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ABSTRACT: We propose a unified description of two important phenomena: color confine-
ment in large-N gauge theory, and Bose-Einstein condensation (BEC). We focus on the
confinement /deconfinement transition characterized by the increase of the entropy from
NO to N2, which persists in the weak coupling region. Indistinguishability associated
with the symmetry group — SU(N) or O(N) in gauge theory, and Sy permutations in
the system of identical bosons — is crucial for the formation of the condensed (confined)
phase. We relate standard criteria, based on off-diagonal long range order (ODLRO) for
BEC and the Polyakov loop for gauge theory. The constant offset of the distribution of
the phases of the Polyakov loop corresponds to ODLRO, and gives the order parameter
for the partially-(de)confined phase at finite coupling. We demonstrate this explicitly for
several quantum mechanical systems (i.e., theories at small or zero spatial volume) at weak
coupling, and argue that this mechanism extends to large volume and/or strong coupling.
This viewpoint may have implications for confinement at finite N, and for quantum gravity
via gauge/gravity duality.
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1 Introduction

In this paper we point out a hitherto unnoticed connection between two important phase
transitions: Bose-Einstein condensation (BEC) [1] and the confinement/deconfinement
transition [2, 3] in large-N gauge theories.

Throughout this paper, we adopt a characterization of confinement and deconfine-
ment by the increase of energy and entropy from order N° to N? (for fields in the adjoint
representation), or to N (for fields in the fundamental representation). There are two
important motivations to consider the confinement/deconfinement transition in this sense.
First, in the context of gauge/gravity duality, a detailed understanding of this transition
may provide important insight on how information about the spacetime geometry is en-
coded on the gauge theory side. The confined and deconfined phases are considered to
describe the vacuum and black hole geometry on the gravity side, respectively [4]. Sec-
ond, this characterization may lead to a new way of understanding the more traditional
‘dynamical” confinement [5] defined in terms of the existence of a linear potential between
probe quarks. This approach was pioneered in refs. [6, 7] in which gauge theories defined
on a spatial sphere are considered. It was shown that the confinement characterized by



the N-dependence of the free energy carries over to weak or even vanishing coupling, and
small or vanishing spatial volume, where the system and the transition can be described
analytically.! For finite interaction and large volume, the confinement defined by the two
characterizations are expected to coincide, as argued e.g. in [8].?

The purpose of this paper is twofold. First, we obtain a better understanding of the
mechanism behind the confinement/deconfinement transition in the weakly-coupled regime
by exploiting the connection to the physics of BEC. As concrete and solvable examples, we
consider SU(N) Yang-Mills on a small three sphere, the gauged O(NN) vector model on a
small two-sphere, and a system of N identical bosons. While all those examples are essen-
tially quantum mechanics rather than quantum field theory,® the underlying mechanism
we identify is applicable to quantum field theory as well. Second, we consider the problem
of extending the understanding at weak-coupling to the strongly-coupling regime. Here,
the analogy to BEC provides us with new insight on the order parameters which may be
used to discriminate the confined and the deconfined phases for all values of the coupling.

The key concept underlying the connection between confinement and BEC is the idea
of partial confinement recently introduced in refs. [11-15]. In the partially-confined phase?
of Yang-Mills theory, only the degrees of freedom associated with the M x M submatrix
(red region in figure 1) are deconfined, whereas the remaining degrees of freedom (blue
region in figure 1) are confined.® In this sense, the confined and deconfined sectors co-
exist in the space of colors, and thermodynamic quantities, for example entropy, in the
partially-confined phase can be understood as a sum of two terms associated with the two
components, i.e. the confined and the deconfined sectors. In refs. [11, 15], the existence of
a partially-confined phase was demonstrated for several weakly-coupled theories by explic-
itly counting the states contributing to thermodynamic quantities. It was further shown
in refs. [11, 15] that, for weakly coupled theories, the confined degrees of freedom are in
their ground state. Thus, as we will elaborate in section 2, the confinement /deconfinement
transition has the following characteristic features:

1. The transition occurs even in the weak-coupling limit which can capture important
parts of the physics of the transition in strongly-coupled systems.

'For asymptotically free theories, the small volume limit and the weak coupling limit are identical.

2In order to extract lessons applicable to the strong coupling regime from weak-coupling calculations, the
crucial assumption is that the strong- and weak-coupling regions are smoothly connected without any phase
boundary. Whether such a phase boundary is absent or not is model dependent. For some models, the
comparisons with strong coupling results obtained via holography and/or lattice simulation gave credible
support to the absence of the phase boundary; see e.g. refs. [9, 10]. For an elaboration on this point, see
the discussion section.

3For quantum field theory compactified on a small sphere where nonzero-momentum modes can be
integrated out, the effective theory of zero-momentum modes is essentially quantum mechanics.

4Whether to call this phase partial confinement or partial deconfinement is of course purely a matter of
taste. In this paper, we prefer to use the term partial confinement, since it parallels the term Bose-Einstein
condensation.

SHow partial confinement is reconciled with gauge invariance is explained in detail in ref. [11]. See also
section 2.1.



deconfined

M N-M Nr

M ' deconfined

N-M j I confined

Figure 1. Partial confinement in the gauge sector with adjoint matter (left) and vector matter
(right). The elements shown in blue are confined, whereas the elements shown in red are deconfined.
These figures are taken from ref. [11]. Partial confinement can be defined in a gauge-invariant
manner. For details, see section 2.1, around eq. (2.1).
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2. In the (partially) confined phase, a large fraction of the degrees of freedom falls into
the ground state (the confined sector).

3. The ground state and the excited states (the deconfined sector) coexist and ther-
modynamics can be understood from the point of view of a system with these two
components.

Furthermore, as we will show in section 3, partial confinement also has the following feature:
4. Positive interference due to the gauge symmetry is the key mechanism of confinement.

The crucial element of our proposal is that precise counterparts of the above features
exist for BEC. Namely:

1. The transition occurs even in the weak-coupling limit (the ideal Bose gas) which can
capture important parts of the physics of the transition in strongly-coupled systems.

2. In the condensed phase, a large fraction of particles fall into the ground state (the
Bose-Einstein condensate).

3. The system consists of particles in the ground state and excited states. The thermo-
dynamic properties can be understood from the point of view of a system with these
two components.

4. Positive interference due to the permutation symmetry is the key mechanism of con-
densation.

A standard example of BEC with non-vanishing interactions is the superfluidity of
4He. The confined and deconfined sectors in Yang-Mills theories correspond to super- and
normal-fluid components, respectively. One may find it surprising that the weak-coupling
calculation of 4d Yang-Mills [6, 7] captures the essence of strongly-coupled dynamics ob-
tained by lattice simulation or holography. From our new point of view, this parallels the



fact that a good part of the characteristic features of superfluidity in *He, which is inter-
acting via the van der Waals force, can be understood starting with the free theory, as first
pointed out by F. London [16].

The connection between confinement and BEC becomes particularly transparent in
a model that is almost tailor-made for this purpose: the gauged O(N) vector model. In
section 2, we show how confinement in this model [17] is related to confinement in Yang-
Mills, and to BEC in a system of N identical bosons, focussing on the essential features
1.-3. listed above.

Once appreciating the analogy explained in section 2, it is straightforward to uncover
the common mechanism behind confinement and BEC: the indistinguishability (or equiv-
alently, the redundancy) of states due to gauge symmetry or permutation symmetry leads
to a parametrically large enhancement of the ground state, known as Bose enhancement
or positive interference of the ground-state wave function. We will explain this mechanism
in section 3, and find a precise, quantitative characterization of this interference effect in
section 4.

