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Abstract 

Background 

Bipolar disorder (BD) is associated with cortical and subcortical structural brain abnormalities. It 

is unclear whether such alterations progressively change over time, and how this is related to the 

number of mood episodes. To address this question, we analyzed a large and diverse international 

sample with longitudinal magnetic resonance imaging (MRI) and clinical data to examine 

structural brain changes over time in BD.  

Methods 

Longitudinal structural MRI and clinical data from the ENIGMA-BD Working Group, including 

307 BD patients and 925 healthy controls (HC), were collected from 14 sites worldwide. Male and 

female participants, aged 40  17 years, underwent MRI at two time points. Cortical thickness, 

surface area, and subcortical volumes were estimated using FreeSurfer. Annualized change rates 

for each imaging phenotype were compared between BD and HC. Within patients, we related brain 

change rates to the number of mood episodes between time points and tested for effects of 

demographic and clinical variables. 

Results 

Compared with HC, BD patients showed faster enlargement of ventricular volumes and slower 

thinning of fusiform and parahippocampal cortex (0.18<d<0.22). More (hypo)manic episodes 

were associated with faster cortical thinning, primarily in the prefrontal cortex.  

Conclusion: 
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In the hitherto largest longitudinal MRI study on BD, we did not detect accelerated cortical 

thinning but noted faster ventricular enlargements in BD. Abnormal fronto-cortical thinning was 

however observed in association with frequent manic episodes. Our study yields insights into 

disease progression in BD, and highlights the importance of mania prevention in BD treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jo
urn

al 
Pre-

pro
of



8 

 

Introduction 

Bipolar disorder (BD) is a heritable (1, 2) psychiatric disorder characterized by recurrent episodes 

of (hypo)mania and depression (3, 4). Cross-sectional neuroimaging studies of BD show structural 

brain abnormalities in prefrontal and temporal cortex, cingulate gyrus, amygdala, and 

hippocampus (5-8), and less consistently in insula and visual cortex (5, 7-16). In prior cross-

sectional studies from the ENIGMA-BD Working Group, including 6,503 individuals, we found 

the most pronounced cortical thickness alterations in pars opercularis, rostral middle frontal, and 

fusiform cortex, albeit with small effect sizes, but no abnormalities in cortical surface area (5). We 

also reported smaller amygdala, hippocampus, and thalamus volumes, and larger ventricular 

volumes in BD patients compared with healthy controls (HC) (6). However, the extent and 

heterogeneity of brain abnormalities among patients is substantial (17-19), and cross-sectional 

studies cannot determine whether the observed brain alterations arise from progressive changes 

over time. 

 

The term “neuroprogression” refers to the progressive symptomatic and functional decline 

observed in some BD patients, that may be associated with progressive neuroanatomical changes 

(20-23). However, few studies have used a longitudinal design to assess brain  changes during the 

course of BD (24-28). These single-center studies and recent reviews (29) suggest progressive 

features in prefrontal and temporal cortices associated with BD. These brain changes could be part 

of the natural course of BD, but could also reflect cortical changes influenced by medication (30, 

31), genetic factors (25), and by the occurrence of mood episodes (24-27). The potential 

relationship to manic episodes, specifically, is supported by studies demonstrating associations 

between frontotemporal cortical decline and the occurrence of (hypo)manic episodes (25, 26) as 

well as in first episode mania (32). It has also been suggested that no cortical changes or even 
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cortical thickness increases, potentially reflecting normalization processes, occur during periods 

whithout manic (24, 25) or other mood episodes (28). However longitudinal brain imaging studies 

are scarce and many of them are hampered by various limitations such as small samples, short 

follow-up times, lack of control groups or lack of a statistical control for potential confounders 

such as psychiatric comorbidity and medication use.  

 

The primary aim of this multi-center longitudinal brain imaging study was to overcome the 

limitations of prior studies, to elucidate whether progressive changes in cortical thickness, surface 

area, and subcortical volumes occur in BD, beyond those expected with normal aging. While 

cortical thickness and surface area seem to be genetically distinct measures (33, 34), cortical 

thickness is increasingly being used as a marker for cortical integrity (35-38), also within BD (5, 

7, 8, 25, 39). In view of our prior findings of abnormalities in cortical thickness but not surface 

area in BD, we used cortical thickness as a primary cortical measure, and cortical surface area as 

secondary measure. We thus significantly extend our previous cross-sectional ENIGMA-BD 

analyses (5, 6) by investigating longitudinal changes in the same measures, for BD patients and 

HC.  

