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Energy storage is a basic physical process
with many applications. When considering
this task at the quantum scale, it becomes im-
portant to optimise the non-equilibrium dy-
namics of energy transfer to the storage de-
vice or battery. Here, we tackle this problem
using the methods of quantum feedback con-
trol. Specifically, we study the deposition of
energy into a quantum battery via an auxiliary
charger. The latter is a driven-dissipative two-
level system subjected to a homodyne mea-
surement whose output signal is fed back lin-
early into the driving field amplitude. We ex-
plore two different control strategies, aiming to
stabilise either populations or quantum coher-
ences in the state of the charger. In both cases,
linear feedback is shown to counteract the ran-
domising influence of environmental noise and
allow for stable and effective battery charging.
We analyse the effect of realistic control impre-
cisions, demonstrating that this good perfor-
mance survives inefficient measurements and
small feedback delays. Our results highlight
the potential of continuous feedback for the
control of energetic quantities in the quantum
regime.

1 Introduction
The ability to control the quantum dynamics of meso-
scopic systems has opened a broad research frontier
in the physical sciences, spanning metrology [1], infor-
mation processing [2], and non-equilibrium statistical
mechanics [3]. With the growing complexity of exper-
iments in these fields, a thorough understanding of
the energetics of quantum systems is increasingly im-
portant, both as a diagnostic tool and to help design
optimal control protocols. A fruitful way to gain in-
sight is through specific examples of thermodynamic
processes in the quantum regime, such as energy stor-
age and extraction. To that end, quantum batteries
— dynamical systems that receive and supply energy
— have emerged as a useful paradigm to explore the
fundamental limits and potential benefits of energy
transduction with quantum degrees of freedom [4, 5].
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Even far from thermal equilibrium, the second law
of thermodynamics (or an appropriately generalised
version thereof) constrains the amount of useful work
that can be extracted from a quantum system [6–10].
Nevertheless, various strategies have been developed
to boost the extractable work, such as operating col-
lectively on several systems [11, 12] and exploiting
quantum correlations [13, 14] or coherences [15, 16].
Likewise, it has been shown that collective operations
can enhance the charging power of composite quan-
tum batteries [17, 18]. These predictions have in-
spired a substantial body of theoretical research aim-
ing to harness quantum or many-body effects in or-
der to improve the performance of energy storage de-
vices. Numerous quantum battery architectures have
since been proposed [19–27] and the effects of dif-
ferent physical phenomena — ranging from entangle-
ment [28, 29] to many-body localisation [30] — have
been extensively investigated.

One phenomenon that is especially relevant for
practical energy storage is dissipation stemming from
interactions with the environment. A good battery
should be well isolated from its surroundings in order
to prevent the loss of charge over time [31–33]. Yet a
perfectly isolated battery is decoupled from all exter-
nal energy sources and thus cannot be charged in the
first place. A natural way to resolve this dilemma is to
ensure that the power supply is physically separated
from the system used for long-term energy storage.
This can be achieved by supplying energy to an auxil-
iary system— the charger — which is allowed to inter-
act with the battery in a controlled way [34, 35]. How-
ever, the coupling between the charger and its exter-
nal power supply necessarily introduces noise, which
limits the charging process [36]. Recent proposals
have shown how to mitigate the effect of environmen-
tal noise via measurements [37] or dark states [38, 39],
while other authors have instead suggested to harness
noise as a charging mechanism [40–45]. These ap-
proaches are notable due to their stability, meaning
that the battery’s charge tends to a stationary value
instead of oscillating over time [38, 46]. This desirable
feature mimics the behaviour of battery charging in
everyday life and removes the need for precisely timed
switching of the battery-charger coupling.

Here, we propose an alternative route based on
continuous weak measurements and feedback control.
This effectively recasts the problem of dissipative bat-
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tery charging as a feedback stabilisation protocol [47–
50]. More precisely, we consider a homodyne-like mea-
surement scheme, which leads to a dynamical descrip-
tion in terms of diffusive quantum trajectories [51?
–53]. This framework applies to a variety of experi-
mental settings — including optical, atomic, and elec-
tronic systems — where continuous quantum feed-
back control has already been implemented [54, 55].
The thermodynamics of such feedback has recently
been studied both theoretically [56–58] and experi-
mentally [59, 60].

In order to explore the effect of feedback on the
charging of an open quantum battery, we adopt a
simple model that is analytically and numerically
tractable, as detailed in Sec. 2. We consider a two-
level charger coupled to a finite-dimensional battery
and specialise to direct, linear feedback, where the
driving strength is directly proportional to the mea-
surement signal. In Sec. 3, we introduce and analyse
two different control protocols, based on stabilising
either populations or coherences in the charger. De-
spite its simplicity, linear feedback is shown to enable
highly stable and effective energy transfer from the
charger to the battery. In the ideal case of efficient
measurements and instantaneous feedback, the bat-
tery can be charged perfectly (i.e. to its maximum-
energy state). We also analyse the effect of measure-
ment inefficiency and feedback delay in detail, finding
good performance even in the presence of realistic im-
perfections. We discuss our results and suggest inter-
esting future directions in Sec. 4. The Appendix pro-
vides an analysis of the effect of thermal noise and de-
tuning between the charger and battery. Units where
~ = 1 are used throughout.

