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Identifying computational tasks suitable for
(future) quantum computers is an active field
of research. Here we explore utilizing quantum
computers for the purpose of solving differen-
tial equations. We consider two approaches:
(i) basis encoding and fixed-point arithmetic
on a digital quantum computer, and (ii) rep-
resenting and solving high-order Runge-Kutta
methods as optimization problems on quan-
tum annealers. As realizations applied to two-
dimensional linear ordinary differential equa-
tions, we devise and simulate corresponding
digital quantum circuits. We also implement
and run a 6th order Gauss-Legendre collo-
cation method on a D-Wave 2000Q system,
showing good agreement with the reference
solution. We find that the quantum anneal-
ing approach exhibits the largest potential for
high-order implicit integration methods. As
promising future scenario, the digital arith-
metic method could be employed as an “ora-
cle” within quantum search algorithms for in-
verse problems.

1 Introduction
Solving differential equations (DEs) is a ubiquitous
task in the scientific and engineering community. Tra-
ditional numerical algorithms need to integrate the
time steps sequentially due to their interdependence,
which is at odds with the trend towards parallelization
in modern highly-parallel high-performance comput-
ing (HPC) architectures. This trend already moti-
vated research in various directions, such as parallel-
in-time algorithms [13]. An alternative route could
emerge from quantum computers, where we could
benefit from better asymptotic scaling properties
compared to classical computers when applied to cer-
tain tasks [2, 15, 31, 33]. Here we explore approaches
of utilizing quantum computers for the purpose of
solving DEs: (i) using basis encoding to describe the
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state of the differential equation, and mimicking arith-
metic operations of classical algorithms on a digital
quantum computer (Section 3); and (ii) reformulating
the time integration as a quantum annealing problem
(Section 4).

To realize (i), we will first design quantum circuits
for arithmetic operations in numerical fixed-point rep-
resentation, and then apply these to solve linear ordi-
nary differential equations (ODEs) in two dimensions.

Our second approach (ii) reformulates Runge-Kutta
integration methods (both explicit and implicit) as
minimization problems suitable for a quantum an-
nealing framework. We additionally design a flexible
number representation to reach high accuracy. We
then run the annealing task (based on a method of
order six) on a D-Wave 2000Q system, and are able
to demonstrate a good agreement with the reference
solution obtained on a classical computer.

Related work includes proposals for quantum algo-
rithms that are capable of solving both linear partial
differential equations (PDEs) [7, 18, 39] and nonlin-
ear PDEs [22, 25, 26]. While for linear differential
equations an exponential advantage in the resources
is known for some time, exponential advantages for
nonlinear differential equations has only been found
recently. Both algorithms, for the linear and nonlin-
ear case, assume that the state of the PDE is ampli-
tude encoded (i.e., via the amplitudes of the quantum
wavefunction), which allows a logarithmic scaling of
quantum resources for an increase in the dimension
of the state space. However, this also requires state
preparation for the input and quantum state tomog-
raphy for measuring the output, which is imposing
scaling issues. There have been efforts to improve
these scaling for certain PDEs, e.g. for the wave equa-
tion in [7]. Liu et al. [22] approached this problem by
embedding the initial state of nonlinear PDEs into
a higher dimensional state and to derive a measure-
ment success probability of their algorithm, enabling
a better scaling for the readout with the use of am-
plitude amplification. Unfortunately, their algorithm
only works for dissipative differential equations. To
our knowledge, there currently does not exist any al-
gorithm which solves the state preparation and read-
out problem for general PDEs.
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In contrast, our work does not provide a logarith-
mic scaling of quantum resources with the state space
but does not obey the state preparation and readout
problem. For our second approach (ii), the time com-
plexity for a single time step in our algorithm does
not scale with the state space. Potential applications
include all kind of linear and nonlinear ODEs which
are expressible with low order polynomial terms, in-
cluding problems from biology and fluid dynamics.

2 Classical Time Integration Methods
This section recapitulates the numerical time inte-
gration schemes that are used in the quantum algo-
rithms discussed later. Specifically, we will discuss the
Runge-Kutta methods and how they can be phrased
as optimization problems. Since we can only cover
a few aspects of time integration, we solely target
single-step methods and refer interested readers to
Durran [9], Hairer et al. [16, 17] and Shu and Os-
her [32].

Concretely, we consider a system of ordinary differ-
ential equations written as

d
dtu(t) = f(u(t), t) (1)

with u(t) ∈ RN for all t ≥ 0 and the initial condition
u(0) = u0.

The Runge-Kutta (RK) formulation unifies vari-
ous kinds of explicit and implicit time integration
schemes. Each particular RK method can be de-
scribed by a Butcher table, consisting of a matrix
A ∈ Rs×s and two vectors, b, c ∈ Rs, where s is
called the number of stages of the method [4]. The
RK formulation for a time step ∆t is then given by
the equations (i ∈ {1, . . . , s})

ki = f

(
ũ(t) + ∆t

s∑
j=1

Aijkj , t+ ∆tci
)

(2)

and

ũ(t+ ∆t) = ũ(t) + ∆t
s∑
i=1

biki, (3)

with ũ(t+∆t) being the approximated solution at the
next time step.

Explicit methods correspond to a strictly lower-
diagonal matrix A, hence avoiding any implicit de-
pendencies. Otherwise, the method is implicit, with
coefficients, e.g., given by the collocation method [17]
that leads to a dense matrix A. Details are skipped
here for sake of brevity, but we point out the large
challenge to cope with multiple stages depending im-
plicitly on each other and various associated iterative
algorithms [10, 11, 28].

