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Abstract

    rought is a normal and recurrent climatic 
phenomenon, and is considered one of the 
most costly natural disasters in the United 
States. Grassland vegetation is sensitive to 
weather and climate, and persistent drought 

impacts goods and ecological services that grasslands provide 
(e.g., wildlife habitats, feedstock for the livestock industry, 
and recreational services).  Droughts have extremely large 
spatial and temporal variations in areal coverage and intensity 
making drought monitoring a challenging task. Using soil and 
atmospheric data from the Oklahoma Mesonet and surface 
reflectance data from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) onboard the Terra and Aqua satellites, this 
study examined the hypothesis that the satellite-derived Land 
Surface Water Index (LSWI) is sensitive to drought conditions 
and can potentially be used as an indicator or tool for drought 
monitoring. The sensitivity of LSWI to summer drought was 
first analyzed at 10 Mesonet sites that are homogeneous and 
representative of different types of grassland vegetation, soils 
and climate across Oklahoma. A summer drought event is 
defined, based on threshold values of LSWI and the Fractional 
Water Index (FWI) derived from soil moisture data at each site. 
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Resumen 

    a sequía es un fenómeno climático normal y 
recurrente, y es considerado uno de los desas-
tres naturales más costosos en Estados Unidos. 
La vegetación de pastizales es sensible al estado 
del tiempo y el clima, y ​​la persistencia de la 

sequía afecta a los bienes y servicios ecológicos que propor-
cionan los pastizales (por ejemplo, son hábitats de vida silvestre, 
proveen materia prima para la industria ganadera, así como 
servicios de esparcimiento). La cobertura de área e intensidad 
de las sequías presentan grandes variaciones espaciales y tempo-
rales, haciendo que el monitorea de sequías sea una tarea difícil. 
Usando datos atmosféricos y de suelos de la Oklahoma Mesonet, 
y datos de reflectancia de la superficie terrestre del espectro-
rradiómetro de imágenes de resolución moderada (MODIS, 
por sus siglas en inglés) a bordo de los satélites Terra y Aqua, 
este estudio examinó la hipótesis de que el índice de agua de la 
superficie del terreno (LSWI, por sus siglas en inglés) es sensible 
a condiciones de sequía y potencialmente puede utilizarse como 
un indicador o herramienta para la monitoreo de sequías. La 
sensibilidad del LSWI a la sequía estival se analizó inicialmente 
en 10 sitios Mesonet que son homogéneos y representativos 
de los diferentes tipos de vegetación de pastizales, los suelos 

L
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y el clima a través de Oklahoma. Un evento de sequía estival 
se define, en base a los valores de umbral de LSWI y el Índice 
de Agua fraccional (FWI) derivado de los datos de humedad 
del suelo en cada sitio. Posteriormente, el algoritmo de sequía 
basado en LSWI se evaluó en 103 sitios Oklahoma Mesonet. Por 
último, se utilizó el algoritmo de sequía basado en LSWI para 
mapear los patrones espaciales y la dinámica temporal de la 
superficie de la tierra afectada por la sequía durante 2001-2010 
a través de Oklahoma. Los resultados de este estudio demos-
traron el potencial del algoritmo de sequía basado en LSWI para 
el seguimiento y la cartografía de vegetación de pradera afectada 
por la sequía en Oklahoma con un 3% de error de comisión en 
los sitios Oklahoma Mesonet durante 2001-2010.

Palabras Clave: MODIS, Monitoreo de sequía en la vegetación, 
praderas, índice de Agua de la superficie del terreno

Introduction
Grassland ecosystems cover approximately 40% of the 
Earth’s terrestrial land surface [1], [2]. There are several 
areal estimates of grasslands in the United States, and 
approximately 50% of the total land surface in the United 
States (U.S.) is classified as grasslands [3], [4]. The Great 
Plains (GP) in the North America is one of the largest 
grassland regions in the world [5]. Grassland ecosystems 
provide valuable goods and ecological services. Under 
moderate grazing conditions, grasslands play an impor-
tant role in the nutrient cycle and hydrologic cycle, and 
can store significant amounts of carbon [4], [2]. Grassland 
ecosystems provide forage and support the livestock 
industry. Grasslands are rich in plant biodiversity and are 
important habitats for wild birds, wildlife and pollinators. 
Furthermore, grasslands can provide several recreational 
services (e.g. aesthetic beauty, wildlife observation, and 
hunting areas) to the human society. 

Drought, which is normal and recurrent climatic pheno-
menon in the Great Plains region, can affect landscapes 
and people at local to regional scales from short periods 
of time [6], [7], [8], to decadal scales such as the Dust 
Bowl of the 1930s [9], [10], [11]. Droughts often result in 
a decrease in dry matter production and seed yield [12], 
[13], which has socio-economic effects, and especially 
agricultural productivity. A reduction in crop yield is not 

Secondly, the LSWI-based drought algorithm was evaluated at 
103 Oklahoma Mesonet sites. Finally, the LSWI-based drought 
algorithm was used to map spatial patterns and temporal dyna-
mics of drought-affected land surface during 2001-2010 across 
Oklahoma. The results from this study demonstrated the poten-
tial of LSWI-based drought algorithm for tracking and mapping 
drought-affected grassland vegetation in Oklahoma with 3% 
commission error in the Oklahoma Mesonet sites during 2001-
2010.