 

Through ENIGMA-BD, we combined data collected from 14 independent studies, including 2,464 

structural brain magnetic resonance imaging (MRI) scans from 1,232 individuals scanned at two 

timepoints (0.5 to 9 years apart) and tested for differences in regional annualized change rates 

between BD patients (n=307) and HC (n=925). Based on the literature reviewed above, we 

hypothesized that BD patients at the group level would show greater frontotemporal cortical 

thinning over time, greater volume decline in amygdala, thalamus, and hippocampus, as well as 
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greater ventricular volume enlargements relative to HC. Given the growing evidence for the 

potential involvement of mania, the second aim was to investigate whether the number of manic 

episodes between imaging investigations was associated with annual change rates in patients. 

Similar associations with hypomanic, mixed, and depressive episodes were also explored. We also 

tested the effects of demographic and clinical variables, such as psychiatric comorbidity, bipolar 

subtype, and medication use. 
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Methods and Materials 

Participating sites and cohort characteristics 

Fourteen international sites from nine countries from the ENIGMA-BD Working Group 

contributed individual subject longitudinal MRI and clinical data of 325 BD patients and 978 HC 

(mean age: 40  17 years) collected at baseline (timepoint 1; TP1) and follow-up (time point 2; 

TP2). ENIGMA-BD applies standardized processing, quality control, and analysis techniques to 

independently collected data samples. Further details about our standardized methods and 

protocols can be found in our recent review (40). Demographic and clinical data consisted of sex, 

age, body mass index (BMI), educational level, ethnicity, smoking status, alcohol use, substance 

use, age of onset, number of mood episodes, mood state, bipolar subtype, psychiatric comorbidity, 

history of psychotic symptoms, and medication use at time of scan (see Supplemental Material for 

more details and how these variables were coded). Supplementary Tables S1-S3 lists demographic 

and clinical details for each, diagnostic instruments used to obtain diagnoses and clinical 

information, and exclusion criteria for each center.  

In the main analysis, we included centers that provided both patient and control data to reliably 

correct for imaging site and account for potential scanner drift, yielding a final sample size of 

1,232 participants (307 BD patients and 925 HC). Data from the center that provided only HC 

(n=53) and the center that provided only BD data (n=18) were included in secondary within-

group analyses. All sites received approval from their local ethics committees, and all 

participants provided written informed consent. 
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MRI acquisition and processing 

T1-weighted anatomical brain images were acquired at each site (see Table S4 for acquisition 

parameters). Participants underwent baseline and follow-up investigation using the same protocol 

and scanner. ENIGMA-standardized image processing, quality control, and data extraction tools 

were applied to each of the 14 independently collected ENIGMA-BD samples. Methodological 

details are provided in the Supplemental Material. In brief, FreeSurfer (41-45) was used on-site to 

perform cortical reconstructions and subcortical segmentations at each imaging time point. Images 

were first processed cross-sectionally and then with the longitudinal stream implemented in 

FreeSurfer v5.3 or higher (46). We investigated 68 cortical thickness (and surface area) regions of 

interest (ROIs), as defined by the Desikan-Killiany atlas (47). Volumetric measures of the 

following subcortical structures were included: nucleus accumbens, amygdala, hippocampus, 

pallidum, putamen, caudate, thalamus, and lateral ventricles. For each ROI, yearly change rates 

were computed according to the formula:  

(Measure at TP2 – Measure at TP1) / (Measure at TP1 * time between scans).  

This yielded a time independent relative change measure (percent per year) for each participant 

and each ROI, where negative values reflected a decrease and positive values an increase over 

time. This approach was chosen because the majority of sites provided two-time point data, to be 

consistent with previous ENIGMA projects, and to enable comparison within and across disorders 

(5, 6, 48). If participants provided data from more than two time points, the first and last scans 

were used for change rate computations. 

 

 

Jo
urn

al 
Pre-

pro
of



13 

 

Statistical analyses 

Cohort characteristics. Differences in demographic and clinical variables between groups at each 

timepoint (Table S6) were tested with t-tests or Fisher’s exact Chi2 tests. 