2 Model
2.1 Description of the system
The objective is to pump energy into a d-level quan-
tum battery, B, via a two-level system (qubit), C,
which acts as the charger. The battery is modelled
as a ladder of equidistant states separated by en-
ergy ω0, with the same energy splitting characterising
the charger. The bare Hamiltonian is thus given by
Ĥ0 = ĤC + ĤB , with

ĤC = ω0

2 σ̂z, ĤB = ω0N̂ , (1)

where σ̂x,y,z are standard Pauli operators describing
the qubit and we defined the number operator of the
battery

N̂ =
d−1∑
n=0

n |n〉〈n| . (2)

During the charging process, the charger resonantly
exchanges energy with the battery via the interaction

Hamiltonian

Ĥint = g
(
σ̂+B̂ + σ̂−B̂

†
)
, (3)

where σ̂± = 1
2 (σ̂x ± iσ̂y) are raising and lowering op-

erators for the qubit, g is the coupling strength, and
we defined the lowering operator for the battery

B̂ =
d−1∑
n=1
|n− 1〉 〈n| . (4)

Note that, since [Ĥ0, Ĥint] = 0, the interaction can
be switched on and off without affecting the average
local energy of the charger and battery, 〈Ĥ0〉, in prin-
ciple [34].

2.2 Open-system dynamics and feedback con-
trol
The battery is assumed to be a well isolated system, so
that its direct interaction with the environment can
be neglected on the timescales under consideration.
In contrast, the charger is an open quantum system
that couples to an external field. This coupling allows
energy to be pumped into the charger by a coherent
driving tone, but also necessarily entails dissipation
due to the many-mode field acting as a reservoir. We
focus on the low-temperature regime, where the ther-
mal energy is much less than ω0 so that the probability
of photon absorption from the reservoir field is negli-
gible. Working in an interaction picture with respect
to Ĥ0 and invoking the rotating-wave approximation,
the coherent drive is described by the Hamiltonian

Ĥdrive(t) = Ω(t)σ̂y, (5)

where the Rabi frequency Ω(t) is proportional to the
intensity of the driving field. In the absence of any
feedback, the driven-dissipative dynamics is then de-
scribed by the master equation

dρ̂
dt = −i[Ĥ(t), ρ̂(t)] + ΓD[σ̂−]ρ̂(t), (6)

where Ĥ(t) = Ĥint + Ĥdrive(t), Γ is the spontaneous
emission rate, and D[Â]• = Â•Â†− 1

2{Â
†Â, •} defines

a Lindblad dissipator. Eq. (6) is based on the Born-
Markov and rotating-wave approximations, where the
latter requires ω0 to be the largest energy scale in the
system. In particular, we assume that ω0 � |Ω|, g,Γ,
and that Ω(t) varies slowly compared to the fast
timescale ω−1

0
1.

An optimal driving protocol Ω(t) should maximise
the energy deposited in the battery that can subse-
quently be extracted. A simple approach is to drive

1This assumption is consistent with the feedback protocol
introduced in Eq. (8) so long as the white noise in Eq. (7) is
understood as an idealisation of the true noise at the detector
output, which of course has a finite correlation time tc. The
rotating-wave approximation is justified so long as ω0 � t−1

c �
Γ, g, |f |, |Ω0|
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the qubit with a constant intensity, i.e. Ω(t) = Ω0 =
const., as considered in Ref. [36]. However, this strat-
egy is only effective at charging the battery tran-
siently, with the extractable work oscillating over time
and eventually decaying to a fraction of the maxi-
mum. We note that similar transient oscillatory ef-
fects have been identified in small absorption refrig-
erators [61–64]. The ineffectiveness of the charger at
long times is caused by spontaneous emission, which
randomises the phase coherence of the driven qubit
and prevents a stationary population inversion from
being established. This motivates our alternative ap-
proach, where phase information that is lost to the
environment is partially regained by a weak measure-
ment and then fed back into the control field.

We assume that some of the spontaneously emit-
ted photons are collected and measured with a homo-
dyne interferometer, as shown in Fig. 1. The total
measurement efficiency is denoted by η ≤ 1, which
incorporates both the fraction of collected photons,
ηc, and the detector efficiency, ηd, so that η = ηcηd.
The resulting homodyne current is represented by
an appropriately normalised and shifted measurement
record [52, 65, 66]

r(t)dt = Tr{ρ̂r(t)σ̂x}dt+ dw(t)√
ηΓ

, (7)

where ρ̂r(t) is the quantum state (in the interaction
picture) conditioned on the measurement record and
dw(t) is a Wiener increment that represents noise
in the detector output. The average measurement
signal yields an estimate of the qubit coherence as
E[r(t)] = 〈σ̂x〉, where E[•] denotes an average over
the noise 2. We emphasise that the optical appara-
tus depicted in Fig. 1, similar to optomechanical re-
alisations [67–69], is selected mainly for illustrative
purposes. Analogous continuous weak measurements
have been implemented on other platforms, for exam-
ple, using microwave fields [59, 70] or electrical cur-
rents [53, 71, 72].

Feedback is enacted by applying a driving field that
depends on the results of the measurement. We con-
sider the simplest case of direct feedback, in which
the drive intensity is proportional to the measurement
record, i.e.

Ω(t) = Ω0 − fr(t− τ), (8)
where Ω0 is a constant drive, f parametrises the
strength of feedback, and we have allowed for a small
time delay τ > 0 in the feedback loop. Since feedback
is applied after the measurement record is read out,
the evolution is described by the map [1]

ρ̂r(t+ dt) = eH[−iĤ(t)]dt(ρ̂r(t) +K[ρ̂r(t)]
)
, (9)

2Note that we assume that the measurement apparatus is
arranged so that the measured field quadrature is orthogonal
to the one driving the system. This definite phase relationship
requires both fields to derive from the same source, as indicated
in Fig. 1.

