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The epidermal growth factor receptor (EGFR) is a
membrane-anchored tyrosine kinase that is able to selectively
respond to multiple extracellular stimuli. Previous studies have
indicated that the modularity of this system may be caused by
ligand-induced differences in the stability of the receptor
dimer. However, this hypothesis has not been explored using
single-mutant ligands thus far. Herein, we developed a new
approach to identify residues responsible for functional diver-
gence by selecting residues in the epidermal growth factor
(EGF) ligand that are conserved among orthologs yet divergent
between paralogs. Then, we mutated these residues and
assessed the mutants’ effects on the receptor using a combi-
nation of molecular dynamics (MD) and biochemical tech-
niques. Although the EGF mutants had binding affinities for
the EGFR comparable with the WT ligand, the EGF mutants
showed differential patterns of receptor phosphorylation and
cell growth in multiple cell lines. The MD simulations of the
EGF mutants indicated that mutations had long-range effects
on the receptor dimer interface. This study shows for the first
time that a single mutation in the EGF is sufficient to alter the
activation of the EGFR signaling pathway at the cellular level.
These results also support that biased ligand–receptor
signaling in the tyrosine kinase receptor system can lead to
differential downstream outcomes and demonstrate a prom-
ising new method to study ligand–receptor interactions.

The epidermal growth factor (EGF)-like domain ligand–
receptor signaling system is involved in many biological
events in multicellular organisms (1). This system is consti-
tuted by one receptor (epidermal growth factor receptor
[EGFR]) and seven distinct peptide ligands (EGF; heparin-
binding epidermal growth factor [HBEGF]; epigen [EPGN];
betacellulin [BTC]; epiregulin [EREG]; amphiregulin [AREG];
transforming growth factor-alpha [TGFA]). Upon binding to
the receptor, these ligands can activate multiple intracellular
downstream pathways through a network of intramolecular
interactions with several feedback loops (2). For all ligands,
binding induces a transition in the EGFR from monomer or
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inactive dimer to an active dimer state (3, 4). However,
different ligands are able to promote divergent outcomes, even
at saturating concentrations; thus, the mechanism responsible
of the modular downstream pathway activation is independent
of ligand affinity or potency and likely encompasses intrinsic
effects (5). It is well known that the EGFR system plays a key
role in cancer development. In particular, some studies have
shown that overexpression of the EGFR or its ligands may
induce different types of cancer (6). A better understanding of
the interaction between the EGFR and its ligands could lead to
the development of targeted therapies (7).

Protein–protein interactions, such as that between the
EGFR and its ligands, are well-studied examples of molecular
coevolution in biological systems. These interactions are
sometimes defined by one part (receptor) that binds several
counterparts (ligands). In these instances, receptors and li-
gands experience different selective constraints, where re-
ceptors tend to evolve more slowly because of the necessity of
binding multiple ligands (8). Furthermore, paralogs, proteins
related by a duplication event, are less likely to retain the same
function as orthologs, proteins related by a speciation event
(9). Then, the paralogous ligands rather than the receptor are a
good candidate to test the functional divergence in the biased
signaling system. However, this approach is susceptible to
indirect factors, such as different ligand binding selectivity,
thus resulting in the activation of unrelated pathways. In this
work, we decided to test single mutants of one ligand, EGF, by
identifying and modifying sites responsible for a divergent
function among paralog ligands. Recent studies have shown
that some EGF residues such as Arg-41 and Leu-47 are highly
conserved and important for high binding affinity to the EGFR
(10). Another study highlighted Tyr-13, Leu-15, and His-16 in
the EGF as essential for downstream activity of ErbB1 (11).
These outcomes were based on structural analyses of ligands
and experimental validation. Although bioinformatic tools
such as contact prediction (12) or molecular dynamics (MD)
(13) can give a good overall picture of ligand–receptor in-
teractions, the contribution of single ligand residues to the
modularity of the system still remains unclear.

