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Topological materials have potential ap-
plications for quantum technologies. Non-
interacting topological materials, such as e.g.,
topological insulators and superconductors,
are classified by means of fundamental symme-
try classes. It is instead only partially under-
stood how interactions affect topological prop-
erties. Here, we discuss a model where topol-
ogy emerges from the quantum interference
between single-particle dynamics and global
interactions. The system is composed by soft-
core bosons that interact via global correlated
hopping in a one-dimensional lattice. The on-
set of quantum interference leads to sponta-
neous breaking of the lattice translational sym-
metry, the corresponding phase resembles non-
trivial states of the celebrated Su-Schriefer-
Heeger model. Like the fermionic Peierls
instability, the emerging quantum phase is
a topological insulator and is found at half
fillings. Originating from quantum interfer-
ence, this topological phase is found in “exact”
density-matrix renormalization group calcula-
tions and is entirely absent in the mean-field
approach. We argue that these dynamics can
be realized in existing experimental platforms,
such as cavity quantum electrodynamics se-
tups, where the topological features can be re-
vealed in the light emitted by the resonator.

Introduction
Manifestation of topology in physics [1, 2] created a
revolution which is continuing for almost four decades.
With the discovery of topological materials, con-
densed matter physics has gained a new terrain where
quantum phases of matter are no longer controlled by
local order parameters as in paradigmatic Landau the-
ory of phase transitions but rather by the conservation
of certain symmetries [3]. These new phases of mat-
ter, so called symmetry-protected topological (SPT)
phases, display edge and surface states that can be
robust against perturbations, making them genuine
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candidates for quantum technologies [4].

To date, a detailed understanding of noninteract-
ing topological materials, such as e.g., topological in-
sulators and superconductors [5], has been obtained
through a successful classification based on funda-
mental symmetry classes, the so-called “ten-fold way”
[6–8]. On the other hand, interactions are almost
unavoidable in many-body systems. It is therefore
a central issue to understand whether SPT phases
can survive the inter-particle interactions, or perhaps
whether interactions themselves might stabilize SPT
phases and even give rise to novel topological prop-
erties [9–16]. These questions are at the center of
an active and growing area of research [17, 18]. Re-
cent works have argued that the range of interac-
tions plays a crucial role on the existence of SPT
phases. Specifically, in frustrated antiferromagnetic
spin-1 chain with power-law decaying 1/rα interac-
tions, topological phases are expected to survive at
any positive value of α [19]. This behavior shares
similarities with the topological properties of nonin-
teracting Kitaev p-wave superconductors [20] that are
robust against long-range tunneling and pairing cou-
plings [21–24]. It was found that for infinite-range
interactions the one-dimensional Kitaev chain can ex-
hibit edge modes for appropriate boundary conditions
[25]. On the other hand, in spin chains and Hub-
bard models, the infinite-range interactions suppress
the onset of hidden order at the basis of the Haldane
topological insulator [26, 27].

In this work, we report a novel mechanism where
nontrivial topology emerges from the quantum inter-
ference between infinite-range interactions and single-
particle dynamics. We consider bosons in a one-
dimensional (1D) lattice, where the global interac-
tions have the form of correlated tunneling result-
ing from the coupling of the bosons with a harmonic
oscillator. We identify the conditions under which
this coupling spontaneously breaks the discrete lattice
translational symmetry and leads to the emergence
of non-trivial edge states at half filling. The result-
ing dynamics resembles the one described by the fa-
mous Su-Schrieffer-Heeger (SSH) model [28, 29]. The
topology we report shares analogies with the recent
studies of symmetry breaking topological insulators
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Figure 1: Interference-induced topological phases can be
realized in a cavity quantum electrodynamics setup. The
bosons are atoms (red spheres) confined by a one-dimensional
optical lattice and dispersively interacting with a standing-
wave mode of the cavity. The cavity standing-wave field is
parallel to the lattice, its wavelength is twice the lattice peri-
odicity, and the atoms are trapped at the nodes of the cavity
mode. Correlated hopping originates from coherent scatter-
ing of laser light into the cavity, the laser Rabi frequency
Ω controls the strength of the interactions. The field at the
cavity output is emitted with rate κ and provides information
about the phase of the bosons.

[14–16, 30, 31]. Nevertheless, differing from previous
realizations, here the interference between quantum
fluctuations and global interactions is essential for the
onset of the topological phase and cannot be under-
stood in terms of a mean-field model.

We argue that these dynamics can be realized, for
instance, in many-body cavity quantum electrody-
namics (CQED) setups [32–37], like the one illus-
trated in Fig. 1 highlighting the experimental feasi-
bility of our proposal. In the following, we first give a
brief description of the model in relation to the exper-
imental setup. Then, we ascertain the phase diagram
of the system at half filling, characterize the topologi-
cal phase, and point out how to experimentally verify
its existence.