⟨ ̂σz⟩

⟨ ̂σx⟩

ff

f
Ω0f

Ω0

g

detector

controller

laser

ω0

Γ
C

B

Figure 1: Illustration of the feedback loop in a quantum-
optics setting. Laser light drives a two-level system, C, cou-
pled to a d-level battery, B. Spontaneously emitted photons
are collected by a lens and interfered with light from the
laser source in a homodyne measurement. The measure-
ment record is used by the controller to modulate the laser
intensity. The central inset depicts two different feedback
control strategies on the Bloch sphere (x–z plane) of the
qubit. Stabilising the Bloch vector near the vertical (blue ar-
rows) charges the battery by inducing population inversion,
while stabilising in the left hemisphere (red arrows) generates
coherence.

where K[ρ̂r(t)] represents the dissipative part of the
evolution

K[ρ̂r(t)] = ΓD[σ̂−]ρ̂r(t)dt+
√
ηΓH[σ̂−]ρ̂r(t)dw(t),

(10)

while H[Â]• = Â •+ • Â† − Tr[•(Â+ Â†)]• is the in-
novation superoperator and dw(t) is the same Wiener
increment appearing in Eq. (7).

Expectation values are computed from the
ensemble-averaged density matrix ρ̂(t) = E[ρ̂r(t)]. In
the ideal case of negligible feedback delay, τ → 0, it
is possible to recover a Markovian master equation
for ρ̂(t). In particular, by expanding Eq. (9) to first
order in dt while applying the rules of Itô calculus
(i.e. dw2 = dt), one obtains [1]

dρ̂
dt = −i[Ĥint + Ω0σ̂y, ρ̂] + if [σ̂y, σ̂−ρ̂+ ρ̂σ̂+]

+ ΓD[σ̂−]ρ̂+ f2

ηΓD[σ̂y]ρ̂. (11)

The first line above describes coherent evolution due
to interactions and driving, while the second line de-
scribes the effect of spontaneous emission and the
measurement noise that the drive feeds back into the
system. For finite values of τ , however, no such
Markovian description is possible and it is necessary
to solve the explicit Itô equation (9) and average over
many trajectories.

It is straightforward to extend our model to de-
scribe finite-temperature dissipation and detuning be-
tween the charger and the battery. These effects are
analysed in detail in the Appendix.
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2.3 Energetics of the battery
At the end of the charging process, the charger is de-
coupled from the battery. The main energetic quan-
tity of interest is then how much energy can subse-
quently be extracted from the battery as work. The
mean energy of the battery is denoted by E[ρ̂B ] =
Tr[ρ̂BĤB ], where ρ̂B = TrC [ρ̂] is the battery’s state,
which may be far from equilibrium and exhibit sig-
nificant energy fluctuations and entropy. As a result,
the extractable work is generally less than E[ρ̂B ].

In order to quantify the useful portion of the de-
posited energy, we use the ergotropy [6], which upper-
bounds the work that can be extracted from the bat-
tery by a cyclic variation of its Hamiltonian. Any
such cyclic process generates a unitary operation Û ,
which reduces the average energy of the battery by an
amount

Wex = E[ρ̂B ]− E[Û ρ̂BÛ†]. (12)

Since the unitary transformation is isentropic, an en-
ergy change Wex > 0 may be attributed entirely to
extracted work. The ergotropy is defined as the max-
imum work extractable from the state ρ̂B by any uni-
tary, i.e. E = maxÛ Wex.

To get an explicit form for the ergotropy, we
write the state in its eigenbasis {|ψn〉}, as ρ̂B =∑
n pn |ψn〉 〈ψn|, with eigenvalues ordered so that

pn+1 ≤ pn. The maximal work is extracted when
Û takes ρ̂B to the corrresponding passive state [73],
π̂ρ̂B

=
∑
n pn |n〉 〈n|, where |n〉 are the eigenvectors of

ĤB ordered by increasing energy, i.e. N̂ |n〉 = n |n〉.
The ergotropy is thus given by

E [ρ̂B ] = E[ρ̂B ]− E[π̂ρ̂B
]. (13)

By definition, a passive state is diagonal in the en-
ergy eigenbasis, with more population in low-energy
eigenstates than high-energy ones. Thermal equi-
librium states are passive, for example. According
to Eq. (13), any state possessing ergotropy must be
non-passive, i.e. having population inversion or coher-
ence in the energy eigenbasis. Ergotropy thus quanti-
fies the degree to which the charger-mediated energy
transfer is ordered (work-like), rather than entropic
(heat-like) [74].

Following Ref. [16], we may explicitly distinguish
the incoherent and coherent contributions to the er-
gotropy, so that E = Ei+Ec. The incoherent ergotropy
Ei can be defined operationally as the maximum work
extractable by a coherence-preserving unitary oper-
ation, and it is specified by Ei[ρ̂B ] = E [δ̂ρ̂B

], with
δ̂ρ̂B

=
∑
n |n〉〈n| ρ̂B |n〉〈n| the dephased state in the

energy eigenbasis. Because Ei depends only on the en-
ergy distribution of the state ρ̂B , it quantifies the work
that is extractable solely by changing the populations
in the energy eigenbasis. The remainder Ec = E − Ei
thus isolates the contribution to ergotropy from co-
herence.

