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While current therapeutic strategies for people living with human immunodeficiency

virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as

transactivator of transcription (Tat) enter the central nervous system early upon

infection and contribute to chronic inflammatory conditions even alongside antiretroviral

treatment. As demand grows for supplemental strategies to combat virus-associated

pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the

present study aimed to characterize the potential utility of inhibiting monoacylglycerol

lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1

receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation

of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL

inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic

branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic

MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and

striatum across Tat(+) and Tat(–) groups and restored PFC N-arachidonoylethanolamine

(AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of

reward-related behavioral task acquisition in a novel discriminative stimulus learning

and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+)

mice to rates indistinguishable from Tat(–) controls. Collectively, our results suggest a

neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring

dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral

proteins associated with latent HIV-1 infection.
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INTRODUCTION

With the advent of combination antiretroviral therapy
(cART), mortality rates among human immunodeficiency
virus type-1 (HIV-1)-infected individuals have decreased

by more than 50% (1). The consequent growth in the
population of people with latent HIV-1 (PWH) has introduced

a new demand for supplemental treatments, as cART
itself is neurotoxic with prolonged exposure (2, 3) and
leads to greater susceptibility to issues driven by synaptic

dysfunction including HIV-associated neurocognitive
disorders [HAND, (4)], which occurs in up to 50% of
infected individuals (5). Further, cART is largely unable

to deplete expression of residual HIV-1 proteins in the
tissues of the central nervous system [CNS; (6–9)]. One
such viral protein, transactivator of transcription (Tat)

enters the host genome early after infection (10), and
has been shown to induce synaptodendritic injury and
cognitive deficits in murine models of HIV-1 (11–14) by
altering the cellular environment through proinflammatory
processes which contribute significantly to the pathogenesis of
HAND (7, 15, 16).

Previous work has demonstrated in vitro Tat excitotoxicity
(17–19) which is downregulated in frontal cortex primary
neuron cultures with direct application of endogenous ligands
N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol
(2-AG) via cannabinoid receptors type-1 [CB1R; (20)]. Blocking
enzymatic degradation of 2-AG and/or AEA likely has greater
translational value, as activity of endogenous ligands and
associated downstream products provides an extended
therapeutic window due to longer half-life and greater conferred
selectivity at target receptors relative to many currently available
phytocannabinoid-based treatments (21–23). Additionally,
therapeutic enhancement of cannabinoid signaling by enzyme
inhibitors appears to be localized to sites of injury in contrast to
direct agonists, which more widely affect cannabinoid signaling
across the brain and are more likely to drive off-target effects
(24–27).

The endocannabinoid system is a promising avenue for
development of therapeutic strategies in disease, as existing
literature shows anti-inflammatory and neuro-regulatory
properties of agonists at CB1R (28–30) and cannabinoid
receptors type-2 [CB2R; (31, 32)]. Potential neuroprotective
effects of the endocannabinoid system in the context of
neuroHIV have been reviewed previously (33, 34). Activation
of CB1R and CB2R may downregulate the proinflammatory
cytokine levels associated with synaptodendritic injury (35, 36),
behavioral disturbances observed in PWH and HIV-1 transgenic
rats (36, 37), and peripheral neuropathy (38–40). Nevertheless,
therapeutic use of the CB1R agonists are limited due to associated
pervasive psychoactive side effects including sensorimotor,
affective, and cognitive disturbances (41). Thus, research efforts
have focused on development of drugs targeting components
of the endogenous cannabinoid system, including enzymes
regulating the biosynthesis and degradation of the endogenous
cannabinoids AEA and 2-AG to enhance tonic endocannabinoid
activity (42–44).

Of particular interest is the effect of monoacylglycerol
lipase (MAGL), which contributes to about 85% of total 2-
AG hydrolysis in the CNS (45, 46). In addition to promoting
activity at CB1R, inhibition of MAGL has recently been
shown to downregulate inflammation in central (47) and
peripheral (48) nervous system models by reducing breakdown
of endogenous ligands into inflammatory metabolites such as
arachidonic acid [AA; (49)] and downstream products like
prostaglandins (47, 50). As increased prostaglandin activity
drives inflammatory responses, reduction of AA production may
reduce neuroinflammation caused by CNS insult. Indeed, MAGL
inhibitor MJN110 has demonstrated neuroprotective effects in
models of neuropsychiatric and neurodegenerative diseases (51)
and ischemic stroke (52).

The aims for this project were 4-fold: first, to characterize
neuroprotective effects of MJN110 treatment against Tat-
associated excitotoxicity in frontal cortex neuron cultures via live
calcium imaging; second, to assess Tat- and MJN110-induced
alterations to neuronal morphology via immunocytochemistry
in vitro; third, to assess the effects of Tat and MJN110
treatment in vivo using a HIV-1 Tat transgenic mouse model
(13, 53) of behavioral flexibility as an indicator of MJN110
efficacy in restoring prefrontal cortex function (54–56); and
fourth, to characterize brain region-specific alterations to
endocannabinoid-related protein expression as a function of
Tat and MJN110 treatment via ultrahigh performance liquid
chromatography tandem mass spectrometry.

MATERIALS AND METHODS

Experiments were conducted in accordance with the NIH Guide
for the Care and Use of Laboratory Animals. All procedures were
approved by the University of North Carolina at Chapel Hill
Institutional Animal Care and Use Committee.