Keywords: MODIS, vegetation drought monitoring, grassland, 
land surface water index.

only an economic loss to individual farmers, but also 
leads to a reduction of food supply to humans and a loss 
of feedstock to the livestock industry.  The data collected 
at the National Drought Mitigation Center (NDMC) at the 
University of Nebraska have shown that the economic 
damage of drought is at least as expensive as hurricanes 
and floods, and drought is one of the most costly natural 
disasters in the United States [14]. 

Because drought events and intensity have large spatial 
and temporal variations, drought monitoring is a challen-
ging task. Scientists and decision makers use drought 
information and derived indices or indicators to monitor 
moisture supply conditions and apply this informa-
tion to different economic activities (e.g. agriculture, 
water supply for human services, livestock manage-
ment). Meteorology-based drought indices are the most 
common tools used to monitor drought, due to the 
long-term record of precipitation data available. Meteo-
rological drought indices such as the Palmer Drought 
Severity Index (PDSI; [15]) or the Standardized Precipita-
tion Index (SPI; [16], [17]) are derived from point-based 
meteorological measurements collected at individual 
weather stations. Thus, these drought indices only yield 
broad-scale drought patterns and are most applicable for 
regions with sufficient weather stations. 
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The optical sensors in space-borne remote sensing 
platforms, such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS), provide surface reflectance data 
that are associated with the biophysical and biochemical 
properties of vegetation and soils across local, regional 
and global scales. Time-series analysis of vegetation indices 
has become a very common approach to analyze vegeta-
tion dynamics and drought monitoring [18]. The initial 
approaches for drought detection by satellite data were 
based on the reduction of photosynthetic capacity, which 
is most commonly measured through the Normalized 
Difference Vegetation Index (NDVI) and is also associated 
with precipitation deficiency [19]. The surface reflectance, 
or the combined responses of reflective and thermal data, 
has also been used to detect and monitor droughts [20]. In 
addition to NDVI, NDVI anomaly, and standardized NDVI 
values, among other red-NIR bands algorithms, have been 
used to identify and monitor drought at different spatial 
scales [21], [22], [23], [24], [25], [26], [19], [27]. The land 
surface temperature (LST) derived from thermal infrared 
(TIR) band has also been used to monitor drought in 
combination with NDVI, based on the hypothesis that high 
LST values indicate soil moisture deficiencies and therefore 
stress in the vegetation canopy [28].

The Normalized Difference Water Index (NDWI; [29], a 
normalized ratio calculated from two near-infrared (NIR) 
channels centered approximately on 0.86 μm and 1.24 
μm, has been used to monitor drought as it is sensitive 
to changes in liquid water content of vegetation cano-
pies [18], [30], [14], [31].  Short-wave infrared spectral 
band (SWIR) is also sensitive to water content in canopy 
and soil surface. Several studies have calculated a 
water-related vegetation index that uses both NIR (841-
876 nm) and SWIR band (2105 – 2155 nm) in MODIS 
sensors, namely NDWI [18], [14], [30]. Other studies 
used another SWIR band (1580 – 1750 nm) and NIR band 
(841-876 nm) to calculate the Land Surface Water Index 
(LSWI) [32], [33]. LSWI, calculated as a normalized ratio 
between near infrared (NIR: 0.87 – 0.89 μm) and short-
wave infrared (SWIR: 1.58 – 1.75 μm) spectral band, has 
been used to assess the impact of water stress on gross 
primary production of forests and croplands [34], [33]. 

In this study we examined the hypothesis that LSWI 
is sensitive to drought conditions and can be used as 
a drought monitoring indicator. We used in-situ soil 

moisture data from the Oklahoma Mesonet (Figure 1). 
Commissioned in 1994, the Oklahoma Mesonet is a 
network of over 110 automated weather stations with 
an average station spacing of approximately 30 km. 
Measurements collected at these stations include preci-
pitation, air temperature, relative humidity, wind speed, 
solar radiation as well as soil moisture. The Oklahoma 
Mesonet calculates the fraction water index (FWI) in the 
soils, which is a relative measure of the soil wetness [14], 
[35], [36] and provides daily FWI data available to the 
public. We compared LSWI and FWI data at grassland 
sites during the warm season over the period of 2001-
2010. The specific objectives of this study are (1) evaluate 
the relationship between LSWI and soil moisture (FWI); 
(2) use the LSWI as vegetation health indicator; and (3) 
use LSWI as a drought monitoring tool to map drought 
across the state of Oklahoma.

Figure 1. Spatial distribution of Oklahoma Mesonet sites

Materials and methods

The Oklahoma Mesonet data
The Oklahoma Mesonet is a network of environmental 
monitoring stations designed and implemented by scien-
tists at the University of Oklahoma and Oklahoma State 
University [37]. The Mesonet network consists of over 
110 automated stations (at least 1 Mesonet station in each 
of 77 counties) in Oklahoma (Figure 1). The Oklahoma 
Mesonet network has soil moisture sensors installed at 
various soil depths depending on ambient soil conditions 
at a station, for example, 5-cm sensors (103 stations), 
25-cm sensors (101 sites), 60-cm sensors (76 sites), and 
75-cm sensors (53 sites) [36]. 
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We selected 10 MESONET sites for detailed analysis, inclu-
ding 6 grassland sites (Beaver, El Reno, Marena, Newkirk, 
Red Rock, and Washington) and 4 pasture/hay sites 
(Miami, Stigler, Vinita, and Wister). Table 1 summarizes 
the general characteristics of these sites, compiled from 
aerial images, a topographic map and detailed soil charac-
teristics listed in the metadata for each Mesonet site. 