As is well-known, the finite temperature system is described by the Euclidean path
integral with the compactified temporal direction. The Polyakov loop P is defined by the

gauge covariant path ordered exponential P = Pef Aodt

along a closed path extended in the
temporal direction. (The trace of P is also called Polyakov loop.) Since the path ordered
exponential is a unitary matrix, its eigenvalues, which are of course gauge invariant, are
phase factors of the form e (j=1,---,N). Later we will use the density of these phases
p(0) in the large-N limit. P and p can depend on the spatial position of the temporal
loop. When used as the order parameter for the confinement/deconfinement transition,
usually the spatial average is considered. In this paper we consider the Polyakov loop in
the fundamental representation. There is a deep connection to a class of phase transtions
characterized by the behavior of the Polyakov loop, first advocated by Gross, Witten [18]
and Wadia [19, 20] (the GWW transition). That is, the description of a system of identical
bosons as a theory with Sy gauge symmetry permits a straightforward definition of a
Polyakov loop, and we show that the formation of a BEC can also be interpreted as a GWW
transition.® Therefore, both confinement and BEC are characterized by the change of the
distribution of the phases of Polyakov loop. We will further show that this characterization
of the transition based on the Polyakov loop is closely related to the more traditional
characterization based on off-diagonal long range order (ODLRO) [21, 22]. This argument
readily generalizes to Yang-Mills models as well. In particular, for an ideal Bose gas, we
prove explicitly that ODLRO and the criteria based on the Polyakov loop are equivalent.

In section 5 we discuss possible applications to quantum gravity via holography and
confinement in finite-N theories.

Throughout the paper, we set the Planck constant A and Boltzmann constant kg to
be unity.

SHere we define the ‘GWW transition’ by the disappearance of the gap in the distribution of Polyakov
loop phases. Other details of the phase transition, including the order of transition, depend on model-
specific details such as the dimension and matter content. Note that the original context of the GWW
model (arising from the 2D Yang-Mills theory) is not relevant in our discussion.



2 The correspondence in the weak-coupling limit

Let us commence our analysis at zero coupling. First, we provide the necessary background
on partial confinement in Yang-Mills theory in section 2.1. The gauged O(N) vector model
is particularly well suited to establish the connection between confinement in Yang-Mills
and BEC, and we will introduce it in section 2.2. We will close the section by explaining
BEC in the system of identical bosons in section 2.3. These three examples form the basis
of the connection between confinement and BEC. The common underlying mechanism will
be explained in section 3.

Note that section 2.1 and section 2.2 are based on ref. [11], and section 2.3 explains
well-known established results. We will present the known results in such a way that the
unknown connection is revealed.”

2.1 Yang-Mills theory at weak coupling

As a typical example of the confinement/deconfinement transition in large-N Yang-Mills
theory, we consider finite temperature pure Yang-Mills theory defined on the space S? with
the gauge group SU(N). We consider the free limit of pure Yang-Mills theory, which is solv-
able analytically [6, 7]. As we have mentioned in the introduction, and as we will explicitly
demonstrate, partial confinement takes place even in the free limit and the free theory cap-
tures important features of the confinement/deconfinement transition. See e.g. refs. [9, 10]
regarding the resemblance between weak- and strong-coupling regions. Most of the dy-
namical degrees of freedom can be integrated out, since they become massive due to the
compactness and the curvature of S®. In this way, an effective action for the phases of
the Polyakov loop is obtained.® This effective action can be solved by using standard
matrix-model techniques and the results can be naturally explained in terms of partial
confinement, as we now review.

Let us start with a precise definition of the partially-confined sector. In a generic
partially-confined state, M x M degrees of freedom are excited. The remaining degrees
of freedom are in the ground state, as shown in figure 1. The partially-confined states in
the Hilbert space of the theory can be constructed in a manifestly gauge-invariant manner.
First, we consider a trivial embedding of SU(M) into SU(N), as the upper-left block (fig-
ure 1). All SU(M )-invariant energy eigenstates |E;SU(M)) are then obtained by exciting
the oscillators associated with the M x M submatrix components while respecting the
M x M part of the Gauss law constraints. When doing this, we keep all oscillators associ-
ated with the remaining N? — M? elements (i.e. the elements shown in blue in figure 1) in
their ground states. The states thus prepared are invariant under an SU(M) x SU(N — M)
subgroup of the SU(N) gauge symmetry. Finally, to construct the fully SU(NV)-invariant
state |E)iyy with the same energy, we act with all possible gauge transformation on this

"Some readers may find it helpful to refresh their memory about the basic feature of BEC explained in
section 2.3 before reading section 2.1 in order to appreciate the close analogy between the two phenomena.

8More precisely, the gauge conditions 9*°4; = 0 and d;a = 0, where a = fd3xsaAo(:z:) X are

1
, Volgs ?
imposed, and the Polyakov loop is defined by P = ¢*®®. For more details, see ref. [7].
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Figure 2. Qualitative features of the phases of the free Yang-Mills on S® [11, 14]. The Polyakov
loop P, energy E and the size of the deconfined sector M in weakly-coupled 4d YM on S? are shown
as functions of temperature T. The blue, orange and red lines are completely confined, partially
confined (equivalently partially deconfined) and completely deconfined phases, respectively.

state and take the superposition:
)i = N2 [ dU 1 (B SUGM))) . (2.1)

Here U stands for the SU(NNV) transformation acting on the states in the Hilbert space,
which corresponds to the group element U € SU(N).” The integral is taken over SU(N).
The normalization factor A'~1/2 ensures unit normalization of |E)iny- The mapping from
the SU(M)xSU(N — M )-invariant states to the SU(N)-invariant states is one-to-one. This
allows one to straightforwardly count all such states and explicitly show that they dominate
the thermodynamics [11]. In this way, a large fraction of the degrees of freedom falls into
the ground state (the confined sector), and the confined sector and deconfined sector coezist.

The phase structure of the system is shown in figure 2. At T < T, the system is
completely (not partially) confined, i.e. M = 0 (the blue line in figure 2), whereas at T' > T,
the system is completely deconfined, i.e. M = N (the red line in figure 2). In the description
based on the canonical ensemble (with temperature 7" varied as a controllable parameter),
there is a first order deconfinement phase transition at T' = T,.. This first-order transition
is a result of the coexistence of two sectors (the confined and the deconfined sectors)
in equilibrium. As is always the case for a first-order transition resulting from such a
phase equilibrium, one can sharpen one’s understanding by considering the microcanonical

When the states are expressed by acting the creation operators &L,z‘ ; to the Fock vacuum, (M&‘T‘)ij =
N ot —1
Zk,l:l Uik, 1y Uy



ensemble (with energy E varied as a controllable parameter).!? In this description, at T =
T, the ensemble can be parametrized by M which increases from 0 to N. Equivalently, one
can choose a parametrization in terms of the (trace of the) Polyakov loop P, which increases
from 0 to % at T' = T,. This parametrization follows naturally from the computation of the
effective action [6, 7]. As we shall show below, thermodynamic quantities such as energy,
entropy, and the distribution of the phases of the Polyakov loop, can be understood from
a single relation between P and M [11, 14],

M

P=_—
2N

(2.2)

From the microcanonical viewpoint, therefore, T'= T, M = 0 (i.e. P = 0) is the transition
point from complete to partial confinement, and T'=T,, M = N (i.e. P = %) defines the
transition from partial confinement to complete deconfinement. As we will explain below
the latter transition is a GWW transition. We denote thermodynamic quantities at this
point with the label GWW below.