3 Results
3.1 Optimal Markovian feedback
We begin by considering the ideal scenario of feedback
with negligible delay, τ → 0. The ensemble dynamics
in this case is defined by the Markovian master equa-
tion (11). Our aim is to choose the control parame-
ters Ω0 and f in order to maximise the final battery
charge. In the following, we introduce two strate-
gies — appropriate for different parameter regimes —
based either on stabilising population inversion or co-
herence in the qubit charger.

3.1.1 Stabilising population inversion

The first control strategy aims to stabilise the state of
the qubit charger as close to its excited state as possi-
ble [48]. This aim is met by setting Ω0 = 0 and f > 0
in Eq. (8), so that the Rabi frequency tends to have
the opposite sign to the measurement record (7). The
feedback mechanism can be understood intuitively by
visualising the state of the qubit on the Bloch sphere,
as depicted in the central inset of Fig. 1 (blue ar-
rows). Whenever the Bloch vector rotates away from
the vertical, the conditional state acquires a finite ex-
pectation value 〈σ̂x〉r = Tr[σ̂xρ̂r(t)], which is recorded
in the homodyne signal. In response, the feedback ap-
plies a drive proportional to −f 〈σ̂x〉r that acts as a
restoring force.

To find the optimal value of f , we consider the state
of the system at asymptotically long times, which is
given by the stationary solution of the master equa-
tion (11), i.e. dρ̂/dt = 0. Following Ref. [75], we posit
a product ansatz ρ̂ = ρ̂C ρ̂B for the stationary state,
where ρ̂C and ρ̂B are diagonal in the energy eigenba-
sis, viz.

ρ̂C = 1
2 (1 + 〈σ̂z〉 σ̂z) , ρ̂B =

d−1∑
n=0

pn |n〉 〈n| , (14)

with successive populations related by a fixed ratio

R = pn+1

pn
= 1 + 〈σ̂z〉

1− 〈σ̂z〉
. (15)

It is easy to check that such a state commutes with
the interaction Hamiltonian, [Ĥint, ρ̂C ρ̂B ] = 0. Writ-
ing Eq. (11) as dρ̂/dt = −i[Ĥint, ρ̂] + LC ρ̂, the sta-
tionary state is then obtained by choosing ρ̂C so that
LC ρ̂C = 0, with LC acting only on the qubit degrees
of freedom. The solution of this equation for Ω0 = 0
is fully characterised by the expectation value

〈σ̂z〉 = 2f − Γ
Γ− 2f + 2f2/ηΓ , (16)

which is maximised by the choice f = Γ. This condi-
tion is quite intuitive, as it balances the rate of dissi-
pation, which tends to destroy population inversion,
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Figure 2: Asymptotic energy (black) and ergotropy (red) of
the battery as a function of f/Γ, for Ω0 = 0. The maximum
is always obtained at the optimal control point f = Γ. For
efficient measurements (solid lines), the energy and ergotropy
coincide at their maximal value, indicating perfect charging
to the battery’s highest excited state. For inefficient mea-
surements (dashed lines), the difference between energy and
ergotropy indicates that a portion of the deposited energy
cannot be unitarily extracted as work.

and the restorative effect of feedback. Setting f = Γ
into Eq. (16) yields the maximum population inver-
sion achievable through feedback:

〈σ̂z〉max = η

2− η . (17)

The maximum asymptotic charge of the battery can
now be found directly from Eqs. (14), (15), and (17).
The corresponding energy and ergotropy are given by

E = ω0

[
dRd

Rd − 1 −
R

R− 1

]
(18)

E =
{

2E − ω0(d− 1) (R > 1)
0 (R ≤ 1),

(19)

with R = (1− η)−1 for the optimal feedback, f = Γ.
The above solution can be interpreted in terms of

thermalisation between the charger and the battery
at a virtual temperature given by Tv = −ω0/ lnR [75,
76]. For any non-zero efficiency we have R > 1 and
Tv < 0, implying that the battery is placed in a
population-inverted state with finite ergotropy. This
occurs irrespectively of the value of g, as a conse-
quence of the property [Ĥint, Ĥ0] = 0 of the inter-
action Hamiltonian (3). The maximum possible er-
gotropy is Emax = ω0(d−1), which we adopt as a con-
venient reference energy scale. For concreteness, we
take a particular representative value d = 20 in most
of the following examples. Choosing another value of
d would merely rescale the final battery charge and
charging time; see the Appendix for a detailed analy-
sis.

In Fig. 2 we plot the steady-state battery energy
and ergotropy as a function of the feedback strength.

We see that efficient measurements allow for perfect
charging, in the sense that E = E = Emax at the max-
imum where f = Γ. Crucially, however, Fig. 2 shows
that rather inefficient measurements with η = 0.3 still
lead to significant energy and ergotropy deposited in
the battery. Therefore, even when the majority of
spontaneously emitted photons are irreversibly lost to
the environment, it remains possible to exploit the in-
formation gained from the weak measurement to sta-
bilise the battery in a charged state. Since this state
is diagonal in the battery’s Hamiltonian eigenbasis,
the ergotropy E = Ei is purely incoherent in this case.

Another notable feature of Fig. 2 is the sharp dis-
appearance of the ergotropy at f = Γ/2. This reflects
the fact that 〈σ̂z〉 changes sign to become negative for
f < Γ/2, as can be seen from Eq. (16). Therefore, the
population inversion of the charger and, correspond-
ingly, the ergotropy of the battery both vanish when
the drive is too weak. In the following section, we
consider an alternative approach that is appropriate
for this weak-driving regime.