Bose-Hubbard model with global cor-
related tunneling

The model we consider describes the motion of bosons
in a 1D lattice with Ns sites and open boundaries.
The specific experimental situation realizing this dy-
namics is sketched in Fig. 1. The dynamics is gov-
erned by the Hamiltonian Ĥ in terms of the field oper-
ators b̂j and b̂†j , which annihilate and create, respec-
tively, a boson at site j in the lowest lattice band.
The bosons, tightly confined in the lowest band of the
lattice, strongly couple with a cavity standing-wave
mode (the harmonic oscillator), which is parallel to
the lattice. When the atoms are transversely driven
by a laser, the Hamiltonian takes the detailed form
of a Bose-Hubbard (BH) model with the additional

optomechanical coupling with the oscillator [38]:

Ĥ = −t
Ns−1∑
j=1

(
b̂†j b̂j+1 + H.c.

)
+ U

2

Ns∑
j=1

n̂j (n̂j − 1)

+S(â+ â†)yB̂ + ∆câ
†â , (1)

where we have set ~ = 1. Here, the first two terms on
the right-hand side (RHS) of Eq. (1) are the nearest-
neighbor hopping with amplitude t and onsite repul-
sion with magnitude U . The third term on the RHS
is the bosons-cavity coupling, where operators â and
â† annihilate and create, respectively, a cavity pho-
ton, while the operator B̂ acts on the bosonic Hilbert
space. The last term of (1) gives the cavity oscillator
energy in the reference frame rotating at the frequency
of the transverse laser with ∆c the detuning between
cavity and laser frequency. Finally, the bosons-cavity
coupling is scaled by the coefficients S and y that can
be independently tuned. The first one, in fact, is pro-
portional to the amplitude Ω of the transverse laser
field, c.f. Fig. 1. The coefficient y, instead, depends
on the localization of the scattering atoms at the lat-
tice sites (see Appendix A).

The specific form of operator B̂ depends on the
spatial dependence of the cavity-bosons coupling [39–
42]. In the present case, we consider

B̂ =
Ns−1∑
i=1

(−1)i+1
(
b̂†i b̂i+1 + H.c.

)
. (2)

The staggered coupling, (−1)i+1
(
b̂†i b̂i+1 + H.c

)
, orig-

inates from the spatial mode function of the cavity
mode along the lattice when the lattice sites are lo-
calized at the nodes of the cavity mode, and when the
periodicity of cavity mode standing wave is twice the
periodicity of the optical lattice.

Hamiltonian (1) with (2) is reminiscent of the
phonon-electron coupling of the SSH model [43]. Dif-
fering from the ionic lattice of the SSH model, the
bosons couple to a single oscillator – the cavity mode.
Here, the instability is associated with a finite sta-
tionary value of the field quadrature x̂ = â + â†: for
〈x̂〉 6= 0 the bonds connecting even-odd and odd-even
sites differ by a quantity proportional to 〈x̂〉. Since x̂
is a dynamical variable, this process is accompanied
by a spontaneous breaking of the lattice translational
symmetry. In a cavity, for instance, x̂ is the electric
field that is scattered by the atoms and depends on
the atomic mobility. The resulting bosonic dynamics
is thus intrinsically nonlinear.

We analyze the quantum phases of the system in
the limit in which the cavity field (oscillator) can be
eliminated from the equations of the bosonic variables
assuming that |∆c| is the largest frequency scale of
the dynamics. In this limit, the time-averaged field is
ε̂(τ) = 1

∆t
∫ τ+∆t
τ

dtâ(t) ≈ −SB̂(τ)/∆c, where τ is the
coarse-grained time in the grid of step ∆t [39, 44]. The
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Phases Acronyms maxM1(k) kmax ODW OB OS OP
Superfluid SF 6= 0 = 0 = 0 = 0 = 0 = 0

Bond superfluid BSF 6= 0 = ±π/2 = 0 6= 0 = 0 = 0
Density-wave DW = 0 – 6= 0 = 0 6= 0 6= 0
Bond insulator BI = 0 – = 0 6= 0 6= 0 (= 0) = 0 (6= 0)

Table 1: Different phases, their acronyms, and the corresponding values of order parameters for the Bose-Hubbard model with
cavity-mediated interactions.

effective Bose-Hubbard Hamiltonian takes the form

Ĥ =− t
Ns−1∑
j=1

(
b̂†j b̂j+1 + H.c.

)
+ U

2

Ns∑
j=1

n̂j (n̂j − 1)

+ U1

Ns
y2B̂2, (3)

where U1 = S2Ns/∆c and the explicit dependence
on Ns warrants the extensivity of the Hamiltonian in
the thermodynamic limit when U1 is fixed by scaling
S ∝ 1/

√
Ns. The term proportional to B̂2 emerges

from the back-action of the system through the global
coupling with the oscillator. It describes a global cor-
relation between pair tunnelings.