Given the RK formulation and the demand for
higher-order implicit time integration methods, effi-
cient solvers are required to cope with the implicit

dependencies in these equations. To provide one ex-
ample, a class of prominent solvers are based on spec-
tral deferred corrections [10], which avoid the implicit
dependency of multiple stages. Here, the underlying
idea is to iteratively correct an approximation of the
solution, while each correction only requires evaluat-
ing forward and backward Euler time steps. However,
the underlying procedure is still iterative, requiring
multiple iterations to gain higher-order accuracy, and
hence is computationally demanding. Quantum com-
puters could provide a new approach to solve such
problems efficiently as a combinatorial problem, as
we will elaborate in Section 4.

3 Digital Quantum Circuit Time Inte-
gration
In this section, we investigate time integration by
utilizing qubit-based arithmetic operations on dig-
ital quantum computers. Realizing integer opera-
tions via quantum circuits is well-known in the lit-
erature [8, 36]. Our contribution is a generalization
to fixed-point number representations.

3.1 Arithmetic on Digital Quantum Computers
Guiding principles for the following identities can be
gleaned from analogies to continuous variable quan-
tum computing [3, 24, 38]. In this framework, a quan-
tum register |x〉 stores a real number x ∈ R. This reg-
ister is acted on by the position operator X̂ , formally
defined as

X̂ =
∫
R
x |x〉〈x|dx, (4)

and its conjugate momentum operator P̂. They obey
the canonical commutation relations [X̂ , P̂] = i~ and
are related via P̂ = F̂†X̂ F̂ , where F̂ is the Fourier
transformation.

The conjugated variables can be used to realize ad-
dition and subtraction [23]. Applying the Hamilto-
nian Ĥ = P̂ for a time c leads to a shift in the variable
by c, since (setting ~ = 1)

d
dt X̂ = −i

[
X̂ , P̂

]
= 1, (5)

X̂ → X̂ + c. (6)

Thus the addition can be expressed as time evolution.
Given a continuous variable quantum state |a〉, a ∈ R,
we get

e−icP̂ |a〉 = |a+ c〉 . (7)

Our goal is to approximate this system using n
qubits, i.e., 2n available states. As a first step, we
describe integer arithmetic and then investigate the
required modifications for a fixed-point representa-
tion. Given a ∈ {0, . . . , 2n− 1}, the quantum register
state |a〉 is canonically identified by the corresponding
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tensor product of single qubit states based on the bi-
nary representation of a, i.e., |a〉 = |an−1〉 · · · |a1〉 |a0〉
for a = an−1 · · · a1a0. We will encounter the discrete
Fourier transform at several occasions, for which we
use the convention

F̂ |j〉 = 1√
2n

2n−1∑
k=0

e−2πijk/2n

|k〉 ∀j = 0, . . . , 2n − 1.

(8)
F̂ and F̂ † can be efficiently implemented using the
quantum Fourier transform (QFT) algorithm.

With these preparations, we define a discretized po-
sition operator by

X̂ =
2n−1∑
j=0

j |j〉 〈j| . (9)

The discrete momentum operator is related to X̂ by

P̂ = F̂ †X̂F̂ , (10)

analogous to the continuous variable case.
Eq. (7) holds analogously for discrete registers [37]:

given integers a and c,

e−2πicP̂ /2n

|a〉 = |a+ c mod 2n〉 . (11)

To realize this operation on a digital quantum com-
puter, first note that, based on Eq. (10),

e−2πicP̂ /2n

= F̂ †e−2πicX̂/2n

F̂ . (12)

e−2πicX̂/2n

can be evaluated as follows, using that X̂
is a diagonal matrix with respect to the computational
basis:

e−2πicX̂/2n

=
2n−1∑
a=0

e−2πica/2n

|a〉 〈a|

=
2n−1∑
a=0

(
n−1∏
k=0

e−2πicak2k/2n

)
|a〉 〈a|

=
n−1⊗
k=0

 ∑
ak∈{0,1}

e−2πicak/2n−k

|ak〉 〈ak|

 .
(13)

The unitary matrix (qubit gate) representation of the
inner operation is Rn−k(c)†, with the definition

Rm(ϑ) =
(

1 0
0 e2πiϑ/2m

)
(14)

for any integer m ≥ 0 and ϑ ∈ R. In the following,
we will abbreviate Rm(1) by Rm.

Assume we want to add two integers a, b ∈
{0, . . . , 2n − 1}, which are both stored in quantum
registers, i.e., the initial state is |a, b〉: according to
Verdon et al. [37], a “von Neumann measurement” of

|a〉 combined with (11) can be used to increment the
second register by a:

e−2πiX̂⊗P̂ /2n

|a, b〉 = |a, a+ b mod 2n〉 . (15)

We can decompose the operator on the left as

e−2πiX̂⊗P̂ /2n

=
(
I ⊗ F̂ †

)
e−2πiX̂⊗X̂/2n(

I ⊗ F̂
)
, (16)

and rewrite the inner operator as

e−2πiX̂⊗X̂/2n

=
2n−1∑
a=0

2n−1∑
b=0

n−1∏
j=0

n−1−j∏
k=0

e−2πiajbk2j+k/2n

 |a, b〉 〈a, b| .
(17)

From this representation, one observes that Rm gates
controlled by |a〉 and applied to the |b〉 register in
case aj 6= 0, bk 6= 0 are sufficient; see Fig. 1 for an
illustration.

a1

a0

b1

b0
F̂

R†1 R†2

R†1

F̂ †

Figure 1: An addition circuit for two quantum registers with
n = 2, implementing Eq. (15); also compare with [8].

For general n, the operator in Eq. (17) requires
1
2n(n + 1) controlled-Rm gates. Since the number
of gates for the quantum Fourier transform has an
O(n2) scaling as well, the overall cost for the addition
in Eq. (15) is O(n2) two-qubit gates (controlled phase
rotations).

Analogous to the addition circuits, subtraction can
be realized by letting c → −c mod 2n, and noting
that

e2πiX̂⊗P̂ /2n

|a, b〉 = |a, a− b mod 2n〉 (18)

similar to Eq. (15). Thus it suffices to take the adjoint
of Eqs. (16) and (17) to implement subtraction.