3.1.2 Stabilising coherence

The second control strategy targets the coherence of
the qubit charger. We will see that this approach
allows for charging even when the driving Rabi fre-
quency is much smaller than the dissipation rate.
We therefore restrict our considerations to the regime
where |f | < Γ/2, in which we find numerically that
population inversion cannot be generated. Neverthe-
less, by choosing Ω0 6= 0 and f < 0, it is possible to
stabilise qubit states with finite coherence in the lower
half of the Bloch sphere [47, 48]. An intuitive picture
of this feedback mechanism can be understood by in-
specting the inset of Fig. 1 (red arrows). The constant
drive and the conditional feedback either counterbal-
ance or reinforce each other depending on whether
the Bloch vector lies in the left or right hemisphere,
generating a finite value of 〈σ̂x〉 on average.

Unlike in the previous section, an analytical deriva-
tion of the optimal feedback parameters for arbi-
trary d is hindered by the presence of coherences
and correlations between the charger and the battery.
We therefore proceed numerically by finding the zero
eigenvector of the generator in Eq. (11), correspond-
ing to the stationary solution of the master equation.
In Fig. 3, we plot the asymptotic energy and ergotropy
as a function of Ω0 for an example with Γ = 10g and
η = 0.3. We observe that the optimal drive strength is
on the order of the coupling g. Crucially, adding feed-
back with f < 0 increases the maximum ergotropy
that can be stored in the battery, even for inefficient
measurements. We have found that larger values of |f |
lead to an increase in the peak ergotropy, and similar
behaviour is found for other parameter choices satis-
fying Γ� g, f,Ω0. However, the attainable ergotropy
is generally small in comparison to the control strat-
egy discussed in Sec. 3.1.1.
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Figure 3: Asymptotic energy (black) and ergotropy (red)
obtained by numerical solution of the master equation (11)
for Γ = 10g, η = 0.3 and d = 20, as a function of the
unconditional Rabi frequency Ω0. Including feedback with
f < 0 leads to an increase in the maximum ergotropy (dashed
lines). The incoherent ergotropy (blue) is negligibly small,
indicating that the extractable work is stored almost purely
in quantum coherence.

Perhaps unsurprisingly, stabilising the charger’s co-
herence leads to a build-up of almost purely coherent
ergotropy in the battery. This can be seen from the
blue lines in Fig. 3, which demonstrate that the in-
coherent ergotropy Ei is negligibly small or zero and
thus E ≈ Ec. Interestingly, the inclusion of feedback
leads to a small decrease in the battery’s mean energy,
even though the ergotropy is increased. This shows
that the primary advantage of feedback in this case is
to increase the purity and coherence of the battery’s
state.

3.2 Dynamics of the charging process
In the previous section we discussed optimal feedback
strategies that maximise the final battery charge. We
now focus on the dynamics of the charging process, as-
suming that both battery and charger are initialised
in their respective ground states. First we consider
the case where the control is set to optimally stabilise
the charger’s population inversion, f = Γ. Some rep-
resentative results for the time-dependent energy and
ergotropy are shown in Fig. 4, obtained by numeri-
cally solving the master equation (11) with efficiency
η = 0.3. We see that both the energy and ergotropy
grow monotonically towards their asymptotic value.
This highlights the stability of the charging process,
meaning that the precise instant at which the battery
is extracted is unimportant so long as sufficient time
has elapsed.

To emphasise the random character of the under-
lying measurement and feedback process, we include
in Fig. 4 some trajectories obtained by solving the
stochastic master equation (9) for the same param-
eters. We numerically integrate Eq. (9) using the

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Figure 4: Dynamics of battery charging under optimal feed-
back stabilisation of the qubit’s population inversion, with
f = Γ = g, η = 0.3, and d = 20. The battery’s energy is
plotted against time for forty random trajectories (light grey
lines) together with the energy (black line) and ergotropy
(red line) of the ensemble-averaged state.

Euler-Milstein scheme proposed in Ref. [77], which
guarantees complete positivity. Each trajectory rep-
resents a possible outcome of a single run of the charg-
ing protocol. The battery energies for different trajec-
tories show a significant dispersion during the tran-
sient energy transfer process, yet these fluctuations
are strongly suppressed in the steady state by the
stabilising effect of the feedback. This indicates that
the charger works not only in an ensemble-averaged
sense but also at the single-trajectory level, even at
low measurement efficiency. This remarkable effec-
tiveness is partly due to the assumption of Markovian
feedback: the performance will be seen in Sec. 3.3 to
deteriorate substantially when large time delays in the
feedback loop are considered.

For a fixed efficiency, the time taken for the battery
to reach its maximum charge depends on a competi-
tion between the rate of dissipation Γ and the cou-
pling strength g. In order to quantify the charging
time precisely, we identify the time T at which the
battery’s energy differs from its asymptotic value by
a fractional error ε, i.e.