Primary Neuron Cultures
Primary neuron cultures were derived from embryonic day 17
(E17) C57BL/6J mouse (Charles River, Raleigh, NC) frontal
cortex and incubated as previously described (32). Briefly,
brains were collected and frontal cortex tissue was dissected and
minced. Neurons were isolated with 30-min incubation (37◦C)
in neurobasal medium (ThermoFisher Scientific, #21103049,
USA) with 2.5 mg/mL trypsin, 0.015 mg/mL DNAse, 2% B27
(50X; ThermoFisher Scientific, #17504044, USA), 0.5mM
L-glutamine (ThermoFisher Scientific, #25030081, USA),
25mM glutamate (Sigma-Aldrich, #604968, USA), and 1%
penicillin-streptomycin (ThermoFisher Scientific, #15140122,
USA). Tissue was triturated and filtered twice through 70µm
pore nylon mesh before dissociated cells were plated on poly-
L-lysine-coated (Sigma-Aldrich, #P2636) 35mm glass-bottom
dishes (MatTek, #P35G-0-10-C, USA; 1 ∗ 105 cells per dish)
or cover slips (Fisherbrand 22mm microscope cover slips, Cat
No. 12-547, USA; 2 ∗ 105 cells per slip) for calcium imaging or
immunocytochemistry, respectively. Neurons were maintained
in a humidified incubator with 5% CO2 at 37 ◦C (Eppendorf,
Hauppauge, NY) in neurobasal medium supplemented with
25µM glutamate, 2% B27, 0.5mM L-glutamine, and 1%
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FIGURE 1 | Primary frontal cortex neuron cultures (DIV 7-11) were untreated or pre-incubated with different concentrations of MJN110 (0–1µM) and/or a

subthreshold concentration of Tat 50 nM before Ca2+ imaging began (1 h and 30min prior, respectively). (A) Pseudocolor images of neuronal ratiometric calcium

imaging taken 30min after a glutamate (GLT) 10µM challenge (except for the control condition) with comparing frontal cortex neurons pre-incubated with vehicle

solution or different concentrations of MJN110 (0.5–1µM) and/or a subthreshold concentration of Tat 50 nM. (B) [Ca2+]i levels were plotted over a 30-min time period

with GLT 10µM being applied at the 1-min mark (arrow). Application of GLT 10µM onto neurons caused significant increases in [Ca2+]i levels in the presence and

absence of Tat and this effect was inhibited with MJN110 pretreatment in a concentration dependent manner. (C) The [Ca2+]i levels are summarized for the last 10min

of calcium assessment and indicate that the lower concentration of MJN110 (0.5µM) is more inhibitory in the presence of Tat compared to the control condition. Data

are mean ± SEM. Statistical significance was determined using ANOVA and Bonferroni correction where applicable. An alpha level of p < 0.05 was considered

significant for all statistical tests. *p < 0.05 vs. GLT 10µM (PRE: Control); #p < 0.05 vs. GLT 10µM (PRE: Tat 50 nM); $p < 0.05 vs. MJN110 0.5µM + GLT 10µM

(PRE: Control). GLT, glutamate; PRE, pretreatment.

penicillin-streptomycin. Supplemented medium was 50%
exchanged every 48 h. On day in vitro 10, cells were prepared
for imaging.

Treatments in vitro
Primary frontal cortex neuron cultures were treated with HIV-1
Tat1−86 (50–100 nM; ImmunoDx, IIIB, #1002, USA), glutamate
(0.1–10µM; Sigma-Aldrich, #604968, USA), and/or MJN110
(0.5–1µM; 50), which were diluted in Hanks Balanced Salt
Solution (HBSS; ThermoFisher Scientific, #14025092, USA)
supplemented with 10mM HEPES (ThermoFisher Scientific,
#15630080, USA). Tat1−86 concentrations in the 50–100 nM
range were chosen for the present study as they recapitulate
cellular deficits observed in PWH (57–60). For experiments using
glutamate to induce excitation, a subthreshold concentration of
Tat1−86 [50 nM; i.e., concentration insufficient to elicit excitatory
response when bath-applied to neurons; established by (32) was
used to drive neurons into a disease state prior application
of glutamate during imaging. Concentrations of glutamate
and MJN110 were chosen based on preliminary experiments

(Supplementary Figure 1) and previous studies (61) which
assessed activity elicited in vitro by this neurotransmitter and
drug, respectively.

Live-Cell Fluorescence Imaging
Neurons were incubated for 30min in fluorescent intracellular
calcium indicator fura-2 AM (2µL/mL; ThermoFisher Scientific,
#F1221, USA) diluted in HBSS (with Ca2+, ThermoFisher
Scientific, #14025076, USA) supplemented with HEPES
(10mM; ThermoFisher Scientific, #15630080, USA) according
to manufacturer instructions. Half of the neurons were then
exposed to 50 nM Tat (Figure 1) and/or MJN110 (500 nM or
1µM; Figure 2) for an additional 1 h or 30min prior to imaging
(Figures 1, 2, respectively). Relative fluorescence ratio images
were recorded for 30min with a computer-controlled stage
encoder with environmental control (37 ◦C, 95% humidity,
5% CO2) using a Zeiss Axio Observer Z.1 inverted microscope
(Zeiss, Thornwood, NY, USA) with a 20x objective at 340/380 nm
and 510 nm excitation and emission wavelengths, respectively.
Following 1min baseline imaging, 10µM glutamate (Figure 1)
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FIGURE 2 | Primary frontal cortex neuron cultures (DIV 7-11) were untreated or pre-incubated for (A) 30min or (B) 1 h with different concentrations of MJN110 before

[Ca2+]i imaging began. [Ca2+]i levels were plotted over a 30-min time period with Tat 100 nM being applied at the 1-min mark (arrow). (A) Pre-incubation of MJN110

for 30min prior to Tat application was not able to inhibit significant increases in [Ca2+]i induced by Tat when observed across a 30-min time period. (A’) The [Ca2+]i
levels are summarized for the last 10min of calcium assessment and indicate that none of the MJN110 concentrations is able to inhibit Tat-induced increases in

