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We propose and validate a novel experimental technique to measure two-point statistics of turbulent
flows. It consists of spreading rigid fibers in the flow and tracking their position and orientation in time and
is therefore named “fiber tracking velocimetry.” By choosing different fiber lengths, i.e., within the inertial
or dissipative range of scales, the statistics of turbulence fluctuations at the selected length scale can be
probed accurately by simply measuring the fiber velocity at its two ends and projecting it along the
transverse-to-fiber direction. By means of fully resolved direct numerical simulations and experiments, we
show that these fiber-based transverse velocity increments are statistically equivalent to the (unperturbed)
flow transverse velocity increments. Moreover, we show that the turbulent energy-dissipation rate can be
accurately measured exploiting sufficiently short fibers. The technique is tested against standard particle
tracking velocimetry (PTV) of flow tracers with excellent agreement. Our technique overcomes the well-
known problem of PTV to probe two-point statistics reliably because of the fast relative diffusion in
turbulence that prevents the mutual distance between particles to remain constant at the length scale of
interest. This problem, making it difficult to obtain converged statistics for a fixed separation distance, is
even more dramatic for natural flows in open domains. A prominent example is oceanic currents, where
drifters (i.e., the tracer-particle counterpart used in field measurements) disperse quickly, but at the same
time their number has to be limited to save costs. Inspired by our laboratory experiments, we propose pairs
of connected drifters as a viable option to solve the issue.

DOI: 10.1103/PhysRevX.11.031060 Subject Areas: Fluid Dynamics, Nonlinear Dynamics,
Statistical Physics

I. INTRODUCTION

The physics of turbulent flows, which are ubiquitous in
real-world applications, is a widely addressed, yet not fully
understood, research topic, so that turbulence is often
considered as the last unsolved problem of classical physics
[1]. Examples where turbulence is important range from
relatively small-scale problems (e.g., suspension dynamics
[2,3], drag reduction [4,5], or blood flow through heart
valves [6,7]) to large-scale geophysical phenomena in

oceanography and meteorology [8,9]. Overall, many exper-
imental investigations rely on accurate measurements of
turbulence, and consequently, active research is devoted to
the development of new methodologies able to access flow
properties in a more detailed and convenient way.
In this paper, we propose a novel nonintrusive exper-

imental technique based on tracking rigid fibers dispersed
in a turbulent flow, which is named “fiber tracking
velocimetry” (FTV). We believe that this method has great
potential in the field of experimental turbulence; we expect
it to be superior to the traditional methods based on tracer
particles, in particular, when measuring the two-point
statistics of turbulence. First, we expect this new method
to overcome tracer-based methods when measuring inertial
range scaling laws in situations where a high particle
concentration is hardly reachable and/or maintainable in
time. Second, we believe that it is more suitable to measure
quantities related to spatial velocity gradients, such as the
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turbulent energy-dissipation rate than the brute-force
approach of increasing the tracer concentration to reach
the desired spatial resolution. Indeed, the FTV method
leads to a paradigmatic change and overcomes the typical
issues of tracer-based methods.

A. Classical particle-based approaches

Before introducing the FTV method, we briefly review
the more currently used tracer-based techniques. Standard
measurement techniques are based on using tracers, i.e.,
particles of typically micrometric size and density compa-
rable to that of the fluid, so that their behavior is essentially
the same as fluid particles. The two most popular methods
are particle image velocimetry (PIV) [10] and particle
tracking velocimetry (PTV) [11].
PIV is an optical technique that allows measurements of

the instantaneous velocity field based on the displacement
of tracer particles between two subsequent camera frames.
The frames are split into interrogation areas, and a
displacement vector is obtained for each area using auto-
or cross-correlation techniques. The displacement vectors
are converted into velocity vectors using the time interval
between two subsequent laser shots. Usually, the seeding
particle concentration in PIV is such that it is possible to
identify individual particles in an image, but not with
enough certainty to track them between images. Exceptions
are recent volumetric implementations of PIV (e.g.,
Schröder et al. [12]) that can also track individual particles.
Three-dimensional particle tracking is typically con-

ducted at lower seeding densities than PIV so that indi-
vidual particles can be followed more easily over time
[13–15]. Particles are usually tracked in 3D by using a
stereoscopic camera arrangement [16]. Based on the
particle trajectories, one can evaluate the velocity vector
by differentiating the particle coordinate vector in a
Lagrangian setting, i.e., along the particle trajectories [17].
A well-known issue of tracer-based techniques is the

evaluation of two-point statistical quantities, which are of
special interest in turbulence. Indeed, in a turbulent flow the
relative distance between two particles—initially close
enough—grows in time as t3=2, a phenomenon known as
Richardson diffusion law [8,18]. In other words, a significant
problem when using particles to evaluate the statistics of
turbulence is that two particles tend to separate from each
other, thus making it practically impossible to obtain
converged statistics for a fixed separation distance. To tackle
this issue and achieve reasonable statistics, measurements
are usually conducted over a long time span to have enough
occurrences where couples of particles are found at a given
distance [19–22]. Such an approach becomes particularly
burdensome when few particles can be seeded in the flow or
when the flow domain is open (e.g., when conducting
oceanographic measurements using drifters [8]).
Another situation in which tracer-based methods mani-

fest their intrinsic weakness is when measuring quantities

related to the velocity gradient tensor, such as the turbulent
dissipation rate. Currently, the only way to access such
small-scale quantities is to track an extremely high number
of particles. To give an idea of how challenging this is, one
can consider that the flow-field resolution is proportional to
the inverse of the mean nearest-neighbor distance, which
depends on the particle concentration n with the power law
of approximately n1=3 [23]. Therefore, to increase 10 times
the flow-field resolution, one needs to track 1000 times
more particles, quickly leading to an unfeasible amount.
For this reason, PTV-based estimation of the full velocity
gradient tensor with a resolution close to the Kolmogorov
scale has been mostly limited to moderate Reynolds
number flows and small observation volumes [17].
Finally, it is worth mentioning that the number of degrees
of freedom needed to properly describe a turbulent flow can
be estimated as Re9=4 [1]. Since the maximum number of
traceable particles is technologically limited, the problem
becomes particularly relevant when one needs to measure
small-scale quantities in highly inertial flows.