As a remark, the principle behind (15) can be gen-
eralized as follows: given a map g : {0, . . . , 2n − 1} →
{0, . . . , 2n − 1}, set

Ŷg =
2n−1∑
j=0

g(j) |j〉 〈j| . (19)

Then

e−2πiŶg⊗P̂ /2n

|a, b〉 = |a, g(a) + b mod 2n〉 . (20)
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The final operation we discuss here is multiplica-
tion: given a, b, c ∈ {0, . . . , 2n − 1}, it holds that

e−2πiX̂⊗X̂⊗P̂ /2n

|a, b, c〉 = |a, b, ab+ c mod 2n〉 ,
(21)

again analogous to Eq. (15). We can decompose

e−2πiX̂⊗X̂⊗P̂ /2n

=
(
I ⊗ I ⊗ F̂ †

)
e−2πiX̂⊗X̂⊗X̂/2n(

I ⊗ I ⊗ F̂
)
,

(22)

and represent the inner operator as

e−2πiX̂⊗X̂⊗X̂/2n

=
2n−1∑
a,b,c=0

2n−1∏
j,k,`=0

e−2πiajbkc`2j+k+`/2n

|a, b, c〉 〈a, b, c| .

(23)

All the exponential functions with j + k + ` ≥ n,
aj = 0, bk = 0, or c` = 0 evaluate to 1 and need
not be taken into account explicitly. It suffices to act
with Rm gates defined in Eq. (14) on the |c〉 register,
controlled by both |a〉 and |b〉; Fig. 2 illustrates this
procedure for n = 2.

a1

a0

b1

b0

c1

c0
F̂

R†2

R†1

R†1 R†1

F̂ †

Figure 2: An circuit for multiplying two integers (n = 2
digits), basis-encoded in states |a〉 and |b〉, and adding the
result to a third qubit register |c〉; see Eq. (21).

The overall number of doubly-controlled Rm gates
is 1

6n(2+3n+n2), when taking the condition j+k+` <
n into account. This O(n3) scaling, together with
the required doubly-controlled gates, which have to
be emulated by single and two qubit gates on cur-
rent digital quantum computers, pose a considerable
practical limitation on the present approach.

The advertised fixed-point representation with scal-
ing factor 2−q for an integer q ≥ 0 amounts to re-
interpreting a quantum state |a〉 as representing the
number 2−qa, written in binary representation as

2−qa = an−1 · · · aq . aq−1 · · · a0 (24)

(q digits after the dot). The two’s complement of bi-
nary numbers is suitable for including negative num-
bers as well. Then the quantum state |a〉 for a ∈
{0, . . . , 2n − 1} represents

2−q
(
−2n−1an−1 + 2n−2an−2 + · · ·+ a0

)
(25)

on the logical level. The representable numbers are
thus

Dn,q =
{
−2n−1

2q ,
−2n−1 + 1

2q , . . . ,
2n−1 − 1

2q

}
, (26)

and the arithmetic operations are understood modulo
2n−q. It is important to note that the operators and
circuits for addition and subtraction derived so far
remain exactly the same.

Concerning multiplication, the exact product of two
numbers from Dn,q requires (in general) 2q digits af-
ter the dot in binary format. To cast this back into an
element of Dn,q, one disregards the trailing q digits,
i.e., rounds the number. In binary representation, a
bit shift to the right by q places realizes this operation
for non-negative numbers. To implement this proce-
dure using quantum circuits, we first introduce the
following operator (acting on two n-qubit registers)

Mq =
2n−1∑
a,b=0

(ab� q) |a, b〉 〈a, b| , (27)

where � denotes the (logical) right bit shift. Then

e−2πiMq⊗P̂ /2n

|a, b, c〉 = |a, b, (ab� q) + c mod 2n〉 .
(28)

As before, we can diagonalize the operator by Fourier
transformation applied to the |c〉 register. The re-
sulting diagonal operator then reads (compare with
Eq. (23)):

e−2πiMq⊗X̂/2n

=
2n−1∑
a,b,c=0

2n−1∏
j,k,`=0
j+k≥q

e−2πiajbkc`2j+k−q+`/2n

|a, b, c〉 〈a, b, c| .

(29)

The bit shift corresponds to the 2−q factor in the ex-
ponent, and the rounding to the condition j + k ≥ q.

Finally, we describe how integer division by 2 and
subsequent rounding towards −∞ is achievable as
quantum circuit using the two’s complement repre-
sentation. First note that

1
2
(
−2n−1an−1 + 2n−2an−2 + · · ·+ a0

)
= −2n−1an−1 + 2n−2an−1 + 2n−3an−2 + · · ·+ 2−1a0.

(30)

an−1 now appears twice, and rounding corresponds to
dropping the term 2−1a0. The quantum circuit shown
in Fig. 3 realizes this procedure, illustrated for n = 4.

3.2 Demonstration and Results
We employ the explicit Euler scheme as a demonstra-
tion for digital quantum circuit time integration. In
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a3

a2

a1

a0 |0〉

Figure 3: A circuit for dividing a basis encoded number in
two’s complement format by two and rounding towards −∞.

principle, the approach also works for other higher-
order explicit Runge-Kutta schemes since solely ele-
mentary arithmetic operations are required, and these
operations can be directly mapped to quantum gates.