[Ca2+]i levels. (B) Pre-incubation of MJN110 for 1 h prior to Tat application inhibited Tat-associated [Ca2+]i upregulation over a 30-min time period. (B’) The [Ca2+]i
levels are summarized for the last 10min of calcium assessment and indicate that MJN110 0.5µM was able to significantly inhibit Tat-induced [Ca2+]i increases. Data

are mean ± SEM. Statistical significance was determined using ANOVA and Bonferroni correction where applicable. An alpha level of p < 0.05 was considered

significant for all statistical tests. *p < 0.05 vs. Control; #p < 0.05 vs. Tat 100 nM.

or 100 nM Tat (Figure 2) was bath-applied to cultures. Excitation
patterns were assessed for the remaining 29min. Fifteen neurons
were randomly selected from each culture and somas from
each were tagged as regions of interest. Relative fluorescence
ratios were used to quantify fluctuations in intracellular calcium
ion ([Ca2+]i) activity across the experimental timeframe (62).
At least three independent experiments were run for each
treatment group.

Immunocytochemistry
Neurons were fixed for 10min with 4% paraformaldehyde in
phosphate-buffered saline (ThermoFisher Scientific, #J61899-
AP, USA) and stained as previously described (32). In brief,
neurons were immunolabeled using primary antibodies

against MAP2ab (Millipore, MAB378, USA; 1:500) with
secondary antibodies conjugated to goat-anti-mouse Alexa
488 (ThermoFisher Scientific, #O-6380, USA; 1:1,000) diluted
in PBS (ThermoFisher Scientific, #20012043). Nuclei of cells
were stained using Hoechst 33342 (3min; ThermoFisher
Scientific, #H3570, USA) and coverslips were mounted using
Prolong Gold (ThermoFisher Scientific, #P36930, USA). Z-
stack images were obtained using ZEN 2010 Blue Edition
software (Zeiss, Thornwood, NY, USA) with a Zeiss LSM 700
laser scanning confocal microscope using a 63x immersion
objective (Zeiss, Thornwood, NY, USA). Dendritic branching
complexity (e.g., maximum process length and distance from
soma with maximal branching) and soma area were assessed
with orthogonal projections from Z-stack images using the

Frontiers in Neurology | www.frontiersin.org 4 August 2021 | Volume 12 | Article 651272

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


League et al. MJN110 Protective Against HIV-1 Tat

FIGURE 3 | (A) Behavioral timeline schematic for the two-choice Odor

Discrimination Flexibility (ODF) task. (B) Tat(+) subjects acquired the shaping

task significantly faster than Tat(–) controls. (B’) MJN110-treated Tat(+)

subjects acquired the reversal task significantly slower than vehicle-treated

Tat(+) subjects. Data are mean ± SEM. Statistical significance was determined

using ANOVA and Bonferroni correction where applicable. An alpha level of p

< 0.05 was considered significant for all statistical tests. *p < 0.05 vs. Tat(–);
#p < 0.05 vs. Tat(+)/vehicle.

Sholl analysis tool within ImageJ software [Version 2.1.0;
(63)].

Animals
Brain-restricted, doxycycline-inducible HIV-1 IIIB Tat1−86

transgenic mice were developed on a hybrid C57BL/6J
background as previously described (53, 64) using a tetracycline
“on” system. Mice expressing Tat under the tetracycline-
responsive element were crossed with mice expressing glial
fibrillary acidic protein (GFAP) promoter-driven reverse
tetracycline transactivator. Expression was induced with 6 mg/g
doxycycline (DOX) administration through chow diet (product
TD.09282; Envigo, Indianapolis, IN, USA). Genotyping by PCR
was performed at 4 weeks of age to determine which mice were
Tat(+) (i.e., expressing both GFAP-rTA and TRE-tat genes) and
which were Tat(–) (i.e., expressing only the GFAP-rtTA gene).

Twenty-four female transgenic mice [12 Tat(+)] 3–4 months
of age were held on ad libitum DOX chow diet (6,000
ppm, TD.09282, Envigo, NJ, USA) for 3 months prior to

and throughout behavioral testing to induce and maintain Tat
expression. All tests took place in the colony room during the
dark phase of the 12-h light cycle.

Treatments in vivo
For behavioral experiments, 1 mg/kg MJN110 (61) dissolved in
saline-based vehicle [1:1:18; ethanol, Kolliphor (Sigma-Aldrich,
#C5135, USA), and 0.9% NaCl saline, respectively; (25)] or
vehicle alone was injected subcutaneously (10 µL/g body
mass) for 5 days preceding, then throughout reversal trials
(Figure 3). All injections were performed approximately 2 h
before behavioral testing.

Odor Discrimination Flexibility Task
Behavioral Assay
Mice were habituated to reinforcers (sweetened yogurt chips;
Bio-Serv, Flemington, NJ, USA) and the test environment (3
min/day) for 7 and 5 days, respectively, preceding shaping
trials (Figure 3A). Following habituation, two cups scented
individually with 100µL peanut oil (Amazon, #B00QGWM57M,
USA) and 2-phenylethanol (2-PE; Sigma-Aldrich, #77861,
USA) were placed at east and west ends of the test arena
(Supplementary Figure 2, courtesy of G.F. League Co., Inc.,
Greenville, SC, USA), in recessed areas where reinforcers
(quartered to reduce satiation) remained out of sight until a nose
poke response was made. One reinforcer was available per trial.

Mice were trained 5 days per week in the two-choice operant
paradigm wherein one olfactory stimulus was paired with the
reinforcer (Figure 3A). Odorants were used at response sites
to aid in stimulus discrimination (65) and mask any odor
which may be present in reinforcers, which could otherwise
bias response learning (66). Reward-paired scent was randomly
assigned and counterbalanced across subjects, and target
location was randomized between trials to preclude location-
based learning. Experimenters were blind to subject genotype
throughout behavioral testing and data analysis.