B. Fiber-based approach

In light of the weaknesses associated with tracer-based
methods, here we propose an alternative strategy based on
using approximately one-dimensional fiberlike objects
instead of tracer particles. The reason for considering
fibers instead of particles is rather simple and relates to
the fact that the distance between the two ends of the fiber is
constant. As it is shown, this fact is the essential feature by
virtue of which it is possible to investigate the behavior of
turbulent eddies of a selected size. Conversely, this goal is
not easy to achieve when considering a pair of fluid tracers
due to the above-mentioned Richardson dispersion.
While a significant research effort has focused on

understanding the dynamics of anisotropic particles of size
smaller than the Kolmogorov length scale (i.e., the smallest
scale where viscous dissipation is predominant) [3,24–26],
the dynamical behavior of fibers of finite length (i.e., within
the inertial range) started to be investigated only recently,
both experimentally and numerically [27–32].
The main result in the literature of relevance here is that

finite-length fibers (i.e., fibers whose length falls within the
inertial range) rotate (rigid fibers) [28] or deform (flexible
fibers) [29] at the same frequency as the turbulent eddies of
comparable size. Previous studies mostly focused on the
so-called tumbling rate whose scaling showed reasonable
agreement with predictions in the inertial range [27,28].
However, the more general question as to how fibers can be
used as a proxy of other dynamical properties in the inertial
and viscous range remains open. As we demonstrate,
quantitative information of two-point statistics of turbu-
lence can be obtained by tracking the fiber motion in time
and looking at the velocity difference between the fiber
ends. While it is expected that velocity differences at the
fiber ends coincide with flow velocity differences measured
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at the same two ends because of the no-slip condition, the
nontrivial result we reveal here is that the fibers can
measure the undisturbed flow velocity differences. This
discovery unravels the potential of having nonintrusive
measures of two-point properties of turbulence. Fibers
therefore appear as ideal candidates for investigating the
inertial range (IR) of turbulence, as well as the viscous
scales that are usually difficult to access with tracer-based
methods. In this paper, we prove that the motion of rigid
fibers is strongly linked with the turbulent eddy motion,
both in the inertial and viscous ranges and use this to
conceive a novel experimental technique.
Our technique takes advantage of the interconnection

between fiber motion and fluid flow across scales, provid-
ing a novel way to probe inertial velocity structure
functions and the turbulent dissipation rate. Such an
approach was not suggested by previous studies that mostly
focused on small pointlike fibers in turbulence.

C. Outline of the work

In this work, we use rigid fibers to perform measure-
ments of two-point turbulence statistics. From a practical
viewpoint, the choice of rigid, instead of flexible, fibers
comes from the easier fabrication and control of their
physical properties. Moreover, when the fibers are rigid the
data acquisition and processing are strongly simplified. In
the following, we first introduce the theoretical background
providing the basis for the validity of the proposed method
(Sec. II). Our main arguments are validated by means of
direct numerical simulations of a rigid fiber immersed in a
homogeneous isotropic turbulent flow (Sec. III). The
foundations to realize the experimental approach of a fiber
tracking velocimetry technique are introduced in Sec. IV.
In Sec. V, we compare the results obtained through fiber
tracking velocimetry and a benchmark measurement of 3D
particle tracking. We conclude the manuscript with a
summary of the main findings and outline future develop-
ments (Sec. VI).

II. RELEVANT STATISTICAL OBSERVABLES

In this section, we start by providing the essential
concepts and defining the main quantities involved in this
work.
We consider a rigid fiber with length c and diameter d,

such that its aspect ratio (or slenderness) is c=d ≫ 1.
Neglecting gravitational effects (i.e., the Froude number
is assumed to be negligible), the main dimensionless
parameter governing the dynamical behavior of the fiber
is the rotational Stokes number

St ¼ τr
τf

; ð1Þ

which is defined as the ratio between the fiber response (or
relaxation) time τr and the characteristic timescale of the

flow τf, and therefore represents a measure for the inertia of
the dispersed object.
In the simulations, the value of St can either be measured

or estimated. We evaluate the fluid timescale as the time a
fluid particle takes to perform a complete circular trajectory
of diameter c flowing with a velocity δu⊥=2, thus yielding
τf ¼ 2πc=δu⊥. On the other hand, the fiber response time
is obtained by measuring the rotation decay rate of a fiber
initially rotating at a constant angular speed in a quiescent
fluid. An example of the resulting time history is shown in
the inset of Fig. 1, in which an exponential fit is applied to
obtain the response time. The test is performed for four
different fibers of length c ¼ 0.16L and four different
values of the linear density difference Δρ̃. The resulting
Stokes number is plotted as a function of Δρ̃ in the main
figure, showing a linear proportion that is consistent with
the prediction based on the slender-body theory [33].
In the experiments, a similar evaluation of the Stokes

time is not feasible; hence, we choose to estimate the
Stokes number using the semiempirical relation proposed
by Bounoua et al. [28] for rigid fibers in turbulent flows
which reads as

St ¼ 1

48

ρs
ρf

�
d
η

�4
3

�
d
c

�2
3

�
1þ 3

4

�
d
c

�
2
�
; ð2Þ

where η is the Kolmogorov length scale. To examine the
reliability of this relationship, we compare the Stokes
number directly obtained via direct numerical simulations
(DNSs) with the prediction of Eq. (2). Figure 1 shows
that, despite the same scaling being obtained, Eq. (2)

FIG. 1. Stokes number as a function of the linear density
difference evaluated from the numerical simulations. Symbols
and colors represent fibers with different values of Δρ̃. The
dashed line reports the prediction obtained from Eq. (2). The inset
shows the time history of the fiber angular velocity in one of our
numerical tests (solid line) along with the exponential fitting
curve (dashed line).
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overestimates the Stokes number by a factor of approx-
imately 1.5. Note that we are not interested in the exact
value of the Stokes number, but we employ this relation
only to verify that in our experiments St ≪ 1. In this sense,
Eq. (2) provides a precautionary estimation of St.
When tracking the fibers during their motion, we focus

on their rotation rate, which can be decomposed into
spinning and tumbling degrees of freedom [3]. The latter
degree of freedom, in particular, is proportional to the rate
of change of the fiber orientation vector _p. Hence, we can
define the tumbling time as

τtumb ¼ h _p · _pi−1=2 ð3Þ

representing a measure of the characteristic timescale at
which the rigid fiber is moving in the turbulent flow.
For the fluid flow, let us recall some well-known results

from Kolmogorov theory (1941), assuming the case of
homogeneous and isotropic turbulence and initially focus-
ing on the inertial range of scales [1,34]. The first is the
scaling of the characteristic timescale associated with
turbulent eddies of size r (the so-called eddy turnover
time) that can be expressed as

τturbðrÞ ∼ ϵ−1=3r2=3; ð4Þ

where ϵ is the turbulent energy-dissipation rate. Equation (4)
follows from the celebrated 4=5 law, one of the few exact
results available in turbulence, which relates the third-order

longitudinal structure function Sk3ðrÞ ¼ hδu3ki, where h·i
denotes the ensemble average of the longitudinal velocity
increment δukðrÞ ¼ ½uðxþ r; tÞ − uðx; tÞ� · r̂ to the sepa-
ration distance