E[ρ̂B(T )] = (1− ε)E[ρ̂B(∞)], (20)

where we choose a small (arbitrary) value ε = 10−2.
The behaviour of the charging time is shown in Fig. 5
as a function of the driving and dissipation rate f = Γ,
for three different values of the measurement effi-
ciency. Naturally, the charging process is fastest for
efficient measurements, becoming progressively slower
as η is reduced below unity. We also find that for each
η there exists an optimal value of the coupling Γ that
minimises the charging time. Such an optimum is ex-
pected, since for Γ = f � g the charging speed is
limited by the small power input, while for Γ� g the
system enters a quantum Zeno regime where energy
transfer from contact to battery is inhibited by fre-
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Figure 5: Total charging time T for optimal Markovian feed-
back as a function of the dissipation and drive strength
f = Γ, with Ω0 = 0 and d = 20. The charging time de-
fined by Eq. (20) is plotted as a function of the driving and
dissipation strength, f = Γ, for three different values of the
measurement efficiency, η. Symbols show numerical data
joined up by lines to guide the eye.

quent spontaneous emissions. Since efficient measure-
ments use every emitted photon to improve the feed-
back, the decohering effect of spontaneous emission is
most dramatic at low efficiencies. The optimum driv-
ing and dissipation strength is therefore f = Γ ∼ g,
with the optimal Γ decreasing with η, as shown in
Fig. 5.

For comparison, in Fig. 6 we plot the battery dy-
namics obtained for the coherence-based charging pro-
tocol defined in Sec. 3.1.2. We focus on parame-
ters near the optimal point of Fig. 3 where the fi-
nal ergotropy is maximised. In the absence of feed-
back, a constant drive is seen in Fig. 6 to generate
transient oscillations, with the ergotropy peaking at
short times before settling to a smaller steady-state
value. Feedback tends to reduce the magnitude of
these oscillations and stabilise asymptotic states with
greater ergotropy. However, the feedback also sub-
stantially increases the time taken to reach the sta-
tionary state. Overall, we observe that the timescale
of the coherence-based charging protocol seen in Fig. 6
is significantly longer than in Figs. 4 and 5, because
the large impedance mismatch when Γ � f, g sup-
presses energy transport.

3.3 Effect of feedback delay
So far we have assumed that the feedback control is
applied instantaneously, but any real feedback loop
has some delay due to the finite response time of the
detector and controller. In this section, we exam-
ine how this delay influences the efficacy of battery
charging, focussing on the optimal case where f = Γ.
Since the dynamics is no longer Markovian, it is nec-
essary to simulate the stochastic master equation (9)
explicitly [77] and average over many trajectories. We
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Figure 6: Ensemble-averaged charging dynamics when sta-
bilising the charger coherence. The parameters are chosen
near the optimum shown in Fig. 3, with Γ = 10g, Ω = 1.2g,
η = 0.3 and d = 20. Feedback (dashed lines) increases both
the final ergotropy and the time taken to reach the stationary
state, compared to a constant drive (solid lines).

find that the effect of time delay in the feedback loop
is negligible so long as Γτ � 1, in accordance with
previous studies [50]. As the time delay τ increases,
shot-to-shot fluctuations grow and attaining numeri-
cal convergence of the trajectory average becomes in-
creasingly demanding. Our examples are therefore
restricted to relatively small time delays, Γτ . 0.5,
in order to obtain reliable results with moderate re-
sources. We take up to 500 trajectories for each pa-
rameter set.

The charging dynamics is plotted in Fig. 7 for an
example with Γτ = 0.1. The ensemble-averaged be-
haviour is qualitatively similar to the case with no
delay, albeit the timescale to reach stationarity is in-
creased as can be seen by comparing the solid and
dashed black lines in Fig. 7. However, the battery
energy along individual trajectories exhibits signifi-
cant dispersion around the average even in the steady
state, marking a clear departure from Markovian feed-
back [c.f. Fig. 4]. These fluctuations tend to increase
the entropy of the ensemble and the achievable er-
gotropy is correspondingly reduced.

To examine the effect of delay on the final battery
charge in more detail, we plot the steady-state energy
and ergotropy as a function of τ in Fig. 8. With effi-
cient measurements, η = 1, the delay has essentially
no effect for Γτ < 0.1, while the energy and ergotropy
are seen to progressively decrease for Γτ > 0.1. For
inefficient measurements, in contrast, the attainable
charge begins to deteriorate as soon as any finite de-
lay is introduced, as shown by the dashed lines in
Fig. 8.

As the feedback delay increases, very large differ-
ences arise between individual trajectories and the er-
gotropy of the ensemble-averaged state decays to zero.
This indicates a complete breakdown of the feedback
loop due to lag between the measurement backaction
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Figure 7: Charging dynamics under delayed feedback con-
trol, with f = Γ = 5g, Ω0 = 0, η = 0.7 and d = 10. The
ensemble-averaged battery energy (solid black line) and er-
gotropy (solid red line) are plotted against time together with
the energy along forty individual trajectories (light grey lines)
for a time delay of Γτ = 0.1. The Markovian case (dashed
black line) is shown for comparison.

and the control response. Indeed, the measured value
of 〈σ̂x〉r drifts over a timescale on the order of Γ−1, by
which time the delayed feedback is likely to drive the
qubit away from the inverted state instead of towards
it. This randomises the direction of the Bloch vec-
tor and leads the charger to a maximally mixed state,
which is equivalent to infinite temperature. The bat-
tery then effectively thermalises with the qubit to a
fully passive state with E ≈ 0.5Emax. This tendency
can be seen in the dashed curves of Fig. 8 for larger
τ .