Shaping Trials
Subjects were placed into a holding chamber at the south end
of the test arena. To signal a trial, the holding area was briefly
(2 s) illuminated from above with a mildly aversive white LED
light before the partition was lifted to cue access to the darker
test arena, illuminated with red light. The white trial signal light
remained on until subjects entered the test area or for 1min
of no entry, after which point subjects were manually directed
to the arena from the holding chamber. Upon subject entry,
the partition was closed and latency to interact with reward-
paired odor location was recorded. Trials began when the subject
body crossed into the testing area, and terminated upon reward
consumption. All sessions were video-recorded (GoPro Hero6
Black; GoPro Smart Remote; Vanguard ESPOD CX1OS tripod)
and analyzed by two experimenters to assess response latency and
correctness (97.92% inter-rater agreement; Cohen’s k= 0.79).

Drug Administration
After consistent discriminative choice for the cup paired with
reward was established (i.e., a nose poke into the positive
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predictor cup and no interaction with the negative predictor
cup across 8 out of 10 consecutive trials; 12–60 days), subjects
were injected subcutaneously as described above. Shaping trials
were continued during drug habituation to maintain learned
responses, and reversal training began on injection day 6
(Figure 3A).

Reversal Training
The reversal paradigm was identical to that of shaping,
except the opposite scent predicted reward. Injections were
administered daily throughout reversal training. After consistent
discriminative choice for the opposite cup was established (using
the same criteria for the acquisition phase; 9–35 days), the
experiment was terminated and subjects advanced to protein
quantification analysis with mass spectrometry. Within-trial
response latency was recorded to assess potential locomotor
deficits/cannabimimetic effects presenting as slower approach to
a reward-predictive cue.

Reinforcer Consumption Test
Tat has previously been shown to induce reward deficits and
increase sensitivity to reinforcer-induced reward enhancement,
contributing to depressive and addictive phenotypes, respectively
(67). To measure anhedonic response and assess whether
genotype influences reward salience of the reinforcer used in
the ODF task, a consumption test and olfactory sensitivity test
was conducted with a separate cohort of mice in home cages.
After 5 days habituation to reinforcers, subjects were given
access to a large amount of reinforcer (1.35 g) for 5min and
total volume consumed was quantified by measuring change in
reinforcer weight.

Olfactory Sensitivity Test
Olfaction abilities were probed to ensure genotype-dependent
differences in acquisition latency were not due to greater
sensitivity of one group in detecting reinforcer odor in the ODF
task. In this task, a reinforcer was buried in the center of home
cages 0.5 cm beneath the bedding surface (68). Subjects were
placed inside the south end of the cage, and latency to locate and
consume the reinforcer was recorded. Trials terminated upon
reinforcer consumption or after 5min, whichever occurred first.

Ultraperformance Liquid
Chromatography/Tandem Mass
Spectrometry (UPLC-MS/MS)
Subjects were sacrificed by rapid decapitation following
isoflurane-induced anesthesia and brains were collected,
dissected, and snap-frozen in liquid nitrogen. Calibration curves
were prepared at the following concentrations: 0.028 pmol to
2.8 pmol for N-arachidonoylethanolamine (anandamide; AEA),
2.6 pmol to 260 pmol for 2-arachidonoylglycerol (2-AG), 0 and
0.033 nmol to 3.3 nmol for AA along with negative and blank
controls. Samples were stored at−80 ◦C until the day of analysis.
The internal standard (ISTD) was added to each calibrator,
control, and sample except the blank control at concentrations of
0.28 pmol AEA-d8, 26 pmol 2-AG-d8, 0 and 0.33 nmol AA-d8.
The calibrator, control and samples were analyzed as previously

described (69). In brief, samples were homogenized in 100 µL
ethanol and then 900 µL water was added. Sample cleanup was
performed using UCT Clean Up R© C18 solid phase extraction
column (United Chemical Technologies, Inc., Bristol, PA, USA)
conditioned with methanol followed by water. Samples were
added and the columns were then washed with deionized water.
Lipids were eluted with methanol, evaporated under nitrogen,
and reconstituted in mobile phase. A Shimadzu UPLC system
(Kyoto, Japan) attached to a Sciex 6500 QTRAP system with an
IonDrive Turbo V source for TurbolonSpray R© (Sciex, Ontario,
Canada) controlled by Analyst software (Sciex, Ontario, Canada)
was used for the analysis of AEA, 2-AG, and AA.

Chromatographic separation of AEA, 2-AG, and AA was
performed on a Discovery R© HS C18 Column 15 cm × 2.1mm,
3µm (Supelco: Bellefonte, PA, USA) kept at 25◦C. The mobile
phase consisted of A: acetonitrile and B: water with 1 g/L
ammonium acetate and 0.1% formic acid. The following gradient
was used: 0.0–2.4min at 40% A, 2.5–6.0min at 40% A, hold
for 2.1min at 40% A, then 8.1–9min 100% A, hold at 100%
A for 3.1min and return to 40% A at 12.1min with a flow
rate of 1.0 mL/min. The source temperature was 600◦C with
ionspray voltage of 5,000V. The curtain gas and source gases 1
and 2 had flow rates of 30, 60, and 50 mL/min, respectively. The
mass spectrometer was operated in multiple reaction monitoring
(MRM) positive ionization mode for AEA, 2-AG, and negative
ionizationmode for AA. The following transition ions (m/z) with
their corresponding collection energies (eV) in parentheses were
measured as follows: AEA: 348>62 (13) and 348>91 (60); AEA-
d8: 356>63 (13); 2-AG: 379>287 (26) and 379>296 (28); 2-AG-
d8: 384>287 (26); AA: 303>259 (-25) and 303>59 (-60); AA-d8:
311>267 (-25). The total run time for the analytical method was
14min. Calibration curves were analyzed with each analytical
batch for each analyte. A linear regression of the ratio of the peak
area counts of analyte and corresponding deuterated ISTD vs.
concentration was used to construct calibration curves.