Sk3 ¼ −
4

5
ϵr; ð5Þ

where r ¼ jrj, and r̂ ¼ r=r is the unit vector along the
separation.
Unfortunately, when dealing with rigid fibers as in the

present work, such a longitudinal projection evaluated using
the fiber velocities is always zero. On the other hand, the
possibility ofmeasuring the longitudinal velocity increments
using flexible fibers has been explored numerically in
Refs. [29,30]. In the rigid case, nevertheless, fibers remain
a good candidate for probing the flow if one focuses on
transverse instead of longitudinal velocity differences, i.e.,
considering the projection of the velocity difference along
an orthogonal direction: δu⊥ ¼ ½uðxþ r; tÞ − uðx; tÞ� · r̂⊥,
with r̂⊥ being a unit vector normal to r [33].Aswe show later,
this relation is valid if the fiber rotational Stokes number is
sufficiently small.
Overall, we argue that, if the resulting tumbling time is

comparable to the eddy turnover time of turbulence at the
same scale, i.e., τtumb ≈ τturbðr ¼ cÞ, then the fiber behaves

as a proxy of turbulence. If this is the case, fiber tracking
can be used to measure the transverse velocity difference
and relevant statistical two-point quantities such as its
probability density function (PDF), as well as the transverse
structure functions S⊥p ¼ hδup⊥i of any order p. Note that, in
homogeneous isotropic turbulence, the Kolmogorov 4=5
law yields a zero transverse third-order structure function
S⊥3 . It then follows that the PDF of the transverse incre-
ments is symmetric (i.e., its skewness is zero, contrary to
the negative skewness of the PDF of the longitudinal
velocity increments). To avoid this trivial result, in the
following we consider S̃⊥3 based on the absolute value of
δu⊥. Note also that, although there is no equivalent
analytical result in the longitudinal velocity increment,
for the second-order transverse structure function, phe-
nomenological arguments lead to [34]

S⊥2 ¼ 4

3
C2ϵ2=3r2=3; ð6Þ

where C2 is the so-called Kolmogorov constant. Such a
quantity generally depends on the particular flow configu-
ration; in the case of homogeneous isotropic turbulence, we
have C2 ¼ 2.1� 0.5 [35]. Furthermore, using S⊥2 we can
refine the expression of the eddy turnover time as

τturbðrÞ ¼
rffiffiffiffiffiffiffiffiffiffi
15
2
S⊥2

q ; ð7Þ

from which it is easy to verify that limr→0 τturbðrÞ ¼ τη ¼
ðν=ϵÞ1=2 [34], η being the Kolmogorov length scale and τη
the Kolmogorov timescale.
Finally, we consider the turbulent energy-dissipation rate

ϵ ¼ 2νhð∂ui=∂xjÞð∂ui=∂xji. For homogeneous isotropic
turbulence, the latter relation reduces to

ϵ ¼ 15

2
ν

��∂u1
∂x2

�
2
�
; ð8Þ

where ν is the kinematic viscosity of the fluid and where the
spatial derivative of the velocity component u1 is performed
along the orthogonal direction x2. While tracking the fiber,
the latter expression can be transposed into the Lagrangian
framework to evaluate the dissipation rate by approximat-
ing the spatial derivative appearing in Eq. (8) with the ratio
between the normal velocity difference measured at the
fiber ends and the fiber length, i.e.,

ϵ ≈
15

2
ν

��
δu⊥
c

�
2
�
: ð9Þ

Note that this approximation holds as long as c is small
enough; in order to provide a reliable measure of ϵ, the fiber
length should be comparable to η.
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III. NUMERICAL EVIDENCE

Before introducing the experimental method, we present
results from fully resolved DNSs where a single rigid fiber
is freely moving in homogeneous isotropic turbulence
(details on the numerical method are given separately in
the Appendix A). Simulations are performed for different
values of the fiber length c and of the Stokes number St (see
Fig. 1). For all the simulations, the Reynolds number based
on the Taylor microscale is equal to Reλ ≈ 92, and the
turbulent dissipation rate (normalized with the root-mean-
square velocity and the box size L) is ϵ ≈ 2.5.
Figure 2 reports the measured fiber tumbling time

normalized with the eddy turnover time (evaluated at the
fiber length scale r ¼ c) as a function of the Stokes number.
We notice that, for sufficiently small St, the curve shows a
horizontal plateau and the ratio becomes nearly unitary,
indicating that the fiber is rotating at the same frequency of
the turbulent eddies. On the other hand, for larger St the
tumbling time is found to be larger than the turbulent
one; i.e., inertia causes the fiber response to be sub-
stantially delayed with respect to the flow variations.
These findings are consistent with those recently reported
by Refs. [27,28,31,36,37] (note that the tumbling time
plotted in Fig. 2 is proportional to the inverse of the square
root of the tumbling rate reported by Refs. [27,28,31]).
For larger St, it is difficult to distinguish a clear scaling,
although a qualitative agreement is present. Note also that
the typical modeling approach makes use of several
simplifications such as neglecting the effect of fiber inertia
and the backreaction of the fibers on the flow (one-way
coupling). In our case, instead, the two phases are fully
coupled and the effect of fiber inertia is accounted for.

In order to exploit the fiber as a proxy of the flow, we
necessarily need to have a sufficiently small Stokes number
so that τtumb ≈ τturb. Here, we choose and retain St ¼ 0.4.
Being this condition satisfied, we compute the second-
order and third-order transverse velocity structure functions
using the velocity difference between the two fiber ends
and compare such a Lagrangian measurement with the
more traditional one based on using the fluid velocity on
the Eulerian grid. The results are shown in Fig. 3, where
three different fiber lengths are used for accessing different
separation distances. A good agreement between the
Eulerian measurements and those obtained from the fiber
tracking is evident.
Next, recalling Eq. (6), we can exploit our data also to

extract the value of the Kolmogorov constant, i.e.,
C2 ¼ S⊥2 =ð4=3ϵ2=3r2=3Þ, which is reported in the inset of
Fig. 3 as a function of the separation distance. The data show
that the fiber-based measurement is comparable within the
uncertainty bounds with the literature results [35].
In Fig. 4, we show the PDF of the transverse velocity

increment computed using the velocity difference between
the fiber ends for different Stokes numbers, along with the
same quantity evaluated in the Eulerian way. The results
show that only those fibers with a sufficiently small St are
able to reproduce the same PDF of the undisturbed carrier
flow, while as St grows the agreement between the
Lagrangian and Eulerian measure gets worse.

FIG. 2. Ratio between the fiber tumbling time [evaluated from
Eq. (3)] and the eddy turnover time at the fiber length scale
[evaluated from Eq. (7)] as a function of the Stokes number.
Colored bullets refer to the simulation data, while colored
triangles are the experimental data. Coloring and symbols
correspond to the values of St used also in the following figures.