 

Group differences in yearly change rates (main analysis). To determine differences in yearly 

change rates between BD patients and HC, we used linear mixed modeling with change rates in 

brain phenotypes as dependent variable, group (BD vs HC; variable of interest) as fixed factor, age 

and sex as covariates, and imaging-site as random factor, as in our previous study (5). For each 

ROI, effect size (Cohen’s d) and significance (p-values) of group comparisons were mapped into 

brain space using the ENIGMA viewer  

(http://enigma.ini.usc.edu/research/enigma-viewer) (Figures 1-2). 

As in our prior work (5, 6), we treated the investigation of subcortical and cortical phenotypes as 

independent studies but here report findings of both analyses in the same manuscript. Within each 

phenotype, multiple comparison correction was performed using Bonferroni’s Dubey Armitage-

Parmar/Sidak’s adjustment of the α-level considering the number of tests (68 for cortical thickness, 

8 for subcortical volumes) and their inter-correlation (rthickness=0.2778, α=0.0024; rsubcortical = 

0.11463, α=0.0047) between the dependent variables (49). Changes in surface area (rarea=0.2339, 

α=0.0020) were not part of the main hypothesis, but are reported for completeness.  

 

Sensitivity analysis testing for potential confounders. We tested whether the observed group 

differences in yearly change rates were affected by demographic or clinical variables (listed in 

Jo
urn

al 
Pre-

pro
of



14 

 

Table S6). Methodological details are provided in the Supplemental Material. Corresponding 

results are provided in Data S1. 

 

Correlations between change rates and manic episodes between time points. Within BD patients, 

correlations between change rates and the number of mood episodes between time points were 

calculated using nonparametric Spearman’s rank correlations in SPSS v26, given the non-normal 

distributions of mood episodes (Figures S10-S11). In addition, we constructed a second measure 

of interest defined as the combined number of manic, hypomanic, and mixed episodes between 

time points. This measure reflects the total number of elated mood episodes, as investigated in Abé 

et al. (25). Although our hypothesis focused on the effects of manic episodes, we present results 

for depressive episodes for completeness (Data S2). The same correction methods as described for 

the main analysis were performed to account for the number of correlations tested. We performed 

sensitivity tests adjusting for demographic and clinical variables, including the number of 

depressive episodes. We also repeated the analyses when excluding the SBP Stockholm cohort, 

which previously showed associations between cortical decline and manic episodes (25), and the 

STOP-EM cohort, which was a first episode mania cohort. See Data S2 and Supplemental Material 

for details on sensitivity tests and for results of exploratory analyses within BD subtypes.  

 

Inter-correlations between brain phenotypes (post hoc analyses). To test if the observed cortical 

thickness increases related to surface area decreases in the same ROI, we calculated Pearson 

correlations between the corresponding phenotypes. Given the widespread, albeit weak effects, 

demonstrated in Figure 1, we also correlated global thickness with global area changes. Given the 
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observed increases in ventricular volumes and indications for subcortical decline in BD patients, 

we tested for relationships between ventricle and subcortical volume change rates. Moreover, since 

we observed inter-correlations between such brain phenotypes, we tested whether multivariate 

classification methods (PLS and Random Forest) could distinguish between BD patients and HC 

based on regional change rate data. Corresponding methods and results of these exploratory tests 

are shown in the Supplemental Material. 
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Results 

Cohort characteristics 

A total of 2,464 brain MRI scans from 1,232 individuals (307 patients and 925 HC) were 

included in the main analysis. Table S6 displays group characteristics. BD patients and HC did 

not differ statistically in male/female ratios. BD patients were on average 6 years younger than 

HC. The inter-scan interval was 0.9 years shorter in the HC group. Although the BD group 

contained fewer participants with ‘white’ ethnic background, it was the most reported in both 

groups (83% and 90%). The BD group differed from HC in educational level, had higher BMI, 

and was more likely to smoke than HC. Up to 58% of patients experienced mood episodes between 

timepoints. Lithium and antipsychotic drugs were the most frequently used medication types. BD 

patients had comorbid psychiatric diagnoses ranging from 1% (eating disorders) to 9% (ADHD). 