Data Analysis
Mean [Ca2+]i change time course data from in vitro
experiments were analyzed using analysis of variance (ANOVA)
when appropriate. Violations of compound symmetry in
repeated-measures ANOVAs for the within-subjects factors
(i.e., comparing time points) were addressed by using the
Greenhouse-Geisser degrees (pGG) of freedom correction factor
(70). Separate ANOVAs followed by Bonferroni post-hoc analysis
were conducted for the final 10min of the experimental time
course to assess differences in sustained excitation between
treatment groups.

Behavioral data for the shaping phase are plotted as latency
(days) required to meet advancement criteria, and were analyzed
as survival curves using the logrank test. Behavioral data for the
reversal phase are plotted as latency (days) to meet completion
criteria and latency (seconds) to meet criteria within trials,
and were analyzed using Cox regression and two-way ANOVAs
with genotype [2 levels: Tat(–) mice, Tat(+) mice] and MJN110
treatment (2 levels: vehicle, MJN110 1 mg/kg) as between-
subjects factors where appropriate followed by Bonferroni
post-hoc tests.
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Brain region-specific endocannabinoid levels were analyzed
by two-way ANOVAswith genotype [2 levels: Tat(–)mice, Tat(+)
mice] andMJN110 treatment (2 levels: vehicle, MJN110 1mg/kg)
as between-subjects factors followed by Bonferroni post-hoc tests
and correlated with mean within-trial response latency for the
reversal phase.

All data are presented as mean± SEM. Alpha values of <0.05
were considered significant for all statistical tests. All experiments
and data analyses were carried out by experimenters blind to
treatment conditions.

RESULTS

Live-Cell Fluorescence Imaging
Glutamate-Induced Intracellular [Ca2+]i Increase Was

Dysregulated by Tat Pretreatment and Downregulated

by MJN110 in a Concentration-Dependent Manner
To understand the role of MAGL inhibition and Tat in mediating
neurotoxicity after a glutamate challenge, [Ca2+]i responses of
frontal cortex neuron cultures pretreated with Tat (50 nM) and
MJN110 (0–1µM) and then challenged with glutamate (10µM)
during imaging (Figure 1) were investigated. For excitation,
various glutamate concentrations were tested (0.1–10µM) to
induce a sustained [Ca2+]i response for 30min in frontal cortex
neurons (Supplementary Figure 1). A three-way mixed ANOVA
was conducted with Tat application [2 levels: control, Tat 50 nM],
MJN110 treatment (3 levels: vehicle, 0.5µM, 1µM) as between-
subjects factors and time as a within-subjects factor. Results
demonstrated a significant main effect for time [F(40,12,400) =

61.6, pGG < 0.001] and MJN110 [F(2, 310) = 34.9, p < 0.001].
Further significant interactions were noted for time x MJN110
[F(80, 12,400) = 16.6, pGG < 0.001], time x Tat x drug [F(80, 12,400)
= 4.7, pGG < 0.001], and Tat x MJN110 [F(2, 310) = 7.2, p =

0.001] (Figure 1B). A two-way ANOVA with Tat and MJN110
treatments as between-subjects factors was conducted on the last
10min of the experimental time course and revealed a significant
MJN110 effect [F(2,310) = 29.0, p < 0.001] and Tat x MJN110
interaction [F(2, 310) = 4.6, p = 0.010] with MJN110 significantly
downregulating [Ca2+]i levels in a concentration dependent
manner. Only in the presence of Tat, MJN110 0.5µM elicited a
significant attenuation of the glutamate-induced [Ca2+]i activity
compared to MJN110-free vehicle application (p < 0.001).
MJN110 0.5µMdid not significantly downregulate [Ca2+]i levels
compared to vehicle for control conditions when Tat was absent
(Figure 1C).

Tat-Induced Dysregulation of [Ca2+]i Increase Was

Mitigated by Pretreatment With MJN110 in a Time-

and Concentration-Dependent Manner
To understand the role of MAGL inhibition in Tat-mediated
neurotoxicity, [Ca2+]i responses of frontal cortex neuron
cultures to Tat 100 nM when pretreated with vehicle or
MJN110 (0.5–1µM) 30min or 1-h prior imaging (Figure 2)
was investigated. Two-way mixed ANOVAs were conducted
with treatment (4 levels: control, Tat 100 nM, MJN110 0.5µM
+Tat, MJN110 1µM + Tat) as a between-subjects factor and
time as a within-subjects factor. When MJN110 was applied to

neuron cultures 30min prior Tat 100 nM, results demonstrated
a significant main effect for time [F(40, 11,760) = 9.3, pGG <

0.001], a main effect of treatment [F(3, 294) = 10.6, p < 0.001],
and a time x treatment interaction [F(120, 11,760) = 2.4, p =

0.001] (Figure 2A). A one-way ANOVA conducted on the last
10min revealed a significant treatment effect [F(3, 294) = 5.5,
p = 0.001], with Tat 100 nM treatment and pretreatment of
MJN110 1µM + Tat showing significantly higher [Ca2+]i levels
compared to the control condition (p = 0.001 and p = 0.036,
respectively; Figure 2A’). The MJN110 0.5µM + Tat condition
was not significantly different from control, nor did it differ
from the Tat and MJN110 1µM + Tat groups; thus indicating
30-min pretreatment with MJN110 prior Tat 100 nM excitation
is not sufficient to inhibit [Ca2+]i levels in frontal cortex
neuron cultures.