Before discussing the emerging phases, we note
that the model in Eq. (1) has extensively been em-
ployed for describing ultracold atoms in optical lat-
tices and optomechanically coupled to a cavity mode
[32, 33, 39, 41, 45]. The specific form of the coupling
with operator (2) has been discussed in Ref. [41] and
can be realized by suitably choosing the sign of the de-
tuning between laser and atomic transition as in Ref.
[34]. The scaling 1/Ns of the nonlinear term corre-
sponds to scaling the quantization volume with the
lattice size [46]. In the time-scale separation ansatz,
the bosons dynamics is coherent provided that |∆c| is
also larger than the cavity decay rate κ: in this regime
shot-noise fluctuations are averaged out. Correspond-
ingly, there is no measurement back-action, since the
emitted field ε̂(τ) is the statistical average over the
time grid ∆t [47]. We note that topological phases
can also be realized in plethora of platforms where
the range of interactions can be tuned and the geom-
etry controlled, prominent examples are optomechan-
ical arrays [48], photonic systems [49], trapped ions
[50], and ultracold atoms in optical lattices [32, 51–
56]. Specifically, this model could be also realized
in the experimental setups as discussed in [57–59]. In
this work, we shall keep on referring to a CQED setup,
where the dynamics predicted by Hamiltonian (1) has
been extensively studied and can be realized [32–34].

Phase diagram at half filling
In the rest of this work, we consider the system at
half filling, i.e., density ρ = 1/2. We determine the
ground state and its properties using the density ma-
trix renormalization group (DMRG) method [60, 61]

based on matrix product states (MPS) ansatz [62, 63]
– for details see Appendix B. The phase diagram is de-
termined as a function of t/U and U1/U . The phases
and the corresponding observables are summarized in
Table 1, the observables are detailed below. We char-
acterize off-diagonal long-range order by the Fourier
transform of the single particle correlations, i.e., the
single particle structure factor

M1(k) = 1
N2
s

∑
i,j

eik(i−j)
〈
b̂†i b̂j

〉
, (4)

which can be experimentally revealed by means of
time-of-flight measurements [64, 65]. The coupling
with the cavity induces off-diagonal long-range order,
that is signaled by the bond-wave order parameter

OB = 〈B̂〉 /(2Ns). (5)

This quantity is essentially the cavity field in the
coarse graining time scale and is directly measurable
by heterodyne detection of the electric field emitted
by the cavity [66]. We also consider the density-wave
order parameter, OD = 1

Ns

∣∣∣〈∑j(−1)j n̂j〉
∣∣∣, which sig-

nals the onset of density-wave order and typically
characterizes phases when the lattice sites are at the
antinodes of the cavity field (see Appendix A). More-
over, we analyze the behavior of the string and parity
order parameters:

OS = 〈δn̂ieiπ
∑j

k=i
δn̂kδn̂j〉 , OP = 〈eiπ

∑j

k=i
δn̂k〉 .

(6)

These order parameters depend nonlocally on onsite
fluctuations δn̂j = n̂j − ρ from the mean density ρ.
In our calculations of OS and Op, we take i = 10 and
j = Ns − 11 to neglect the boundary effects.

We first remark that, for U1 = 0, hence in the ab-
sence of global interactions, the phase is superfluid
(SF). We also expect that for U1 > 0 the quantum
phase of Hamiltonian in Eq. (3) is SF, since the for-
mation of a finite cavity field costs energy. Instead,
we expect that correlated hopping becomes relevant
for U1 < 0. We have first performed a standard
Gutzwiller mean-field analysis of the model assuming
two-site translational invariance. At sufficient large
values of |U1| mean-field predicts the formation of a
SF phase of the even or odd bonds accompanied by a
finite value of bond-wave order parameter OB . This
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Figure 2: Phase diagram of Hamiltonian (3) in the
(t/U, U1/U)-plane determined by means of DMRG. Different
panels show the behavior of the order parameters indicated in
the plots. We observe the appearance of an insulating phase
for t/U . 0.2 between standard superfluid (SF) and bond
superfluid (BSF) phases which disappears at larger tunneling
values. The blue dashed lines indicate the borders between
the regions where the maximum ofM1(k) evaluated over the
ground state crosses a threshold value which we set at 0.03
to compensate finite-size effects. The bottom right panel
shows the shape of M1(k) for fixed t = 0.05U . Sharp peaks
appear at k = 0 for SF and k = ±π/2 for BSF in contrast to
broad peaks of lower amplitude for BI. Note that the effec-
tive strength of the correlated hopping in Eq. (3) scales with
y2U1. Here, Ns = 60 and y = −0.0658 (see Appendix A).

phase maximizes the cavity field amplitude and we
denote it by Bond Superfluid phase (BSF). We point
out that mean-field predicts that the ground state ex-
hibits off-diagonal long-range order for any value of
U1.