Specifically, we consider the coupled linear differen-
tial equations (N = 2 dimensions)

d
dt

(
u1(t)
u2(t)

)
= f(u(t)) :=

(
u2(t)
−u1(t)

)
, (31)

with t ≥ 0, u0 = (x1, x2). We use this system as
a representation of a semi-discrete hyperbolic PDE.
The analytical solution of this equation is given by

u(t) =
(

cos(t) sin(t)
− sin(t) cos(t)

)(
u1(0)
u2(0)

)
. (32)

To implement Eq. (31), we need a circuit with quan-
tum registers initialized to ũ1(t) and ũ2(t). The out-
put of the circuit are registers storing ũ1(t+ ∆t) and
ũ2(t + ∆t). We also need two “ancilla” temporary
registers for evaluating f(ũ(t)). The overall circuit
is depicted in Fig. 4. Note that applying a sequence
of time steps requires a reinitialization of the ancilla
registers to |0〉; alternatively, this could be achieved
by “uncomputing” them.

To implement the circuit, ∆t has to be a power of 1
2 ,

which allows us to save qubits during the simulation.
This is solely for efficiency reasons and other ∆t values
could be realized as well. Instead of multiplying by
∆t, we can divide multiple times by 2. Note, that ∆t
does not need to be stored in a quantum register.

Fig. 5 shows the circuits implementing the right side
f(u) of the differential equation (31).

We simulate the quantum circuits using Qiskit [1],
without noise or decoherence. The time step is chosen
as ∆t = 1

2 . Each number register consists of 4 qubits,
and the fixed-point arithmetic scaling factor is set to
q = 1.

As verification, we implement an explicit Euler also
on a classical computer and compare the results. In
all cases, the results match in a numerical sense, as
expected.

We first study the stationary case (du/dt = 0)
at the equilibrium point u(t) = (0, 0), see Fig. 6a.
Although this seems to be trivial, such stationary
cases play an important role for, e.g., more com-
plex cases like geostrophic balance in atmospheric

simulations[34], and therefore are included here as
proof-of-concept. Indeed the DQC solution remains
constant as well, as expected.

Next, we simulate the same differential equation,
but using initial values u0 = (0,−1); the results are
visualized in Fig. 6b. The simulated solution ampli-
fies the real one, as expected for the explicit Euler
scheme [9]: since the digital quantum computer mim-
ics the operations of a classical solver, the achievable
accuracy is likewise bounded by the numerical errors
of the classical method. Our demonstrations mainly
serve as proof-of-principle.

4 Quantum Annealing Time Integra-
tion
Annealing is a method for solving optimization prob-
lems. The solution of a problem is encoded into
the global minimum (“ground state”) of an energy
function. One possible encoding, relevant for com-
binatorial optimization problems, is quadratic un-
constrained binary optimization (QUBO), see, e.g.,
Glover et al. [14]. In this formulation, the goal is to
minimize the binary variables σi ∈ {0, 1} of the en-
ergy function (Ising-type Hamiltonian)

Ĥ = −
∑
i,j

Jijσiσj − h
∑
i

σi, (33)

for given parameters Ji,j , hi ∈ R. While thermal an-
nealing uses thermal fluctuations to overcome local
minima of the target function, quantum annealing
uses quantum tunneling effects for that purpose, po-
tentially exhibiting a faster convergence [20]. Never-
theless, neither thermal nor quantum annealing are
guaranteed to find the ground state of the optimiza-
tion problem.

4.1 Time Integration as an Optimization Prob-
lem
In the following, we consider a system of autonomous
linear differential equations

d
dtu(t) = f(u(t)) :=

M∑
i=1

L(i)u(t)⊗(i−1) (34)

with u(t) ∈ RN for t ≥ 0, u(0) = u0, L(i) ∈
(
RN
)⊗i

,
and M is the highest polynomial degree of the dif-
ferential equation. An extension to other nonlinear
equations is possible with our framework, as well, as
long as the action of f can be formulated as part of a
QUBO problem.

A time step of collocation-based implicit Runge-
Kutta time integration [17] can be represented in the
form of

ũ(t+ ∆t) = ũ(t) + ∆tSf
(
ũ(t+ ∆t)

)
(35)
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ũ1(t)

ũ2(t)

|0〉
|0〉

n

n

n

n

calculate f1(ũ)

f1(ũ)

Mul ∆t

calculate f2(ũ)

f2(ũ)

Add

Mul ∆t

Add

|∆tf1(ũ(t))〉
|∆tf2(ũ(t))〉

ũ1(t+ ∆t)

ũ2(t+ ∆t)

Figure 4: Circuit implementation of the explicit Euler scheme for Eq. (31). The input of the circuit are two quantum registers,
initialized with the values of ũ1(t) and ũ2(t) in fixed-point arithmetic. The circuit calculates one iteration of the explicit Euler
scheme and outputs ũ1(t + ∆t) and ũ2(t + ∆t). The green region marks ancilla registers.

u2

|0〉 F Add F†

u2

f1(u)

(a) f1(u) = u2

u1

|0〉 F Sub F†

u1

f2(u)

(b) f2(u) = −u1

Figure 5: Quantum circuits implementing f(u) for the model
problem in Eq. (31).

with ũ(0) a suitably chosen vector with the initial con-
ditions, and S the spectral integration matrix given
by the particular quadrature method used in the col-
location formulation. In this formulation, the vector
ũ also stores all intermediate state solutions at the
quadrature points. We can interpret (35) as an opti-
mization problem (see, e.g., [11]) of the form

ũ(t+ ∆t) = arg min
v∈RN

‖v −∆tSf(v)− ũ(t)‖. (36)

In the following, we will phrase this optimization
problem in the context of a quantum annealer, to ob-
tain ũ(t+∆t) for a given ũ(t). A similar approach for
solving linear systems of equations has already been
introduced by O’Malley and Vesselinov in [29]. Our
approach for the extension to polynomial equations is
mostly inspired by Cheng Chang et al [6]. Based on
the Runge-Kutta methods (see Eqs. (2) and (3)) and
using Eq. (34), we derive

ũj(t+ ∆t) = ũj(t) + ∆t
s∑
o=1

boKoj , (37)

0 2 4 6
time t

−0.04

−0.02

0.00

0.02

0.04

u
(t

)

simulated u1

simulated u2

analytical u1

analytical u2

(a) stationary equilibrium point u(t) = (0, 0)

(b) initial value u0 = (0, −1)

Figure 6: Explicit Euler method for the linear ODEs (31),
implemented on a digital quantum computer. The simulated
solution is represented by dashed lines, and the analytical
solution by solid lines. The large error originates from the
low-order time integration method and large time step size.