When MJN110 was pretreated 1 h prior Tat 100 nM exposure,
a two-way mixed ANOVA demonstrated a significant main effect
for time [F(40, 11,840) = 6.4, pGG < 0.001], a main effect of
treatment [F(3, 296) = 17.0, p < 0.001], and a time x treatment
interaction [F(120, 11,840) = 2.7, p < 0.001] (Figure 2B). A one-
way ANOVA conducted on the last 10min of the experimental
time course revealed a significant treatment effect [F(3, 296) =

6.0, p = 0.001], with only Tat 100 nM treatment displaying
significantly higher [Ca2+]i levels compared to the control
condition (p < 0.001) and significantly differing from the
MJN110 0.5µM + Tat condition (p = 0.044; Figure 2B’). No
other effect was noted to be significant. Thus, results suggest that
MJN110 pretreatment for 1 h prior to Tat 100 nM excitation is
able to inhibit [Ca2+]i activity in frontal cortex neuron cultures.

Immunocytochemistry
Dendritic Branching Complexity Was Increased in

Tat-Exposed Frontal Cortex Neurons Treated With

MJN110
Soma area (µm2), maximum process length (µm), and distance
from soma with maximal branching (defined by radial distance
from the center of the soma with maximum number of
intersections) were analyzed to assess changes to neuronal
morphology driven by Tat (100 nM) and/or MJN110 (1µM,
Table 1). A two-way ANOVA with Tat and MJN110 treatment
as between-subjects factors for soma area displayed no significant
effect and/or interaction for Tat orMJN110 treatment. Maximum
process length was also not significantly altered by MJN110,
but trended toward decreased length in neurons treated with
Tat (p = 0.070, Table 1). Distance from soma with maximal
branching was significantly increased with MJN110 treatment
and displayed a significant Tat x MJN110 treatment interaction
such that Tat-untreated neurons showed no significant branch
pattern differences with MJN110 treatment (p = 0.810), but
Tat-treated neurons displayed significant increases in branching
complexity with MJN110 treatment (p= 0.002, Table 1).

Odor Discrimination Flexibility Task
Rate of Shaping Acquisition Was Faster in Tat(+)

Subjects
Behavioral acquisition in the shaping phase of the ODF
task was analyzed to assess whether genotype affected
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TABLE 1 | Effects of Tat (100 nM) and MJN110 (1µM) on neuronal morphology from frontal cortex neuron cultures a.

Measure Tat Vehicle MJN110 (1µM) Tat effect MJN110 effect Tat x MJN110

Mean ± SEM Mean ± SEM F1,32 p F1,32 p F1,32 p

Soma area (µm2 ) Control 174.6 ± 20.37 174.5 ± 13.86 <1.0 0.77 <1.0 0.93 <1.0 0.93

Tat 179.8 ± 41.10 184.7 ± 21.00

Maximum process length

(µm)

Control 67.8 ± 2.55 72.3 ± 5.01 3.5 0.07 1.8 0.19 <1.0 0.81

Tat 59.0 ± 4.72 65.6 ± 3.74

Distance from soma with

maximal branching

Control 26.1 ± 2.32 28.9 ± 2.32 <1.0 0.38 11.6 <0.01 4.6 0.04

Tat 19.4 ± 1.94 31.7 ± 2.21

aSholl analysis of neuronal morphology in frontal cortex neuron cultures in vehicle- or MJN110-treated control or Tat-treated neurons expressed as the mean ± SEM. The parameters

measured by Sholl analysis are indicated in the first column. One-way ANOVAs for each dependent measure were conducted with Tat and MJN110 treatment as between-subjects

factors. F-values and p-values are presented from ANOVA results. Bolded values denote significant differences at α = 0.05; mean ± SEM, n = 9 cells per group.

TABLE 2 | Effects of genotype and MJN110 treatment on latency (days) to acquire the reversal phase of the ODF task b.

Variables in the equation B SE Wald df Sig. Exp(B) 95% CI for Exp(B)

Lower Upper

Genotype −0.624 0.598 1.088 1 0.297 0.536 0.166 1.731

Treatment 0.428 0.612 0.489 1 0.485 1.534 0.462 5.092

Genotype*Treatment −1.328 0.949 1.959 1 0.162 0.265 0.041 1.702

bCox regression with genotype and treatment as factors. While omnibus tests found a significant effect of genotype in reversal learning, this effect loses significance when treatment

and its interaction with Tat are factored into the model.

the rate of task learning. Shaping acquisition was
significantly faster in Tat(+) relative to Tat(–) subjects
[Figure 3B; X2

(1,N=23)
= 6.422, p= 0.011].

Faster Reversal Acquisition in Tat(+) Subjects Was

Slowed to Rates Comparable to Tat(–) Controls With

MJN110 Treatment
Reversal acquisition latency was separately assessed to determine
the effects of genotype and MJN110 treatment specifically on
cognitive flexibility. While the effect of genotype demonstrated
significance in omnibus tests of behavioral acquisition in the
reversal phase [X2

(3,N=21)
= 7.983, p = 0.046], it was found to

be statistically insignificant when treatment and its interaction
with genotype were taken into account (Table 2). Specifically,
within Tat(+) subjects, MJN110 treatment significantly increased
the number of trials required to acquire the reversal learning
task (Figure 3B’; 22.00 ± 2.32 vs. 15.00 ± 1.84 for MJN110-
and saline-treated subjects, respectively; p= 0.048) presenting as
latencies more similar to Tat(–) subjects.