A few HC (4%) reported alcohol abuse, one control subject had generalized anxiety disorder 

(GAD), and one control reported a history of psychotic symptoms. These were included in the 

main analysis, but were excluded in tests for potential confounders. Sex, age, and inter-scan 

interval were accounted for in the main analysis. Effects of other demographic and clinical 

variables were tested for in additional follow-up analyses (Data S1).  

 

Case-control differences in yearly change rates (main analysis) 

Effect sizes and significance of group comparisons are shown in Figures 1 and 2. Overall, 

HC showed lower cortical thickness change rates compared to BD cases, but showed both lower 

and higher change rates in surface area ROIs. The effect sizes were small (-0.15<d<0.19) and were 

predominantly observed in frontal and temporal cortex. Cortical thickness change rates in the 
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following ROIs displayed group differences at the p<0.05 level (HC<BD pattern): bilateral 

fusiform, left medial orbitofrontal, bilateral parahippocampal, right inferior temporal, and right 

isthmus cingulate cortex. For detailed statistical results and surface area findings, see Data S1. 

With respect to subcortical regions, change rates of bilateral caudate and lateral ventricles differed 

between BD and HC, where BD showed lower change rates in caudate and higher change rates in 

ventricle volumes than HC (Figure 2).  

Group differences in ventricular volume (left: F(1206,1)=18.7, p=1.6*10-5; right: 

F(1206,1)=15.2, p=1.0*10-4), right fusiform (F(1185,1)=10.0, p=0.0016) and right 

parahippocampal (F(1183,1)=9.7, p=0.0019) thickness change rates remained significant after 

correcting for multiple comparisons. While both groups showed ventricular volume increases over 

time, BD patients showed faster increases than HC. Compared with HC, BD patients displayed 

less or no decline in fusiform and parahippocampal thickness (Figure 3). No significant 

differences in surface area change rates were observed (Data S1). Change rates in significant ROIs 

for individual sites can be found in the Supplementary Material (Figures S1-S4).  

 

Effects of demographic and clinical variables (sensitivity tests) 

Overall, the sensitivity tests did not indicate that the group differences were affected by 

demographic and clinical variables. While adjusting for first generation antipsychotic (FGA) use 

did not affect group differences, FGA use at TP1 was associated with larger increases in bilateral 

ventricular volume (pleft=0.004, pright=0.014) and faster decrease in right fusiform thickness 

(p<0.001) in patients. Note that only 14 patients used FGA, hence, these results should be treated 

with caution. Similarly, history of psychosis (at TP1) was related to faster decline in right 
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parahippocampal thickness (p=0.035). There were no differences associated with the use of other 

medication types. BDI patients showed a decline in right parahippocampal thickness, whereas 

BDII patients showed thickness increases in the same region (mean difference: p=0.010). The 

observed effects of FGA, history of psychosis, and bipolar subtype within patients are shown in 

Figure S5-S9. Age was not related to changes in cortical measures but correlated positively with 

change rates of ventricle volumes in HC (Supplemental Material, Data S1). No significant effects 

of sex, age*age, or group*age were observed.  

 

Correlations between change rates and manic episodes between time points 

Overall, we found negative correlations between the number of mood episodes between 

time points and cortical change rates, indicating faster rate of cortical thinning in patients with 

more mood episodes. After correction for multiple tests, we found significant negative correlations 

between the number of manic episodes and yearly change rates of left lingual thickness and frontal 

pole. The combined number of (hypo)manic and mixed episodes inversely correlated with 

thickness changes in several (pre)frontal and temporal ROIs (Table S7, Figure 5, Data S2). There 

were no correlations with surface area or subcortical volume change rates. In complementary tests, 

we found correlations with depressive episodes (Data S2).  

Post hoc tests for interpretational purpose revealed that those with no manic episodes 

(n=138) between time points (or no (hypo)manic and mixed episodes) showed either no changes 

or increased cortical thickness, whereas patients who had at least one or more manic episodes 

(n=55) showed cortical thinning over time (Data S2). 
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The observed correlations remained robust when adjusting for age, sex, and imaging site, 

excluding outliers, the SBP Stockholm and/or STOP-EM cohort, and when adjusting for the 

number of depressive episodes between time points (Data S2). The results also remained when 

controlling for FGA use. The correlations with (hypo)manic and mixed episodes and thickness 

changes in lingual, pars orbitalis, pars opercularis, causal anterior cingulate, and caudal middle 

frontal ROIs remained when controlling for history of psychosis (Data S2). 