These 10 sites are representative locations of the diffe-
rent soil types and climate zones across Oklahoma, and 
are homogeneous based on visual assessment of land 
cover from high-resolution imagery in Google Earth 
and analysis of the spatial variability of vegetation types 
within a 500 m buffer of each study site [14].

MODIS surface reflectance data  
and vegetation indices
The Moderate Resolution Imaging Spectrometer 
(MODIS) is an instrument deployed on the NASA’s Terra 
(EOS am) and Aqua (EOS pm) spacecraft that provides 
simultaneous observations of the atmosphere, land, and 
oceans at a temporal resolution of one to two days with 
high radiometric resolution images (12 bit). It collects 
data for 36 spectral bands; 7 bands are designated mainly 
for land surface and vegetation studies: blue (459-

479 nm), green (545-565 nm), red (620-670 nm), near 
infrared (nir1: 841-875 nm and nir2: 1230-1250 nm), and 
shortwave infrared (swir1: 1628-1652 nm, and swir2: 
2105-2155 nm) [38]. 

The 8-day MODIS land surface reflectance product 
(MOD09A1) at 500-m spatial resolution was used in this 
study. The MOD09A1 products are generated in a multi-
step process that first eliminates observations with a low 
observational coverage, and then selects an observation 
with the minimum blue band value during an 8-day period. 
Reflectance values in the blue band are used to identify 
cloud cover and aerosols in the atmosphere that affect 
surface reflectance value and vegetation indices. Thus, the 
reflectance values reported in this product correspond to 
the observation with better overall pixel quality and obser-
vational coverage during each 8-day period [39].

The MOD09A1 time series datasets for individual Mesonet 
sites were downloaded from the data portal managed 
by the Earth Observation and Modeling Facility at the 
University of Oklahoma, which provides an on-demand 
visualization system for retrieving time series of MODIS 
data for a single site (http://eomf.ou.edu/visualization). 
The geographic locations of the Mesonet sites were used 
to retrieve MODIS data at pixel level. We used quality 

Table 1. General characteristics of the 10 Oklahoma Mesonet sites

Site Name Site ID Latitude Longitude Vegetation Soil type
Annual Precipitation 

(mm) 2001-2010

Mean STD

Beaver BEAV 36.8025 -100.530 Grassland Loam 487 95

El Reno ELRE 35.5485 -98.0365 Grassland Silt loam 788 244

Marena MARE 36.0643 -97.2127 Grassland Sandy clay loam 881 227

Miami MIAM 36.8883 -94.8444 Pasture/hay Silt loam 1046 240

Newkirk NEWK 36.8981 -96.9103 Grassland Silt clay loam 905 228

Red Rock REDR 36.3559 -97.1531 Grassland Clay loam 935 295

Stigler STIG 35.2653 -95.1812 Pasture/hay Silt loam 1028 202

Vinita VINI 36.7754 -95.2209 Pasture/hay Silt loam 1038 262

Washington WASH 34.9822 -97.5211 Grassland Sandy clay loam 860 223

Wister WIST 34.9843 -94.6878 Pasture/hay Silt loam 1127 249
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flags (cloud, cloud shadow, aerosols) of observations in 
the dataset to exclude bad-quality observation. We also 
applied an additional filter to remove cloudy observations 
using a threshold value (≥0.20) of blue band reflectance 
during the plant growing season. The observations 
above this threshold were gap-filled following the same 
method reported in previous studies of MODIS-based 
land surface phenology [40], [41], [33], [42]. After this 
pre-procesing step, for each MODIS 8-day composite, 
surface reflectance values for blue, red, near infrared and 
shortwave infrared bands were used to calculate NDVI, 
EVI, LSWI, NDWI, and NBR (see Table 2).

Drought detection and mapping 
– FWI-based and LSWI-based 
algorithms
Soil moisture data are used to calculate the fractional 
water index (FWI) [43], which is a unitless and linear 
index based on the response from the Campbell Scien-
tific 229-L sensor installed at the Mesonet sites. FWI value 
varies from zero (very dry soil) to one (saturated soil). 
The results from a previous study [35] showed that FWI 
has distinct seasonal dynamics across Oklahoma, charac-
terized by four “phases” or “periods” throughout the 
year (Figure 2). The 1st FWI phase is “moist plateau” in 

winter (November – mid March). It has the highest FWI 
values and vegetation is dormant due to low temperature 
values. The 2nd FWI phase is “transitional drying” during 
the climatological wet season in Oklahoma (mid-March 
to mid-June). The 3rd FWI phase is “enhanced drying” in 
mid-June to late August. It includes a steep decline of FWI 
values at all soil-depth levels, and the lowest FWI values 
occur during late summer because limited moisture 
replenishment to the soil due to minimal precipitation 
and enhanced evapotranspiration. The 4th FWI phase is 
“recharge phase” (late August to November), and large 
amount of precipitation and low evapotranspiration 
in autumn replenishes soil moisture. Reference [35] 
suggested that grassland vegetation in Oklahoma begins 
to wilt due to soil moisture deficits when FWI values are 
approximately 0.5, and if FWI values reached 0.3 or less, 
vegetation started to die. In this study we use FWI<=0.5 
as the threshold value for FWI-based drought and values 
at 25-cm and 60-cm soil depths in July – August for indi-
vidual sites were analyzed, respectively. If FWI values 
during an 8-day period reached <=0.5, this 8-day period 
is then considered to be “drought” period; otherwise, it is 
labeled as “non-drought” period.   For each year, if there 
is one or more “drought” period within July-August, this 
summer (year) is labeled as “drought year”; otherwise, it 
is labeled as “non-drought year”.