Neither Genotype Nor MJN110 Treatment

Significantly Affected Within-Trial Response Latency
Response latency within trials was also assessed to determine
whether genotype or drug treatment affected the speed with
which subjects approached the reward-predictive cue. No
significant effects of Tat or MJN110 on within-trial response
latency were observed (Figure 4A; p = 0.337 and 0.368,
respectively), indicating locomotor deficits/cannabimimetic
effects were not likely factors driving observed differences.

Tat Expression Did Not Influence Reinforcer

Consumption Volume
No significant differences were observed between Tat(–) and
Tat(+) subjects in total volume consumed in the test session
(Figure 4B), indicating the observed effect was not dependent
upon appetite differences between groups.

Tat Expression Did Not Influence Olfactory Sensitivity
While previous work has demonstrated increased odor detection
thresholds in HIV-positive relative to HIV-negative individuals
(71), no differences in latency were observed between genotypes
(Figure 4C), indicating the effect captured in the ODF task was
not driven by genotype-associated differential sensitivity to odor.

UPLC-MS/MS
2-AG and AEA Were Differentially Expressed Across

Examined Brain Regions Between Tat and MJN110

Conditions
2-AG, AEA, and AA levels were quantified in the prefrontal
cortex (PFC), hippocampus, and striatum to characterize the
effects of genotype and MJN110 treatment on brain region-
specific endocannabinoid levels. In vehicle-treated subjects, 2-
AG levels across brain regions were not significantly affected
by Tat (Figures 5A–A”; PFC p = 0.501, hippocampus p =

0.063, and striatum p = 0.155). However, MJN110 treatment
significantly upregulated 2-AG in the PFC [Figure 5A; F(1, 18)
= 4.8, p = 0.042] and striatum [Figure 5A”; F(1, 18) = 34.1, p
< 0.0001]. While Tat(+) subjects had significantly lower PFC
AEA levels relative to Tat(–) controls [F(1, 18) = 11.0, p =

Frontiers in Neurology | www.frontiersin.org 8 August 2021 | Volume 12 | Article 651272

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


League et al. MJN110 Protective Against HIV-1 Tat

FIGURE 4 | (A) No significant differences were observed between groups in response latency within reversal trials. (B) No significant differences in volume of

reinforcer consumed were observed between genotypes. (C) No significant differences were observed between Tat(+) and Tat(–) subjects in latency to locate a hidden

reinforcer. Data are mean ± SEM. Statistical significance was determined using ANOVA and Bonferroni correction where applicable. An alpha level of p < 0.05 was

considered significant for all statistical tests. RF, reinforcer.

0.004], MJN110 significantly upregulated AEA in this region
[Figure 5B; F(1, 18) = 8.1, p = 0.011]. Neither hippocampal nor
striatal AEA levels were significantly altered by MJN110 or Tat
(Figures 5B’,B”, respectively). No significant Tat- or MJN110-
associated differences in AA levels were observed in any brain
region assessed (Figures 5C–C”), though Tat(+) subjects trended
toward lower hippocampal levels across treatments (Figure 5C’;
p= 0.067).

PFC AA and Striatal AEA Levels Positively Correlated

With Within-Trial Response Latency in Tat(+) and

MJN110-Treated Subjects, Respectively
While neither genotype nor MJN110 treatment significantly
affected PFC AA levels (p = 0.418 and p = 0.104, respectively),
these measures were found to be positively correlated with
response latency within behavior trials in Tat(+) subjects (R2 =
0.55, p= 0.014). A significant positive relationship was also found
between striatal AEA levels and within-trial response latency
across groups (R2 = 0.232, p = 0.031). This effect appears to be
driven by MJN110, as drug-treated subjects displayed a stronger
relationship than vehicle-treated controls (MJN110 R2 = 0.40, p
= 0.050; vehicle R2 = 0.26, p= 0.136).

DISCUSSION

MJN110 treatment restored intracellular [Ca2+]i response and
dendritic branching complexity in Tat-treated neurons to that
of vehicle-treated controls in vitro, and shifted reversal task
acquisition latency among Tat(+) subjects to within the statistical
range of Tat(-) controls in vivo. Given that the behavioral effect
corresponded with significant Tat-induced andMJN110-induced
increases in hippocampal, prefrontal cortex, and striatal 2-AG
levels, the observed latency shift could be linked to treatment-
dependent alteration of perceived reward salience.

Tat has been shown to induce neurotoxicity and synaptic
damage across murine models of HIV, presenting as N-methyl-
D-aspartate (NMDA) receptor phosphorylation, cytokine
secretion, expression of apoptotic proteins, reduction of neurite

length, and reduced appearance of puncta along neuronal
processes (57, 72–75). Increasing 2-AG and AEA have previously
been found to rescue effects of Tat in PFC neurons presenting as
downregulation of high intracellular calcium levels and increased
neuronal survival (20); further, 2-AG has a larger therapeutic
window relative to AEA due to its higher physiological
expression (76). Both 2-AG and MAGL are implicated in
immune activation response control in macrophages and
microglia, where 2-AG prevents proinflammatory cytokine
production (77) and downregulates hippocampal inflammation-
induced cyclooxegenase (COX)-2 expression in response to
excitotoxic stimuli (78). MJN110-induced reduction of Tat-
driven excitability is likely mediated by inhibitory effects of
CB1R agonism in vitro as well as interactions with eicosanoid
signaling pathways in vivo (79), though a CB1R knockout
mouse model or co-administration of a CB1R antagonist such
as rimonabant would be required to specifically delineate this
potential mechanism.