We now discuss the quantum phase obtained from
DMRG calculations. The phase diagram is reported
as a function of the ratio t/U , which scales the
strength of the single-particle hopping in units of the
onsite repulsion, and of the ratio U1/U , which scales
the strength of the correlated hopping. We sweep U1
from positive to negative values. We note that in a
cavity the sign of U1 is tuned by means of the sign
of the detuning ∆c. The effective strength, in par-
ticular, shall be here scaled by the parameter y2, de-
pending on the particle localization. Here, y is con-
stant across the diagram, since we keep in fact the
optical lattice depth constant and tune the ratio t/U
by changing the onsite repulsion U (experimentally,
this is realized by means of a Feshbach resonance).
Figure 2 displays the DMRG results for (a) the max-
imum value of |M1(k)| (4), (b) the bond-wave order
parameter (5), (c) the string order parameter (6), and
(d) the dependence of M1(k) on the wave number k
for different values of U1/U . For U1 < 0 the ground
state supports the creation of the cavity field, which
is signaled by the finite value of the bond-wave order
parameter. At sufficiently large values of |U1/U | and
t/U the transition is discontinuous, and it separates

0.0 0.0
5 0.1 0.1

5 0.2 0.2
5

t/U

°60
°50
°40
°30
°20
°10

0
10

U
1/

U

SF

BSF

BI

OMF
B

0.0

0.1

0.2

0.3

0.4

0.0 0.0
5 0.1 0.1

5 0.2 0.2
5

t/U

°60
°50
°40
°30
°20
°10

0
10

U
1/

U

SF

BSF

BI

OB °OMF
B

0.0

0.1

0.2

0.3

0.4

0.0 0.0
5 0.1 0.1

5 0.2 0.2
5

t/U

°60
°50
°40
°30
°20
°10

0
10

U
1/

U

SF

BSF

BI

max MMF
1 (k)

0.0

0.1

0.2

0.3

0.4

0.0 0.0
5 0.1 0.1

5 0.2 0.2
5

t/U

°60
°50
°40
°30
°20
°10

0
10

U
1/

U

SF

BSF

BI

OMF
B

0.0

0.1

0.2

0.3

0.4

0.0 0.0
5 0.1 0.1

5 0.2 0.2
5

t/U

°60
°50
°40
°30
°20
°10

0
10

U
1/

U

SF

BSF

BI

OB °OMF
B

0.0

0.1

0.2

0.3

0.4

0.0 0.0
5 0.1 0.1

5 0.2 0.2
5

t/U

°60
°50
°40
°30
°20
°10

0
10

U
1/

U

SF

BSF

BI

max MMF
1 (k)

0.0

0.1

0.2

0.3

0.4

Figure 3: Top left panel: Bond-wave order parameter pre-
dicted by mean-field Gutzwiller approach, OMF

B , in the
(t/U, U1/U)-plane. The top right panel shows the difference
OB − OMF

B , where OB has been determined using DMRG.
The mean-field Gutzwiller approach for bond-wave order pa-
rameter agrees well with DMRG in SF and BSF regimes, but
misses the appearance of BI phase, which is further verified
by computing the mean-field results for the maximum of sin-
gle particle structure factor maxMMF

1 (k) (bottom panel),
that remains finite in the entire (t/U, U1/U)-plane. The blue
dashed line indicates the borders between the regions same
as in Fig. 2.

the SF from the BSF phase, where the effective tun-
neling amplitudes 〈b̂†i b̂i+1 + H.c.〉 attain a staggered
pattern characterized by a finite value of bond-wave
order parameter OB . The long range coherence of the
BSF phase is manifested by narrow peaks of M1(k)
centered at k = ±π/2 (see Fig. 2). Remarkably, we
observe a reentrant insulating phase separating the
SF and the BSF. The insulator is signaled by van-
ishing off-diagonal long-range order and therefore by
vanishing structure factor M1(k). It is characterized
by the non-zero (zero) values of the string order pa-
rameter and by vanishing (non-vanishing) parity or-
der parameter depending on the boundary sites of
these non-local parameters (see the next section for
details). We denote this phase as a Bond Insulator
(BI). This phase is separated from the SF by a con-
tinuous phase transition. The transition BI-BSF is
also continuous.