 

Inter-correlations between brain phenotypes (post hoc analysis)  

Changes in cortical thickness and surface area were not correlated. In patients, yearly change rates 

of ventricular volume correlated negatively with changes in all investigated subcortical regions 

except right pallidum and left accumbens (Figure 4 and Table S5). Multivariate case-control 

classification analyses did not provide sufficient classification accuracy (Supplemental Material). 
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Discussion 

The present ENIGMA-BD Working Group study is the largest longitudinal neuroimaging study of 

BD to date. On average, BD patients did not show accelerated decline in any cortical phenotype 

investigated. Instead, BD cases showed less cortical thinning than HC in some areas. We did, 

however, find significantly larger change rates of ventricular volumes in BD patients than HC. 

Importantly, more manic episodes between imaging time points were associated with a higher 

degree of thinning in prefrontal cortex in patients.  

 

 

Cortical changes in BD 

While HC indicated cortical thinning over time across the whole brain (Figure S13), BD showed 

less or no thinning over time. With respect to surface area, patients showed both higher and lower 

change rates than HC, indicating that surface area decreases faster in some and slower in other 

brain areas compared with HC. However, most findings did not withstand correction for multiple 

comparisons. After correction, case-control differences were observed in fusiform and 

parahippocampal thickness change rates, where BD patients displayed less decline compared with 

HC.  

As greater cortical thickness in adults is commonly interpreted as reflecting better cortical integrity 

(36, 38, 50-59), it is tempting to speculate that increases in cortical thickness (or a lack of thinning) 

reflects structural improvement processes. For example, lithium use has been linked to grey matter 

volume increases (5, 6, 60-63) and putative neuroprotective effects (31, 64-66). A recent review 

also suggested that lithium has normalizing effects on brain structure (31). Although we did not 

find any relationship between lithium use and changes in cortical thickness, given our limited 

information on medication use, we cannot exclude that lithium use prior to baseline scan had an 
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effect on brain change rates. Potential normalizing effects of lithium could also be one possible 

explanation for why we did not detect group differences in prefrontal brain areas. However, 

medication effects remain an area of focused investigation in future ENIGMA-BD studies with 

more detailed medication information such as dosage and history of use. It should be noted though, 

that size increases of cortical structures do not necessarily reflect beneficial effects but may be 

related to neuroinflammatory processes previously suggested to occur in BD (67). 

Furthermore, the observed group differences were not affected by the use of lithium, antiepileptics, 

antipsychotics, or antidepressants, and, except for FGA, change rates for BD patients on 

medication at the time of scan did not differ from those not on such medications. However, our 

study design did not allow conclusions about whether and how medication use affects brain 

changes in BD, and given the small number of patients using FGA (n=14), such associations with 

medication use, along with results corrected for medication use, should be interpreted with caution 

(see limitations). 

 

Subcortical changes in BD 

The overall pattern revealed lower subcortical volume change rates and larger  ventricular change 

rates in BD compared with HC, but only the ventricular findings survived correction for multiple 

comparisons. Given that both groups showed ventricular increases over time (positive change 

rates), this indicates faster bilateral ventricular enlargements in BD. However, ventricular change 

rates correlated negatively with those for subcortical volumes, indicating that those BD patients 

who display greater ventricle enlargement also display greater subcortical decline over time. These 

results lend support to the notion that neuroprogression may occur in BD (29), predominantly 
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characterized by ventricle enlargements. Thus, larger ventricle volumes as observed in cross-

sectional studies of BD (5, 7-16) may partly result from abnormal rates of enlargement during the 

course of illness. 

Overall, the reported cortical and subcortical findings remained significant after correcting for 

potential confounds, including medication use, psychiatric comorbidity, and demographic 

variables. The robustness of our findings was further supported by the results from leave-one-site-

out analyses (Supplemental Material). Multivariate classification analyses did not provide reliable 

accuracy for case-control classifications. While this may indicate that ROI-based structural change 

rates may not follow multivariate patterns, such methods may have potential utility in future 

studies of other brain measures. 

