
 Glyndŵr University Research Online 
 
 
 
Journal Article 
 
 
 

 
Detection and Classification of DDoS Flooding Attacks on Software-
Defined Networks: A Case Study for the Application of Machine 
Learning 
 
 
 
Sangodoyin, A. O., Akinsolu, M.O., Pillai, P. and Grout, V. 
 
 
 
 
 
 
 
 
 
 
This article is published by IEEE.  The definitive version of this article is available at:  
https://ieeexplore.ieee.org/abstract/document/9526586  
 
Published version reproduced here with acknowledgement of the BY license 
https://creativecommons.org/licenses/by/4.0/ 
 
 
 
 
 
 
 
 
 
Recommended citation: 
 
Sangodoyin, A. O., Akinsolu, M.O., Pillai, P. and Grout, V. (2021) ‘Detection and Classification of DDoS 
Flooding Attacks on Software-Defined Networks: A Case Study for the Application of Machine 
Learning,’ IEEE Access, vol. 9, pp. 122495 - 122508, August 2021, doi: 10.1109/ACCESS.2021.3109490  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/478775961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ieeexplore.ieee.org/abstract/document/9526586
https://creativecommons.org/licenses/by/4.0/


Received August 3, 2021, accepted August 22, 2021, date of publication August 31, 2021, date of current version September 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3109490

Detection and Classification of DDoS Flooding
Attacks on Software-Defined Networks:
A Case Study for the Application of
Machine Learning
ABIMBOLA O. SANGODOYIN 1, (Member, IEEE), MOBAYODE O. AKINSOLU 2, (Member, IEEE),
PRASHANT PILLAI 1, (Senior Member, IEEE), AND VIC GROUT 2
1School of Mathematics and Computer Science, University of Wolverhampton, Wolverhampton WV1 1LY, U.K.
2Faculty of Arts, Science and Technology, Wrexham Glyndŵr University, Wrexham LL11 2AW, U.K.
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ABSTRACT Software-defined networks (SDNs) offer robust network architectures for current and future
Internet of Things (IoT) applications. At the same time, SDNs constitute an attractive target for cyber
attackers due to their global network view and programmability. One of the major vulnerabilities of
typical SDN architectures is their susceptibility to Distributed Denial of Service (DDoS) flooding attacks.
DDoS flooding attacks can render SDN controllers unavailable to their underlying infrastructure, causing
service disruption or a complete outage in many cases. In this paper, machine learning-based detection
and classification of DDoS flooding attacks on SDNs is investigated using popular machine learning (ML)
algorithms. The ML algorithms, classifiers and methods investigated are quadratic discriminant analysis
(QDA), Gaussian Naïve Bayes (GNB), k-nearest neighbor (k-NN), and classification and regression tree
(CART). The general principle is illustrated through a case study, in which, experimental data (i.e. jitter,
throughput, and response time metrics) from a representative SDN architecture suitable for typical mid-
sized enterprise-wide networks is used to build classification models that accurately identify and classify
DDoS flooding attacks. The SDN model used was emulated in Mininet and the DDoS flooding attacks (i.e.
hypertext transfer protocol (HTTP), transmission control protocol (TCP), and user datagram protocol (UDP)
attacks) have been launched on the SDN model using low orbit ion cannon (LOIC). Although all the ML
methods investigated show very good efficacy in detecting and classifying DDoS flooding attacks, CART
demonstrated the best performance on average in terms of prediction accuracy (98%), prediction speed
(5.3 × 105 observations per second), training time (12.4 ms), and robustness.

INDEX TERMS SDN security, DDoS flooding attack, machine learning, network security.

I. INTRODUCTION
Networking technologies such as IoT are growing at steady
rates in terms of users, intermediate systems (i.e. network
devices), and applications. Recent statistics also suggest that
the number of connected devices will continue to grow
towards several billions by 2025 [1], [2]. The increasing
emphasis on seamless and distributed connectivity, cloud-
based applications, and real-time network monitoring and
automation also suggests that these trends are likely to
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continue [3]. In line with this growth and the quality of ser-
vice delivery to accommodate the increasing demands of net-
work users, there is a synergy between research communities
and industries in exploring innovative ways of modeling net-
work architectures [4], [5]. A particular area of interest in this
regard is software-defined networks (SDNs) that decouple
their control planes from their data planes [6]. This distinct
feature of SDNs has led to many state-of-the-art IoT network
architectures such as 5G and beyond network architectures
being SDN-based [7].

As a fast-growing technology, SDN simplifies net-
work administration, management, and monitoring by using
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OpenFlow protocol [8]. With the help of the controller, SDN
equips network administrators with a global view of the net-
work and supports the interactive programming of the under-
lying data plane elements, simultaneously. Hence, the SDN
controller is the intelligence of the network that exercises
direct control over data plane devices through the application
programming interface (API) [8]. Despite the programma-
bility, flexibility, and decentralized control of SDNs, which
are very critical to their successful deployment, these fea-
tures tend to be at odds with making SDNs more secure [9].
Consequently, many SDN architectures still suffer from sev-
eral security breaches which include (but are not limited to)
increased potential for DDoS flooding attacks [10], [11].

DDoS flooding attacks are coordinated attacks launched
using a large number of compromised hosts to usurp available
network bandwidth or render target nodes or end-user devices
on the network completely unavailable [12]. They constitute
themost dangerousmalicious traffic on the internet [13]. Typ-
ically, perpetrators of DDoS flooding attacks surreptitiously
employ entire networks of infected devices (i.e., botnet) to
orchestrate attacks [14]. In this way, end users of the device
nodes on the attacked network are often unaware attacks are
being launched from their devices and IP addresses. Since the
internet does not mandate any requirements for flow control
aside from end hosts, IoT devices are naturally highly prone
to coordinated attacks such as DDoS flooding attacks [13].
This vulnerability can be attributed to the exponential growth
in the number of IoT devices while the security and protection
of these devices are still being enhanced gradually [15].