We note that the bond insulator phase is entirely
absent in the standard Gutzwiller mean-field ap-
proach [67–71], where the bosonic operators are de-
composed as

b̂j = Φj + δb̂j , (7)

with Φj = 〈b̂j〉 being the superfluid order parameter
in the Gutzwiller analysis. By performing such mean-
field analysis with two-site unit cell, we can obtain the
bond-wave order parameter OMF

B at the mean-field
level. Figure 3 displays the mean-field bond-wave or-
der OMF

B (top left panel) and the deviation of it from
the DMRG result (top right panel). While the exact
borders between various phases quantitatively differ,
the mean field Gutzwiller approach agrees well with
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DMRG in SF and BSF regimes, but misses the ap-
pearance of BI phase. To be sure about this, we check
the mean-field value of the maximum of single particle
structure factor M1(k), which is to be redefined as

MMF
1 (k) = 1

N2
s

∑
i,j

eik(i−j)ΦiΦ∗j . (8)

The maxMMF
1 (k) is presented in the bottom panel

of Fig. 3. It has possesses high values in the en-
tire (t/U, U1/U)-plane confirming that the mean-field
analysis cannot capture the insulating BI phase where
M1(k) must be vanishingly small. Moreover, the
mean-field value of the string-order parameter OS re-
mains exactly zero in the entire phase diagram. It
is to be noted that maxMMF

1 (k) does not match the
DMRG results presented in Fig. 2, as in reality the off-
diagonal correlations 〈b̂†i b̂j〉 decay algebraically with
the distance |i − j| in the superfluid phases, while
at the mean-field level ΦiΦ∗j does not. Indeed the
novel BI phase is entirely due to the interplay between
the long-range coupling induced by the cavity and
the single-particle tunneling. Due to this quantum
interference, the insulating BI phase reveals itself in
quasi-exact calculations like DMRG, while Gutzwiller
analysis can only capture two superfluid phases. We
further note that studies of the ground state of (3),
based on exact diagonalization for small system sizes,
did not report the existence of the BI phase [41]. In
the following section, we characterize the topology as-
sociated with the BI phase and argue that it is stable
in the thermodynamic limit.

Emergent topology associated with
the BI phase
By means of excited-state DMRG, we reveal that the
BI phase has triply degenerate ground state (quasi-
degenerate for finite Ns) separated by a finite gap
from the other excited states. The site distribution
is visualized in Fig. 4 which shows that the absolute
ground state has a uniform mean half-filling, while
the other two states possess edge excitations, namely,
fractional 1/2 particle-hole excitations with respect
to the mean half-filling (bottom two rows of Fig. 4).
Such edge excitations are characterized by the bond-
wave order parameter with opposite sign than the
trivial phase. They suggest that the BI phase is a
symmetry protected topological (SPT) phase. Sim-
ilar topological edge states have been reported e.g.,
for noninteracting system [56] or in superlattice BH
model [72], where the superlattice induces a tunneling
structure resembling that of the SSH model [28, 29].
In our case, instead, the effective tunnelings are spon-
taneously generated by the creation of a cavity field
that breaks discrete Z2 translational symmetry of the
system. However, bond centered inversion symmetry
still remains intact – it protects this SPT phase. This
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Figure 4: Site-dependent properties of the topological and
trivial ground states of the BI phase. Left panels: Effec-
tive tunneling amplitudes 〈b̂†

i b̂i+1 + H.c.〉 as a function of
the bonds (i, i + 1). Orange (teal) bars denote the even
(odd) bond. Right panels: Density 〈n̂i〉 as a function of the
lattice site. The dashed line is a guide for the eye. Ob-
serve the characteristic alternate weak/strong pattern in the
bonds with weak bonds occurring at the edges for topological
states that reveal topological particle-hole edge excitations.
These excitations are due to exactly fractional ±1/2 parti-
cle localizations on the edges. Here, we set U1/U = −10,
t/U = 0.05, and y = −0.0658 (see Appendix A) to obtain
the states using DMRG algorithm.

setting is reminiscent of a spontaneous Peierls transi-
tion [73] in bosonic systems, like the ones reported in
[14–16].

On a further inspection, it is found that the string
order OS and parity order OP can be non-zero (zero)
depending on the location of the two separated sites
that sit at the boundaries of the non-local operators
(sites i and j in Eqs. (6)). We illustrate it in Fig. 5(a).
We find that OS 6= 0 and OP = 0, as reported in
Fig. 2, when the non-local operators start at the sec-
ond site of a strong bond (i.e., the bond with larger
tunneling element) and end at the first site of a weak
bond (the bond with smaller tunneling element) fur-
ther away. That is why we have chosen i = 10 (even
site) and j = Ns−11 (odd site) to calculate these non-
local operators for the trivial state in Fig. 2. These
are unusual properties when compared to, say, topo-
logical Haldane phases of extended BH models at unit
filling [27, 74].