This two-component picture of the system explains the thermodynamic properties of the
system. Energy and entropy are given by the sums of those corresponding to the confined
and the deconfined sectors. The former is of order N? and is negligible compared to the
latter, which is proportional to M?, since the number of excited degrees of freedom is of
order M?. Hence we have

M 2
E(T =T, P;N) = E(T =T, P= ;N) X () = Eqww(N) x |2P|>  (2.3)

N

I i CY

S(T:TC,P;N):S(T:TC,P: ¥

M2 5
;N X | - = SGWVv(N) X ’2P’ (24)
where we ignored the zero-point energy. This relation actually holds for the weak-coupling
limit of pure Yang-Mills on S?. From these relations, we obtain

E(T =T,,P=M/2N,N) = Eqww(M),  S(T =T.,P=M/2N,N) = Sqww (M),
(2.5)

where Eqww (M) and Sgww (M) are the energy and entropy at the GWW-transition point
in the SU(M) theory. By combining it with the one-to-one mapping (2.1), we can see that
the partially-confined states dominate thermodynamics.

The essence of these relations (2.5) is as follows [12, 14]. Consider SU(N)- and SU(N')-
theories, with N’ < N (figure 3). Since energy and entropy are dominated by the deconfined
sector, there is no apparent difference between the SU(N)- and SU(N')-theories until the
size of the deconfined sector M reaches N'. (Note that we are assuming the weak-coupling
limit here. At finite coupling, all color degrees of freedom can interact with each other,
and hence the SU(N)- and SU(N’)-theories can behave differently.) Beyond this point,

10Tn the case of partial confinement, even if the transition is not of first order, the confined and deconfined
phases can coexist [11, 14, 15]. This happens for example if one introduce fundamental matter [15]. When
the transition is not of first order, there is no need to distinguish the canonical and the microcanonical
ensembles.
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Figure 3. In the weak-coupling limit, the deconfined sector at M = N’ corresponds to the
GWW-transition point of the SU(N')-theory. This figure is taken from ref. [23].

SU(N') is completely deconfined, M cannot grow further, and hence the system lies at
the GWW-transition point in the SU(N’)-theory. Therefore, the relations (2.5) follow
naturally.

The distribution of Polyakov loop phases can also be clarified from this point of view.
As shown in figure 4, in the completely confined phase T' < T, the distribution p(T'; N;6)
is constant. For the completely deconfined phase T' > T, p becomes 0 at some finite value
(i.e., there is a gap). At T =T, for 0 < P < %, the phase distribution is inhomogenous
but has no gap. At P = %, a gap forms and thus this point is the GWW transition. The
distribution p can be computed explicitly by the effective action approach [6, 7]. At T = T,
it is given by [6, 7]

1
p(T =T.,P;N;0) =3 (1+2Pcos®) (2.6)

21
up to 1/N corrections. By using P = %, one can rewrite this as

o(T =T, PiN: ) = (1—M)+M L (1 4 cost)

2 N) "N 2z
1 M M
= on (1 - N) TN paww (65 M). (2.7)

The first term (which is a constant) and the second term (which becomes zero at 6 = £7)
are the respective contributions from the confined and deconfined phases. We see that M
phases are in the deconfined sector, while the rest is in the confined sector. Note that
paww (0; M) can have a nontrivial M-dependence in general (e.g., when the fundamental
quarks are added [15]), though for pure Yang-Mills it is simply pgww(0; M) = W.

In this subsection, we have observed the features 1, 2 and 3 mentioned in the introduc-
tion; we have studied the free theory and shown that among N? color degrees of freedom,
N? — M? fall into the confined sector, while M? degrees of freedom are excited. Thermo-
dynamic quantities can be understood from the phase equillibrium between the confined

and deconfined sectors. The feature 4 will be explained in section 3 and section 4.
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Figure 4. The distribution of the phases of Polyakov loop in the completely confined, partially
confined and completely deconfined phases. This figure is taken from ref. [23].

2.2 Gauged O(N) vector model at weak coupling

In this section we consider the gauged O(N) vector model. It is a particularly instructive
example to understand the connection between confinement at weak coupling and BEC. As
we will explain in this section, due to the gauge-singlet constraint, this model can exhibit
the transition from confinement to deconfinement, characterized by the increase of entropy
from NV to N1 (see also figure 5) [17].}1 As we will see below, partial confinement takes
place even in the free limit [11].

We start with the 3d free theory on the two-sphere of radius R, following ref. [17].12
We consider an N-component vector of scalar fields ¢(z) = (¢1(x),--- ,dn(z)) which
transforms in the fundamental representation of the O(N) symmetry group and consider
its free theory in the O(IN)-singlet sector. The N components of ¢(z) resemble the N bosons
that will be discussed in section 2.3, and the gauge symmetry resembles the permutation
symmetry.

In its bare essentials, projection onto the singlet sector is achieved by coupling gg to a
Lagrange multiplier A via

S:/—ngT(Df—i—@f—i)gg, (2.8)

where the Lagrange multiplier appears inside a gauge covariant derivative Dy = 0y + i\.
In three dimensions, this theory appears in the weak coupling or small radius limit of an

—

interacting conformal field theory. More precisely, one can conformally couple ¢(x) to an

"This scaling holds in an appropriate double scaling limit involving the radius and N. See the end of
this section for details.
12For simplicity we set the number of flavor Ny in ref. [17] to be one.



O(N) gauge field A, with Chern-Simons action; the free singlet theory is then obtained
by taking the level to infinity. The Lagrange multiplier appears as the gauge holonomy
around the thermal circle that survives the free limit and is in this way connected to the
Polyakov loop. For simplicity of discussion, we will from now on only refer to the latter.

At finite temperature, (2.8) can be studied in exactly the same way as our previous
example of SU(N) Yang-Mills following the basic idea and tools introduced by [6, 7].'3
Explicitly, one derives an effective action for the phase of the Polyakov loop after integrating
out all massive excitations [17, 24]. After minimizing the effective action, the Polyakov loop
is zero at T' = 0, nonzero at any 1" > 0, and the GWW transition, which is the transition
to complete deconfinement, takes place at Taww(N) = W—\/}%\/ﬁ .

Below the GWW-temperature, an energy eigenstate can be expressed in the form of

eq. (2.1),
|E)ine = N~ 1/2 /dU U (|EB;0(M))). (2.9)

Here |E; O(M)) denotes states for which ¢pri1,- -+, ¢n are in the ground state, as shown
in the right panel of figure 1. In this way, a large fraction of the degrees of freedom falls
into the ground state (the confined sector), and the confined sector and deconfined sector
coexist.

In order to show the above more explicitly and to see how temperature and M are
related, let us look at the Polyakov loop closely. By using b = T—\/%, and taking b to be of
order one, the distribution of the Polyakov loop phase 6 is written as

2
o(0) = 5+ 2 5(0), (210)
where
2 —7)?
fO)=-35+ (19 I ) (2.11)

At b = boww = ?, the GWW transition takes place; the distribution becomes zero at
0 = +m.