 

Cortical thinning in relation to manic episodes 

Prior studies have proposed that the occurrence of manic episodes is associated with cortical 

decline (24-26). In this study, the number of manic episodes and the total number of elevated mood 

episodes (mixed and (hypo)manic episodes) between time points correlated negatively with 

cortical change rates, predominantly in prefrontal cortex. Effects were small (r<0.25) but 

significant. These results were consistent when adjusting for the number of depressive episodes 

between time points, indicating that the greater the number of manic episodes, the faster the rate 

of prefrontal cortical thinning. Similar associations were observed in lingual (visual) cortex. The 

effects of manic episodes on cortical changes were observed in the combined patient cohort, but 

may differ regionally between BD subtypes, as indicated by our exploratory analyses 

(Supplemental Material). 
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Mechanisms underlying pathological grey matter loss may include increased neurodegeneration, 

neuronal apoptosis, neurotoxic susceptibility, and altered neuroplasticity influenced by 

neuroinflammatory processes and/or oxidative stress during mood episodes (24, 29, 68). Although 

our results are in line with these theories, the mechanisms underlying accelerated cortical thinning 

cannot be derived from this study. It also remains unclear if manic episodes precede grey matter 

loss, or vice versa, or if there is another causative factorpromoting both manic episodes and grey 

matter changes.  

Moreover, our results indicate that patients experiencing mania between time points displayed 

prefrontal cortical thinning, whereas those who did not experience manic episodes showed no 

significant cortical changes or thickness increases. While this may suggest cortical normalization 

processes when mania is prevented, future studies are warranted. Efforts are underway to collect 

more detailed clinical information from ENIGMA-BD samples including behavioral, cognitive, 

and functional measures to empower future investigations (40). Although fronto-cortical 

abnormalities observed in cross-sectional studies of BD may in part reflect a static trait, our study 

suggests that some of these abnormalities could arise from progressive changes over time, which 

may – at least partly – be associated with the experience of manic symptoms. This and the 

commonly observed heterogeneity of patient groups (17-19) stresses the importance of identifying 

additional risk factors and subgroups at risk for pathological brain changes.  

 

Limitations 

A detailed discussion of the study limitations is provided in the Supplemental Material. In brief, 

the imaging method we used cannot reveal what biological mechanisms underlie the observed 

brain changes (69). BD patients were younger than HC. However, age did not correlate with 
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cortical change rates (only with ventricular volumes in HC) and was used as covariate, accounting 

for individual age-related variation in change rates. Also, results obtained from sensitivity analyses 

in age-range matched adults did not change our conclusions (Data S1). In addition, since age-

related brain changes are commonly of larger magnitude in older people (70, 71), we would expect 

group differences in ventricular volume changes to be even more pronounced if groups were of 

same age. However, whether and how longitudinal brain changes in BD depend on age remains to 

be investigated in future studies.  

Moreover, how cortical changes or the number of mood episodes relate to medication effects can 

be better addressed using refined between time point cumulative medication use data and in 

randomized clinical trials. It is challenging to accurately assess the number of mood episodes, 

especially in cases that did not require hospitalizations or rely on self-report. Also, how the number 

of hospitalizations as well as the duration of mood episodes relate to longitudinal brain changes in 

BD remains to be investigated.  

Although the ROI approach provides better comparability to previous studies that used the same 

brain parcellation method, analyses with higher regional resolution, e.g., voxel-wise or surface-

based vertex-wise analyses, could potentially reveal focal cortical variations that remained 

undetected at the ROI level. Although we attempted to parse patient groups with potential 

differential brain trajectories, such as those that experienced frequent manic episodes, refined data-

driven analyses aimed at the identification of other potential subpopulations in even larger samples 

are warranted. 

Finally, our findings do not allow conclusions about brain changes that occur in the natural course 

of BD if untreated.  
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Conclusions 

Our findings suggest that BD patients show less cortical decline but greater ventricular 

enlargements over time than HC. Faster fronto-cortical thinning was associated with manic 

episodes. Although it remains to be clarified whether differential change rates in BD reflect 

beneficial effects from mood stabilizing treatment, structural improvements when manic 

symptoms are prevented, or detrimental effects of manic episodes, our findings highlight the 

importance of preventing manic episodes and provide evidence for a neuroprogressive course of 

illness in BD. 