Table 2. Vegetation indices used in this study

Vegetation Index Equation MODIS Bandwidth (nm) Reference

Normalized Difference Vege-
tation Index

NDVI nir red

nir red

=
−
+

ρ ρ
ρ ρ

1

1

red (620-670), nir1(841-
875)

(Asrar et al. 1984)

Enhanced Vegetation Index EVI nir red

nir red blue

=
−

+ − +
2 5

6 7 5 1
1

1

.
.

x
x x

ρ ρ
ρ ρ ρ

blue (459-479),
red (620-670) , 
nir1(841-875)

(Xiao et al. 2004a)

Land Surface Water Index LSWI nir swir

nir swir

=
−
+

ρ ρ
ρ ρ

1 1

1 1

nir1(841-875)
swir1 (1628-1652)

(Xiao et al. 2004a)

Normalized Difference Water 
Index

NDWI nir nir

nir nir

=
−
+

ρ ρ
ρ ρ

1 2

1 2

nir1(841-875),
nir2(1230-1250)

(Gao 1996)

Normalized Burn Ratio NDWI nir swir

nir swir

=
−
+

ρ ρ
ρ ρ

1 2

1 2

nir1(841-875), swir2 (2105-
2155)

(Lozano et al. 2010)
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Figure 2. Seasonal dynamics of fractional water index 
(FWI), which were averaged over 58 Mesonet stations in 
Oklahoma. It illustrates four soil moisture phases (I–IV). It 
is from Illston et al. 2004.

Green vegetation has positive LSWI values, but senes-
cent vegetation and soils have negative LSWI values. 
Severe drought conditions often result in senescence of 
vegetation. In this study, we use the threshold of LSWI 
<0 as the indicator for vegetation drought during the 
plant growing season. LSWI values in July – August for 
individual sites were analyzed. If LSWI value in an 8-day 
period reached <0, this 8-day period is considered to 
be “drought” period; otherwise it is labeled as “non-
drought” period. For each year, if there are one or more 
“drought” periods within July-August, this summer (year) 
is labeled as “drought year”; otherwise, it is labeled as 
“non-drought year”. 

We first applied the LSWI-based and FWI-based algo-
rithms to the 10 grassland sites (Table 1), and then 
applied the algorithms to all the 103 Mesonet stations 
with soil moisture data over the period of July - August.  
We compared the results of drought and non-drought 
events from FWI-based (25 and 60 cm soil depths) and 
LSWI-based algorithms at individual sites, respecti-
vely. LSWI-based drought may agree with FWI (25 cm) 
drought only, FWI (60 cm) drought only, or both FWI 
(25 cm) and FWI (60 cm) drought, or neither. We applied 
the LSWI-based drought algorithm to all LSWI images in 
July – August during 2001-2010 and generated maps of 
“drought” and “non-drought” across Oklahoma. We then 
counted the total area affected by drought at each 8-day 
period, and evaluated changes in drought-affected areas 
in July-August over the study period. 

Results

Seasonal dynamics of precipitation, 
soil moisture and vegetation indices 
at the Mesonet sites
We presented the data from El Reno and Marena sites 
(Table 1) to illustrate seasonal dynamics of precipitation, 
soil moisture and vegetation indices. Figure 3 shows the 
landscapes and the approximate MODIS pixel boundary 
at these two grassland sites. The El Reno site is largely 
pure grassland, and the Marena site has a small propor-
tion of wood vegetation.