Koj =
M∑
i=1

k1,...,ki∈[N ]

L
(i)
jk1...ki

ũk1(t)...ũki
(t)+

∆t
s∑
e=1

Aoe

M∑
i=1

k1,...,ki∈[N ]

L
(i)
jk1...ki

Kek1 ...Keki , (38)
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with K ∈ Rs×N and [N ] = {1, ..., N}. In order to
solve this equation on a quantum annealer, we rewrite
it as an optimization problem with real variables and

then reformulate that as a QUBO. First, taking the
squared difference of Eq. (37) and Eq. (38) leads to the
minimization problem (for time points tm = m∆t):

ũj(tm+1) = arg min
ũj(tm+1)

min
K1,...,Ks

(
ũj(tm+1)− ũj(tm)−∆t

s∑
o=1

boKoj

)2

+
s∑
o=1

Koj −
M∑
i=1

k1,...,ki∈[N ]

L
(i)
jk1...ki

ũk1(tm)...ũki(tm)−∆t
s∑
e=1

Aoe

M∑
i=1

k1,...,ki∈[N ]

L
(i)
jk1...ki

Kek1 ...Keki


2

(39)

The variables to optimize are ũj(tm+1) and Koj for
o = 1, . . . , s, j = 1, . . . , N . The vector ũj(tm) remains
constant in Eq. (39) and, therefore, is not part of the
optimization. Unfortunately, we cannot directly map
this equation to the Ising model because the param-
eters to optimize are real. To overcome this issue,
we develop (another) tailored approximation using bi-
nary variables, as shown below.

4.2 Binary Number Representation
Different from the fixed-point representation de-
scribed in Section 3.1, here our goal is an adaptive
version (similar to the floating-point format). We ap-
proximate a real number g ∈ R by

g ≈ Φkd(σ) = 2n−1−kσn−1 + · · ·+ 20−kσ0 + d

= 2−kσ + d,
(40)

where d, k ∈ R are parameters and σi (for i =
0, . . . , n − 1) the available binary variables. During
an optimization step on a quantum computer, only
the binary variables (σi) are modified. The detailed
procedure will be described below.

4.3 Variational Approach
One limitation of current quantum annealers is the
connectivity between qubits available in hardware. In
order to use arbitrary couplings in the QUBO model,
embeddings have to be used. An embedding maps a
QUBO problem onto a slightly different one. This
new model solves the same task using fewer con-
nections per qubit, but a larger overall number of
qubits [21]. Thus, in general, an important goal is
the design of algorithms with sparse connectivity and
small qubit counts. Typically, one chooses a varia-
tional approach to achieve this [27]. The key idea is to
only run a part of the problem on the quantum device
and perform post-processing on a classical computer
to optimize parameters. This procedure is repeated
until the output converges to the final solution. How-
ever, convergence using the post-processing technique

is only guaranteed in the convex case, which in general
is only satisfied for linear actions f .

In the following, we analyze the number of qubits
and connectivity required by our algorithm to achieve
a given numerical accuracy. Subsequently, we intro-
duce a variational formulation.

4.3.1 Numerical Accuracy and Qubit Connectivity

We assume that n qubits are sufficient to approximate
the range of values needed to represent an entry of
the solution vector. By choosing k = n and d = 0 in
Eq. (40), this interval is [0, 1], and the accuracy for
each simulated number is given by 2−n. Furthermore,
we assume that the solution of the DEQ remains in
this interval.

The overall number of required qubits for s stages
in the Runge-Kutta method is n(s + 1), since an ad-
ditional n qubits store the result ũj(t + ∆t) at the
next time step. Additionally, auxiliary qubits are
needed to reduce cubic and higher terms to quadratic
ones. To achieve this, we use reduction by substi-
tution which was first presented by Rosenberg [30].
For this method, one auxiliary qubit per reduction is
used. The amount of auxiliary qubits rises exponen-
tially with the order M , but is also limited by the
number of stages s and the system size of the DEQ.
For the remainder of this analysis, we will only assume
linear DEQ (M = 1) for which no auxiliary qubits are
needed.

Next, we determine the required connectivity be-
tween qubits. According to Eq. (39), a multiplica-
tion between two registers requires n connections be-
tween the qubits and a multiplication with itself n−1
qubits. Eq. (39) also shows that the connectivity de-
pends both on the density of the Runge-Kutta table
A, as well as the DEQ matrix L. For our analysis, we
consider the worst-case scenario of dense matrices.

There are three sets of terms in Eq. (39) in which
two different registers are multiplied. The first term
is the multiplication of ũj(tm+1) with itself (directly
after the second equal sign in (39)), for which n − 1
connections are needed. In the second set of terms,
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the entries of K are multiplied with each other (sev-
eral occasions after the second equal sign). Since there
are sN of these entries, where N is the system size,
we count sN(sN−1)/2 multiplications in total. How-
ever, sN of these multiplications are with the same
registers. Therefore, there are sN(sN − 1)/2− sN =
s2N2/2 − 3sN/2 multiplications with other and sN
multiplications with the same register. As a conse-
quence, the total number of connections needed for
the second scenario is s2N2n/2 − 3sNn/2 + sN(n −
1) = s2N2n/2 − sNn/2 − sN . In the third set of
terms, all entries of K are multiplied with the entries
of ũj(tm+1). In total, these are sN multiplications,
accounting for sNn connections. All of the three sets
of terms create new connections, and therefore the
connection counts must be summed up, leading to a
total number of connections required for this algo-
rithm (in the worst case) of