FIG. 3. Second-order and third-order transverse velocity struc-
ture functions from DNS (note that S̃⊥3 is computed using the
absolute value of the velocity difference). Solid and dashed lines
indicate the standard Eulerian measurements for S⊥2 and S̃⊥3 ,
respectively, while symbols denote those obtained from Lagran-
gian tracking of fibers with St ¼ 0.4 and different lengths
c=L ¼ 0.16, 0.22, and 0.32. All quantities are made dimension-
less with the box size L and the velocity root-mean-square; S̃⊥3 is
multiplied by 10 to enhance the visibility. The inset shows the
Kolmogorov constant C2 computed according to Eq. (6) using
both methods; the gray area denotes the range of values
determined experimentally by Noullez et al. [35].
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Finally, using Eq. (8) we exploit the fiber to measure the
turbulent dissipation rate. Figure 5 shows the ratio between
the Lagrangian measurement ϵLag and the Eulerian one ϵEul
as a function of the separation distance normalized with the
Kolmogorov length scale r=η. As clearly shown in the
figure, the Lagrangian measurement provides a good
estimate of the correct value of ϵ only for sufficiently
short fibers with c≲ 10η, while it gives a strong under-
estimation for longer fibers.
It is worth noticing that the two fiber ends do not behave

as fluid tracers (also when the condition of small Stokes or
Taylor number is attained) due to the fiber inextensibility
condition. Nevertheless, the effect of fiber inextensibility is

excluded by projecting the end-to-end velocity difference
along a normal direction, thus obtaining the so-called
transverse velocity difference. Moreover, the flow modifi-
cation due to the presence of the fiber turns out to be
negligible provided that the Stokes number is sufficiently
small [33].

IV. EXPERIMENTAL METHOD

In light of the evidence provided by the numerical study,
a laboratory experiment is designed and realized to prove
the actual feasibility of measuring turbulence properties by
the Lagrangian tracking of rigid fibers. The experiment
consists of generating a three-dimensional controllable
turbulent flow within a water tank and suspending rigid
fibers with a small Stokes number. By tracking the fibers’
edge positions in time, the turbulence observables defined
in Sec. II are evaluated and compared with the benchmark
of the PTV results of the flow tracers.
In order to validate the FTV technique in a controlled

environment, an approximately homogeneous and isotropic
turbulence is generated. To this purpose, the same apparatus
employed in Refs. [13,38] is used to force the fluid motion.
This apparatus consists of an aquarium of 120 × 120 ×
140 mm3 filled with water and equipped with a turbulence
generator. The turbulence is sustained by two sets of four
wheels covered by artificial rough elements. The wheels
counterrotate according to the scheme shown in Fig. 6. The
rotation is driven by a closed-loop-controlled servomotor
installed on top of the aquarium. The rough wheels can be
replaced by smooth wheels to generate a flow field with a
lower turbulence intensity [39]. The observation volume,
which is approximately 80 × 80 × 60 mm3, is located mid-
way between the wheels. A coherent laser beam is used to
illuminate the aforementioned field of view from below.

FIG. 4. PDF of the transverse velocity difference for fiber
length (or separation distance) c=L ¼ 0.16. The bullets corre-
spond to the four different fiber linear densities reported in Fig. 1,
while the black solid line is the Eulerian PDF.

FIG. 5. Turbulent dissipation rate (plotted as the ratio between
the Lagrangian and Eulerian measurement) as a function of the
separation distance r normalized with the Kolmogorov length
scale η.

FIG. 6. Schematic representation of the experimental setup:
overview of the aquarium with turbulence generator and obser-
vation volume and enlargement of one of the actuated wheels.
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Four synchronized high-speed cameras are used to record a
stereoscopic view of the observation volume; the data are
stored in real time on two fast-writable hard disks and then
transferred to traditional supports for further analysis.
A complete characterization of the flow field is obtained

using the more traditional PTV technique. For this purpose,
the flow is seeded with white reflective, nonfluorescent,
and neutrally buoyant particles that are tracked using the
open source OpenPTV software [11]. The particles have a
mean diameter of approximately 40 μm, and ten particles
per cm3 are suspended in the flow. The result of this
operation is a series of particle trajectories from which the
Lagrangian velocity and acceleration can be obtained and
finally mapped into a Eulerian grid.
In order to perform fiber tracking velocimetry, 50 fibers

are released into the flow such that their maximum local
concentration is approximately 7.5 × 10−2 fibers per cm3.
Such a dilute configuration ensures that the flow statistics
are not modified by the presence of the dispersed phase.
Two different types of fibers are fabricated: (i) polydime-
thylsiloxane (PDMS) fibers tagged with a fluorescent dye
at the edges and (ii) nylon fully dyed fibers. In both cases,
the fibers’ edge positions and velocities are determined
using the OpenPTV software. When using fully dyed nylon
fibers, a specific image segmentation procedure is applied
to detect the fiber edges in the image space. For a detailed
explanation of the fabrication and tracking procedure, the
reader is referred to Appendixes B and C, respectively.

V. EXPERIMENTAL VERIFICATION

In the following, a complete comparison between the
PTV and FTV technique is carried out for the observables
introduced in Sec. II. The transverse velocity difference
probability density function and the second- and third-order
moment scaling are used as a proxy to check the FTV
reliability within the inertial range of scales. We use the
average turbulent dissipation rate to verify the reliability of
the method in capturing the flow properties at the
Kolmogorov scale. It is important to emphasize that the
experiment is carried out in a setup that allows both
the PTV and FTV techniques in order to test the reliability
of the latter technique.

A. Within the inertial range

Figure 7 shows the PDF of the transverse velocity
differences evaluated both with particles and PDMS fibers.
Here, in order to avoid nonconvergence problems in the
density estimation, some extreme events are discarded
removing data characterized by a low probability of
10−4. As seen from these three PDFs, the FTV provides
results similar to the PTV. In Fig. 8, the second- and third-
order structure functions of the transverse velocity
differences S⊥2 and S̃⊥3 are shown: The results from the

FTV (dark green points) show a scaling behavior that is
comparable to the PTV data. The inset of Fig. 8 shows the
Kolmogorov constant C2 of Eq. (6): The FTV measure
(dark green points) is contained within the range of values
determined by Noullez et al. [35].

B. At the Kolmogorov scale

The average turbulent dissipation rate ϵ is estimated
using nylon slender fibers 3 mm long (shorter than 8η) by
means of Eq. (9). The estimated value is represented by the
green line in Fig. 9, with the error represented by the green
shadow. This estimate is validated using PTV. Since PTV
resolution does not allow a direct estimation of ϵ at the
viscous scales, we estimate ϵ indirectly using the formula

ϵ ¼ −Sk3=ð45 rÞ that holds for each separation within the
inertial range, under the assumption of isotropic turbulence.
The latter condition is approximately satisfied for the flow
we generate. The symbols in Fig. 9 represent the PTV
estimates showing that the FTV value matches the PTV
estimate for r < L: This proves that a small rigid fiber is
able to estimate ϵ.