Figure 3. Landscape characteristics in (a). El Reno and 
(b). Marena Mesonet sites. The red box shows the MODIS 
pixel boundary (500-m spatial resolution) overlaid with 
Google Earth. From: http://daac.ornl.gov/cgi-bin/MO-
DIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl
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At the El Reno site, annual precipitation varied substan-
tially, ranging from 473 mm in (2003) to 1370 mm in 2007 
(Figure 4a). There were also large variations in seasonal 
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dynamics of precipitation. For example, 2001, 2004, 2008 
and 2010 had small amounts of rainfall in previous winter 
and spring while 2003 and 2007 had the lowest amounts 
of rainfall in the period of July-August.  The seasonal 
dynamics of soil moisture (FWI) at the 25 cm and 60 
cm depths responded to seasonal dynamics of precipi-
tation (Figure 4b). FWI-25cm values were high in spring 
but dropped below 0.5 in July-August period for 9 of the 
study years (the exception was 2007). The year 2006 had 
low FWI values over several months, and the “enhanced 
drying phase” lasted until November at the 25 cm depth 
and until January 2007 at the 60 cm soil layer. Both 2007 
and 2008 were particularly wet years with values above 
0.5 all year long in 2007 at both depths. During 2008, FWI 
values fell below 0.5 for just a few days in early August 
at the 25 cm soil depth and from late July to mid August 
at 60 cm soil depth. The seasonal dynamics of vegeta-
tion indices within the plant growing season (Figure 4c 
and d) corresponded well with that of precipitation and 
soil moisture. The greenness-related vegetation indices 
(NDVI and EVI) had the 1st (larger) peak in spring to 
early summer, a trough in July-August, and the 2nd 
(much smaller) peak in fall (Figure 4c). The water-related 
vegetation indices (LSWI, NDWI, and NBR) show similar 
seasonal pattern within the plant growing season, LSWI 
often reached its peak values in May or June and had 
its trough (-0.2) in July and September. The NDWI had 
peak values (~0.1) around late April or May, and the 
lower values (approximately -0.2) during august and in 
the winter. The NBR values in the warm season (May to 
September) remained positive during most of the years 
for the entire study period.  The peak NBR values (>0.5) 
occurred in May and July and the trough NBR values 
(-0.1) occurred during the winter and few August periods 
on 2001-2003. 

At the Marena site, annual precipitation varied substan-
tially, ranging from 598 mm in 2006 to 1386 mm in 2007 
(Figure 5a). The seasonal dynamics of precipitation was 
large and had large peaks in winter/spring and fall and a 
trough in July-August period. Soil moisture (FWI) at both 
25-cm and 60-cm depths (Figure 5b) had distinct 4-phase 
dynamics of the FWI in most of years. FWI-25cm values 
were high in spring but dropped below 0.5 for all 10 
years of the study. At the 25 cm depth, 2004 had a short 
dry spell during early June (a single 8-day period) and a 
drought from mid July to October (ten 8-day periods). 

The 2005 and 2007 periods were wet years with few dry 
spell or drought days between late July and August, and 
FWI values at 60 cm soil depth remained greater than 0.6 
all for the duration of 2007. Year 2006 was a very dry year 
and both FWI-25cm and FWI-60cm values dropped below 
0.5 for several months and did not recover until early 
2007. The seasonal dynamics of greenness-related vege-
tation indices (NDVI and EVI) had a clear, single peak 
in early summer (Figure 5c). NDVI values had a plateau 
in most of summer, which reflects the fact that this site 
has fair amount of woody vegetation.  The water-related 
vegetation indices also exhibited a single peak seasonal 
dynamics (Figure 5d) 

Figure 4. Seasonal dynamics and interannual variation of 
precipitation, soil moisture and vegetation indices bet-
ween 2001 and 2010 at Oklahoma Mesonet El Reno site. 
(a). Precipitation: each bin represents the accumulated ra-
infall measured in mm within each 8-day period. (b). Ave-
rage daily fractional water index (FWI) at 25cm and 60 cm 
depth. (c). greenness-related vegetation indices: Norma-
lized Difference Vegetation Index (NDVI), Enhanced Ve-
getation Index (EVI). (d). water-related vegetation indices: 
Land Surface Water Index (LSWI), Normalized Difference 
Water Index (NDWI) and Normalized Burn Ratio (NBR). 
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Figure 5. Seasonal dynamics and interannual variation of 
precipitation, soil moisture and vegetation indices bet-
ween 2001 and 2010 at Oklahoma Mesonet Marena site. 
(a). Precipitation: each bin represents the accumulated ra-
infall measured in mm within each 8-day period. (b). Ave-
rage daily fractional water index (FWI) at 25cm and 60 cm 
depth. (c). greenness-related vegetation indices: Norma-
lized Difference Vegetation Index (NDVI), Enhanced Ve-
getation Index (EVI). (d). water-related vegetation indices: 
Land Surface Water Index (LSWI), Normalized Difference 
Water Index (NDWI) and Normalized Burn Ratio (NBR).
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Drought-affected areas identified 
by FWI- and LSWI-based  
algorithms at the Mesonet sites
We first applied the LSWI-based and FWI-based (both 25 
and 60 cm soil depths) drought algorithms to the ten indi-
vidual sites (see Table 1). Figure 6 illustrates the seasonal 
dynamics of LSWI and FWI at the El Reno site and the 
drought periods identified by the LSWI- and FWI-based 
drought algorithms. The LSWI-based drought algorithm 
identified drought periods in 10 years while the FWI-25cm 
algorithm identified drought in 8 years, and the FWI-60cm 
algorithm identified drought in 9 years. In comparison, at 
the Marena site, the LSWI-based drought algorithm identi-
fied drought periods in 3 years (2001, 2003 and 2006), but 

the FWI-25cm algorithm identified drought periods in 10 
years, and the FWI-60 algorithm identified drought periods 
in 9 years. The discrepancy between LSWI-based drought 
detection and FWI-based drought detection could be 
attributed to the spatial domains size and landscape hete-
rogeneity. Soil moisture measurements were taken as point 
measurements and represent a very small size of spatial 
domain (in meters), where vegetation is pure grassland. 
LSWI values from the MODIS sensor have a much larger 
spatial domain (500-m spatial resolution), where a mixture 
of grassland and trees exists. Trees did not defoliate in 
the summer in regular years, and only defoliated in those 
extreme drought years (e.g., 2001, 2003 and 2006), which 
resulted in very low LSWI values (<0.0). 