There is no unified rationale behind DDoS flooding
attacks; they can be motivated by competition or, political
and monetary reasons, amongst other factors. Due to the
sophistication of DDoS flooding attack tools (e.g., HTTP
unbearable load king (HULK), High orbit ion canon (HOIC),
etc.) and cheap online stress booters, there is a crucial
need for an up-to-date defense mechanism to counter both
known and unknown variants of DDoS flooding attacks.
To detect and mitigate DDoS flooding attacks such as HTTP,
TCP, and UDP flooding attacks, many solutions have been
proposed [16]–[20].

Identifying both known and unknown attack traffic
promptly, with the introduction of minimal overhead,
is crucial for the continued operation of critical network
devices and systems on SDNs. To achieve this, machine
learning (ML) techniques have found numerous successful
applications in the intrusion detection and prevention sys-
tems (IDPSs) of SDNs. Even though ML-based approaches
have assisted in the successful detection and mitigation of
DDoS flooding attacks [21], [22], sniffing network data for
further exploitation, launching DDoS flooding attacks and
reprogramming the entire SDN by malicious users is still
a complex area requiring increased security hardening [23].
To address these problems, a rapid low-cost method of identi-
fying traffic scenarios on SDNs to guarantee their availability
and reliability while scrutinizing and legitimizing requests
from network devices and systems is required.

In this paper, as an initiation of addressing the problems
discussed above, the low-cost ML-based detection and clas-
sification of DDoS flooding attacks on SDNs is investigated
using empirical network data. The dataset is generated within
a controlled simulation environment and covers three types of
DDoS flooding attacks: HTTP flooding attack, TCP flood-
ing attack, and UDP flooding attack. HTTP, TCP, and UDP
flooding attacks are applied since these protocols represent
a large portion of web applications’ traffic usage and char-
acteristics [24]. Additionally, the network model developed
and emulated in this paper is similar to those obtainable in
modern enterprise-wide network architectures.

A custommodeled SDN architecture based on a tree topol-
ogy for the extraction of real-time SDN traffic data before and
during DDoS flooding attacks has been adopted in this paper
to make the contributions summarized as follows:

• Generic vulnerability testing of the SDN by launching
coordinated TCP, UDP, and HTTP flooding attacks on
the SDN server at the data plane to render the SDN
unavailable.

• Detection and classification of UDP, TCP, and HTTP
flooding attacks on the SDN to illustrate the application
of popular ML algorithms in the detection and classifi-
cation of DDoS flooding attacks in SDNs.

• Comparative analysis and comprehensive evaluation of
the popular ML algorithms to assess the performance
of their prediction models in detecting and classifying
DDoS flooding attacks in SDNs over a number of statis-
tical runs.

The case study for applying ML algorithms to detect and
classify DDoS flooding attacks using metrics from an emu-
lated SDN presented in this work, demonstrates the suitability
of the investigated ML algorithms as viable add-ons or com-
plementary programs which can be featured in the SDN con-
troller to expedite the practical detection and classification of
present and potential DDoS flooding attacks on real-world
SDNs. The remainder of this paper is organized as follows:
Section II presents related works on DDoS attack detection
methods in SDNs. Section III presents the proposed SDN
architecture and the emulated DDoS flooding attack scenar-
ios. The classification algorithms or methods are elaborated
in Section IV. In Section V, the details of the experimental
setup are provided. The results and discussions from experi-
mentation are detailed in Section VI and concluding remarks
are provided in Section VII.

II. RELATED WORKS
There are various current approaches toDDoSflooding attack
detection based on test data, attack types, and modeled or
controlled simulation scenarios. Efficient DDoS flooding
attack detection mechanisms typically operate by distin-
guishing malicious traffic packets and patterns from legiti-
mate ones [25]. These mechanisms are widely deployed in
conventional networks, SDNs, and ML-assisted SDNs. [20]
offers, a comprehensive overview of DDoS flooding attacks
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and suitable defence mechanisms. Here the defence mech-
anisms (i.e. preventive, reactive, and cooperative) presented
are broadly categorised based on the level of defence activity
and the degree of cooperation between autonomous, coop-
erative and interdependent entities on the internet. In [26],
dynamic resource allocation is shown to aid in the accurate
detection of DDoS flooding attacks. In particular, a dynamic
way of utilizing reserved cloud resources to cloud customers
under DDoS flooding attack is demonstrated by employing a
queueing theory-based model which ensures the availability
of cloud services to benign users.

ML is another popular way of detecting and classify-
ing DDoS flooding attacks [21], [27], [28]. ML is a wide
interdisciplinary area of research that involves learning pat-
terns from datasets for computers to perform specific tasks
without explicit instructions. Some of the most popular ML
methods for classification include C4.5, k-Means, support
vector machine (SVM), Apriori, Expectation–maximization
(EM), PageRank, AdaBoost, k nearest neighbour (k-NN),
Naïve Bayes (NB), and classification and regression tree
(CART) [29]. For example, in [27], a radial-basis-function
neural network model built and trained using some statis-
tical network features is employed to describe and classify
DDoS flooding attacks in terms of behavior. Even though the
detection rates reported are relatively high, the monitoring
system is passive. To better detect DDoS flooding attacks,
by recognising the phases of the attacks, a clustering-based
method, employing the entropy values on select attributes of
the network, is proposed in [30].

Considering the flow classes obtainable on a data cen-
ter network, a DDoS flooding attack detection approach is
proposed in [31] through the use of a correlation analysis
model. The model works by predicting flow classes based
on the k-closest training data points in the feature space and
an evaluation of their influence is then performed using cor-
relation analysis. In [32], flow events are collected from the
switch interface of the network and a sequential probability
ratio test, having a bounded false positive and false negative
error rates threshold, is applied for decision making and
identification of compromised interfaces. The use of network
entropy values has also been explored in [33]–[35] to identify
anomalous network traffic flows from normal network traffic
flows.When used with suitable window sizes and appropriate
thresholds, these entropy values provide a measure of the
randomness of benign traffic and malicious traffic together
with good detection accuracies [34].

