the TRN 
specializes in explicit temporal reasoning. Therefore, the 
TRN is more adaptable to the Charades dataset in which 
the videos have strong temporal relations. 

Table 15. Comparisons on the untrimmed Charades dataset 

Algorithm mAP wAP 

Two-stream+iDT (best reported) [4] 18.6% -- 

RGB stream (BN-inception, TSN style 
training) 

16.8% 23.1% 

ActionVLAD (RGB, BN-inception) [39] 17.6% 25.1% 

ActionVLAD+iDT [39] 21.0% 29.9% 

Asyn-TF [63] 22.4% -- 

TRN version in [81] 25.2% -- 

TRN version in [57] 20.0% -- 

Ours (RGB, BN-

Inception, 3 scales) 

Entire loss 20.2% 

28.5% 
inter 19.8% 

attn 18.7% 

No loss 18.3% 

Ours (ResNet-50, pre-trained using 
Kinetics-400) 

24.3% 33.2% 

 

6. Conclusion 
We have proposed an interaction-aware self-attention 

model, which is inspired by PCA, to extract correlations 
between local feature vectors in feature maps and yield 
accurate attention scores. We have introduced the feature 
pyramid into attention modeling. The feature maps of different 

scales have been combined to further increase accuracy of the 
attention scores. We have naturally extended our spatial 
interaction-aware self-attention model to a temporal model 
forming a video-level end-to-end network for action 
classification. The temporal model accepts input of variable 
numbers of frames and then allows for different numbers of 
training frames and test frames. Our interaction-aware 
pyramid attention layer can be included in any CNNs to form 
end-to-end attention networks. Methods for combining the 
RGB stream and the optical flow stream have been 
investigated to increase the accuracy of action recognition. We 
have investigated the performance of the proposed methods 
on four popular deep networks, VGG16, BN-Inception, 
Inception-ResNet-V2, and ResNet-50. State-of-the-art results 
have been obtained. 
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