4 Discussion
In this work, we have explored the use of linear feed-
back control to power a qubit charger coupled to a
quantised, finite-dimensional battery. We have in-
troduced two different control protocols based either
on stabilising population inversion or quantum coher-
ence, which respectively generate incoherent or co-
herent ergotropy. Both kinds of feedback have been
shown to improve the stability and the asymptotic
battery charge, as compared to the case with uncondi-
tional driving (no feedback). However, the approach
of Sec. 3.1.1 based on population inversion has su-
perior performance overall. In particular, this strat-
egy allows for effective charging even under the re-
alistic constraints of inefficient measurements and a
small time delay in the feedback loop. Incoherent
ergotropy is arguably preferable for energy storage
because it is robust against dephasing and can be
extracted without coherence-changing operations. In
contrast, extracting work from coherent ergotropy, as
generated by the protocol of Sec. 3.1.2, requires a co-
herent drive with a definite phase relationship to the
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Figure 8: Steady-state battery energy (black) and ergotropy
(red) as a function of the time delay, τ , with f = Γ =
5g, Ω0 = 0, and two different measurement efficiencies, η.
Symbols show numerical data with conjoining lines to guide
the eye.

original charging field.
Although we have simplified our model by tak-

ing the charger-battery interaction Hamiltonian to
have energy-independent matrix elements, we expect
our conclusions to apply in other settings, e.g. spin
systems or mechanical oscillators, whenever near-
resonant interactions are a good approximation. As
discussed in the Appendix, detuning between the
charger and battery frequencies increases the charg-
ing time but does not affect the final charge achiev-
able under optimal feedback. We also show in the
Appendix that our scheme tolerates a small amount
of finite-temperature noise. More generally, our re-
sults highlight the potential of feedback — already
well established in the context of refrigeration [67–69]
— for the manipulation of energy and ergotropy at
the quantum scale. We have demonstrated that these
quantities can be stabilised by controlling an auxiliary
qubit with intuitive feedback strategies, while avoid-
ing the need for complex time-dependent control over
the battery system itself. While we have considered
the simplest case of direct, linear feedback, the ener-
getic and ergotropic capabilities of more sophisticated
feedback protocols based on quantum state estima-
tion [78, 79] deserve further investigation.

It is worth emphasising that the metrics we use
to assess performance refer to an ensemble of many
identical, independent batteries. In particular, the
ergotropy only quantifies the energy that can be ex-
tracted on average. We leave the important issue of
extractable work fluctuations and charging precision
to future research [80–83]. We also note that an exper-
imenter could conceivably exploit their knowledge of
the measurement record to optimise the work extrac-
tion step differently for each individual battery. The
tools of single-shot statistical mechanics appear well
suited to analyse this more involved scenario [84, 85].

Our main focus has been the dynamics and en-
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ergetics of the charging process, leaving open sev-
eral interesting questions regarding the thermody-
namic value of quantum measurements [86–90] and
feedback [91–93] in this setting. Energetic con-
straints on discrete quantum feedback operations
can be rigorously formulated by generalising the no-
tion of entropy production to incorporate informa-
tion gained by the controller [94–98]. Similar ideas
have been applied to jump-like unravellings of open
quantum system dynamics [99–102]. However, a com-
prehensive formulation of information thermodynam-
ics along continuous, stochastic trajectories between
quantum superposition states appears to be consider-
ably more elusive, notwithstanding some notable re-
cent progress [56–58, 103–105].

Entropic considerations aside, any serious ther-
modynamic account of a putative quantum battery
should include the energy needed for work extrac-
tion [106], not to mention the power consumption
of the classical control apparatus, which typically
exceeds quantum scales by dozens of orders of
magnitude. These problems naturally motivate [107]
a fully autonomous approach to feedback control in
quantum thermodynamics, e.g. along the lines of
Ref. [108].
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A Appendix: Variations of the model
In this appendix, we analyse the role of the battery
dimension and extend the model to include the ef-
fect of finite temperature and detuning. We focus for
simplicity on the limit of Markovian feedback.

A.1 Generalised model
In general, we write the charger and battery Hamil-
tonians as

ĤC = ω0

2 σ̂z, ĤB = ωBN̂ , (21)

where the energy scales ω0 and ωB may be different.
We assume the driving field is resonant with the qubit
at frequency ω0. In a frame rotating at this frequency,
the total Hamiltonian then reads

Ĥ(t) = ∆BN̂ + Ĥint + Ĥdrive(t), (22)

with ∆B = ωB − ω0 the charger-battery detuning,
and where Ĥint and Ĥdrive(t) are given by Eqs. (3)
and (5), respectively.

To model the effect of thermal noise, we assume
that the uncollected photons are emitted into a ther-
mal radiation bath with inverse temperature β corre-
sponding to a mean occupation n̄ = (eβω0−1)−1. For
n̄ 6= 0, this opens the additional possibility of photon
absorption by the qubit charger. The decay channel
corresponding to photons collected by the detector is
assumed to remain at effectively zero temperature.
Therefore, the dissipative evolution is described by
the superoperator (c.f. Eq. (10))

K[ρ̂r(t)] = ηcΓD[σ̂−]ρ̂r(t)dt+
√
ηΓH[σ̂−]ρ̂r(t)dw(t)

+ (1− ηc)Lthρ̂r(t)dt, (23)

where Lth• = Γ {(1 + n̄)D[σ̂−] •+n̄D[σ̂+]•} is the
standard Lindblad dissipator describing thermal emis-
sion and absorption [1]. We recall that ηc denotes the
fraction of photons collected in the detection channel,
leading to a total efficiency η = ηcηd, where ηd is the
detector efficiency.