Rate limiting has also been applied in DDoS flooding
attack detection and mitigation in SDNs [36], [37]. A primary
advantage of rate limiting is that it shields SDNs from com-
plete outages during DDoS flooding attacks. However, all
the flows within the SDNs are still affected by this approach
and the response time of SDNs increase for legitimate traffic.
A support vector machine approach was applied to the exist-
ing defence advanced research projects agency (DARPA)
dataset to classify DDoS attacks [21]. However, there is
no comparison with the dataset received from the emulated

SDN environment. Self-organizing maps (SOMs) based on
Artificial Neural Network (ANNs) have also been applied to
detect DDoS flooding attacks in SDNs [38]. Using six-tuple
features to train the traffic flow, the ANN-based SOM showed
better performance compared to other methods involving
the KDD-99 dataset. An application of the extreme gradient
boosting (XGBoost) algorithm for the detection and classifi-
cation of DDoS flooding attacks can be found in [39]. These
results show better performance compared to random forest,
support vector machine, and gradient boosting decision tree
when applied in an SDN-based cloud network. Deep learning
algorithms may also be employed to detect DDoS flooding
attacks in SDNs [22], [28].

As discussed, although several ML techniques have been
applied to DDoS flooding attack detection and classification
in SDNs, most of the available approaches employing them
make use of KDD and NSL-KDD datasets with only a few
making use of real-time experimental network data from
SDN configuration as carried out in this paper. The work
presented in this paper addresses this apparent research gap.
Many DDoS flooding attack detection techniques rely on
identifying key features (i.e. traffic flow metrics) relevant to
distinguishingmalicious network traffic from benign network
traffic. In this work, we compare the efficacy of four popular
ML methods (i.e. Gaussian NB (GNB), quadratic discrimi-
nant analysis (QDA), k-NN, and CART) for the ML-based
detection and classification of TCP, UDP, and HTTP DDoS
flooding attacks using the jitter, throughput, and response
time metrics from emulated SDN scenarios. In this manner,
the emulated SDN scenarios focus on key real-time traf-
fic features obtainable in typical mid-sized enterprise SDN
architectures. The aim of this approach, in contrast to the
related works discussed above, is to demonstrate the viability
of popular ML algorithms in the detection and classification
of DDoS flooding attacks considering emulated SDN scenar-
ios that are representative of real-world SDN scenarios.

III. PROPOSED SDN ARCHITECTURE AND EMULATION OF
ATTACK SCENARIOS
In this work, a custom SDN architecture based on a tree
topology is designed using the Mininet emulator [40] and the
vulnerability of the SDN is assessed by introducing DDoS
flooding attacks. In particular, a tree topology is consid-
ered because it can be easily adapted for wide area net-
works and supports scalability. The custom SDN topology
(Figure 1) was implemented on a 32.0 GB RAM Intel Xeon
E3-1220 processor with Kali Linux as the base operating sys-
tem. The floodlight controller [41] for the SDNwas deployed
in Oracle VM VirtualBox running Ubuntu 18.10 LTS, while
the Mininet software was deployed in Oracle VM Virtual-
Box running Ubuntu 16.10 LTS.

The modeled SDN comprises 10 OpenFlow switches and
16 hosts, connected using a 100 Mbps link. The essen-
tial software tool includes ‘‘iperf’’, which is used to create
the client-server relationship and the Low Orbit Ion Canon
(LOIC) [42], which is used to generate the DDoS flooding
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FIGURE 1. Modelled SDN tree architecture.

attacks. By using ‘‘iperf’’ and ‘‘ping’’ commands to gen-
erate legitimate traffic between the host and server, system
properties such as response time, throughput, and jitter val-
ues generated were recorded every second for a duration
of 15 minutes. For the attack scenarios, an assumption (based
on conventional DDoS flooding attack strategy on SDNs
shown in Figure 2 and the work presented in [43]) that attacks
emanate sequentially from an internal source was made as
follows:

• An attacker scans the SDN for vulnerable active hosts.
• The vulnerable hosts are then compromised for
exploitation.

• Finally, compromised hosts are used to launch attacks
on victims.

Based on the above strategy, compromised hosts within
the SDN were used to launch HTTP, TCP, and UDP flood-
ing attacks on the SDN server for 15 minutes, respectively,
and the corresponding data for response time, throughput,
and jitter were recorded. This amounted to a total data
size of 1.6 GB. The data recorded during legitimate traffic
between the host and server, and when the SDN was attacked
with HTTP, TCP, and UDP flooding attacks, are converted
to .txt files, and Knime is used to derive the response time,
jitter, and throughput metrics (and remove duplicate records).
The refined dataset, with no missing data, is then inserted
into a data array. The data array holds the dataset for the con-
struction of the classification models used to investigate the
ML-based detection and classification of the DDoS flooding
attacks launched on the SDN.

This dataset captures both normal and abnormal profiles
of the SDN, as required for ML-based anomaly detection
in SDNs [44], by modeling modern DDoS flooding attacks
in SDNs. The dataset collected and analysed addresses
the following limitations of existing benchmark SDN
datasets [45], [46]:

1. The lack of a modern footprint attack model obtainable
in SDNs.

2. Variations in normal traffic records due to fewer con-
nected devices a few years ago compared to the present
IoT era.

3. Variations in the distribution of attacks of old benchmark
testing set and new training set [47].

FIGURE 2. DDoS attack strategy.