We can rewrite p(0) as
b2

T —
bGWW

b2
> : pconﬁne(e)

72 -paww(0), (2.12)
GWW

p(0) = (1 -
where pgww () is the distribution of the phases at b = bgww, and peonfine(6) = % is the
distribution of the phases in the confined phase. The parameter b is related to the size of
the deconfined sector M as [11] (see figure 5)

M b?
— = . (2.13)
N Bww
Equivalently,
TR=0bVN =bgwwV M. (2.14)

~10 -
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Figure 5. A schematic picture of the size of the deconfined block M as a function of temperature
T, in the free gauged O(NNV) vector model on S¢. The system is partially confined at 0 < T < Taww-

Note that this is the critical temperature of the O(M) theory: Toww (M) = baww VvV M.
Therefore, the identification leads to

p(6.7 = Taww(M) = - (1= 1) + 5 - poww(®: M) (2.15)

This relation is analogous to (2.7). As expected, M phases are in the deconfined sector,
while the rest is in the confined sector [11, 14].

At 1 < T < Tgww, the energy scales as £ = AT®, with an N-independent coefficient
A =16((5), and the entropy is S = %AT‘l. Therefore, at T = Tgww (M), the following
relations hold:

E = Eqgww (M), S = Saww(M). (2.16)

These equations are analogous to (2.5). Namely, energy and entropy, which are dominated
by the deconfined sector, can precisely be explained by O(M)-partial-confinement. As
in the case of free Yang-Mills, the Polyakov loop, energy and entropy are consistently
explained by the same M defined by (2.13) and (2.14); the O(M)-deconfined phase of
O(NNV)-model corresponds to the GWW point in the O(M)-model. In this way, the two-
component picture of the system explains the thermodynamic properties of the system.

These calculations can be generalized to (d+ 1)-dimensional theory on S?. The critical
temperature of the O(N)-theory is [17, 24]

T N N v 7
= R 2.1
and the size of the deconfined sector is
v = (7o)
— = . 2.18
N Toww (2.18)

The key relations (2.15) and (2.16) remain unchanged.

13Since the gauge group is SO(N) rather than U(N), the density p(f) necessarily becomes symmetric
under the refelection 6 <> —6.

- 11 -



Again, we have seen the features 1, 2 and 3 mentioned in the introduction; we have
studied the free theory, and shown that among N color degrees of freedom, N — M fall
into the confined sector, while M degrees of freedom are excited. Once more, feature 4 —
the importance of the interference — will be explained in section 3 and section 4.

In ref. [17], the radius R is taken to be N-independent. If instead we take R = v/ N
(or, for generic dimension d, R oc NY/%), then b = \T/—% simply equals T', and the natural
temperature scale becomes N-independent. This corresponds to the thermodynamic limit
of identical bosons with fixed particle density, which is discussed in section 2.3. In this
limit, the free energy, entropy and energy are of order N.

2.3 BEC of non-interacting particles

The relevance of the BEC of an ideal gas for understanding the superfluidity of “He,
which is interacting, was first pointed out by F. London [16]. This idea was elaborated
to a two-component fluid theory, corresponding to particles in the ground and excited
states, respectively, which gave a remarkably good phenomenological understanding of the
superfluidity [25, 26]. The ideal Bose gas (the weak-coupling limit) thus captures a good part
of the important features of superfluidity (the finite-coupling case). That the introduction
of the interaction does not affect these features was established through the development of
microscopic understanding of the superfluidity, in particular through works by Feynman,
Penrose and Onsager [21, 27-29]. The validity of Feynman’s approach was later confirmed
quantitatively by direct Monte Carlo simulations [30-33].

We will consider in this section the ideal Bose gas trapped in a harmonic potential in
d spatial dimensions [34], as the system closely resembles that of the O(N) vector model
studied in the previous section. There are N harmonic oscillators denoted by Z1,--- ,Zn,
each of them having d components. The Hamiltonian is

N ﬁ2 mw?
H:Z( ¢ +29€3>. (2.19)
c=1

2m

Because the N particles are indistinguishable bosons, invariance under permutations Sy is
imposed, which can equivalently be interpreted as gauging the Sy symmetry. We note that
the field (41, -+, ¢n) of the gauged O(N) vector model discussed in the previous subsection
is the counterpart of (&1, -+ ,Zx) in the present model. Both z’s and ¢’s belong to the
fundamental representation of the gauge groups Sy and O(N), respectively. If we identify
the fields x and ¢, Sy is naturally embedded into O(N). In this sense, one may refer to the
model considered in this section as ‘Sy vector quantum mechanics’. This close similarity
between the gauged O(N) vector model and the system of identical bosons is what makes
the O(N) model particularly suited to connect the idea of confinement and BEC.

In the thermodynamic limit of the grand canonical ensemble, the number of particles
in the excited states M is given by

d—1

o0 Cqe€
M = de————— 2.20
/0 eeﬁ(efu) — ]_’ ( )

where c¢g = 1~wd' The chemical potential i has to satisfy p < 0. As a function

1 _
d—D)lwd — T(d)
of p, M is monotonically increasing. The largest possible value is given at = 0. Hence,
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if M(u=0) < N, a BEC is formed; a large fraction of particles, namely N — M of them,
are in the ground state.

These states dominating the condensed phase can be written in a form that is anal-
ogous to eq. (2.1) and eq. (2.9). To this end, we introduce a set of basis vectors of the
system (before imposing the Sy gauge symmetry, i.e., the complete symmetry under the
exchanging of particles),

&TnzN

= v vl

d 5 Tnzl A Tn7,2

|y, g, - 7 ). (2.21)
The state of each particle in the d-dimensional harmonic oscillator potential is specified by
a d-dimensional interger-valued vector 7, where n; = 0,1,--- with ¢ = 1,--- ;d. The n;
above specifies the state of particle 1, and so forth. By using this notation, the states in
the condensed phase are,

P|ﬁ1a"',ﬁM’67"'76> (222)

Here § is the group element g € Sy represented as a unitary operator acting on the
Hilbert space, and P = % 2 geSn
operator). The un-symmetrized state |7y, --- , 7z, 0,--- ,0) is analogous to | E;SU(M)) in
q. (2.1) and |E;O(M)) in eq. (2.9), shown pictorially in figure 1.

In the following, we will denote M (p = 0) simply by M. By using [;* dueu T =
¢(d)'(d), we obtain

g is the projection operator (the complete symmetrization

M= Tdoféd), (2.23)
and hence the transition temperature T, is determined by,

N = Tg({gd). (2.24)

w

Therefore we have

M (T)d (2.25)

N T.
and

T, = (Cé\fd)y/dw. (2.26)

Curiously, these formulae are almost identical to the corresponding ones for the O(N)
vector model, (2.17) and (2.18).
The energy below 7, is

o0 d
E= / de— o= T (d+ D0+ 1). (2.27)
0 ers —
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We can easily see that, at T' < T,

E(T =T.(M))=E.(M). (2.28)
The entropy satisfies a similar relation,

S(T =T.(M)) =5.(M). (2.29)

Evidently, both energy and entropy are carried solely by excited modes. These relations are
the counterpart of (2.16). In this way, the thermodynamic properties of the system can be
understood by the two-component (particles in the ground state and in the excited states).

Thus far, we observed a striking similarity between BEC in the system of IV identical
bosons, and confinement both in the O(N) vector model and Yang-Mills theory. In the
next section, we will describe the common mechanism that underlies BEC and confinement.
Along the way, we will introduce the counterpart of (2.15) in BEC.

3 Common underlying mechanism

We now proceed to explain the common mechanism of color confinement and BEC, which
is the origin of the remarkable similarity between these phenomena described in section 2.