Figure 6. Seasonal dynamics of fractional water index 
(FWI), land surface water index (LSWI), and drought events 
at the El Reno site during 2001-2010. Fractional Water In-
dex data are from Oklahoma Mesonet soil moisture at 25 
and 60 cm depth data. Land Surface Water Index (LSWI) 
data are calculated from 8-day MODIS land reflectance 
data. The green area demarks the plant growing season at 
the site. The gray bars highlight the drought periods (de-
tected by both LSWI- and FWI-25 drought algorithms). The 
red lines mark the period when either temperature or wa-
ter are the main controllers for vegetation health. FWI-25 
– solid line; FWI-60 – dotted line; and LSWI – dash-dot line.

Date (8-day period)
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Figure 7. Seasonal dynamics of fractional water index 
(FWI), land surface water index (LSWI), and drought 
events at the Marena site during 2001-2010. Fractio-
nal Water Index data are from Oklahoma Mesonet soil 
moisture at 25 and 60 cm depth data. Land Surface Wa-
ter Index (LSWI) data are calculated from 8-day MODIS 
land reflectance data. The green area demarks the plant 
growing season at the site. The gray bars highlight the 
drought periods (detected by both LSWI- and FWI-25 
drought algorithms). The red lines mark the period when 
either temperature or water are the main controllers for 
vegetation health. FWI-25 – solid line; FWI-60 – dotted 
line; and LSWI – dash-dot line.

The results of drought detection from the FWI- and 
LSWI-based drought algorithms at the 10 sites during 
July and August of 2001-2010 are summarized in Table 3. 
On average for these 10 sites, 59% of the years had hits, 
but the standard deviation was high (31%). These 10 sites 
can be grouped in 2 groups: sites with more than 50% 
hits (Beaver, El Reno, Washington, Wister, Red Rock and 
Vinita); and sites with 40% hits or less (Newkirk, Stigler, 
Marena and Miami). The average hits for the first group 
was 80% with a standard deviation of 18%. The average 
hits for the second group was 28% with a standard devia-
tion of 11%. This reflects to some degree the issues of 
spatial domain size and landscape heterogeneity between 
the FWI approach and LSWI approach.

Table 3. Drought detection at 10 Oklahoma Mesonet 
sites over the period of July-August during 2001-2010 
by the LSWI- and FWI-based drought algorithms D- 
drought, ND – non-drought. This table is the result of a 
cross-site comparison by multilevel sorting of the 10 ho-
mogeneous sites so that those sites where LSWI and FWI 
yielded more hits will appear first. The first sorting level 
was by percentage of hits (descending), then by percen-
tage of omission error or misses (ascending), and finally 
by commission error or false alarms (ascending).

Site
FWI-25 cm FWI-60 cm

D ND D ND

Site ID

LS
W

I D # Hit (D) False 
alarm Hit (D) False 

alarm
ND # Miss Hit (ND) Miss Hit (ND)

BEAV

LS
W

I

D 9 9 0 6 3

ND 1 0 1 0 1

ELRE
ND 0 0 0 0 0

D 8 8 0 6 2

WASH
D 8 8 0 6 2

ND 2 1 1 1 1

WIST
D 7 7 0 7 0

ND 3 3 0 3 0

REDR
D 6 6 0 5 1

ND 4 4 0 3 1
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Site
FWI-25 cm FWI-60 cm

D ND D ND

Site ID
LS

W
I D # Hit (D) False 

alarm Hit (D) False 
alarm

ND # Miss Hit (ND) Miss Hit (ND)

VINI

LS
W

I

D 5 5 0 5 0

ND 5 3 2 2 3

STIG
D 3 3 0 3 0

ND 7 5 2 2 5

NEWK
D 3 3 0 3 0

ND 7 6 1 7 0

MARE
D 3 3 0 3 0

ND 7 7 0 6 1

MIAM
D 1 1 0 1 0

ND 9 7 2 7 2

We also applied the FWI-25 and LSWI-based drought 
algorithms to all the Oklahoma Mesonet sites that have 
soil moisture measurements at 25-cm depth and 60-m 
depth, respectively. Figure 8a shows the total number 
of sites that had one or more drought periods within 
July-August in a year, based on the LSWI- and FWI-25cm 
drought algorithms. The agreement between the FWI-
25cm algorithm and the LSWI algorithm is best in those 
dry years (2001, 2003 and 2006) but worst in those wet 
years (2007, 2008). The LSWI-based algorithm had only 
a few (3% averaged over 10 years) false alarms (commis-
sion error) about drought. Figure 8b shows the total 
number of sites that had one or more drought periods 
within July-August in a year, based on the LSWI- and FWI-
60cm drought algorithms. 

The agreement between the FWI-60cm algorithm and the 
LSWI algorithm is still best in those dry years (2001, 2003 
and 2006), but worst in those wet years (2007, 2008). The 
LSWI-based algorithm had only a few (6% averaged over 
10 years) false alarms (commission error) about drought.