](connect.) = n− 1 + s2N2n/2 + sNn/2− sN. (41)

4.3.2 Variational Adaptive Number Representation

According to the s2N2n/2 term in Eq. (41), increas-
ing the number of qubits n for approximating a real
number will demand a much higher connectivity on
the quantum device. To mitigate this issue, we switch
to an adaptive number representation, as already an-
ticipated in Eq. (40). Specifically, for each individual
number g appearing in the algorithm, we iteratively
refine k and d in Eq. (40), denoted gi, ki and di for
the ith iteration. As update step, we set

ki+1 = ki + c, (42)
di+1 = gi − 2n−ki+1−1 (43)

with a fixed constant c > 0. The idea, reminiscent
of nested intervals, is to shrink the range of values
covered by 2−kσ (which is optimized by the quantum
computer) in Eq. (40), while absorbing the best can-
didate for g into the classical offset parameter d. The
shift by 2n−ki+1−1 in Eq. (43) ensures that both posi-
tive and negative corrections are possible. We remark
that, as our experiments in the next section shows, c
must not be chosen too large on real quantum anneal-
ers, and should ideally correspond to the convergence
rate of the iteration.

4.3.3 Time Complexity

In the following, we analyze the time complexity of
our algorithm. Since, to our knowledge, there is nei-
ther any evidence that quantum annealers have an ad-
vantage compared to classical computers, nor we are
aware of any method to determine the time complex-
ity of an algorithm on a quantum annealer, we study
the time complexity of the algorithm on an adiabatic
quantum computer. In this type of quantum comput-
ing, the solution of a problem is found by evolving a

time-dependent Hamiltonian where the solution is en-
coded into the ground state of the final Hamiltonian.
The system is first initialized to the ground state of an
initial Hamiltonian. If the evolution is slow enough,
at the end of the evolution the system will remain in
the state of the desired solution. The time the evo-
lution takes scales with T = O

(
1

g2
min

)
, where gmin is

the smallest energy gap between the ground state and
another state during the evolution process [12].

We choose an initial Hamiltonian Hinit with a suf-
ficient high energy gap, so that it does not limit
the time complexity of our algorithm. The time-
dependent Hamiltonian we use is given by

Ĥ(t) =
(

1− t

T

)
Ĥinit + t

T
ĤQUBO, (44)

where ĤQUBO is given by the QUBO Hamiltonian of
our minimization function. Although the real mini-
mal gap energy gap gmin is found by determining the
energy difference of the ground and first excited state
for all Ĥ(t) ∀t, we determine this gap for the QUBO
Hamiltonian ĤQUBO in order to get an idea how this
gap changes with parameters we chose in the algo-
rithm. Afterwards, we compare our findings with nu-
merical results of the minimal gap in Ĥ(t).

For linear ODEs the QUBO Hamiltonian is strictly
convex. This makes it possible to calculate boundaries
on the energy gap under the assumption that the low-
est energy is 0. We first show the calculation in detail
for the explicit Euler of a one dimensional ODE and
later deal with the generalized Runge-Kutta case of
linear ODEs. For the explicit Euler of a linear ODE
with L(2) = Λ, a time step is given as

u(t+ ∆t) = u(t) + ∆tΛu(t). (45)

In our Hamiltonian, u(t) is exactly represented, while
u(t + ∆t) is discretized and represented by differ-
ent quantum states. Therefore, we use the notation
u(t + ∆t) = un+1∆x, where un+1 ∈ Z and ∆x is
the smallest number resolution in our algorithm. The
solution for un+1 which minimizes Eq. (39) is given
by

u∗n+1 = u(t) + ∆tΛu(t)
∆x . (46)

We assume that u∗n+1 ∈ Z, which means that a state
for the energy of 0 exists. Because of the construction,
we know that this is the lowest energy state and that
the minimization function is symmetric. Therefore,
the second lowest energy level is given by

uεn+1 = u∗n+1 ± 1. (47)

To find the energy gap gmin, we can simply subtract
the energy of uεn+1 by the energy of u∗n+1. Our finding
is that

gmin = ∆x2. (48)
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Next, we compare this result to the scaling of the min-
imal gap in Ĥ(t), which we computed numerically us-
ing and initial state of Ĥinit = −0.5 (1− σx) ⊗ ... ⊗
0.5 (1− σx). The comparison is depicted in Fig. 7.

10−410−310−210−1

∆x

10−8

10−6

10−4

10−2

g m
in

numerically determined

expected

Figure 7: Comparison of the scaling of the energy gap
between the ground and first excited state for the adia-
batic Hamiltonian for the explicit Euler. For sufficient small
∆x, the expected scaling and numerical determined scaling
match.

For sufficient small ∆x our previously determined
scaling and numerical results perfectly match. An-
other important parameter to choose is ∆t. According
to our derivation for ĤQUBO, a change in ∆t should
not have any influence in gmin. The comparison of the
numerical and expected results confirms that changes
in ∆t do not have an influence on gmin. Our assump-
tion that the scaling of the energy gap of the ground
and first excited state of ĤQUBO is comparable to the
overall minimal energy gap gmin agrees with numer-
ical results. Therefore, we conclude that the time
complexity of the explicit Euler using our algorithm
approximately is

T ≈ O
(

1
∆x4

)
. (49)

Next, we determine the complexity of a generalized
Runge-Kutta method. In this case, we have to dis-
cretize the stages as well, Ko = Ko,n∆x, whereKo,n ∈
Z. We refer to the minimizer of Eq. (39) using the
∗ symbol and assume that these are contained in Z.
Let us define the deviation from a solution Ko,n and
un+1 to these minimizers as ∆Ko,n =