C. Random sampling and orientation

In order to rule out a possible bias of the statistics due to
inhomogeneous sampling, the fibers must visit the spatial

FIG. 7. PDF of the transverse velocity difference evaluated with
particle tracking (solid lines) and fiber tracking velocimetry
(symbols) for c=L ¼ 0.71 (dark green), c=L ¼ 0.45 (blue),
and c=L ¼ 0.57 (red), where L is the integral length scale.
The distributions are normalized with the variance of the velocity
differences at the corresponding separation evaluated through the
standard 3D-PTV technique. Turbulence is generated by rough
wheels rotating at 400 rpm. The corresponding Reynolds number
based on the Taylor microscale Reλ ¼ 146, while the one based
on the integral length scale ReL ¼ 1410. Other relevant param-
eters are summarized in Ref. [40].
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domain uniformly and stay randomly oriented. To check
that the fibers sample the whole domain homogeneously,
we analyze the normalized bin-counting histogram of the
fiber position that is an empirical estimator of the proba-
bility to observe a fiber at a given location. Figure 10 shows
that the fibers visit the whole domain in a homogeneous
way, both considering the plane orthogonal [Fig. 10(a)] and
parallel [Fig. 10(b)] to the main camera direction. By
analyzing the probability of the cosine of the angle between
the laboratory coordinates (xi) and the fiber orientation
vector (r̂ ¼ r=jrj), we demonstrate [Fig. 11(a)] that the
fibers are on average randomly oriented. Figure 11(b)
shows the probability obtained by conditioning the analysis
to one of the edges of the observation volume, where the
flow is significantly inhomogeneous due to the vicinity of
the impellers. No significant differences between the
orientation probability measured in the whole domain
and close to the impellers are appreciated, implying that
the fibers sample the whole range of directions. There is
some scatter due to limited statistics of a single experiment
and when conditioning on a subvolume of the domain.
Other experiments (not shown) display similar scatter and
no preferential orientation.

D. Alignment between the fiber and the flow

Random orientation and distribution in the observation
volume does not imply that the fibers do not preferentially
align with the local flow. We investigate this aspect by
linking the local flow field to the fiber orientation. To this
end, we perform an experiment in which fibers whose
length falls into the inertial range of turbulence and tracer
particles are tracked simultaneously (see Appendix C for a
detailed discussion on the tracking technique). We measure
the strain-rate principal directions in a Lagrangian frame of

FIG. 8. Second-order and third-order transverse velocity
structure functions from experiments (note that S̃⊥3 is computed
using the absolute value of the velocity difference). Solid and
dashed lines indicate the standard particle tracking measure-
ment for S⊥2 and S̃⊥3 , respectively, while symbols denote those
obtained from Lagrangian tracking of the fibers. The bars
represents the error related to the velocity measurement. All
quantities are made dimensionless with the integral scale L and
the velocity root-mean-square; S̃⊥3 is multiplied by 10 to
enhance the visualization. The inset shows the Kolmogorov
constant C2 computed according to Eq. (6) using both methods;
the gray area denotes the range of values determined exper-
imentally by Noullez et al. [35]. Turbulence is generated by
rough wheels rotating at 400 rpm.

FIG. 9. Comparison between the turbulence dissipation rate
evaluated with FTVand PTV. The green line represents the value
obtained by Eq. (8) from the nylon fibers, and the green shadow is
the relative tracking error. The black triangles are evaluated
through the PTV data as ϵ ¼ −Sk3=ð45 rÞ, relying on the turbulence
isotropy. The bars represent the error related to statistical
convergence. All quantities are made dimensionless with the
integral scale L and the root-mean-square velocity. The turbu-
lence is generated by smooth wheels rotating at 150 rpm
(a complete characterization of the turbulence properties gen-
erated by smooth wheels can be found in Ref. [39]).
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FIG. 10. Probability of the fiber positions from one of the
experiments. The x1-x2 plane (a) and x1-x3 plane (b) are,
respectively, orthogonal and parallel to the main camera direc-
tion. The fiber length is c=L ¼ 0.76, and the turbulence is
generated by rough wheels rotating at 400 rpm.
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reference attached to the fiber center at a scale larger than
the fiber length. The spatial velocity derivatives along
trajectories are evaluated following the approach proposed
by Lüthi et al. [17] for particle tracers that consists of
considering all the tracers inside a sphere of given diameter
centered at the fiber center of mass. Figure 12 shows
negligible alignment with the principal strain directions for
inertial range fibers. The inset shows the well-known
vorticity-strain preferential alignment of the velocity field
[41,42], which confirms the reliability of our coarse-

grained strain-rate-tensor evaluation. Some evidence of
alignment between either rigid [31] or flexible [43] fibers
with length within the inertial range with the local flow is
documented and is thought to be at the origin of the
spinning of long rigid fibers [44]. Pujara et al. [31] and
Picardo et al. [43] numerically tracked infinitely slender
passive fibers in an undisturbed turbulent flow field, hence,
neglecting the full dynamics arising from the two-way
coupled interaction between the fiber and the flow.
Conversely, in our experiments and simulations, the fiber
actively modifies the surrounding flow, possibly explaining
some of the differences. Moreover, as we explain above,
since the local flow is modified by the presence of the fiber,
in our work the strain-rate tensor is coarse grained at a scale
somewhat larger than the fiber length. This may lead to a
weakening of a possible alignment between the fiber and
the flow. Notwithstanding, Fig. 12 displays a slight
tendency of the fiber to align with ê1 and antialign with
ê3, which is consistent with the one documented in
Refs. [31,43]. With regard to short fibers (shorter than
8η), we know from the experiments by Ni et al. [45] that
preferential alignment between the fiber orientation and the
main strain direction ê1 occurs. However, we show above
by DNSs and experiments that this alignment does not
significantly bias the measurement of the observable under
consideration, namely, the average turbulent dissipation
rate. We also note that Ni et al. [45] showed that the average
tumbling rate (proportional to ϵ) is underestimated by at
most 20% when conditioning the statistics only to fiber
perfectly aligned to the main strain direction. This fact
indicates that an accurate measurement of the average
turbulent dissipation rate is still feasible despite some
preferential alignment.