To further clarify how the DDoS flooding attacks have
been emulated on the SDN (to degrade the performance
and availability of the targeted equipment [48]), the typical
DDoS flooding attack process used in the emulation is shown
in Figure 3. Here, the malicious user crafts a packet and
sends it to the victim. In a situation where there is no match
entry rule in the table of the OpenFlow switch, the OpenFlow
switch encapsulates the header of the packet and sends a
‘‘packet_in’’ message to the controller for instruction. The
controller decrypts the ‘‘packet_in’’ message and determines
the appropriate route to the destination address based on the
installed rule (e.g., drop, forward packet to port, send) on the
controller. A ‘‘packet_out’’ message is then generated and
a new flow rule is installed in the OpenFlow switch table.
The OpenFlow switch, in turn, forwards ‘‘packet_out’’ to the
destination address.

It is important to note that, if a malicious user spoofs
the source IP address and generates spurious ‘‘packet_in’’
messages at specified intervals, more ‘‘packet_in’’ messages
will be sent to the controller. As a result, the data and control
plane resources become vulnerable to DDoS flooding attacks
depending on the attack strategies deployed [49]. This is
why building and employing robust DDoS flooding attack
detection algorithms are vital for SDN controllers.

IV. THE CLASSIFICATION ALGORITHMS
To undertake low-cost detection and classification of DDoS
flooding attacks on SDNs using historical and recurrent val-
ues or thresholds for throughput (Tp), response time (Rt ),
and jitter (Jt ) data for a given event or scenario, four classic
machine learning algorithms or methods are employed in
this work. These well-established methods are the Discrim-
inant Analysis (DA) [50], Decision Tree (DT) [51], [52],
Naïve Bayes (NB) [53], [54], and k-Nearest Neighbours
(k-NN) [55]. These methods are used due to their popularity
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FIGURE 3. DDoS attack process in SDN.

and global recognition in machine learning applications such
as data mining [29].

A. DISCRIMINANT ANALYSIS (DA) CLASSIFIER
DA is a statistical learning method, often used to find the
optimum combination of features that characterizes two or
more classes of observations. The DA classifier could be
linear DA (LDA) or quadratic DA (QDA). LDA and QDA
are widely used primarily due to their inherent capacity
to address many multiclass problems without the require-
ment to tune hyperparameters to improve their classification
accuracy [56]–[58].

The classification model for the DA method works as
follows [50]: For N classes (e.g., y = [y1, y2, . . . , yN ]),
each class generates data (e.g., x = [x1, x2, . . . , xd ]) where
d is the number of observations or the dimensional space
according to a multivariate normal distribution. The clas-
sification model has the same covariance matrix for all
the classes for LDA, whereas both the means and covari-
ances vary in each of the classes for QDA. LDA may
suffer from high bias if a difference exists in the covari-
ance matrices [59]. To avoid this, QDA is employed in this
work.

Typically, DA carries out predictive classification by using
Bayes’ rule and minimizing the expected classification cost
as follows [50]:

ŷ = argmin
y=1,...,N

N∑
N=1

K̂ (n|x)E(y|n) (1)

where ŷ is the predicted class, K̂ (n|x) is the posterior prob-
ability of class n for the observation x and E(y|n) is the
cost of classifying or predicting an observation as y when
its true class is n. The class n which maximizes K̂ (n|x) is
selected.

Typically, the K̂ (n|x) that x belongs to class n is the
multiplication of the multivariate normal density and the
prior probability. For x-data having d-dimensions, the density
function of the multivariate normal having a mean of µn
(1-by-d matrix) and covariance of σ n (d-by-d matrix) at a

1-by-d point x can be expressed as follows [60]:

K (n|x) =
1√

((2π)d |σn|)
e−(−

1
2 (x−µn)σ

−
n 1(x−µn)T ) (2)

where |σ n|, is the determinant of σ n, σ n−1 is its inversematrix
and (x−µn)T is the transpose of (x−µn). If K (n) represents
the prior probability of class n, then the posterior probability
that an observation x belongs to class n is stated as follows:

K̂ (n|x) =
K (n|x)K (n)

K (x)
(3)

K (x) is the sum over n ofK (x|n)K (n) and it is often referred
to as a normalization constant. In practice, since K (x) does
not depend on n and values of the features of x are known or
given, K (x) is effectively a constant and K (x|n)K (n) is a joint
probability model.

As shown in Table 1, DA has no control parameters or
hyperparameters. More details on DA and its variants can be
found in [50], [61].

B. NAIVE BAYES (NB) CLASSIFIER
As with the DA classifier, a typical NB classifier also relies
on Bayes’ theorem and applies probability density informa-
tion to the training data [53], [54]. NB assumes (simply)
that the predictors for each given class are conditionally
independent [54]. Even though this conditional mutual inde-
pendence assumption does not usually hold for most prac-
tical cases [54], Bayes’ classification often provides robust
posterior distributions for biased class density estimates at
the decision boundary (i.e. where the posterior probability
is 50%) [62]. Bayes’ classifier is scalable and only a small
number of training data is required for the estimation of the
parameters used for classification [54], [63].

NB primarily works by assigning observations to the most
probable class in accordance with the maximum a posteri-
ori (MAP) decision rule. After estimating the densities of
the predictors within all the classes, NB models posterior
probabilities according to Bayes’ rule to have the independent
feature model or NB probability model that assigns the class
label ŷ = n for some observation as follows [64]:

ŷ = argmax
n∈(1,...,N )

K̂ (n)
d∏
i=1

K̂ (xi|n) (4)

To ensure the generality of the NB classification in this
work, the continuous features associated with each class are
assumed to have a normal (Gaussian) distribution. Hence,
the Gaussian NB (GNB) is employed in this work. For exam-
ple, given some data that contains a continuous attribute such
as x (the observations stated above), for GNB, the data is
initially segmented by the class, then the mean and variance
of x is evaluated in each class. If the mean and Bessel
corrected variance of the values in x associated with class
n are µn and σ n2, respectively, the probability distribution
for an observation value, xv, from x given a class n, can
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be obtained as follows [65]:

K̂ (xv|n) =
1√
2πσ 2

n

e
−

(xv−µk )
2

2σ2n (5)

As with QDA, GNB has no control parameters or
hyperparameters as shown in Table 1. More details on NB
classification and its variants (multinominal NB model and
multivariate NB model) can be found in [66].