To check whether we are indeed dealing with topo-
logical states, we calculate the entanglement spec-
trum of the system. For this purpose we partition
the chain into a right (R) and left (L) subsystem as
|ψ〉GS =

∑
n λn |ψ〉L ⊗ |ψ〉R where λn are the corre-

sponding Schmidt coefficients for the specific biparti-
tion. The entanglement spectrum is then defined as
the set of all the Schmidt coefficients in logarithmic
scale εn = −2 log λn and is degenerate for phases with
topological properties in one dimension [75]. We find
that εn are degenerate near the chain center when
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°50 °40 °30 °20 °10 0 10
U1/U

0.000

0.005

0.010

0.015

0.020

E
nt

an
gl

em
en

t
ga

p
,

¢
"

BSF SF

BI

Ns = 40
Ns = 60
Ns = 80
Ns = 100
Ns = 120

Strong bond 
Degenerate εn

Weak bond 
Non-degenerate εn(a)

(c)

(d)

(b)

0

2

4

6

8

10

12

14

E
nt

an
gl

em
en

t
sp

ec
tr

u
m

,
" n

Trivial Topological

1 10 20 30 40 50 59
Bonds

0.00

0.25

0.50

0.75

1.00

|∞
(K

) |/
º

Trivial

1 10 20 30 40 50 59
Bonds

Topological

Figure 5: (a) Illustration of the BI ground-state properties.
The ellipsoids with thick black lines indicate the dimerized
strong bonds with larger effective tunneling amplitudes, while
thin lines indicate the weak alternate bonds with smaller ef-
fective tunneling amplitudes. The string order OS becomes
non-zero (with OP = 0) only when it is measured across blue
to orange sites in the figure. In all other cases it vanishes,
OS = 0 and OP 6= 0. The entanglement spectrum is found
to be degenerate in the bulk of the chain when it is measured
across the strong bonds, while it is non-degenerate in weak
bonds. (b) Entanglement spectrum εn computed at the mid-
dle of the chain of Ns = 60 for the trivial and topological
states. For trivial state the spectrum is non-degenerate, while
it is doubly degenerate for topological states. (c) Entangle-
ment gap (∆ε = ε1 − ε0) as a function of U1 and for fixed
t/U = 0.05 across BSF-BI-SF phases. Different curves refer
to different system sizes. (d) Local Berry phases γ(K) (9),
measured across every bonds for trivial (left) and topological
(right) states. In (b)-(d) other system parameters are the
same in Fig. 4.

the bipartition is drawn across a strong bond, while
it is non-degenerate at the weak bonds. In Fig. 5(b),
we display the entanglement spectrum for trivial and
topological ground states of the BI phase for Ns = 60,
when εn are measured across the bipartition at the
chain’s center. The entanglement spectrum, together
with the density pattern and the behavior of string
and parity order parameters, provide convincing proof
of the topological character of the BI phase. Fur-
thermore, to show that the BI phase is stable in
the thermodynamic limit, we consider the entangle-
ment gap, ∆ε = ε1 − ε0, for different system sizes.
Fig. 5(c) presents the variation of ∆ε across BSF-BI-
SF phases for fixed t/U = 0.05 – confirming the sta-
bility of SPT BI phase in the thermodynamic limit.
We perform similar analysis with different values of
t/U too. Such a finite-size analysis with the entan-
glement gap also confirms that the phase boundaries
predicted for Ns = 60 in Fig. 2 remain stable with
increasing system-size.

In order to reveal the bulk-edge correspondence, we
determine the many-body Berry phase [76] and show
that it is Z2-quantized in the BI phase. We first note
that, because of the strong interactions, the winding
number or the Zak phase [56, 77, 78] is not a good
topological indicator in our case. Therefore, we fol-
low the original proposition of Hatsugai [79] and de-
termine the local many-body Berry phase, which is a
topological invariant playing the role of the local “or-
der parameter” for an interacting case [79]. For this
purpose, we introduce a local twist t → teiθn in the
Hamiltonian (3), such that the system still remains
gapped in the BI phase. Then the many-body Berry
phase is defined as

γ(K) = Arg
K−1∏
n=0
〈ψθn+1 |ψθn

〉 , (9)

where ψθn ’s are the ground states with θ0, θ1, ..., θK =
θ0 on a loop in [0, 2π]. Here, we consider the local
Berry phase corresponding to a bond by giving the
local twist in tunneling strength t → teiθn only on
that particular bond, and take K = 10. Since the
ground state manifold is (quasi-)degenerate, we need
to put small local terms to distinguish between the
different states in the manifold in order to compute
local many-body Berry phases. Specifically, we add
∓0.02

(
b̂†1b̂2 + b̂†Ns−1b̂Ns

+ H.c.
)
respectively for the

trivial and topological states to the twisted Hamil-
tonians. However, in case of topological states, two
edge states (bottom two rows of Fig. 4) are exactly
degenerate and cannot be distinguished by the local
term mentioned above. In that case, to calculate the
many-body Berry phase we put one extra particle,
i.e., Ns/2 + 1 bosons in total, so that we have only
one edge state where both edges are localized with
an extra +1/2 particle. Similarly, we could have re-
duced one particle (Ns/2−1 bosons) where the unique
edge state would have an extra −1/2 particle local-
ization on both the edges. The local Berry phases
γ(K)’s are displayed in Fig. 5(d) for the system size
Ns = 60. Similar to the entanglement spectrum, we
find γ(K) = π for the strong bonds, while γ(K) = 0 on
the weak bonds.