As a result of the constraint on the permutation symmetry, the system of bosons favors
states where many particles are in the same state. This well-known enhancement effect,
sometimes denoted as positive interference of the wave functions, is the essential mechanism
responsible for BEC. Although a good part of the explanations that we provide below is
well-known in the context of BEC, nonetheless, we decide to present it at a level of detail
that exposes the connection to partial confinement in gauge theory.

For a system of N indistinguishable bosons, permutation invariance can be incorpo-
rated by introducing a projection factor into the partition function as

Z =3 Tr(ge ), (3.1)

geG

where G = Sy. Here, § is the group element g € G represented as a unitary operator
acting on the Hilbert space. The inclusion of the projection factor allows for the trace
to be taken over the full Hilbert space and as a complete orthonormal basis, we can use
|1, M2, - -+ ,7fin) defined by eq. (2.21).
As explained in appendix A, the partition function can equivalently be obtained by
summing the contributions from the permutation-invariant states, proportional to P\fil,
-, 1), where P = % >_gesy § is the projection operator. For generic excited states
(in which no two particles occupy the same state) the sum over ¢ in (3.1) is used up for
making the state completely symmetric. On the other hand, the ground state ]6, e ,6) is
genuinely symmetric, even before summing over g. This difference is the foundation of the
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enhancement effect. We can write the sum more explicitly as

2= 3 iy, iinlge i, ity

gESN i1, N

S o—B(Eay+Fry) S (i, iin|gli, - i)

1, TN geESN
= Z 6_6(Eﬁ1+mEﬁN) Z <ﬁ17 T 7ﬁN|ﬁg(1)7 T aﬁg(N)> (32)
i1, N geESN

If all NV particles are in different states, only g = 1 gives rise to a nonzero contribution.
On the other hand, if all NV particles are in the same state, all g’s return the same nonzero
contribution, leading to an enhancement factor of N! compared to the case where we do
not impose the gauge singlet constraint (or equivalently the classical Boltzmann statistics).

One can also think of this enhancement as a consequence of redundancy in gauge theo-
ries: configurations connected by a gauge transformation are identified. Equivalently, when
the system of N identical bosons is regarded as an ‘Sy gauge theory’, ‘states’ connected
by a gauge transformation (i.e. a permutation) — |fi1, -+ ,7iy) and [figq), -+, gn)) —
should be identified. Consider for example |7,0,--- ,0), |0,7,0,---,0), ..., |0,---,0,7).
A priori, these are N different states. Once the Sy symmetry is gauged, they are identified
and their statistical weight is reduced to precisely match that of the ground state. Explic-
itly, one sees that the aforementioned enhancement factors, here (N — 1)!, combine with
the degeneracy factor N to yield an overall coefficient of N!. In comparison, the ground
state is unique but is enhanced by a factor of N!. For generic excited states, there is an
N!-fold over-counting which is compensated by the absence of the enhancement factor.
Thus all gauge invariant states contribute with equal weight. As a result, the relative
importance of configurations where many particles occupy the same state is significantly
increased, compared to a system of distinguishable particles where the gauge singlet con-
straint is not imposed.

This mechanism directly carries over to ordinary gauge theory, where the gauge-singlet
constraint (or equivalently, the Gauss law constraint) is introduced in the same fashion.
Now, ¢ in (3.1) is an element of the gauge group, e.g. O(N) or SU(N), and the sum is
replaced by the invariant integral over the gauge group. The group element g now coincides
with the Polyakov loop.!® From this prescription, we see that an enhancement mechanism
that is essentially equivalent to the one in BEC also applies to the gauge theory. Namely,
if all degrees of freedom are in their ground states (the fully confined state), the integral
over the gauge group gives a larger factor compared to states where degrees of freedom are
in different excited states (the deconfined state). This argument applies not just to fields
in the fundamental representation, but also to those in the adjoint representation, such as

MMore generally, if M particles are excited to different excitation levels while N — M particles are in the

ground state, classically there are different states, and the enhancement factor is (N — M)!. Hence

the weight in the partition function does not depend on M.

15 A simple way to understand this is to consider lattice regularization and take the Ay = 0 gauge. The
unitary link variable along the time direction U; connecting the Euclidean time ¢t and ¢ + a, where a is the
lattice spacing, transforms as Uy — QtUtQ;_la. ‘We can use this to set all links to unity, except for the one

at t = 0 which is by definition the Polyakov loop.
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gluons. Thus, the confined state, rather than the deconfined state, is favored as a result of
the gauge-singlet constraint. Note that this argument readily generalizes to the interacting
theory, as long as the confined sector provides positive interference.

Note that this mechanism can work for QFT in any spacetime dimensions. The im-
portant point is that local gauge symmetry leads to an enhancement factor at each spatial
point. To make the story well-defined by introducing a proper regularization, we can use
the lattice Hamiltonian, e.g. the Kogut-Susskind formulation. At finite lattice spacing and
finite lattice points, it is just a ‘matrix model’ consisting of many matrices (link variables
and site variables). Therefore, strictly speaking, ¢ is § = ®zgz, where gz is the group
element associated with a point Z. Each gz can be regarded as the Polyakov loop at point
Z. See appendix C how the symmetrization over the local gauge transformation leads to
the gauge singlets.

That large-N Yang-Mills theory deconfines at higher temperature is usually understood
as a consequence of the Hagedorn growth of the density of states, Q(E) ~ e% 6, 7]
at £ < N2, where Ty is the Hagedorn temperature [35]. This particular growth rate
with respect to the energy allows for a dramatic growth of the energy and entropy as
functions of temperature, at T = Ty, from order N° to order N2. At infinite N this
is the well-known Hagedorn growth that is obtained by counting the number of singlet
states, using the chromoelectric string picture. If the singlet constraint were not imposed,
the density of states is always O(N?) and no Hagedorn-like growth can be observed. The
mechanism explained in the previous paragraph gives a complimentary understanding of
the confinement /deconfinement transition. Either way one observes the effect of the singlet
constraint but from different angles.

This relationship between confinement and BEC gives us a better understanding of why
partial confinement occurs as depicted in figure 1. Consider, for example, the possibility
that the deconfined sector is given by two diagonal blocks whose sizes equal M7, My with
M3} + M3 ~ M?, while the remaining matrix elements are confined. Naively, such states
would have the same entropy as those shown in figure 1, because the numbers of excited
matrix entries are the same. We see now that this type of partial confinement pattern
is ruled out because the volume of the group SU(N — M; — M>) is much smaller than
SU(N — M), and hence the enhancement effect is much smaller; therefore these states
cannot dominate thermodynamics.

4 Polyakov loop and off-diagonal long range order

In the previous sections, we have pointed out that BEC and partial confinement in large N
gauge theories share the essential features listed in the introduction, based on the discussion
in the weak-coupling limit. In this section, we will consider how our argument can be
extended to interacting theories. For BEC, in the presence of inter-particle interactions,
Hamiltonian eigenstates are of course no longer given by symmetrized products of individual
particle states. As a consequence, it is not immediately clear how to define, for interacting
theory, ‘the number of particles in their ground states’ which characterizes the condensed
phase for the ideal gas. Penrose and Onsager [21] proposed a criterion valid for interacting

~16 —



theories, later referred to as ‘Off-Diagonal Long Range Order’ (ODLRO) [22], which utilizes
a natural extension of the concept of ‘the number of particles in their ground states’ For
gauge theories, on the other hand, the distribution of Polyakov loop phases, as explained
in the previous section, provides a good criterion for partial confinement, applicable also to
the interacting case [14]. We will now show that ODLRO in BEC and the Polyakov loop in
gauge theories are closely related. Along the way, we will demonstrate that one can define
ODLRO for gauge theories, and a Polyakov loop for BEC.