C. DECISION TREE
Generally, a decision tree (DT) is an acyclic graph (i.e.
flowchart-like structure) which can be employed to make
decisions such as classification. A DT model works by pre-
dicting the target feature based on several input features for
a given classification problem where each element of the
domain of the target feature is a class [51], [52]. For DTs,
a specific input feature is examined at each internal branching
(non-leaf) node and made to follow either the left branch or
right branch after a split [51], [52]. This process is repeated
recursively, and is known as recursive partitioning [51]. Each
leaf of the DT has a class label or a probability distribution
over all possible classes. The decision about the class for an
instance of input feature, is made once a leaf node is reached
and splitting no longer improves the predictions, or the spec-
ified maximum number of decision splits (or branch nodes)
has been reached [51], [52].

In this work, the DT learning employs classification and
regression tree (CART). CART is a non-parametric DT learn-
ing technique that hybridizes classification trees and regres-
sion trees and works as follows [51]: Given a set of predictors
or input features x = [x1, x2, . . . , xd ], at each node, evaluate
theweighted impurity in the node and estimate the probability
that xv ∈ x is in the node using:

K (T ) =
∀j∑
j∈T

wj (6)

where T is the set of all the indexes of observation in the
node and wj is the weight of the observation j. At each node,
the observations in the node are sorted and the best direction
of split (i.e. left or right) is determined by maximizing the
impurity gain over all possible candidates for splitting (i.e.
for all splitting candidates in x).

Assuming x does not contain anymissing values, the impu-
rity gain (IG), for the current splitting candidate can be esti-
mated as follows:

IG = K (T )− K (TL)− K (TR) (7)

where K (TL) and K (TR) are the probabilities associated with
a particular splitting candidate in the sets containing observa-
tion indexes in the sets TL and TR, respectively, after splitting
all the observations at the node. In this work, Gini’s diversity
index (gdi), which is very popular with CART has been used

to estimate the impurity [51] and is estimated as follows:

gdi = 1−
N∑
n=1

(Kn)2 (8)

where N is the number of classes at the node and Kn is
the probability of a feature being classified to belong to a
particular class.

As with QDA and GNB, CART has no hyperparameters.
However, the stopping criterion (e.g. the maximum number
of splits) and the pruning method directly influence the DT
classifier’s performance [51], [67]. For our experiments we
have set the maximum number of splits to be 100 as shown
in Table 1. For simplicity and to ensure fairness in compar-
isons to other methods, the DT classifier is not pruned in this
work.

D. k-NEAREST NEIGHBOURS (k-NN)
By convention, k-Nearest Neighbours (k-NN) is a non-
parametric ML algorithm [68]. k-NN is widely used to
address classification problems [69]. Given a new observation
or point (xnew), k-NN finds the k nearest neighbours (or closet
points) to xnew in the training data and returns a classification
label that has the largest posterior probability among the
response values for the k points to determine ŷ. A special case
of k-NN referred to as NN is when the nearest neighbour (i.e.
k = 1) to xnew is used to determine ŷ. In k-NN, the closeness
of two points is estimated using a distance function. Sev-
eral popular distance functions such as Euclidean distance,
Minkowski distance, and cosine similarity are suitable for
k-NN classifiers [70]. The primary control parameters for
k-NN are k and the distance function shown in Table 1.
To ensure simplicity and fairness in comparisons with other
methods, these parameters are not tuned for the tests carried
out. Particularly, k = 1 and the Euclidean distance function
stated as follows are employed for the k-NN classifier in this
work:

D(xnew, xnear ) =

√√√√ d∑
i=1

(x inew − x inear )2 (9)

where xnear is a point close to xnew in d-space and D(xnew,
xnear ) is the Euclidean distance between them.

TABLE 1. Table of control parameters or hyperparameters.

V. EXPERIMENTAL SETUP
The built-in functions ‘‘fitcdiscr’’, ‘‘fitcnb’’, ‘‘fitctree’’, and
‘‘fitcknn’’ (available in the MATLAB software) have been
used to implement QDA, GNB, CART and k-NN, respec-
tively. To determine the control parameters for all methods
classifiers, where applicable, MATLAB’s default settings are
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used as shown in Table 1. It is assumed that these default set-
tings in MATLAB are unlikely to be altered by most network
engineers, not experienced in machine learning. Generally,
machine learning algorithms or methods perform better when
their control parameters or hyperparameters are tuned or
optimized. However, since hyperparameter optimization is
not the goal of this work, this is not investigated. To examine
the predictive accuracy of the fitted models from all methods,
the validation scheme used is cross-validation. The choice of
this validation scheme is guided by the total number of obser-
vations (less than 10,000). Following the popular approach
for typical cross-validation schemes used to address classifi-
cation problems [71], a five-fold nested cross-validation has
been used by all the classifiers for all experiments.

To compare the classification models constructed and
trained by all methods, the validation accuracy, training time,
and prediction speed of all methods are used over 50 inde-
pendent statistical runs which construct and train a model
for each method in each run. These statistical runs allow for
statistical analysis and comparisons of the efficiencies and
robustness of the methods. Also, since the sample size is
sufficiently large (i.e. 50 in this case), a z-statistic can be
used to estimate the probability values for hypothesis tests
(see Section VI-E). All experiments have been carried out on
a workstation with Intel 6-core i7-8700 3.20 GHz CPU and
32.0 GB RAM, except where stated otherwise. Elapsed times
reported are elapsed real times.