 

 

 

 

  

Jo
urn

al 
Pre-

pro
of



26 

 

Acknowledgements 

The St. Göran study was supported by grants from the Swedish Research Council (2018-02653, 

M.L.), the Swedish foundation for Strategic Research (KF10-0039), the Swedish Brain foundation 

(FO2020-0261, M.L), and the Swedish Government under the LUA/ALF agreement (ALF 

20170019, M.L.). T.E. was funded by the South-Eastern Norway Regional Health Authority and 

a research grant from Mrs. Throne-Holst. The NUIGalway study was supported by grant funding 

from the Health Research Board (HRA_POR/2011/100). FOR2107 was supported by the German 

Research Foundation (Deutsche Forschungsgemeinschaft DFG) (KI 588/14-1, KI 588/14-2, KR 

3822/5-1, KR 3822/7-2, NE 2254/1-2). I. N. was supported by Grants of Deutsche 

Forschungsgemeinschaft (NE2254/2-1, NE2254/3-1, NE2254/4-1). K. S. was supported by 

research grants from the National Healthcare Group, Singapore (SIG/05004; SIG/05028), and the 

Singapore Bioimaging Consortium (RP C009/2006) research grants awarded to K.S. L. T. W. is 

supported by the European Research Council under the European Union's Horizon 2020 Research 

and Innovation program (ERC StG, Grant 802998), the Research Council of Norway (300767) and 

the the South-Eastern Norway Regional Health Authority (2019101). The UNSW "Kids and Sibs" 

Study was supported by the Australian National Medical and Health Research Council (Program 

Grant 1037196 and Investigator Grant 1177991 to P. B. M, Project Grant 1066177 to J. M. F.), the 

Lansdowne Foundation, Good Talk and the Keith Pettigrew Family Bequest (P. M.). J. M. F. 

gratefully acknowledges the Janette Mary O’Neil Research Fellowship. W. H. was supported by 

grants from the Deutsche Forschungsgemeinschaft (DFG - German Research Council - Project 

No. INST 2105/57-1). C. R. K. C. was supported by NIA T32AG058507; NIH grant 

U54EB020403 from the Big Data to Knowledge (BD2K) Program; and has received partial 

research support from Biogen, Inc. (Boston, USA) for work unrelated to the topic of this 

Jo
urn

al 
Pre-

pro
of



27 

 

manuscript. I. N. was supported by Deutsche Forschungsgemeinschaft (DFG: NE 2254/2-1, 

NE2254/3-1, NE2254/4-1). E. V., J. R., J. M. G., and C. d. M. B. were supported by the Spanish 

Ministry of Science, Innovation and Universities / Economy and Competitiveness / Instituto de 

Salud Carlos III (PI15/00283, CPII19/00009), co-financed by ERDF Funds from the European 

Commission (A Way of Making Europe), CIBERSAM, and the Departament de Salut de la 

Generalitat de Catalunya (2017SGR1365, SLT002/16/00331, SLT006/17/00357), CERCA 

Programme/Generalitat de Catalunya. D.A. is funded by the South-Eastern Norway Regional 

Health Authority (2019107, 2020086). B.H. was supported by Norwegian Centre of Excellence 

(CoE) grant (223273) and KG Jebsen grant (SKGJ-MED-008). T. H. was supported by funding 

from the Canadian Institutes of Health Research (103703 , 106469 and 142255), Nova Scotia 

Health Research Foundation, Dalhousie Clinical Research Scholarship to T. Hajek, Brain & 

Behavior Research Foundation (formerly NARSAD); 2007 Young Investigator and 2015 

Independent Investigator Awards to T. Hajek. O. A. A. was supported by the Research Council of 

Norway (223273, 248828) South-East Norway Health Authority (2019-108), KG Jebsen 

Stiftelsen, University of Oslo Life:Science program, EU H2020 (#847776 CoMorMent). 

ENIGMA was supported in part by NIH grants R01MH116147, R01MH121246, and 

R01MH111671. 

 

 

 

 

 

Jo
urn

al 
Pre-

pro
of



28 

 

Disclosures 

Christoph Abé is employed at Quantify Research (work unrelated to the present manuscript). 