Figure 8. A comparison of drought detection by the 
LSWI- and FWI-based drought algorithms, when applied 
to all the Oklahoma Mesonet sites during 2001-2010.  A 
site was considered as drought in a summer (year), if one 
or more 8-day periods between July and August were 
identified as drought period by the LSWI- or FWI-based 
drought algorithms: (a). a comparison between LSWI 
and FWI-25cm algorithms; and (b). A comparison bet-
ween LSWI and FWI-60cm algorithm. The bars show (1) 
number of Mesonet sites identified as drought by FWI-
based algorithm, (2) number of Mesonet sites identified 
as drought by LSWI-based algorithm, (3) hit or agreement 
in drought (# of sites identified as drought by both LSWI-  
and FWI-based drought algorithms); (4) miss or omission 
error (# of sites identified as non-drought period by the 
LSWI-based drought algorithm but as drought period by 
the FWI-based algorithm, (5) false alarms or commission 
error (# of sites identified as drought by the LSWI-based 
algorithm but as non-drought period by FWI-based 
drought algorithm), and (6) N/A (# of sites that have no 
FWI data available for comparison).
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Regional-scale mapping of drought-
affected areas by LSWI-based 
drought algorithm
To quantify spatial patterns and temporal dynamics 
of drought-affected vegetation across Oklahoma, we 
applied the LSWI-based drought algorithm to all LSWI 
images. Figure 9 shows the spatial distributions of LSWI 
and FWI in July of 2006, 2007 and 2009 across Oklahoma.  
Year 2006 was a very dry year with an annual deficit in 
state-wide precipitation and drier than normal during all 
seasons [44]. Conversely, 2007 was a very wet year [44] 
while 2009 was a normal year in terms of annual precipi-
tation for the state of Oklahoma.  Monthly maps of FWI at 
25-cm and 60-cm are derived from spatial interpolation of 
FWI at the Oklahoma Mesonet sites [37]. In comparison 
to the FWI maps, LSWI maps provide far more details on 
vegetation condition and drought-affected areas. 

Figure 10 shows the changes in histogram of LSWI values 
in Oklahoma for all 8-day periods between July and August 
by year and table 4 summarizes the area under LSWI <0 
by each 8-day period in these two months. Year 2009 is a 

normal year in terms of annual precipitation and seasonal 
distribution.  The histogram distributions of LSWI values 
show that averaged over those 8-day periods in July-August, 
~42% of MODIS pixels had negative LSWI values.  On 4 
July 2009, 45% of MODIS pixels in the state had negative 
LSWI values, and on July 20, 2009, 48% of MODIS pixels in 
the state had negative LSWI values, that are about 76,700 
km2 of drought affected area. In the dry year 2006, more 
MODIS pixels had negative LSWI values and LSWI histo-
gram distribution was skewed to the left side as a result 
of severe drought. The LSWI-based drought algorithm 
(LSWI < 0) estimated ~100,700 km2 drought-affected 
area in mid-July (~63% of the total land area in the State) 
and ~113,500 km2 drought-affected area in mid-August 
(~70% of the total land area in the State). In the wet year 
2007, more MODIS pixels had positive LSWI values and 
LSWI histogram distribution was skewed to the right side 
as the results of higher-than-normal rainfall. The LSWI-
based drought algorithm (LSWI<0) estimated that only 
21% of the State was considered to be drought-affected 
area by July 20, 2007. The drought-affected area increased 
slightly over time, and reached ~58,200 km2 (or ~36% of 
the state) by mid-August, 2007.

Figure 9. Spatial distributions of land surface water index (LSWI) and fractional water index (FWI) in Oklahoma in 2006, 
2007 and 2009. Warm colors represent dry areas. Top panel. maps of land surface water index (LSWI) in 8-day period 
of July 20; Middle panel. maps of fractional water index (FWI) July daily average at 25-cm depth; Lower panel: maps 
of FWI July daily average at 60-cm depth.
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Figure 10. Changes in histograms of land surface water index (LSWI) in Oklahoma over the period of 4 July - 21 Au-
gust during 2001-2010
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Table 4. Vegetation drought affected areas (x103 km2) identified by the LSWI-based drought algorithm (LSWI < 0) 
during summer (July – August) of 2001-2010.

Year July 4 July 12 July 20 July 28 Aug 5 Aug 13 Aug 21 Aug 29

2001 74 83 88 97 100 107 100 90

2002 52 56 71 66 74 70 71 75

2003 62 71 83 80 86 90 102 77

2004 44 48 55 55 52 45 47 47

2005 40 50 70 75 78 70 57 63

2006 80 94 101 104 109 113 105 94

2007 28 29 34 35 47 58 48 53

2008 54 54 65 76 77 71 63 58

2009 73 74 77 68 70 63 61 61

2010 34 47 46 59 65 81 87 88

Discussion
Vegetation indices derived from red and near infrared 
bands, for example, NDVI and Vegetation Condition 
Index ( VCI), have been widely used and played an impor-
tant role in vegetation drought monitoring [24], [45]. 
Recently, several studies [14], [30], [46] have used NDWI, 
which is a vegetation index derived from near infrared 
and shortwave infrared band, for example, MODIS NIR 
band (841-876 nm) and SWIR band (2105 – 2155 nm).  A 
previous study also evaluated MODIS NDVI and NDWI 
for vegetation drought monitoring, using Oklahoma 
Mesonet soil moisture data [14]. They carried out the 
correlation analysis between NDVI and FWI, NDWI and 