∣∣Ko,n −K∗o,n
∣∣

and ∆un+1 =
∣∣un+1 − u∗n+1

∣∣. With these definitions,
the minimal energy gap in the QUBO Hamiltonian is
calculated by

gQUBO = min
(

∆un+1∆x−∆t
s∑
o=1

bo∆Ko,n∆x
)2

+
s∑
o=1

(
∆Ko,n∆x−∆t

s∑
e=1

AoeΛ∆Ke,n∆x
)2

,

(50)

where ∆un+1 +
∑s
o=1 ∆Ko,n ≥ 1. First, note that

∆un+1,∆K1,n, ...,∆Ks,n ∈ {0, 1} in order to mini-
mize Eq. (50). In the following, we want to give a
lower bound on the energy gap using only the first
term of Eq. (50). Under the assumption, that ∆t < 1,
this term is either minimized if all variables deviate
or only a single of the stages. Therefore,

gQUBO ≥ min
{

∆x2 (1−∆t)2
,∆t2∆x2b2

}
, (51)

where b = min{bi for 1 ≤ i ≤ s}. We verify that the
bound also holds for Ĥ(t) by evaluating the minimal
gap numerically. As a Runge-Kutta scheme, we use
Crank-Nicolson. The scaling in ∆x for ∆t = 0.1 and

10−810−610−410−2100

∆x

10−16

10−13

10−10

10−7

10−4

10−1

g m
in

∆t = 10−1

∆t = 10−6

∆x2

∆x

Figure 8: Comparison of the scaling of the energy gap be-
tween the ground and first excited state for the adiabatic
Hamiltonian for the Crank-Nicolson scheme with changing
∆x. It can be seen that gmin is proportional to ∆x and
higher time steps result in a lower energy gap.

∆t = 10−6 is depicted in Fig. 8. For this specific
case, it can be seen that the minimal gap has a better
scaling, gmin ∝ O (∆x), compared to the lower bound
on gQUBO we found. For our concrete example, we
can also see that higher time steps result in a lower
energy gap.

To get a scaling including the amount of stages,
we limit the Runge-Kutta scheme on the collocation
method using Chebyshev-Gauss quadrature in the fol-
lowing. This allows b = 1/s for increasing amount
of stages. From the boundary we found in Eq. (51),
we conclude that the time complexity of the Runge-
Kutta method, using Chebyshev-Gauss collocation, is
approximately better than

T . O

(
max

{
s4

∆x4∆t4 ,
1

∆x4 (1−∆t)4

})
. (52)

For both the explicit Euler case, as well as the gen-
eralized Runge-Kutta case, it is possible to generalize
the results to systems of equations of arbitrary sizes.
This is since the term we used in the minimization
function is independent of any mutual interference for
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other variables in a system of equations. Compared to
a classical computer, where so far no parallel process-
ing without an additional time scaling is known, we
don’t have that in this quantum algorithm. Instead,
a larger system of equations only allocates more hard-
ware/qubit resources.

4.4 Results of the QA Time Integration
We perform the quantum annealing task on the D-
Wave 2000Q system, which features 2041 qubits. To
encode the QUBO model onto the annealer, the val-
ues of the J matrix and the h vector are first nor-
malized to be within the interval [−2, 1] for the J
matrix and [−2, 2] for the h vector. For our problem,
we directly map the values of J and h onto the in-
terval [−1, 1]. Furthermore, as arbitrary connectivity
between all qubits is not possible, the concrete con-
nections available on the target annealing hardware
have to be taken into account and the QUBO model
has to be adapted to those hardware characteristics.
If the QUBO problem needs more connections than
the hardware provides, an additional embedding has
to be found. We solve both of these tasks using the li-
brary minorminer, which uses a method given by Cai
et al. [5]. We perform 100 reads on the annealer per
iteration. For the last example, we additionally used
the library PyQUBO [35] which maps higher order
polynomials to quadratic ones using the reduction by
substitution method.

Figure 9: Comparison of the analytical (exact) and annealed
result of Eq. (31) using the 6th order Gauss-Legendre collo-
cation method with a timestep ∆t = 0.5. The numerical
result is visually indistinguishable from the analytical (exact)
solution.

Fig. 9 shows the analytical and annealed result
of the linear coupled differential equation given in
Eq. (31) with the initial conditions u1(0) = 1 and
u2(0) = 0. As a specific integration method, we
choose the Gauss-Legendre collocation method of or-
der 6 with a timestep of ∆t = 0.5. For every grid
point, 3 qubits are used. We perform 15 iterations

per timestep, starting with k0 = 1 and c = 0.5. The
numerical result obtained on a digital computer, using
the same numerical method as for the annealing re-
sult, is visually indistinguishable from the exact solu-
tion. Therefore, the solution of the quantum annealer
does not perfectly match the numerical solution of a
classical computer. This is both due to errors in the
quantum hardware as well as not enough iterations
per timestep in our algorithm. We expect that the er-
rors of future quantum annealers will be significantly
lower.