While MJN110 and similar drugs have shown therapeutic
potential in models of inflammation-associated neural
dysfunction (32, 80), motivation regulation (81), stress (82), and
neuropathic pain (83), beneficial aspects of these treatments may
not generalize across test conditions. Elevation of 2-AG may
regulate neural activity in subjects susceptible to excitotoxicity,
but in a normal physiological context, the upregulation may
result paradoxically in proinflammatory effects due to 2-AG
hydrolysis into AA. AA metabolizes into other proinflammatory
prostaglandins and eicosanoids (84) reported previously to
be increased in women living with HIV (85). An interaction
might exist between Tat(–) and Tat(+) subjects such that
MJN110 treatment may shift activity of Tat(+) subjects closer
to the level of Tat(–) untreated controls. MJN110 may have no
additional beneficial effect in physiological systems wherein
inhibitory correction is not needed. Alternative strategies may
thus target upstream diacylglycerol lipase, responsible for
biosynthesis of 2-AG (86). As MJN110 appears to drive different
patterns of behavioral and neuronal activity and structure across
physiological and pathological conditions, it could be explored
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FIGURE 5 | (A) MJN110 treatment significantly increased PFC 2-AG levels

across genotypes. (A’) Neither Tat nor MJN110 significantly affected

hippocampal 2-AG levels. (A”) MJN110 significantly increased striatal 2-AG

levels across genotypes. (B) Tat(+) subjects across treatment groups had

significantly lower PFC AEA levels relative to Tat(–) controls. MJN110

significantly increased PFC AEA in Tat(+) subjects. No significant differences in

hippocampal (B’) or striatal AEA (B”) were observed between groups. No

significant differences in PFC (C), hippocampal (C’), or striatal AA (C”) were

observed between groups. Data are mean ± SEM. Statistical significance was

determined using ANOVA and Bonferroni correction where applicable. An

alpha level of p < 0.05 was considered significant for all statistical tests. *p <

0.05 vs. vehicle treatment; **p < 0.0001 vs. vehicle treatment; ∧p < 0.05 vs.

vehicle-treated Tat(+) subjects; #p < 0.01 vs. Tat(−) subjects.

whether depletion of 2-AG upstream might have greater
neuroprotective potential as proinflammatory metabolites are
further reduced and potential adverse effects of excessive 2-AG
upregulation are functionally precluded (87, 88).

The finding that MJN110 (1 mg/kg) significantly upregulated
AEA levels in the PFC of Tat(+) mice warrants further
exploration. FAAH inhibition has shown to have brainregion-
dependent effects on 2-AG levels (89), but the reverse effect
for AEA with MAGL inhibition is less commonly found.
While earlier-generation MAGL inhibitors such as JZL184 have
some known cross-reactivity with FAAH, more selective MAGL
inhibitors including MJN110 (25, 61) or KML29 (24, 90) show
negligible cross-reactivity with FAAH and do not elevate AEA

levels in the whole brain (24, 25, 61, 90). Similarly, we have
not seen any AEA elevation in control, Tat(–) mice following
repeated treatment with MJN110 at 1 mg/kg. It is likely Tat
expression alone modifies endocannabinoid system function in
such a way that MAGL blockade results in AEA elevation not
observed in control animals, and the mechanism remains to be
elucidated. It has been shown previously that Tat reduces the
potency of 2-AG-induced inhibition on excitation (30).

HIV-1 has been shown to exert damage to dopaminergic cells
and cause synaptic connectivity loss in dopaminergic projection
pathways (91), presenting frequently in infected individuals as
apathy and motivation dysregulation (92, 93). These behavioral
sequelae of HAND are accompanied by increased markers
of inflammation in the striatum (94). HIV-1 infection and
substance abuse disorders are frequently comorbid (95, 96), and
previous work has shown that neurons in regions implicated
in reward seeking, such as the medial PFC, are hyperexcitable
in the presence of HIV, particularly in models of salient
reward self-administration (97, 98). As Tat binds and produces
conformational changes to dopamine transporters (99, 100),
rewarding effects of reinforcers are also influenced by direct Tat-
induced inhibition of dopamine uptake in the striatum (101,
102). Specifically, Tat has been demonstrated to inhibit dopamine
transporter (DAT) reuptake function by interacting (i.e., forming
hydrogen bonds) with the DAT residues Tyr88 and His547
(103–106). Further, the resulting dopaminergic alterations can
drive inflammation and immune dysfunction in PWH (107, 108)
and increase susceptibility of these individuals to behavioral
dysregulation presenting as greater addiction severity andHAND
(109). Given the highly significant effect of MJN110 treatment on
striatal 2-AG levels observed presently, subsequent investigations
will shift focus to the effect of Tat andMJN110 on reward-seeking
behavior as a proxy for motivation.

To better elucidate the effect of MJN110 on potential Tat-
induced addiction-like behaviors (110), a progressive fixed
ratio reinforcement schedule will be employed in an operant-
conditioning task to assess reward-related motivation differences
between genotypes and treatment groups. If data are consistent
with Kesby et al. (67) and the effect of Tat is altered by
MJN110 treatment, it is likely that the most influenced behavioral
effect of the drug relies upon its action in cortico- and
mesolimbic circuitry.

CONCLUSION

As efforts continue to address shortcomings of currently
available therapeutics in HIV-1 treatment, the present study
aimed to characterize a potentially viable neuroprotective
drug which has been shown to attenuate inflammatory
responses across numerous models of CNS insult. Analyzing
MAGL inhibition effects on Tat-induced behavioral, neuronal,
and endocannabinoid level changes served as a proxy for
understanding functional outcomes of chronic endocannabinoid
signaling modulation, and whether targeting 2-AG at the stage
of hydrolysis may be restorative in models of HAND. While
the mechanistic actions and biological outcomes of novel
cannabinoid drugs continue to be investigated, characterization
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of these compounds in disease states (particularly those which
currently remain only partially suppressed) serves to broaden
our understanding of their utility across models of inflammatory
nervous system insult.
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