Discussion
The BI phase of this model is a reentrant phase. It
separates the SF phase, where correlated hopping is
suppressed by quantum fluctuations, from the BSF
phase, where correlated tunneling is dominant and
single-particle tunneling establishes correlations be-
tween the bonds. We have provided numerical evi-
dence that the emerging topology is essentially char-
acterized by the interplay between quantum fluctu-
ations and correlated tunneling. Interactions are
here, therefore, essential for the onset of topology.
Their global nature is at the basis of the sponta-
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neous symmetry breaking that accompanies the on-
set of this phase and which induces an asymmetry
between bonds. In this respect, it is reminiscent of
the Peierls instability of fermions in resonators [31],
where the topology is associated with the spontaneous
breaking of Z2 symmetry. Differing from that case,
where photon scattering gives rise to a self-organized
superlattice trapping the atoms, in our model pho-
ton scattering interferes with quantum fluctuations.
Like in [31], gap and edge states can be measured
in the emitted light using pump-probe spectroscopy.
The single-particle structure factor may be directly
accessible by the time-of-flight momenta distributions
[64, 65] enabling the detection of insulator-superfluid
phase transition. The two combined measurements
of the cavity output and of the structure factor shall
provide a clear distinction between the BI, SF and
BSF phases.

We observe that the global long-range interaction
of this model inhibits the formation of solitons. For
other choice of periodicity, and thus of the form of op-
erator B̂, one could expect glassiness associated with
the formation of defects [39], whose nature is expected
to be intrinsically different from the one characteriz-
ing short-range interacting structures.

To conclude, we have presented a new paradigm of
topological states formation via interference between
single particle dynamics and interaction induced hop-
ping.
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A Coefficients of the extended Bose-
Hubbard model

To fix the notation, let us consider N atoms of mass
m confined within an optical cavity in a quasi-one-
dimensional configuration (almost) collinear with a
one-dimensional optical lattice created by light with
wave number kL = 2π/λ, which may be different
from k – the wave number of the cavity field. The
optical lattice is created by the trapping potential,
Vtrap = V0 sin2 kLx + V (sin2 kLy + sin2 kLz), where
V � V0 making the atomic motion effectively one-
dimensional. In our calculations we take V = 50ER,
where ER = ~2π2/2ma2 is the recoil energy and a
denotes the periodicity of the optical lattice. The
Wannier basis in the lowest band is Wi(x, y, z) =
wi(x)Φ0(y, z) with wi(x) being the standard one-
dimensional Wannier function centered at site i and
Φ0(y, z) - a two-dimensional Wannier function for the
transverse deep lattice. For our purposes, Φ0(y, z)
is essentially equivalent to a Gaussian with width
σ = a2

π2

√
ER/V .

After adiabatically eliminating the cavity field one
gets an effective Hamiltonian describing atomic mo-
tion in terms of atomic creation/annihilation oper-
ators b̂†i/b̂i for atoms at site i is decomposed into
the sum Ĥ = ĤBH + ĤCav [39, 47], where the mo-
tion in the lattice and atom-atom interactions are de-
scribed by the standard Bose-Hubbard Hamiltonian
(we assume contact interactions and neglect density-
dependent tunneling terms known to be small for such
interactions [80])

ĤBH = −t
Ns−1∑
j=1

(
b̂†j b̂j+1 + H.c.

)
+ U

2

Ns∑
j=1

n̂j (n̂j − 1) ,

(10)
where Ns denotes the number of lattice-sites. Tun-
neling amplitude t and onsite interaction strength U
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0.001

0.01

0.1

1

V0 = 4ER

−y
z

Figure 6: (Left) The variation of y as a function of the lattice
depth V0/ER for φ = π/2. Here, z is identically zero for all
values of V0/ER. (Right) The variations of y and z as φ
deviates from π/2. We consider V0 = 4ER.

are given by the integrals

t =
∫
dxwi(x)

(
~2

2m
∂2

∂x2 − V0 sin2(kLx)
)
wi+1(x),

(11)

U = g

∫
d3r|wi(x)Φ0(y, z)|4 = gπ

2a2

√
V

ER

∫
dx|wi(x)|4.

(12)

The rescattering due to the cavity mode leads to a
long range “all-to-all” interaction terms expressible as

ĤCav = U1

Ns

∑
i,j

b̂†i b̂j

∫
dx cos(kx+ φ)wi(x)wj(x)

2

.