Ligand-induced selective activation of downstream pathway
has been observed in G protein–coupled receptors, a
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EGF mutants elucidate receptor transduction
phenomenon known as “biased signaling” (14, 15). A recent
report hints that this mechanism might also take place in the
EGFR tyrosine kinase (16). Initially, the main contributor to
the modularity of the system was thought to be the affinity of
the ligands to the receptor. However, the discovery of the
ligand EPGN, which induces a potent mitogen effect despite
low binding affinity (17), and multiple cell line studies (5) have
changed this perspective. A plausible explanation was initially
formulated by Wilson et al. (5), where different EGFR ligands
induce different receptor dimer stabilities, altering the phos-
phorylation dynamics. Later, new experimental evidence sup-
ported this theory by observing a transient activation in stable
receptor dimers induced by the EGF, whereas the activation of
the weak receptor dimer induced by EPGN or EREG persisted
for a longer time (18). A difference in dimer stabilities could
result in alterations of the receptor oligomerization state,
previously shown as a determinant of the intracellular kinase
phosphorylation pattern (19). Now, the open question is how
these ligands induce different dimer stabilities. Interactions
between the interface of the ligand and the EGFR have been
shown to influence the stability of the dimerized receptor (20),
a factor that is related to ligand-specific signaling bias (18, 21).
It is known that the EGFR dimer can be observed in a sym-
metrical, “flush” conformation or an asymmetrical, “staggered”
conformation (22), depending on the presence/absence of the
membrane, glycosylation, and the number of bound ligands
(23). Whether and how this plays a role in biased signaling is
still unknown.

Here, we show how single amino acid substitutions on the
ligands effect the biased signaling in the EGF–EGFR ligand–
receptor system. We developed a new bioinformatic tool to
analyze the coevolution of the ligand–receptor pair and
identify candidate function-altering mutations. The identified
mutants induced an altered phosphorylation dynamics and
different cellular phenotype (Fig. 1). This is the first study to
explain differences in biased signaling of the EGFR using
single-residue EGF mutants. Furthermore, our coevolutionary
analysis can be applied readily to other ligand–receptor
interactions.

Results

DIRpred

First, we developed a method for predicting residues that are
likely to be responsible for functional divergence among
paralogs sharing a common interactor (referred as ligands and
receptor from now on). We called the method DIRpred
(divergence-inducing residue prediction). Our approach
combines residue-specific conservation measures to identify
positions that are conserved among orthologs while diverging
among paralogs. The DIRpred analysis is based on the
assumption that conservation of a residue in orthologs of a
specific ligand shows whether a residue is important for either
structural or functional reasons, while conservation of a res-
idue among paralogous ligands denotes the importance of a
residue for interaction with the common interactor (the main
shared property of all ligands). Thus, residues that are highly
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conserved in orthologs but not in paralogs of a ligand are likely
related to the ligand’s specific function. Unlike other existing
methods for prediction of specificity determining residues (a
review can be found in (24)), we included interprotein
coevolution measures to narrow down those residues that are
responsible for a specific interaction. The DIRpred score is
calculated as the sum of the four components (I: orthologs
conservation, II: complement of the paralog’s conservation, III:
ligand–receptor coevolution, and IV: complement of ligand
internal coevolution). Optionally, the analysis can be con-
ducted using a structural alignment of the paralogs (multiple
structural alignment [MSTA]) instead of the multiple
sequence alignment (MSA). An implementation of the
DIRpred analysis was done using Python. The pipeline accepts
multiple sequence or structure alignments and a reference
protein to conduct the analysis. The output consists of a single
tabular file containing the four individual scores and the
combined prediction score for each protein site, and a plotted
recap of the results (Fig. S1).

DIRpred analysis of the EGF

We applied the DIRpred algorithm to predict the residues in
the EGF that induce functional divergence among paralogs
(Fig. 2). Because the analysis requires prior knowledge of
paralogs and orthologs of the target gene, we first performed a
phylogenetic analysis to confirm that the reported paralogous
ligands of the EGF are monophyletic (Fig. S2). The same tree
was used in the statistical validation of the individual DIRpred
scores. A random 53–amino acid–long sequence was evolved
100 times on the EGFR ligand phylogenetic tree using Pyvolve
(25). Assuming that the distribution of DIRpred scores will be
normal, we estimated the probability that a site without
functional constraints would have the same or higher than
observed score (p-value) (26). We included the results of the
statistical analysis to the output of DIRpred for the EGF
(Fig. S3, Table S1). The analysis highlighted residue Asn-32,
Asp-46, Lys-48, and Trp-50 as potential candidates for
paralog functional divergence. Asn-32 and Lys-48 show a very
small conservation in both sequence and structure alignments
resulting in a high partial score (II). Asp-46 has a relatively
high coevolution with the receptor (III), while Trp-50 has high
scores overall (Fig. S4).