4.1 Off-diagonal long range order

We begin by recalling the definition of ODLRO for N identical bosons. Denoting the
density matrix of the N-particle system by p, the one-particle density matrix is defined
by tracing out N — 1 particles, p; = IV - Tra3... yp. It can be conveniently written via its
spectral decomposition,

p1 anax!‘l’><‘1’|+zni|‘1’i><‘1’i|, (4.1)

where npax is the largest eigenvalue and |¥) is the corresponding eigenvector. The eigen-
vectors |¥) and |¥); are normalized to be unit norm. When np,y is of order N, the system
contains a BEC, and is characterized by ODLRO. For a BEC of non-interacting bosons, |¥)
is the one-particle ground state, and we have ny. = N — M, i.e. the number of particles
in the ground state.

In the usual thermodynamic limit with fixed particle density, V ~ w™¢ ~ N, the
reduced density matrix (z|p1]y) is non-vanishing at long distance if npyay is of order N. The
order is associated with the off-diagonal matrix elements in the coordinate representation;
this is the origin of the name of ODLRO.

4.2 Polyakov loop for identical bosons

Let us start with the partition function (3.1). Again, a convenient basis is (2.21). Let Mjy
(35 Mz = N) be the number of particles in the state specified by 7; = 7i. A permutation
{9 € Il Sn, } leaves the corresponding state invariant and gives rise to a nonzero contri-
bution to (3.1). As we have mentioned, this g is the counterpart of the Polyakov loop in
gauge theory. The distribution of the phases of this ‘Polyakov loop’ can be obtained by
calculating the average eigenvalue distribution of {g = {gs} € [[;Sm,}. At large N, we
can use the typical values of My realized in the BEC.

As Mg~ N — oo (i.e. as the BEC is formed), the average eigenvalue distribution of
g5 €S My becomes uniform. To see this, let us note that when g is a cyclic permutation of
k elements, the eigenvalues of g are e2mil/k 1 —=0,1,--- ,k—1. When k — 0o, the phases
are distributed uniformly and continuously between —7 and +7. Any gz € S, can be
written as a product of cyclic permutations of different sets of elements, and as Mz — oo,
infinitely long cyclic permutations become dominant.'® Therefore, g5 €S M leads to a

Importance of the dominance of long cyclic permutation in understanding BEC for interacting bosons
is first pointed out by Feynman in his microscopic theory of superfluidity of *He [27]. The presence of
ODLRO when the long cyclic permutation dominates is shown in [21].
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uniform distribution. This is the counterpart of % (1 — %) in partial deconfinement.
Thus we have shown that the particles in the ground state (which is measured by ODLRO)
contribute to the constant offset of the Polyakov loop.

In order to complete the proof of equivalence of the constant offset to the number of
particles in the ground state as measured by ODLRO, it remains to be shown that the
particles in excited modes do not contribute to the constant offset. This is somewhat
intricate due to the discreteness of the permutation group Sy and we defer the reader to
appendix B for a detailed proof. With this in hand, we can directly read off the number
of condensed particles from the Polyakov loop. Such a formulation, based on the Polyakov
loop, has the advantage that one can infer the existence of positive interference from the
nonzero constant offset, regardless of the details of the interaction. Even at strong coupling,
the same quantity characterizes the number of degrees of freedom in the BEC sector.'”

4.3 Polyakov loop in gauge theory and ODLRO

In the case of a gauge theory, the partition function is given by (3.1) with G now denoting
the gauge group, e.g. O(NN) or SU(N). As mentioned before, g corresponds to the Polyakov
loop. The ground state is responsible for the constant distribution, because a generic
element in O(N) or SU(N) gives a uniform distribution at large N. Hence we can count
the number of degrees of freedom in the confined sector.'® This argument applies to any
large-N gauge theory regardless of the details of the field content; that the distribution of
the Polyakov loop phases becomes uniform in the confined phase demonstrates the strong
positive interference. The constant offset (the minimum of the distribution) is related to

the size of the deconfined sector via

M
The constant offset =1 — N (4.2)

This is the order parameter'” of the partial confinement. The lattice simulations of the
bosonic matrix model [36, 37] provide a concrete example at strong coupling.

Naturally, we can also define a counterpart of ODLRO for gauge theories, via a reduced
‘one-color’ density matrix. For example we can keep only the zero-mode of one of the
color degrees of freedom (say the first component of the matter field in the fundamental
representation, or (1,1)-component of the adjoint field) and trace out all other degrees
of freedom. The existence of the confined phase can then be read off from the largest
eigenvalue of the reduced density matrix.?’ If we normalize the largest eigenvalue of the

"Here an implicit assumption is that excited modes do not contribute to the constant offset, which may
fail when many light degrees of freedom exist.

8 This was known in several weakly-coupled theories via explicit analytic calculation [11, 14, 15], but
there was no concrete justification.

9Polyakov loop is often used as an order parameter to detect the spontaneous breaking of the center
symmetry. Here we are using the Polyakov loop as the order parameter in a different way. Not only it
applies to theories without the center symmetry, it is more precise in the sense that it can distinguish three
phases: completely-confined, partially-confined, and completely deconfined.

20This can be done in a gauge invariant manner, in the same way as the one-particle reduced density ma-
trix is permutation invariant in the case of identical bosons. The density matrix itself p = > |;)e™ 7 Fi (0]
is gauge invariant, |¥;) satisfying the Gauss law constraint. Because of this there is no ambiguity from the
choice of gauge when defining the eigenvalues of the reduced density matrix.
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reduced density matrix in such a way that it equals unity for the fully confined (condensed)
phase, then it corresponds to the constant offset of the Polyakov loop. We note that “the
long range order” in this context is longe range not in the spacetime but in the ‘emergent
space’ described by the values of the field.

We expect that the large positive interference responsible for the constant offset sur-
vives when the interaction is turned on adiabatically, just like ODLRO does. Both order
parameters (the eigenvalue in ODLRO, and the constant offset of the Polyakov loop) are
tied to the gauge symmetry as explained in section 3. Because of this, we expect that for any
value of the coupling constant the two transitition points, namely, from completely-confined
to partially-confined phase, and from partially-confined to the completey-deconfined phase,
should be captured by the conditions that the order parameters be equal to 0 and 1, re-
spectively.

5 Discussions

In this paper, we pointed out that two important phenomena, BEC and (partial) confine-
ment, can be understood in a unified way. We expect that, because of this new connection,
computational tools, and perhaps more importantly intuition developed for one of them
can now enrich the understanding of the other. For example, in superfluidity, transport
properties are well understood in terms of a two fluid model corresponding to condensed
and excited states; can we obtain a similar understanding for the transport properties in a
partially confined phase?

We have focused on model-independent features, such as the mechanism behind the
phenomenon and its essential characterization. Confinement (condensation) occurs because
a large fraction of the degrees of freedom fall into the ground state. This phase is favored
because of the large interference effect originating in the gauge symmetry. More detailed
features, such as the precise structure of the phase diagram (including the existence of
a completely condensed phase) and the order of the phase transition, depend on model
specifics.?!