Torbjørn Elvsåshagen is a consultant to BrainWaveBank and received speaker’s honoraria from 

Lundbeck and Janssen Cilag. Lakshmi Yatham has been on speaker/advisory boards for, or has 

received research grants from Alkermes, Abbvie, Allergan, Canadian Network for Mood and 

Anxiety Treatments (CANMAT), Canadian Institutes of Health Research (CIHR), DSP, 

Intracellular Therapies, Merck, Sanofi and Sunovion. Eduard Vieta has received grants and served 

as consultant, advisor or CME speaker for the following entities (work unrelated to the topic of 

this manuscript): AB-Biotics, Abbott, Allergan, Angelini, Dainippon Sumitomo Pharma, 

Galenica, Janssen, Lundbeck, Novartis, Otsuka, Sage, Sanofi-Aventis, and Takeda. Paul 

M.Thompson received partial research support from Biogen, Inc., for research unrelated to this 

manuscript. Philip B.Mitchell received honororia for speaking or advisory committee membership 

from Sanofi (Hangzhou) and Janssen (Australia). Mikael Landén has received lecture honoraria 

from Lundbeck. Ole Andreassen is consultant to HealthLytix, and received speaker's honorarium 

from Lundbeck and Sunovion. 

Other authors report no biomedical financial interests or potential conflicts of interest. 

 

 

 

 

 

Jo
urn

al 
Pre-

pro
of



29 

 

Figure 1: Effect sizes (Cohen’s d; top) and significance of group differences (p-value; bottom) 

between BD patients and HC mapped into brain space. Cortical thickness findings (left) and 

surface area findings (right) are shown. The Figure displays the overall pattern in the uncorrected 

raw results. See Figure 3 for findings after multiple comparisons correction. Numerical values and 

detailed statistical results are shown in Data S1. Positive effect sizes (warm red colors) represent 

BD > HC patterns (HC declines faster). Negative effect sizes (cold blue colors) represent BD < 

HC patterns (BD declines faster). BD: Bipolar disorder, HC: Healthy controls. Corresponding 

change rates for each group are provided in Data S3 and Figure S13. 

 

 

Figure 2: Subcortical volume findings. Effect sizes (Cohen’s d; top) and significance of group 

differences (p-value; bottom) between BD patients and HC. The Figure displays the overall pattern 

of uncorrected raw results. See Figure 3 for findings after multiple comparisons correction. 

Numerical values and detailed statistical results are shown in Data S1. Positive effect sizes (warm 

red colors) represent BD > HC patterns (HC declines faster/increases less). Negative effect sizes 

(cold blue colors) represent BD < HC patterns (BD declines faster). BD: Bipolar disorder, HC: 

Healthy controls. Corresponding change rates for each group are provided in Data S3. 
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Figure 3: Main findings after multiple comparison correction. Compared with HC, BD patients 

showed less reductions in fusiform and parahippocampal thickness (top), and more extensive 

ventricle enlargements over time (bottom). Means and standard errors for each group are provided 

on the left for significant ROIs. Error bars represent standard error of the mean. See Table 1 for 

numerical values of means and standard deviations. BD: Bipolar disorder, HC: Healthy controls. 

 

 

Figure 4: Representative example of inter-correlation between ventricular and subcortical volume 

change rates in patients. See Table S5 for results obtained for other subcortical regions. 

 

 

Figure 5: Anatomical location of brain regions listed in Table S7 (purple) in which significant 

negative correlations between thickness change rates and the number of (hypo)manic episodes 

were observed. See Table S7 for statistical details and Data S2 for complementary results for other 

mood episodes.   
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Table 1: Group comparisons of yearly change rates (main results).  

Regional change rate in region Mean (SD) HC Mean (SD) BD 
p-value (BD vs. 

HC) 

Effect 

size 

right fusiform thickness -0.0045 (0.0200) -0.0011 (0.0239) 0.0016 0.18 

right parahippocampal thickness -0.0046 (0.0220) 0.0001 (0.0230) 0.0019 0.18 

left ventricle volume 0.0164 (0.0401) 0.0303 (0.0740) >0.001 0.25 

right ventricle volume 0.0160 (0.0398) 0.0293 (0.0710) >0.001 0.22 

 

Means and standard deviations (SD) for each group are listed for change rates of regions in which group 

comparisons were significant after correction for multiple comparisons. Statistical results of group 

comparisons in other brain areas and phenotypes are provided in Data S1. 
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