Three of the four positions were mentioned in previous
reports; however, none of them was individually mutated.
The tryptophan in position 50 is a strong outlier in our
bioinformatics analysis, along with Trp-49 (Fig. 2). Their
score is high even when using conservation measures that do
not take amino acid type change into account (data not
shown). However, Trp-50 was a better candidate for testing
because of its outward-facing position, while Trp-49 is
involved in buried protein contacts (27). Trp-49 and Trp-50
could be responsible in facilitating the interaction of the EGF
with the membrane phospholipids, as it happens for Pro-7
and Leu-8 (28); Trp-49 and Trp-50 are not burying inside
the bilayer when the EGF and a membrane are in solution
alone (29), although this might be different when in complex



Figure 1. Study rationale. EGF mutants were identified using an ad hoc methodology that combines conservation and coevolution measures, DIRpred.
Unlike WT EGF, the mutant ligands induce an unstable conformation of the receptor dimer, similarly to a dimer with a single WT EGF. Treating A431 and
fibroblast cells with either WT EGF or mutant EGF resulted in a different response both in the phosphorylation dynamics and the cell proliferation
phenotype. DIRpred, divergence-inducing residue prediction; EGF, epidermal growth factor.

EGF mutants elucidate receptor transduction
with the receptor. For example, this could be achieved by
Trp-50 through the formation of a helix, clustering together
with Val-34 and Arg-45 around the conserved Leu-47 (30).
Mutation N32R is on the interface between the ligand and
receptor. The slightly higher affinity is probably due to the
presence of the guanidinium group of R which is positively
charged and could interact with Gln-16 of EGFR extracel-
lular domain (ECD) (Fig. S5). Interestingly, mutations of the
corresponding position in chicken transforming growth
factor-alpha were able to alter the mitogenicity without
strongly affecting the binding affinity (31). Although no
previous literature reported about Asp-46 before, Lys-48 was
found in two mutants that showed higher affinity (32).

Next, we manually chose which amino acid to introduce
on the four sites depending on several factors. The main
contribution to the decision was given by the paralog
alignment, while also considering the amino acid type and
the ligand functional divergence. The paralogs were
divided into two groups based on their kinetics parameters
of interaction with the receptor. After that, we selected an
amino acid that infers a significant change in biochemical
properties and that is found in the paralog group without
the EGF. When multiple choices were possible, priority
was given to the EPGN or EREG because these two
ligands are the ones observed to induce a biased signaling
in the study by Freed et al (18). The four designed EGF
mutants with a single amino-acid substitution that were
selected for functional characterization are N32R, D46T,
K48T, and W50Y.
Biochemical properties of the EGF mutants

To determine the integrity of the secondary structure of
the mutated ligands and the functional effects of these amino
acid substitutions, we first performed in vitro analysis.
Initially, CD spectroscopy was used to confirm that the sec-
ondary structure of the mutants was maintained (Fig. S6).
The β-sheet content of the EGF mutants (ranging from 0.41
to 0.54 %) was not substantially different than the WT EGF
(0.44%), whereas the other secondary structure varies. It is
not surprising that only the beta sheet content can be
detected by CD, considering that the EGF is a peptide (53
amino acids) constituted by two β-sheets connected by a loop
and the regions at the C and N termini are flanking. Then, we
tested the ability of each mutant to bind the soluble ECD of
the EGFR, by isothermal titration calorimetry (ITC) and
microscale thermophoresis. The mutants bound the receptor
analogously to the WT sample in both the experiments
J. Biol. Chem. (2021) 297(1) 100872 3