FWI over 4-month period (May 25 – September 30) in 
2002-2006 at 17 Oklahoma Mesonet sites, and their 
results showed that FWI had slightly higher linear corre-
lation with NDVI than NDWI, and they concluded that 
“NDVI is a more commonly used index and no addi-
tional benefit was gained by the NDWI” [14]. Note that 
plants usually respond to water stress in a gradual and 
adaptation process, and start to wilt at certain threshold 
value of soil moisture. In our study, we used the thres-
hold approach and searched for appropriate threshold 
values from both soil moisture and water-related vege-
tation index. We used LSWI, calculated from MODIS NIR 
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band (841-876 nm) and SWIR band (1628 – 1652 nm). 
LSWI is highly correlated with NDWI, but LSWI does have 
unique feature, being positive for green vegetation and 
negative for senescent vegetation and soils. We used the 
shift (switch) of LSWI from positive values to negative 
values as an indicator of severe drought or water stress 
to vegetation, and it corresponds well with the drought 
definition from soil moisture (FWI < 0.5 in this study). 
The results from this study have demonstrated that the 
LSWI-based drought algorithm could predict reasonably 
well those areas affected by drought, with 3% commis-
sion error (false alarm) at the Oklahoma Mesonet sites 
during 2001-2010, when compared to the FWI-25 thres-
hold, and 6% using FWI-60. 

The comparison between MODIS-derived vegetation 
indices and soil moisture data from the Oklahoma 
Mesonet sites is complicated by spatial representations 
of these two measurement approaches [14]. The MODIS 
data we used in this study have a spatial resolution of 
500-m, representing area-averaged measurements. The 
soil moisture data from the Oklahoma Mesonet sites are 
essentially point measurements. Spatial heterogeneity in 
vegetation and soils within MODIS pixels clearly affect 
the correlation analysis between vegetation indices and 
FWI [14], and the threshold analysis in this study. The 
omission error (as shown in Table 3 and Figure 8) in the 
LSWI- and FWI-based drought algorithm can be largely 
attributed to the issues related to the scale and spatial 
heterogeneity (soils, grass and trees) within MODIS 
pixels. In addition, soil texture and organic properties 
have high variability horizontally and vertically [47], 
[48], and this may also affect the relationship between 
soil moisture and LSWI in our analysis. The root zone of 
grassland vegetation varies substantially spatially ranging 
from peak root density in the top 10-30 cm [49], [50] to 
maximum rooting depths of 88-370 cm [49], [50], [51], 
[52] for temperate grasslands. Those sites with deeper 
root zones are likely to be more resistant to drought than 
those sites with shallow root zones, as vegetation can use 
additional water from deeper soils. Unfortunately, most 
Oklahoma Mesonet sites do not have data of soil depth 
and root zone, which limits the analysis between LSWI 
and FWI at 25-cm and 60-cm depth. It is possible that 
some grassland sites may have deeper root depth than 
60-cm below the surface. For example, soil depth data 
at the Marena site could be as deep as 120 cm (Tyson 

Ochsner, personal communication; unpublished data). 
The heat dissipation sensors used to collect the soil mois-
ture at the Mesonet sites do not perform very well on 
sandy soils [14], [36] and thus the relationship between 
FWI and LSWI may not be reliable at sites that are domi-
nated by this soil type. 

A new instrument, which uses cosmic-ray neutrons 
to measure soil moisture, has recently emerged, and 
represents a break-through to address the challenge 
of measuring soil moisture at the landscape scale [53], 
[54]. The cosmic-ray soil moisture probe is being deve-
loped [53], [54], namely the COsmic-ray Soil Moisture 
Observing System (COSMOS). The COSMOS instrument 
detects soil moisture within an area of ~36 ha (~660 m 
in diameter) at a depth of up to ~70 cm.  Data collec-
tion rate is user defined and the instrument may sample 
at rates as fast as one minute. The COSMOS instrument 
has been deployed and evaluated at many sites across 
the United States as part of a growing COSMOS network 
(http://cosmos.hwr.arizona.edu). 

Currently, a COSMOS station has been deployed near the 
Marena site as part of a multi-agency, multi-collaborator 
team studying the variability of soil moisture sensor tech-
nologies. As the COSMOS soil moisture measurement 
is comparable with MODIS-based vegetation indices, a 
comparison study between the COSMOS-based soil mois-
ture and MODIS-derived vegetation indices in the near 
future will certainly shed new insight on the sensitivity 
and potential of the LSWI-based drought algorithm. 

In summary, the results of this study show that LSWI is 
sensitive to summer drought in Oklahoma and LSWI-
based drought algorithm performs reasonably well in 
identifying vegetation drought, with approximately 2% 
commission error (false alarm) for the homogenous 
grassland sites and 3% commission error for all the 
Oklahoma Mesonet sites using the FWI-25 drought thres-
hold; and 6% and 9% respectively for the FWI-60 drought 
threshold. The LSWI-based drought algorithm provides 
detailed maps of vegetation drought, which could better 
serve stakeholders (e.g., farmers and ranchers), decision 
makers and the public for drought impact assessment. 

Continuing evaluation of the LSWI-based drought algo-
rithm and comparison with other vegetation drought 
monitoring tools [55], [56], [30], [14], [24], [13] will 
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help us to further improve it as a tool to map and track 
dynamics of vegetation drought.
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