VI. SUMMARY AND PERSPECTIVES

We combine fully resolved direct numerical simulations
and accurate laboratory experiments to show how rigid
fibers can be used to measure two-point statistics of
turbulence. This conclusion holds true for both spatial
and temporal observables. For a fiber to be a proxy of
turbulence eddies, two simple conditions must be fulfilled:
(i) The fiber length has to be comparable to the size of the
eddy under consideration (i.e., the fiber length has to
belong to the inertial range of scales), and (ii) the fiber
inertia has to be negligible. Once both conditions are
satisfied, the fiber velocity difference evaluated at the
two fiber ends projected along a transverse-to-fiber direc-
tion, is statistically equivalent to the unperturbed (i.e.,
evaluated in the absence of the fiber) flow transverse
velocity difference computed at the scale of the fiber.
To be more specific, the numerical part of this study

reveals how the PDF of the fiber-based transverse velocity
excursions between points separated in space by a distance
within the inertial range of scales matches the same
observable obtained via standard Eulerian measurements

(a) (b)

FIG. 11. PDF of the cosine of the angle between the lab
coordinates xi and the fiber orientation unit vector r̂ ¼ r=jrj for
the whole observation volume (a) and conditioned on the region
in the vicinity of the impellers (x=L < 0.71) (b). The axis x3

points toward the main camera direction, while x1 and x2 are
orthogonal to it. The fiber length is c=L ¼ 0.76 and the
turbulence is generated by rough wheels rotating at 400 rpm.

FIG. 12. PDF of the cosine of the angle between the strain-rate-
tensor S eigenvectors êi, and the fiber orientation unit vector
r̂ ¼ r=jrj; the eigenvectors êi are associated with the eigenvalue
λi, such that λ1 ≥ λ2 ≥ λ3 (green, blue, and red lines, respec-
tively). The inset shows the PDF of the cosine of the angle
between the strain-rate-tensor eigenvectors and the vorticity
direction. The fiber length is c=L ¼ 0.57, while the scale Δ at
which S is measured is Δ=L ¼ 0.86. The turbulence is generated
by rough wheels rotating at 400 rpm.
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of the unperturbed flow field. We find a similar agreement
by comparing the second- and third-order structure func-
tions of the unperturbed flow velocity field with the same
observables built by measuring the fiber end velocities.
It is worth emphasizing that the above conclusions are

not a trivial consequence of the no-slip condition imposed
on the fiber. The no-slip condition indeed trivially imposes
that all points of the fiber move at the same velocity of the
flow. However, because the fiber does not evolve as a tracer
(owing to the fiber inextensibility condition and, in general,
to its finite inertia), the flow velocity is locally modified by
the presence of the fiber. The nontrivial finding here is that
within the assumptions above, the backreaction of the fiber
to the flow along a transverse direction is negligible, so that
one can consider the transverse fiber-based velocities equal
to the local transverse flow velocity.
Fibers also allow one to access the temporal properties of

turbulence eddies belonging to the inertial range of scales.
In this respect, we show that the eddy turnover time at a
given spatial scale, say, r, can be easily measured by
analyzing the tumbling time of a fiber of length r measured
along the Lagrangian trajectories. The two times match,
provided that the fiber inertia is sufficiently small.
Considering sufficiently short fibers belonging to the

viscous range, we show through DNS that transverse fiber-
based velocity increments can be used to build transverse
fiber-based velocity derivatives if the two following con-
ditions apply: (i) the fiber inertia is sufficiently small and
(ii) the fiber length is shorter than approximately 8η.
Furthermore, we show that these quantities are what one
needs to measure the flow energy-dissipation rate in terms
of our fiber-based measurements.
Our numerical study thus suggests the possibility of

tracking rigid fibers as a convenient alternative to measure
two-point statistical properties of turbulence in the inertial
range of scales as well as flow-field derivatives along the
transverse direction of the fibers in the viscous subrange.
We take up the challenge and carry out laboratory experi-
ments with custom-made polymeric fibers in a turbulent
flow. The results fully confirm the scenario from the
numerical analysis and also give birth to a new technique
termed FTV capable of easily and economically accessing
two-point statistics of turbulence.
The latter possibility appears of paramount importance

in experimental turbulence because of the different reasons
we discuss below. The advantages of using fibers instead of
particles as Lagrangian tracers in measuring turbulent flows
depend on the particular measurement one wants to under-
take. In the laboratory environment, the measurement of
large-scale turbulence statistics by using tracer particles is
feasible and convenient: Indeed, when considering an
enclosed domain (such as a water tank), the tracer
dispersion hardly prevents obtaining convergent statistics.
However, when investigating small-scale properties of the
flow, the measurements get extremely problematic. In fact,

to increase the flow-field resolution by simple particle
tracking, one needs to increase the concentration of tracer
particles. If the particles are uniformly distributed in a fixed
observation volume, the average separation between par-
ticle couples decreases as the inverse of the cube root of the
particle concentration. In other words, to increase 10 times
the flow-field resolution, 1000 times more particles are
needed, resulting in a technologically insurmountable
obstacle. In conventional particle-tracking experiments, a
limit of approximately 103–104 tracer particles simultane-
ously present in the field of view is imposed mainly by
ambiguities of particle positions arising from particle image
overlap on the image chip of the camera. Ambiguities can be
tolerated to a certain extent; they become, however, pro-
hibitive with further increase of the seeding density. To
evaluate dissipation, classical approaches rely on the local
velocity gradient tensor that is estimated using several
particles within a Kolmogorov size volume. The higher
the turbulence intensity, the greater the flow-field resolution
needed to investigate small-scale flow structures resulting in
a bottleneck when measuring high Reynolds number flows.
The novel approach we propose here allows us to

measure spatial derivatives along the fiber trajectory look-
ing also at its orientation other than at the position. In
principle, this approach can be followed through FTV
without increasing the tracer concentration in extremis
using only one fiber. Moreover, recent numerical findings
[33] demonstrate the possibility of measuring the instanta-
neous velocity gradient tensor by means of suitable
assemblies of rigid fibers, representing a potential tipping
point in the field of experimental turbulence.
By measuring the two-point statistics within the inertial

range, we prove the FTV reliability to measure finite-scale
velocity differences. In this regard, fibers of different
lengths can be considered as a proxy of the celebrated
Richardson cascade: When having sufficiently small iner-
tia, the fiber is captured by the whirls, becoming a
Lagrangian tracer that moves as the eddies of its own size.
In a laboratory environment, finite-size fibers may not

always be more handy to measure inertial range scaling
laws than traditional tracer particles. However, the advan-
tages related to FTV become fully relevant when consid-
ering field measurements in unbounded domains, such as
the ocean and the atmosphere. There, the natural tendency
of tracers to increase their mutual distance (by virtue of
Richardson’s law) precludes easy measures of small-scale
two-point turbulence statistics. The brute-force approach
consisting of increasing the number of available tracers to
ensure a given separation to be always covered by the
Lagrangian points is not realizable in practice. In the ocean,
a tracer is indeed a buoy, which is costly, thus preventing
massive use. We thus expect our method to find broad
application and to provide improved statistics of turbulence
in environmental flows that are of paramount importance
for weather and climate predictions.
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APPENDIX A: NUMERICAL SIMULATIONS