Linear, Markovian feedback is described by Eq. (8)
in the limit τ → 0. Following the procedure described
in Sec. 2.2, we obtain a Markovian master equation for
the ensemble-averaged density operator, which reads

dρ̂
dt = −i[∆BN̂ + Ĥint + Ω0σ̂y, ρ̂]

+ if [σ̂y, σ̂−ρ̂+ ρ̂σ̂+]

+ ηcΓD[σ̂−]ρ̂+ f2

ηΓD[σ̂y]ρ̂+ (1− ηc)Lthρ̂.

(24)

This reduces to Eq. (11) in the absence of detuning,
ωB = ω0, and in the limit of zero temperature, βω0 →
∞.

A.2 Battery dimension
Let us first briefly address the role of the battery di-
mension d. For this analysis, it is sufficient to assume
that the charger and battery frequencies are resonant,
ωB = ω0, and take the zero-temperature limit, as in
the main text.

Fig. 9 shows the time evolution of the battery
charge for three values of d. Here, we do not nor-
malise by Emax = ω0(d − 1), in order to better high-
light the differences between the three cases. At short
times, i.e. when E � Emax, the battery energies and
ergotropies evolve identically for all three values of
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Figure 9: Evolution of the battery energy E and ergotropy
E for three different dimensions: d = 10 (dot-dashed lines),
d = 15 (dashed lines), and d = 20 (solid lines). We take zero
temperature and parameters ωB = ω0, Γ = f = g, Ω0 = 0,
and η = 0.5.

d, while at later times the curves depart from each
other due to the upper-bounded spectrum of the bat-
tery. Larger values of d obviously allow for a greater
steady-state energy and ergotropy, although the bat-
tery takes longer to fully charge. Overall, the evolu-
tion is qualitatively similar for all values of d, and this
conclusion also holds for other parameter choices.

A.3 Finite temperature and detuning
Now we examine the effect of finite temperature, al-
lowing also for a finite detuning, ∆B 6= 0. We focus
on the control strategy where population inversion is
stabilised, and thus set Ω0 = 0. In this case, it is
possible to solve exactly for the steady state following
the method described in Sec. 3.1.1. We again posit the
product ansatz ρ̂ = ρ̂C ρ̂B , with factors given formally
by Eq. (14). It is then straightforward to check that
[∆BN̂ + Ĥint, ρ̂] = 0 for this state. The state of the
charger follows from the solution of LC ρ̂C = 0, where
the dissipator LC acts only on the qubit and is given
explicitly by the second and third lines of Eq. (24).
We obtain

〈σ̂z〉 = 2f − Γ
Γ + 2Γn̄(1− ηc)− 2f + 2f2/ηΓ . (25)

The steady-state properties are manifestly indepen-
dent of the detuning, ∆B , which affects only the tran-
sient dynamics under this control strategy.

For a given temperature and collection efficiency,
the optimum feedback strength is found by maximis-
ing Eq. (25) with respect to the ratio f/Γ. The solu-
tion is given by

f = Γ
2

[
1 +

√
1 + 4n̄(1− ηc)η

]
, (26)

with the corresponding population inversion
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Figure 10: Steady-state battery energy E and ergotropy E
as a function of temperature, which is parametrised by the
thermal occupation number n̄ = (eβω0 − 1)−1, with param-
eters ωB = ω0, Ω0 = 0, ηc = ηd = 0.7, and d = 20, while f
is tuned to the optimal value (26).
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Figure 11: Dynamics of the charging process under optimal
feedback, with ∆B = 0 and n̄ = 0 (solid lines), ∆B = g and
n̄ = 0 (dashed lines), and ∆B = 0 and n̄ = 2 (dot-dashed
lines). We also take Γ = 2g, Ω0 = 0 and f given by Eq. (26).

(c.f. Eq. (17))

〈σ̂z〉max =
√

1 + 4n̄(1− ηc)η + η − 1
2 + 4n̄(1− ηc)− η . (27)

Therefore, finite-temperature dissipation generally re-
duces the maximal population inversion of the qubit
charger, and increases the feedback strength neces-
sary to stabilise it. In particular, perfect charging is
no longer possible because 〈σ̂z〉 < 1. The correspond-
ing steady-state battery charge is plotted in Fig. 10 as
a function of the thermal occupation. The ergotropy
and energy are both seen to decrease monotonically
with increasing temperature. A similar reduction in
charging performance with temperature is observed
for other parameters, including coherent stabilisation
strategies with Ω0 6= 0.

Physically, these results can be understood in terms
of the randomising effect of thermal noise. Even
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though thermal absorption injects energy into the
charger, it does so incoherently and therefore reduces
the attainable purity of the qubit state. This ulti-
mately obstructs the coherent feedback loop from sta-
bilising ergotropy in the battery. As a consequence,
finite temperature also increases the time taken to
reach the steady state.

We illustrate the charging dynamics in Fig. 11,
which compares the evolution of the energy and er-
gotropy under the optimal feedback (26) with and
without thermal noise and detuning. We see that both
of these effects slow down the charging process. How-
ever, detuning has no effect whatsoever on the steady-
state battery charge. Note that this conclusion holds
only under the assumption of an excitation-preserving
coupling in the form of Eq. (3). A large value of
the detuning, ∆B & g, would activate any counter-
rotating terms that are neglected when assuming an
interaction of this form. These contributions open up
additional transition pathways that could significantly
modify the dynamics for large ∆B .
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