A. DATASET AND CLASSIFICATION PROBLEM
ML is inherently data-driven; ML algorithms work by learn-
ing information directly from data without depending on any
predetermined relation as amodel. As a result,ML algorithms
tend to improve their performance as the number of data
samples used for learning increases. Naturally, thismakesML
models from larger training datasets often generalize well for
new data.

To demonstrate the feasibility of the ML algorithms
employed in our work to address a classification problem,
an overly large dataset is not necessarily required. This is
because, conventionally, the practicality of these classifiers
have been demonstrated using popular datasets in literature
with fewer observations or records per class or category. For
example, the dataset from [78] which is well-known in the
ML community for testing classifiers [79], [80], contains a
set of 150 records with five features and three classes (i.e.,
50 observations per class), as opposed to our work, where
3,600 records (900 observations per class) have been used.

For the classification problem, the primary predictors are
the throughput (Tp), jitter (Jt ) and response time (Rt ) for four
classes of SDN events or scenarios (i.e. ‘Normal’, ‘HTTP’,
‘UDP’, and ‘TCP’ classes). The 900 samples or observa-
tions used for each class (i.e., 900 observations for Normal,
900 observations for HTPP, 900 observations for UDP and
900 observations TCP for a total of 3600 independent obser-
vations) offer a low-cost ML implementation and balanced
dataset for better accuracy in our work. Each observation in

the dataset is a vector associated with a specific class of SDN
event or scenario. The dataset can be expressed as follows:

USDN = {T o1p , J
o1
t ,R

o1
t , . . . ,T

o3600
p , Jo3600t ,Ro3600t } (10)

where USDN can be viewed mathematically as the universal
dataset for all the 3600 independent observations and oi is the
ith independent observation in the dataset for i ∈ [1, 3600].
As a result, there are four classes of SDN events or scenarios
to which each observation or vector element (i.e., T oip , Joit ,
Roit ) in USDN may be associated with exclusively (i.e. each
observation belongs to only one class exclusively and can be
viewed mathematically as datasets of USDN ).
As discussed in III, USDN is an emulated dataset. The

method used to generate USDN has been shown to be rep-
resentative of real-world SDN scenarios and the metrics in
USDN have been studied in terms of their sensitivity based
on extensive experiments [72]. Note that it is not unconven-
tional practice to use emulated network scenarios to typify
real-world SDN scenarios in terms of traffic behaviour and
other metrics [75]. Even though such virtual networks must
be validated using real-world network data (i.e., PCAPs) to
have purpose-built methods that generalize well to legitimate
and malicious traffics [75], this is not the goal of our work.
A demonstration of the general usage of popular classifiers
using a case involving the detection and classification of
DDoS flooding attacks by considering Tp, Jt and Rt metrics
from an emulated SDN is the focus of this paper. More
details on the classes or types of SDN events and scenarios
which constitute the classes (i.e. ‘Normal’, ‘TCP’, ‘UDP’ and
‘HTTP’) for the classification problem addressed in this work
can be found in [72].
The dataset for the SDN classes of events are described as

follows:

UNormal
SDN = {T o1P , J

o1
T ,R

o1
T , . . . ,T

o900
P , Jo900T ,Ro900T } (11)

UTCP
SDN = {T

o901
P , Jo901T ,Ro901T , . . . ,T o1800P , Jo1800T ,Ro1800T }

(12)

UUDP
SDN = {T

o1801
P , Jo1801T ,Ro1801T , . . . ,T o2700P , Jo2700T ,Ro2700T }

(13)

UHTTP
SDN = {T

o2701
P , Jo2701T ,Ro2701T , . . . ,T o3600P , Jo3600T ,Ro3600T }

(14)

where UNormal
SDN is the data subset containing all 900 indepen-

dent observations associated with the normal operating con-
dition of the SDN (i.e. ‘Normal’ class), UTCP

SDN is the dataset
containing all 900 independent observations associated with
the TCP flooding attack of the SDN (i.e. ‘TCP’ class), UUDP

SDN
is the dataset containing the 900 independent observations for
the UDP flooding attack of the SDN (i.e. ‘UDP’ class) and
UHTTP
SDN is the dataset containing the 900 independent obser-

vations for HTTP flooding attack of the SDN (i.e. ‘HTTP’
class).

The datasets described above are used to build and train
classification models to address the multinominal classifi-
cation problem shown in Figure 4 for any instantaneous
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observation (oi) on the SDN. In a way, this constitutes an
offline classification. In practice,ML or predictionmodels for
SDN monitoring are built using collected or historical SDN
data, which are mostly populated in repositories [76], [77].
As a result, most robust approaches hybridize offline and
online methods whereby prediction models built using static
data (typically, from repositories of past SDN operations) are
regularly updated with new data from the current operations
of the SDNs to improve the accuracy of the prediction mod-
els [81].

The hybrid approach mentioned above is not within the
scope of our work. To serve as a paradigm for the SDN
research community, our work mainly focuses on demon-
strating the feasibility of employing popular classifiers in
the detection and classification of DDoS flooding attacks
in SDNs. Hence, emulated SDN data (USDN ) that would
normally be available from a repository of SDN operations
has been used in our work.

FIGURE 4. Classification problem using four predictors.