(13)
We rewrite the integrals above as

yij = −
∫
dxwi(x)wj(x) cos(kLxβ + φ). (14)

Here, β = k/kL is the ratio between k, the wavenum-
ber of the cavity mode, and kL, the wavenumber cor-
responding to the optical lattice, and φ is a phase in
the mode function. In our work we consider β = 1,
and note that arbitrary values of β would lead to a
quasiperiodic Hamiltonian [81, 82]. For β = 1 and
for i = j the magnitude of the integral becomes inde-
pendent of i, that can be written as yii = (−1)i+1z
where

z =
∫
dxw2

0(x) cos(kLx+ φ). (15)

Please note here that we have defined yij (Eq. (14))
coming from Eq. (13) with a minus sign to fix y11 = z
to be positive, as in our convention the lattice in-
dex starts from i = 1. For non-diagonal yij , we ob-
serve that due to localization of Wannier functions
i = j ± 1 terms may be only significant ones. For
our choice of β = 1, the magnitude of the integral
again becomes independent of i, and can be written
as yi,i+1 = yi,i−1 = (−1)i+1y with

y =
∫
dxw0(x)w1(x) cos(kLx+ φ),

=
∫
dxw0(x)w0(x− a) cos(kLx+ φ). (16)
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Figure 7: Phase diagrams in the (φ,U1/U)-plane for t/U =
0.05 for Ns = 60. The BI phase disappears when φ deviates
from π/2 and density wave phase appears. Here, we choose
V0 to be 4ER so that the values of y and z matches that of
Fig. 6 (right panel). Blue dashed lines are guide to the eyes
to differentiate different phases.

Then ĤCav may be put in the form,

ĤCav = U1

Ns

(
z2D̂2 + yz

(
B̂D̂ + D̂B̂

)
+ y2B̂2

)
(17)

where

D̂ =
Ns∑
j=1

(−1)j+1n̂j , B̂ =
Ns−1∑
j=1

(−1)j+1
(
b̂†j b̂j+1 + h.c.

)
.

(18)

Typically, one assumes no phase difference (φ = 0)
between the optical cavity and the external optical
lattice, i.e., the lattice sites are located at the antin-
odes of the cavity mode. Then |z| 6= 0 and |y| ≈ 0, and
the terms proportional to y are dropped off leading to
the standard case considered in the past [83]. The
importance of additional terms was noticed already
in [41] where an identical Hamiltonian is obtained for
a slightly different arrangement of the cavity and ex-
ternal optical lattice. Here, we have focused on a
immediate vicinity of φ = π/2. This corresponds to
the atoms being trapped at the nodes of the cavity
mode, where z vanishes (see left panel of Fig. 6).
However, as φ starts to deviate from π/2 the y term
rapidly decreases and z term becomes significant (see
right panel of Fig. 6). Note that the quadratic form
of ĤCav is responsible for the long-range character
of the couplings. Squaring D̂ leads then to all-to-all
density-density interactions, responsible for a sponta-
neous formation of density wave phase for sufficient
U1 [84]. For the case considered by us, z ≈ 0 and
B̂2 term leads to the all-to-all long-range correlated

tunnelings alternating in sign. Throughout the paper,
we have fixed V = 4ER resulting in y = −0.0658 and
z = 0 for φ = π/2.

In Fig. 7, we plot the order parameters and the
phase diagram in the vicinity of φ = π/2 for t/U =
0.05. As φ starts to deviate from π/2, y starts to
diminish and z becomes increasingly larger (see right
panel of Fig. 6). As a result, BI phase is replaced by
a more standard density wave (DW) phase [84], when
φ becomes sufficiently different from π/2. In the DW
phase ODW as well as OS and OP are both non-zero,
while the structure factor vanishes.

B Numerical implementation
We use standard matrix product states (MPS) [62, 63]
based density matrix renormalization group (DMRG)
[60, 61] method to find the ground state and low-lying
excited states of the system with open boundary con-
dition, where we employ the global U(1) symmetry
corresponding to the conservation of the total number
of particles. For that purpose, we use ITensor C++
library (https://itensor.org) where the MPO for
the all connected long-range Hamiltonian can be con-
structed exactly [85, 86] using AutoMPO class. The
maximum number bosons (n0) per site has been trun-
cated to 6, which is justified as we only consider av-
erage density to be ρ = 1/2.

We consider random entangled states, |ψini〉 =
1√
50

∑49
i=0 |ψrand

i 〉, where |ψrand
i 〉 are random product

states with density ρ = 1/2, as our initial states for
DMRG algorithm. The maximum bond dimension
of MPS during standard two-site DMRG sweeps has
been restricted to χmax = 200. We verify the conver-
gence of the DMRG algorithm by checking the devi-
ations in energy in successive DMRG sweeps. When
the energy deviation falls below 10−12, we conclude
that the resulting MPS is the ground state of the sys-
tem.

To obtain low-lying excited states, we first shift the
Hamiltonian by a suitable weight factor multiplied
with the projector on the previously found state. To
be precise, for finding the nth excited state |ψn〉, we
search for the ground state of the shifted Hamiltonian,

Ĥ ′ = Ĥ +W

n−1∑
m=0
|ψm〉 〈ψm| , (19)

where W should be guessed to be sufficiently larger
than En − E0.
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