Here we provide additional information on the numerical
simulations whose results are presented in Sec. III.
Direct numerical simulations of sustained homogeneous

isotropic turbulence in a three-periodic domain are per-
formed with rigid fibers suspended within. The fluid flow is
governed by the incompressible momentum and continuity
equations

∂u
∂t þ u · ∇u ¼ −

1

ρf
∇pþ νΔuþ ffor þ ffib; ðA1Þ

∇ · u ¼ 0; ðA2Þ

where uðx; tÞ and pðx; tÞ are the fluid velocity and pressure
fields, ρf and ν are the fluid volumetric density and
kinematic viscosity, and ffor and ffib are forcing terms
used to sustain turbulence and model the presence of the
suspended fibers [29,30]. In particular, the turbulent flow is
sustained using the spectral forcing scheme by Eswaran
and Pope [46], where energy is injected randomly at low
wave numbers (in our case, within a spherical shell with
radius k ¼ 2) by means of a Ornstein-Uhlenbeck process.
The fiber dynamics is governed by the Euler-Bernoulli

beam equation and by the inextensibility constraint

Δρ̃
∂2X
∂t2 ¼ ∂

∂s
�
T
∂X
∂s

�
− γ

∂4X
∂s4 − F; ðA3Þ

∂X
∂s ·

∂X
∂s ¼ 1; ðA4Þ

whereXðs; tÞ is the position of the fiber point as a function
of the curvilinear coordinate s and time t. In the previous
equations, Δρ̃ ¼ ρ̃s − ρ̃f is the difference between the
linear density of the fiber and the fluid one, T is the
tension needed to enforce the fiber inextensibility, and γ is
the fiber bending rigidity (for a homogeneous fiber, it is the
product of the elastic modulus and the second moment of
the area). When γ is chosen to be very large, the fiber
behaves effectively as a rigid one, i.e., with negligible
deviation of its end-to-end distance from the nominal fiber
length. Finally, F is the fluid-structure coupling term. Since
we consider dispersed fibers, freely moving boundary

conditions are imposed at both ends, i.e., ∂ssXjs¼0;c ¼∂sssXjs¼0;c ¼ Tjs¼0;c ¼ 0.
The fluid and fiber are coupled by an immersed

boundary method where the no-slip condition _X ¼
u½Xðs; tÞ; t� is enforced by means of a singular force
distribution [47]. In particular, we use the method originally
proposed by Huang et al. [48] and later modified by Banaei
et al. [49]. At each time step, the fluid velocity at the
position of the fiber point U ¼ u½Xðs; tÞ; t� is found by
interpolating the values of u at the nodes of the Eulerian
grid surrounding the Lagrangian point

U½Xðs; tÞ; t� ¼
Z

uðx; tÞδ(x −Xðs; tÞ)d3x; ðA5Þ

where the δ is the Dirac delta function. The interpolated
velocity U is used to compute the fluid structure forcing

Fðs; tÞ ¼ κðU − _XÞ; ðA6Þ

where κ is a large negative constant [48]. Finally, F is
transferred to the fluid as

ffibðx; tÞ ¼
1

ρ̃f

Z
s
Fðs; tÞδ(x −Xðs; tÞ)ds: ðA7Þ

Both the interpolation and spreading operations feature the
Dirac operator, which in our numerical simulations is
transposed into the regularized δ function proposed by
Roma et al. [50].
The problem is solved numerically using the fractional

step method on a staggered grid with the second-order
finite-difference scheme in space and the third-order
Runge-Kutta scheme in time [51]. Additionally, the
Poisson equation enforcing the incompressibility constraint
is solved using the fast Fourier transform. Specifically, we
employ the same numerical procedure already used for
moving and deforming filaments in laminar or turbulent
flows in Refs. [29,30,33,49,52], to which the reader is
referred for further information.
Simulations are performed using a Cartesian uniform

mesh in a rectangular triperiodic box of size L ¼ 2π, with
128 grid points per side. The grid size is sufficient to
resolve an inertial range of scales clearly showing the
Kolmogorov 4=5 law. Doubling the resolution in all
directions leads to a negligible change of the results.

APPENDIX B: FIBER FABRICATION

Hereafter, we describe the two methodologies we
employ to fabricate the polymeric fibers. Both are con-
ceived to be low cost and do not need specific lab
equipment. The first method consists of producing fibers
tagged with a fluorescent dye at their edges, allowing us to
track them by applying optical filters to the cameras. The
second method consists of using fully dyed fibers, whose
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edges can be tracked resorting to a customize image
segmentation procedure. In both cases, the fibers are
characterized by a high rigidity and strength in comparison
to the flow forcing. The main limitation of the first
methodology is that only slender fibers longer than
5 mm can be easily fabricated using low-budget lab
equipment, while the second methodology allows us to
handcraft nylon fibers that can be even shorter than 2 mm.
Notwithstanding, the first methodology allows a greater
accuracy in the fiber tracking procedure.

1. Fibers with dyed edges

We start by detailing the procedure developed to produce
rigid fibers tagged with fluorescent dye at their ends
suitable for tracking their edges and measure transverse
velocity differences between them. The chosen material is
PDMS, whose physical properties are listed in Table I,
while for the fluorescent dye, we use rhodamine B. PDMS
is suitable for our purposes since it is characterized by
similar density as water, thus making the fibers almost
neutrally buoyant. Moreover, PDMS has a refractive index
similar to water; hence, the fiber body is almost transparent
when immersed in the fluid while the edges are still visible
(Fig. 13). In addition, the diffusion process of rhodamine B
in the PDMS matrix is slower than the polymerization,
meaning that it is possible to dye only a certain part of a
PDMS sample without deeply penetrating into the matrix.
The standard procedure to produce PDMS samples consists
of mixing an elastomer with a curing agent (ratio 10=1) by
stirring the solution for at least 10 min; the preparation is
then desiccated in a vacuum chamber and placed in a Petri

dish. If any bubbles form while the solution is poured, a
pipette can be used to burst them out. Finally, the mixture is
baked in an oven at 80 °C for at least 3 h. In our case, to
produce fibers with the ends tagged by the fluorescent dye,
we modify the standard protocol and perform the following
procedure:
(1) Two different beakers of PDMS samples are brought

to the liquid state, one of pure PDMS and the other
mixed with rhodamine B.

(2) A first thin layer of rhodamine-dyed PDMS is
poured in a Petri dish and baked in the oven for
15 min to obtain a solution not completely cured.

(3) A second thicker layer of pure PDMS is added on
top of the first, and the overall sample is cooked for
additional 2 h. At this point of the procedure, the first
layer is completely cured.

(4) A third rhodamine-dyed PDMS layer is added, and
the whole sample is cooked for at least 1 h to ensure
its complete polymerization.

(5) The sample is pierced through the layers using a
special cylindrical puncher to pull out the fibers.