B. DATA PRE-PROCESSING AND FEATURE ENGINEERING
Feature engineering primarily involves the process of trans-
forming raw data sets into data sets with highly informa-
tive feature or features with high predictive power [73].
Depending on the nature of the raw data and the intended
prediction or classification, there are several methods avail-
able for feature engineering. These methods include (but
are not limited to), binning or bucketing, one-hot encoding,
normalization, standardization and data imputation [73]. For
our experiments, the raw datasets are standardized using the
z-scores of their respective data points. An adaptive univariate
mathematical cost function CFA is also engineered for all
independent observations as an additional predictor giving a
total of four predictors as shown in Figure 4.
The z-scores for the raw sample datasets are calculated as

follows [73]:

z =
(x − x̄)
SD

(15)

where z is the z-score of a data point x in a given sample data
set with mean X̄ and standard deviation SD.. Compared with

the min-max normalization often used to normalize network
parameters [72], standardization (z-score normalization) is
preferred in this work since the choice of the classifiers is
largely influenced by the assumption that the values in the
features of the datasets have a normal distribution or are
distributed close to a normal distribution [65]. By inspecting
the descriptive statistics of the z-scores shown in Figure 5,
the following a posteriori inference can be made for the ten-
dencies of the z-scores when the SDN is operating normally
(i.e. not under attack):

z-scores (‘Normal SDN scenarios’) →


+T oi,zP

−Joi,zT

−Roi,zT

(16)

where T oi,zP , Joi,zT and Roi,zT are the z-scores for T oiP , JoiT , and
RoiT , respectively. Figure 5 also reveal that the sign conven-
tions of T oi,zP , Joi,zT and Roi,zT vary with the class or type of
SDN attack. In other words, a sign-based feature (CFA) may
be engineered for another predictor that complements the
existing predictors.

Generally, model performance assessment in ML is pre-
sented in terms of recall and precision. Recall is the ratio
of the correct positive predictions to the total of positive
observations in the test set (set of observations excluded from
the training or learning), while precision is the ratio of correct
positive predictions to the total of positive predictions [73].
For the classification problem addressed in our work, a high
precision is desired to ensure that all attack scenarios are
classified as attack scenarios to guarantee the availability and
non-disruption of the SDN. However, a lower recall can be
tolerated from a practical viewpoint. This is because normal
network events that are seldom classified as attacks on the
SDN by the ML model will not disrupt the SDN and such
tolerable misclassifications can be easily ratified by network
administrators or operators after subsequent investigations.

Since ML models are only as reliable as the data and
methods used to train them, spurious correlations that are
interpretable by human analysts upon examination can be
expected. So in practice, a trade-off between high precision
and high recall is always expected because it is typically
impossible to have an optimality of both [73]. Hyperparame-
ter tuning which is not within the scope of this paper is one of
a number of ways to optimize (maximize) either the precision
or the recall of the validation set (set of observations used
to tune or optimize the hyperparameters). As a workaround
in this work, a mathematically deduced cost function (CFA)
that mimics an artificial boundary between normal events and
attack events is introduced and employed as a predictor in the
classification problem.

To ensure (CFA) distinguishes between the SDN events
reasonably and non-discriminatorily (see Figure 6), (CFA) is
derived as follows based on the a posteriori inferences made
from Figures 5:

CFA = (T oi,zP − (Joi,zT + Roi,zT )) × w (17)
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FIGURE 5. Box plots showing the distribution of standardized scores from the dataset.

where w ∈ (0,1) is a uniformly distributed random weight
used to adaptively penalize CFA according to the operating
condition the ith SDN event or scenario is associated with. w
assumes its values according to the following criterion:

w =

{
0 < w < 0.5; If SDN scenario is ‘Normal’.
0.5 < w < 1; Otherwise.

(18)

A plot of CFA against SDN events or scenarios is given
in Figure 6 showing that CFA → + when the SDN is
operating normally (i.e. not under attack) and CFA → −
when the SDN is under attack. This observation is clearly
consistent with the intention of adopting CFA as a predictor
(see Figure 4) that can create an artificial boundary between
normal and attack events or scenarios. From Figure 6, it can
be seen that CFA = 0 imitates such a boundary.

VI. RESULTS AND DISCUSSIONS
A. PREDICTION OR VALIDATION ACCURACY
The prediction accuracy of a classifier is usually a ratio of cor-
rectly classified observations to the total number of classified
observations. The prediction accuracy of all methods can be
inferred from their respective confusion matrices. Figure 7
shows the confusion matrices for all methods for a typical

FIGURE 6. Plot of CFA against SDN events.

independent run. From a given confusion matrix, the predic-
tion accuracy (PredA) of the classifier can be estimated as:

PredA =
TP+ TN

TP+ TN + FP+ FN
(19)

where TP is the true positive (i.e. observations classified
to be X∗ that were actually X∗), TN is the true negative
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TABLE 2. Prediction or validation accuracy for all methods (over
50 statistical runs).

(i.e. observations classified not to be X∗ and were not X∗),
FP is the false positive (i.e. observations classified to be X∗,
but were notX∗) and FN is the false negative (i.e. observations
classified not to be X∗, but were actually X∗).
Since all methods considered return confidence scores of

predictions (i.e. posterior probabilities), their prediction accu-
racies’ summaries can also be viewed using their receiver
operating characteristic (ROC) curves and the areas under
the ROC curves (AUCs). Figure 7 shows ROC curves for
all methods for a typical independent run. For a given ROC
curve, the prediction accuracy summary is provided using a
combination of the true positive rate (TPR, also called the
recall) and false positive rate (FPR) and by discretizing the
confidence scores of the classification model. The discrete
scores are then used as prediction thresholds to predict the
classes of the observations in the data set.

For a typical ROC curve, TPR and FPR are estimated as
follows:

TPR or Recall =
TP

TP+ FN
(20)

FPR =
FP

FP+ TN
(21)

From Table 2, the following observations are made for the
prediction or validation accuracies of all methods: (1) The
prediction or validation accuracies of all methods are gener-
ally higher than 95% for the classification problem. (2) CART
shows the best average and median prediction or validation
accuracies of 98.7% each, over the 50 independent runs. (3)
GNB and QDA perform similarly based on their nearly equal
average prediction or validation accuracies of 96.1% and
95.9%, respectively, and their nearly equal median prediction
or validation accuracies of 96.1% and 95.9%, respectively,
over the 50 independent runs. (4) k-NN obtains the low-
est average and median prediction or validation accuracies
of 95.6%each, over the 50 independent runs.