Our strategy has been to understand confinement by an adiabatic continuation of the
weak-coupling (small volume) picture. Whether this picture remains relevant at strong
coupling (large volume) depends on the dynamics of the model and in particular relies
on the absence of a phase boundary that obstructs the interpolation between strong- and
weak-coupling regions. However, there are indications that such an obstruction is absent
for various theories important for gauge/gravity duality, most notably 4d N' = 4 super
Yang-Mills, although thus far there exists no direct proof.?? Whether the strong and weak-
coupling regimes are smoothly connected for a given model is a question which can be

21A classic example of this type of model dependence is the difference between the superfluidity of *He
and the condensation of an ideal Bose gas. For the ideal gas the transition is of third order, whereas the
A-transition of “He is of second order. The ideal bose gas is completely condensed at T' = 0, whereas *He is
not. Nevertheless, they share common characterization (such as ODLRO) and mechanism, and the analogy
to BEC of the ideal Bose gas was an important step to understand superfluidity.

220n the other hand, QCD with too many flavors is conformal at infrared, which suggests the strong
dynamics spoils the weak-coupling picture in this case.
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tested by lattice Monte Carlo simulations. For the DO-brane quantum mechanics and its
plane wave deformation, extensive numerical studies have been performed, starting from
refs. [38, 39], which support the absence of the obstruction.

The analogy to BEC also provided new insight on order parameters which should be
useful to interpolate between the weak and the strong-coupling regimes. We showed that
the constant offset of the distribution of the Polyakov loop phases corresponds to ODLRO,
and is tied to the structure of the gauge symmetry associated with the condensed phase.
This gives in particular a characterization of partial confinement which is valid even at
nonzero coupling. The constant offset & NM is the order parameter that encodes the size
of the deconfined sector: an SU(M)-subsector of SU(NV)-theory is deconfined.

Implication for gauge theories; connection to QCD? In BEC for interacting bosons,
‘the number of particles in the ground state’ as defined by ODLRO is less than N even at
zero temperature, which is in marked contrast with the ideal Bose gas where for T'= 0 all
particles are in the ground state. An intriguing possibility is that a similar phenomenon
may occur for some gauge theories: for these theories there may not be complete confine-
ment even for 7" = 0.

It is interesting to study the connection of our understanding of confinement as BEC
to the more traditional pictures of dynamical confinement (e.g. based on the linear poten-
tial between quarks). It might be possible to achieve this through the idea of magnetic
monopole condensation [40-43] which is a promising scenario for dynamical confinement.
In some versions of this scenario, singularities plays an important role that occurs when
the nature of the degrees of freedom associated with the monopole changes (e.g. when the
monopole becomes massless) [42, 43]. What happens at these singularities resembles the
enhancement effect of confined states in our scenario because of the large interference effect.
Namely, in the partition function (3.1), while the confined sector is genuinely SU(N — M )-
symmetric, the deconfined sector is SU(M )-symmetric only due to symmetrization. In
other words, the confined sector is statistically enhanced (positive interference) while the
deconfined sector is not (see also appendix A).

Given that theories at small volume and large N are often quantitatively close to
those at large volume and moderate N [44-48], it seems imaginable to also interpret con-
finement at finite N as BEC. For example, in the Twisted Eguchi-Kawai reduction [45],
large-N theory at small volume behaves similar to the finite-N theory at volume V ~ N?2.
Closely related phenomena have been studied extensively in QCD-like theories with ad-
joint fermion [49] or certain deformation terms [50]. Such theories would provide us with
analytically controllable setups. Recall that for indistinguishable bosons in a harmonic
trap, the thermodynamic limit V ~ w™¢ ~ N is typically taken with fixed particle den-
sity. In this limit, interference effects contribute to the free energy with a relative factor
log(N!) ~ V(logV — 1). In gauge theory, because the gauge group can act locally, even
when N is fixed there is a similar factor ~ V'log Vg, where Vg is the volume of gauge
group G. One should be able to understand confinement for finite N gauge theories as
the result of a mechanism similar to that discussed in section 3, because of this large
enhancement factor.
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Finally, it will be an important step to investigate possible experimental signals in
colliders that could indicate whether confinement in actual QCD bears any resemblance
with BEC.

Condensation of D-branes? D-branes play essential roles in string theory. As is well-
known, their low-energy effective theory is a certain Yang-Mills theory coupled to adjoint
matter fields with a U(NN) gauge group [51]. Diagonal elements of the adjoint scalar fields
corresponds to the location of D-branes. This U(N) group contains Sy subgroup which
permutes D-branes. In this sense, U(NN) gauge symmetry can be interpreted as general-
ization of Sy permutation symmetry. Consider now the system of D-branes at very low
temperature such that the typical distance between them is smaller than their thermal
de Broglie wavelength. In this regime, it is natural to expect that the D-branes would
undergo a quantum statistical transition, analogous to BEC.?® The similarity of partial
confinement to BEC advocated in this paper makes it plausible that partial confinement
should be crucial in the understanding of this quantum condensation of D-branes.

Holographic emergent space? In the standard interpretation, the completely decon-
fined and confined phases correspond to the AdS vacuum and a black hole, respectively [4].
A natural candidate for a dual gravity interpretation of partially deconfined and confined
sectors are the small black hole and its exterior [11, 12, 14]. According to the analogy to
BEC, the small black hole would correspond to a droplet of normal fluid within superfluid.
The Hawking radiation then will be analogous to the dissipation of this droplet.

In the case of four-dimensional N' = 4 super Yang-Mills, the six scalar fields can con-
dense. Such a BEC is effectively six-dimensional at each point in 3d space, thus leading to
nine-dimensional space. One may speculate that gravity can be understood as collective
excitations analogous to phonons in superfluid helium. Such an interpretation would pro-
vide us with a natural generalization of the philosophy of the Matrix Model of M-theory
(BFSS) [52] — physical objects are realized as sub-matrices — to gauge/gravity duality
a la Maldacena. Note also that partial deconfinement is naturally connected to Higgs-
ing; when a deconfined block is far separated (in the sense of eigenvalues), Higgsing is a
better description because the off-diagonal elements become heavy and decouple from the

24 When the partially-deconfined sector represents a D-brane probe, it should

dynamics.
be described by the Dirac-Born-Infeld action on AdS5xS°, as proposed in ref. [54]. Fur-
thermore note that the color degrees of freedom in the confined sector can be entangled
and naturally lead to a picture for emergent space [11, 55] along the lines of refs. [56, 57].
When colors are identified with qubits, ‘it from qubit’ naturally meets the good old idea

of ‘everything from matrices’ One may hope that the intuition gained by connecting BEC

23 Although D-branes are so-called superparticles that can be bosonic or fermionic depending on the exci-
tation of their internal degrees of freedom, the bosonic degrees of freedom will dominate for low temperature
physics we are interested in. This is because states associated with the fermionic degrees of freedom in-
evitably have much higher energy than their bosonic counterparts, since they live on the Fermi surface due
to the Pauli principle.