Note that the baking times are shortened and optimized to
prevent the PDMS solution from completely curing before
the addition of the following layer. With this modifica-
tion, the above layer can stick to the lower one without
allowing the dye to diffuse in the pure PDMS layer. By
following this protocol, three-layered fibers are obtained.
Overall, from a single sample of about 10 × 10 cm2, it is
possible to punch more than 200 fibers. The fiber length c
can be controlled by changing the thickness of the middle
layer. In this work, c varies from 6 to 11 mm. The diameter
can be controlled by changing the puncher size. In our case,
we produce fibers with diameter d ¼ 1 mm, which is
sufficiently large to ensure an essentially rigid behavior
and a sufficient slenderness c=d ≫ 1.

2. Fully dyed fibers

Fully dyed fibers are fabricated by cutting a white
reflective nylon string. While the fiber diameter is fixed
by the nylon string thickness, the fiber’s length can be
controlled in the cutting phase. The physical and mechani-
cal properties of nylon are also listed in Table I. This
material is chosen because of its availability; moreover, its
extremely high Young’s modulus ensures the fibers rigidity
even with small diameters. Since nylon mass density differs
significantly from water, a suitable amount of salt has to be
dissolved in water to achieve the neutral buoyancy. In
addition, nylon has a refractive index that is strongly
different from water; consequently, nylon fibers are well
visible when illuminated by the laser light.

APPENDIX C: FIBER TRACKING TECHNIQUE

The position and orientation of each fiber is determined
assuming that they are rigid and almost one-dimensional

TABLE I. Physical properties of the employed material. The
table reports the volumetric density ρs, the Young’s modulus E,
the Poisson ratio νP, the ultimate tensile stress σu, and the
refractive index IR. Triple dots indicate dimensionless quantity.

ρs kgm−3 E MPa νP � � � σu MPa IR � � �
PDMS 965 0.360 ÷ 0.870 0.5 2.24 1.4
Nylon 1140 200 ÷ 400 0.41 82 1.53

FIG. 13. Detail of three fibers as seen through optical filters;
only the dyed edges are visible. A threshold of 5 by 5 pixels in the
x and y directions, as indicated in the upper left corner of the
panels, is imposed on the pixel cluster size to exclude dust or
small residual particles.
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bodies; consequently, only two distinct points are needed to
determine its position and orientation. In order to discern
unequivocally two points of the fiber, its edges are
considered, and their coordinates determined using the
OpenPTV algorithm. When multiple fibers are present in the
same image sequence, a proper postprocessing routine
(programmed in MATLAB) is used to distinguish each
single fiber.
To determine the edge coordinates in the image space,

two different methodologies are employed: The first one is
suitable to track transparent fibers tagged at the edges with
a fluorescent dye, while the second one allows us to define
the edges position when using fully dyed fibers.

1. Edge detection by optical filters

The first method employed to determine the edges
coordinates in the image space is inspired by Klein et al.
[53], Bellani et al. [54], and Bordoloi and Variano [55],
who immersed tracer particles inside hydrogel spheres and
cylinders to determine their angular velocity performing
PIVanalysis on the embedded tracers. Similarly, we tag the
edges of the fibers with a fluorescent dye and perform
standard PTV to track their position. By shielding the
cameras with optical filters that remove the laser-light
frequency, only the fluorescent edges remain visible. Three
snapshots of a camera image are shown in Fig. 13: Some
impurities (probably stemming from small fluorescent
tracer particles from previous experiments) are still visible.
Since the edges are considered particle clusters by the
OpenPTV software, a threshold on the pixel cluster size
may be adopted to ensure the correct detection of the fiber
edges only. By adopting a suitable postprocessing algo-
rithm (see Ref. [17]), the Lagrangian velocities at the two
fiber ends are evaluated. Eventually, only the couples of
points located at a distance that is the fiber’s length (known
a priori) are considered. Mismatches are still possible when
couples of edges belonging to two distinct fibers are
separated by the fiber length. Notwithstanding, this case
is unlikely because the maximum local concentration is
extremely low; hence, this potential error does not affect the
statistics significantly.

2. Edge detection by customized image segmentation

OpenPTV allows us to employ a customized image
segmentation when defining the particle position in the
image space. Providing to the software the position of the
fiber edges and centers in the image space, it is possible to
perform detection and tracking considering them as par-
ticles. Figure 14(a) shows detail of an image of fully dyed
fibers as it is recorded. The image segmentation process
consists of the following steps: (i) A time-mean filter is
applied to subtract the (static) background light to the
image sequence. (ii) The contrast is stretched to evidence
the fibers, and the images are binarized to detect the pixel
clusters. (iii) Clusters smaller than a threshold are discarded

in order to remove eventual dust or small particles, while on
pixel clusters representing the fibers, an ellipse is fitted.
(iv) The major and minor axes and the centroid are
evaluated for each fiber: The centroid is the fiber geometric
center, while the vertices of the ellipse represent the edges.
From the segmented images, both the trajectories of the
fibers’ centers and the edges can be determined independ-
ently with OpenPTV.
The two methodologies present advantages and draw-

backs. The first method allows us to track only the fiber
edges; however, being based on optical principles, there is
no need for tuning additional parameters. Conversely, in the
second methodology, one needs to adjust the segmentation
parameters to the light condition, which changes signifi-
cantly between different experiments and camera position

FIG. 15. Schematic representation of the simultaneous fiber-
particle tracking system. Four synchronized cameras are em-
ployed, three of which for particle tracking velocimetry, while the
fourth equipped with an image splitter and a green-cutting-off
filter records the motion of the fibers. The image splitter consists
of four plate mirrors that project the reflection of the observation
volume from different viewpoints on a pyramidal mirror and
subsequently onto the camera sensor.

FIG. 14. Detail of a raw image in which fully dyed fibers are
visible; (a) shows the original image, while in (b) the red dots
highlight the fibers’ centroids, and the green dots the fibers’ edges.
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and orientation. However, by the use of customized image
segmentation, it is possible to track very small fibers (in our
experiments, slightly shorter than 3 mm). This allows us to
investigate the behavior of fibers close to the Kolmogorov
length scale. Indeed, here it is not necessary to optically
distinguish the two fibers’ edges, but only an elongated
pixel cluster. Moreover, the handcrafting of extremely short
and slender PDMS fibers tagged with dyed edges is
technologically challenging.

3. Simultaneous fiber and tracer tracking

To analyze possible preferential alignment with the local
flow, simultaneous fiber and tracer-particle tracking is
employed. To track fibers and particles simultaneously,
we adopt a setup inspired by the one used by Ref. [39].
Four synchronized cameras are employed, three of which
are used to track the particle tracers, while the fourth is
equipped with an image splitter, namely, an optical arrange-
ment that allows stereoscopic imaging using one single
camera (see Fig. 15). The fourth camera is shielded with an
optical filter, so that, as in the previous experiment, only the
fluorescent fiber edges are visible.
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