Next, we analyze the convergence of our variational
approach by performing a single Runge-Kutta step on
a quantum annealer and compare it to numerical re-
sults using the same Runge-Kutta method. Fig. 10

0 5 10 15 20 25
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10−1
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2
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simulated c = 0.3

D-Wave c = 0.3

simulated c = 0.8

D-Wave c = 0.8

Figure 10: Error of the annealed Gauss-Legendre 6th order
Runge-Kutta step using our variational approach, compared
to a numerical evaluation of the same Runge-Kutta step. The
dashed lines are obtained on a D-Wave quantum annealer,
and the solid lines show an exact annealing reference solution
calculated on a classical computer. The parameter c is the
exponent shift of the variational approach in Eq. (42). For
all cases, two qubits per number register are used.

shows these errors for the Gauss-Legendre collocation
method of order 6. The dashed line results are ob-
tained on the D-Wave 2000Q system, while the solid
lines are simulated on a digital computer by an exact
solver, which finds the exact minimum of the combi-
natorial optimization function. We use two different
exponent shift constants, given in Eq. (42), for the
variational approach: The blue lines use c = 0.3, the
green lines use c = 0.8. For the higher exponent shift,
c = 0.8, first, the annealing solution follows the exact
solution closely and converges faster than the lower
convergence case. Nevertheless, after an error spike
at the tenth iteration, the convergence stops and the
error of the annealing solution is not further reduced.
For c = 0.3, the results of the quantum annealer fol-
lows the exact solver over all iterations, except of some
spikes, which are caused by errors in the computing
hardware. However, due to the lower exponent shift,
the variational approach is still able to recover the
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same result even with errors present.
Last, we solve a Ricatti equation, given by

d
dtu(t) = u(t)− u(t)2 (53)

using our algorithm. This DEQ has two equilibrium
points, an unstable one at u = 0 and a stable one at
u = 1. As the integration method we used the Crank-
Nicolson method with 2 qubits per register. For this
case, only two auxiliary qubits are needed, making
it 8 qubits in total, excluding those qubits which are
needed for the embedding on a quantum annealer. Al-
though the variational approach is not guaranteed to
converge, we try the variational approach with c = 0.8
and 10 iterations. For this nonlinear case, we only
present the results from an annealing simulator, not
on the actual D-Wave 2000Q system. This is because
of the non convex structure of the problem and high
noise on the D-Wave system the results are hard to
interpret. First, we tested the unstable equilibrium
point and verified that the solution stays at the un-
stable equilibrium point, u = 0. Due to the high
noise on current quantum annealers, this result is not
achieved on a physical device. However, it shows that
our algorithm is able to evaluate such solutions cor-
rectly. Next, we evaluate a dynamic case, starting at

0 2 4 6 8 10 12
time t

0.2

0.4

0.6

0.8

1.0

u
(t

)

RK 4

annealed

Newton’s method

Figure 11: Comparison of the simulated annealed, analyt-
ical, and Newton method for u(0) = 0.1. The analytical
solution was obtained by using the 4th Runge-Kutta method
with much smaller time step sizes. The simulated annealed
solution does not match the result of the Newton method.

u(0) = 0.1. In this case, the solution is expected to
converge to the stable point u(∞) = 1. The results
of the exact annealing are depicted in Fig. 11. Using
the same integration method and time step, the an-
nealed solution does not match the Newton method.
We verified that the results by the Newton’s algo-
rithm are global minima of Eq. (39). The variational
approach does not guarantee to converge to a global
minima for non convex problems. Without the vari-
ational approach, with a sufficient amount of qubits
for each register, and Eq. (39) being continuous and

only having a single global minimum, we believe that
our annealing algorithm is superior to the Newton’s
method. Namely, Newton’s method is likely prone to
local minima if the initial estimate for the method is
not chosen correctly. A sufficient amount of qubits in
our annealing algorithm ensures that a configuration
close to the global minimum is a better minimizer to
Eq. (39) compared to any other configuration close to
a local minimum. However, this assumes hardware
which is free of noise and a large amount of qubits.

Our findings serve as proof-of-concept and demon-
strates the feasibility of our algorithm on current
quantum annealers. The second example demon-
strates that the exponent shift parameter has to be
chosen wisely, dependent on the error of the quantum
hardware. Finding best suitable exponent shifts for
specific hardware is not covered in this paper and ad-
ditional research is needed. The third example shows
that with our algorithm the Runge-Kutta method can
also be applied to nonlinear ODEs. However, for the
nonlinear example studied, the annealed results do
not match the expected results. A discussion about
conditions, which we believe are necessary for nonlin-
ear ODEs, is provided.

5 Discussion and Outlook
We have explored the usage of quantum computers for
the task of solving differential equations, a ubiquitous
problem in engineering and scientific computing. Our
focus lies on the technique instead of a benchmark
comparison, as the latter is not (yet) reasonable given
the small problem size that had to studied here.

Concerning the time integration based on arith-
metic operations on a digital quantum computer (Sec-
tion 3), one might ask how this could possibly provide
an advantage, given that the operations of a classi-
cal computer are directly mimicked. As scenario for
exploiting the inherent parallelism of quantum com-
puters, the circuits developed here could be used as
building blocks within encompassing quantum algo-
rithms, e.g., as an “oracle” within a quantum search
method. Specifically, in the context of ordinary dif-
ferential equations, this approach could solve inverse
problems directly, like finding initial conditions given
a desired state at the final time. From a broader per-
spective, we imagine that quantum computers could
serve as parallel accelerators of subroutines within
classical algorithms (like time integration).

Looking at the quantum annealing approach (Sec-
tion 4), we see the largest potential for high-order
implicit time integration methods, as the associated
computational costs scales more favorably with inte-
gration order when using quantum annealing (com-
pared to classical computers). In addition, we were
able to decouple the number of required qubits from
the accuracy of the number representation for the
quantum annealing approach, and the arithmetic
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steps are implemented implicitly into the QUBO
model, reducing the qubit count for temporary vari-
ables. Even though this decoupling is only guaranteed
to work for linear ODEs, we applied it to a nonlinear
ODE where our results did not match the expected
results. We provided a discussion about the condi-
tions, which we believe are necessary to solve non-
linear ODEs with our algorithm. We also gave an
upper bound for the time complexity of our anneal-
ing algorithm if it is applied to an adiabatic quantum
computer in the linear case. We showed that this
complexity does not depend on the size of the prob-
lem itself, but rather on the discretization size of the
variables and the time step size.

As an interesting alternative direction, we point out
that the inherent dynamics of quantum systems could
be used for solving nonlinear differential equations via
the Koopman-von Neumann formulation of classical
mechanics [19].
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