241t is well-known that, in presence of scalar matter fields, the confinement phase is smoothly connected
to the Higgs phase [53].
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and confinement will be a useful guide towards understanding the nature of the building
blocks of emergent spacetime.
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A Another look at positive interference

In order to understand positive interference further, let us see how the partition func-
tion (3.2) for N free bosons is obtained by summing the contribution of permutation-
invariant states. By using the projection operator P = ﬁdeSN g, we can write the
invariant states as

-1 Bl = L
Cﬁ17"'7ﬁN X P\nl,'-- ,TLN>. (Al)
where cj, ... 7, ensures unit normalization. For example, when N = 2, ¢z, 5, = 1 for

n1 = iip and cg, 5, = % for 7y # 2. In general, if there are [ different one-particle states
with degeneracies Ni,--- ,N; (N1 +---+ N, =N, N; > 1,1 < N),

l
I TTiz1 Ni!
Ciiy, iy = 71_[1;\1” =, (A.2)

Note that this factor [[i_, N;! is related to positive interference.
When we calculate the partition function, if we took the sum with respect to any

niy,- -+ 7N, we would be counting the same state multiple times, with the over-counting
factor HzN! NI By compensating this factor, we obtain
i=1""%"
N\ )
- =2 > S D —BH P = S
2 <N> 2y (i PP P i)
1, N i=1-Ye
- Z <ﬁ1’“.’ﬁN’p€_BﬁP|ﬁl7”'7ﬁN>
ﬁ’17 "7ﬁN
= Z <n1’ ’ﬁN’pe A ‘nla anN>
ﬁ17"'7ﬁN
1 n = ~ —BH|= —
- ﬁ Z Z <n17”. 7nN’ge /BH‘nla"' 7nN>' (Ag)

This is eq. (3.2), up to the overall factor (N!)~!. For gauge theory, the symmetrization
defined by eq. (2.1) does exactly the same job: the symmetrized state in eq. (2.1) is the
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counterpart of (A.1). In section 2.1, we started with the SU(M)xSU(N — M )-invariant
state |E;SU(M)). That approach is advantageous for the computation of the entropy.
However, one can start with a state without imposing the Gauss law constraint associated
with SU(M); the symmetrization (2.1) will assure the SU(M )-invariance in the deconfined
sector. The deconfined sector is SU(M)-invariant due to the symmetrization, in the same
way that the excited sector of the system of identical bosons is Sjs-invariant. In contrast,
the confined sector is ‘genuinely’ gauge-invariant, even without symmetrization, and hence,
the enhancement factor, which is the volume of SU(N — M), appears.

B More on ODLRO and Polyakov loop

In this appendix, we prove the equivalence of ODLRO and the criteria based on the
Polyakov loop for the ideal gas in a harmonic oscillator potential well by showing that
excited modes do not contribute to the constant offset of the Polyakov loop.

For this purpose, it is convenient to express the partition function in the following
form. Suppose that a given element g € Sy is a product of cyclic permutations with length
ll, lg, LA Then,

s Ly
Tr (ge ) = H (HWU) ) (B.1)
(2
Let N; be the number of cyclic permutations with length I. Then the partition function (3.1)
is written as

3 NI 1 4N (B.2)

7= | ( ) | B.2
Ny . | _ el

{Nl} Hl (l l Nl) 1 e ﬁw

Here the sum is taken over all possible {N;} satisfying > ;IN; = N. We introduce a

Lagrange multiplier (chemical potential) p to enforce this constraint and minimize the free

energy to obtain

e M

N=-—r"
FT(1 = e tBwyd

N

> IN;=N. (B.3)
I=1

In the large N limit, the Polyakov loop g specified with these N;’s dominates.

The eigenvalue distribution of § is determined by N; as explained in the main text.
Namely, for each cyclic permutation with length [, there are I numbers of eigenvalues,
e2mik/l | =0,1,---,1— 1. The total number of the eigenvalues is, of course, >IN, = N.
Our task is to understand the distribution function p(f) of the phases of the eigenvalues
determined by (B.3) in the large N limit. We choose 6 to be in the range 0 < 6§ < 27 for
convenience and normalize p(6) by [ pdf = 1.

We will first consider the case T' = T,. We denote p(f) in this critical case as p.(9).
The statement we wish to prove first is that the constant offset, i.e. the minumum of p.(9),
vanishes. Note that p.(6) > 0 by definition. Our strategy is as follows: we will write the
distribution p.(f) as a sum of two terms, namely, contributions from | < A and [ > A.

Pe(0) = pei<a(t) + pei>a(0) (B.4)
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where A is a large ‘cutoff’. By definition p. ;<2 (f) > 0 and p.;>(0) > 0. One may imagine
that we are evaluating p.(0) as pci<a(6) up to a certain precision, or equivalently a finite
resolution in @, of 06 ~ 2{ The larger the value of A the more precise our evaluation of
pe(0) will be. We will show that the minimum of p. ;< (f) vanishes for any finite A, and
pei>a(0) (and hence its constant offset) can be made arbitrarily small by choosing A to be
sufficiently large but of order N©.

1
At T =T, since p =0 and fw = (%) 4, the formula (B.3) yields

- 2en iV — 1
lim =~>—— =1-— , B.5
for large A. It is essential that for d > 1, which is the condition for BEC to occur, the
second term converges and is of order O(A~(1). For A ~ N, p;_x(0) is a sum of finite
(i.e. of order NY) number of delta functions (located at 27k/l, k = 0,---,1 — 1 where
[ < A). The minimum of p. ;<5 (0) is zero, for any finite value of A. On the other hand
pe>A(0) may approach a continuous function in the large N limit. In particular p. ;> (6)
could have contributed to a constant offset for N — oo. However, since

/mew—iﬁﬁzg%éw—omwln (B.6)

I>A I>A

for large N, the function p.;>a(f) itself can be made arbitrarily small by choosing suffi-
ciently large (but of order N°) A. Thus we have shown p.(f) have a vanishing constant
offset in the large N limit.

For T < T.(N), the BEC is formed. The statistical distribution of the excited particles
(and therefore the contribution to p(#) from the excited states) is identical to that for the
system with N = M if we fix M by T'= T.(M). The ground state contributes a constant

term, % (1 — %), as explained in the main text. Therefore, we obtain
1 M M
0)=—(1-—=)+— 0 A=Y B.
p0) = 5 (1= ) + ypercal6) + O, (B.7)

which may be considered as the counterpart of (2.15) in partial deconfinement. Again one
can choose A to be sufficiently large (but of order N) such that the last term is negligible.
The formula shows that the contribution of the constant offset is solely from the ground
state, which completes the proof.

C More on the gauge-invariant states via the symmetrization

In this appendix we consider a gauge-invariant operator constructed using the Wilson line,

N
> i) Wi (2, 9)d;(v) (C.1)
ij=1

where § represents a quark field and W(x, y) is a Wilson line connecting points  and y. We
show that this is obtained via the symmetrization over the gauge symmery. Specifically, let
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us see how this gauge-invariant combination is obtained from (j[(x)TWI J(x,4)3s(y), where
in the latter the sums over I and J are not taken. Firstly we symmetrize over the U(NV)
symmetry at point z. The SU(NV) transformation is given by

t qu ZI (C.2)

Wr(z,y) Z U (2) Wi g (2, ), (C.3)
and

ar() Wi (2, 9)ds(y) = > 6i(@) U (@) Ui () Wi g (2, 1) 8 (). (C4)

0,4’

After averaging over the Haar measure, UlTI(a:)U 17 (x) is replaced with ¢;7. Hence the
symmetrization over SU(N) at point z leads to

N
Qr(2) Wy (@, 9)as(y) = 3 6i(@) Wis (2,9)45 (v)- (C.5)

We can perform the symmetrization over SU(NN) at point y as well, and obtain:

N N
Z 4i(2) Wi (2,9)ds (y) — Z > Gi(@) Wi (2, )4 (y).- (C.6)

In the same manner, various gauge-invariant operators, both local and nonlocal, are
obtained via the symmetrization.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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