All methods show very good robustness for the classifica-
tion problem considering their very low standard deviations
over the 50 independent runs, as shown in Table 2. From
Table 2, it can be seen that: (1) QDA has the least standard
deviation of 9.3e-4 over all the 50 independent runs. (2) k-
NN has the highest standard deviation of 1.6e-3 over the
50 independent runs. Hence, in terms of prediction or valida-
tion accuracy robustness for the classification problem, QDA
and k-NN are the most and least robust methods, respectively,
compared to other methods.

B. TRAINING TIME
Training time is the time taken by each method to build
and train a classification model. From Table 3, the following

observations are made for the training times of all methods:
(1) Training times of all methods are generally more than
12ms for the classification problem. (2) CART shows the best
average and median training times of 12.4 ms and 12.4 ms,
respectively, over the 50 independent runs. (3) k-NN and
QDA perform similarly based on their near-equal average and
median training times of 12.8 ms and 12.7 ms, respectively,
over the 50 independent runs. (4) GNB shows the worst
average and median training times of 16.9 ms each, over all
50 independent runs.

All methods show very good robustness for the classifica-
tion problem based on their very low standard deviations over
all runs as shown in Table 3, from which it can be seen that:
(1) CART has the lowest standard deviation of 4.5e-4.
(2) k-NN has the highest standard deviation of 4.5e-4. Hence,
in terms of training time stability for the classification prob-
lem, CART is the most robust method, and k-NN is the least
robust method.

TABLE 3. Training time (ms) for all methods (over 50 statistical runs).

C. PREDICTION SPEED
The prediction speed is the total number of predictions or
classifications made by a method divided by the time taken to
make the predictions. It is measured in observations per sec-
ond (obs/s). Table 4 allows the following observations for the
prediction speeds of all methods: (1) The prediction speeds
of all methods are generally higher than 2.6e5 obs/s for the
classification problem. (2) CART shows the best average and
median prediction speeds of 5.3e5 obs/s and 5.3e5 obs/s,
respectively, over all runs. (3) GNB (average of 4.1e5 obs/s
and median of 4.2e5 obs/s) performs better than QDA (aver-
age and median of 3.5e5 obs/s each). (4) k-NN obtains the
lowest average and median prediction speeds of 2.9e5 obs/s
each.

All methods show very good robustness for the classifi-
cation problem based on their very low standard deviations
over all runs, as shown in Table 4. Here, it can be seen that:
(1) CART has the least standard deviation of 1.0e-4. (2) k-NN
has the most standard deviation of 8.8e-4. Hence, in terms
of prediction speed stability for the classification problem,
CART is the most robust method and k-NN the least robust
method, compared to other methods.

D. RANKING
To quickly rank all methods inferentially, rewards are
assigned to each method according to their average perfor-
mances for prediction accuracy, training time and prediction
speed. Points are assigned: 4, 3, 2, 1 in descending order of
performance. Table 5 suggests how, the total sum of points
obtained by each method can be used to deduce the overall
ranking.
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FIGURE 7. Typical confusion matrices and ROC curves for all methods.
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TABLE 4. Prediction speed (obs/s) for all methods (over 50 statistical
runs).

TABLE 5. Ranking of all methods.

TABLE 6. Hypothesis test: CART vs other methods.

Table 5 indicates that CART ranks first with a total or
12 points, GNB and QDA both rank second with seven, and
k-NN ranks fourth with five. This suggests that the overall
performance of CART is much better than QDA, GNB and
k-NN for this classification problem based on the settings
used. To statistically verify that CART’s overall performance
ranks better than the other methods, hypothesis tests are car-
ried out in the next subsection using the Wilcoxon test [74].

E. HYPOTHESIS TEST
To carry out the hypothesis test (i.e. Wilcoxon test [74]),
the results obtained by all methods for prediction accuracy,
prediction speed and training time over the 50 independent
statistical runs are used as data samples. The null hypothesis
is that the data samples of CART and the other methods
(i.e. GNB, k-NN and QDA) have equal medians at 5% sig-
nificance level (i.e. 95% confidence level). If the resultant
probability value (i.e. p-value) of the hypothesis test is less
than or equal to 0.05, a strong evidence exists against the null
hypothesis and it is therefore rejected.

The results for the hypothesis tests are shown in Table 6.
According to the p-values in Table 6, the null hypothesis
is rejected in all the cases. This shows that the prediction
accuracy, prediction speed and training time of CART is
significantly better than the prediction accuracy, prediction
speed and training time of othermethods. Therefore, the rank-
ing earlier established in Table 5 is statistically verified.

VII. CONCLUSION
Machine learning-based detection and classification of flood-
ing DDoS attacks has been implemented and investigated in
this paper using four popular supervised learning methods
(GNB, QDA, k-NN and CART). All methods performed
well and show suitability for application in the classification

and detection of such attacks. However, in terms of stabil-
ity, prediction accuracy, training time, and prediction speed,
CART outperforms others based on the investigations carried
out. It is good to note that for the methods having control
parameters (e.g., CART and k-NN), their hyperparameters
have not been tuned or optimized because hyperparameter
tuning and optimization is not within the scope of this work.
In future, the relative usefulness of the predictors and the
engineered feature will be investigated using computational
intelligence techniques such as global sensitivity analysis and
parallel coordinates. The hyperparameters of some of the
methods will also be investigated for tuning and optimization,
and a larger dataset (e.g. over 10,000 observations) will be
generated to further investigate how these machine learning
algorithms or methods can assist in the expedited detection
and classification of DDoS flooding attacks. It is envisaged
that future investigations will culminate in the design and
development of a machine learning-based add-on that com-
plements existing software tools for DDoS flooding attack
detection and classification.
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