Figure 2. DIRpred analysis of EGF. A, the relative ranking score of the four mutants. The outer circle represents paralog multiple sequence analysis (MSA)-
based scores, while the inner circle represents paralog multiple structural alignment (MSTA)-based scores. The darker color indicates a higher ranking in the
EGF site-based scoring. The ranking values are reported in Table S2. B, cross-conservation plot. The plot is obtained by crossing the two conservation scores.
Interestingly, no point lies in the bottom right half of the plot (high paralog conservation and low ortholog conservation), suggesting that paralog and
ortholog conservation is not independent. This observation points out that there is no organism-specific adaptation shared by all ligands at the protein
sequence level. C, cross-coevolution score. The plot is obtained by crossing the two coevolution scores, the ligand–receptor (L-R) coevolution score (III) on
the y axis and the ligand–ligand (L-L) coevolution score (IV) on the x axis. DIRpred, divergence-inducing residue prediction; EGF, epidermal growth factor.

EGF mutants elucidate receptor transduction
(Fig. 3). Although the N32R sample showed a slightly steeper
response in both the experiments, the mutations did not
appear to strongly affect the ligand secondary structure and
the ability to bind the receptor.

Biological effects of the EGF mutants

To shed light on the biological outcome of the short-term
response, we sampled the effect of the EGF single mutants
on EGFR expression and on the amount of phosphorylated
EGFR (pEGFR) in A431 cells. A431 is a human epidermoid
carcinoma cell line that overexpresses the EGFR. For this
reason, we postulated that any changes at the receptor level
would be amplified. We measured the amount of total and
phosphorylated EGFR protein at multiple timesteps by West-
ern blot (WB) after treating with saturating concentrations
(100 nM) of WT or mutant ligands (Fig. 4). Remarkably, D46T
mutant showed a reduced level of pEGFR up to 30 min after
treatment (Fig. 4A). Meanwhile, the pEGFR bands for K48T
and W50Y samples appear slightly stronger than the WT in
the first three timesteps. However, the differences are not
significant. The dimerization state of the receptor, tested by
cross-linking assay, follows a similar trend as the phosphory-
lation experiments (Fig. 4B). After 1 h or 6 h, the treatment
with the ligands also caused a reduction in the total amount of
EGFR protein compared with the control (Fig. S7). However,
the reduction of D46T sample did not appear as marked as the
other samples. This result shows an inverse relationship be-
tween receptor activation and receptor quantity, a fact that
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could be explained by the biased signaling theory. Thus, while
the EGF mutants showed comparable binding affinities to the
receptor, at least one of the mutants showed a different
phosphorylation pattern compared with the WT ligand.
Furthermore, the observed differences in the total amount of
EGFR protein indicate a possible alteration in the membrane
expression or recycling of the receptor.

To observe the long-term effects of the mutants on the
cellular phenotype, we performed a cell growth assay using an
IncuCyte live-cell analysis system on two fibroblast cell lines
(Bj5-tα and Albino Swiss mouse 3T3). With the same plat-
form, we also performed an apoptotic assay on A431 cells by
measuring the reduction in cell population, using the Annexin
V green reagent to confirm the induction of apoptosis. After
1 day of initial incubation, we subjected the cells to 1, 10, or
100 nM concentration of growth factors. Treating Bj5-tα fi-
broblasts with 100 nM WT EGF resulted in the highest
reduction in the proliferation rate compared with the control.
The reduction in proliferation was accompanied by a change in
cellular morphology that could be a signal of differentiation
(Data S1). However, treatment with any of the mutants
decreased the ability of the ligand to suppress growth (Fig. 5A).
The D46T and K48T mutants differed most from the WT
(Fig. S8A). We observed a similar trend in the Albino Swiss
mouse 3T3 cell line (Fig. S8B). In both cell lines, the effects are
concentration dependent (Fig. S9). Next, we further tested the
mutants in an apoptosis assay using the A431 cell lines. This
cell line is known to exhibit apoptosis when treated with high



Figure 3. Binding measurements of EGF mutants to the EGFR by isothermal titration calorimetry (ITC) and microscale thermophoresis (MST). A, ITC
analysis of WT EGF ligand and mutants N32R, D46T, K48T, and W50Y binding to the ECD of the EGFR at 25 �C. Measurements were taken by adding WT EGF
or mutants at 200 μM to the ECD of the EGFR at 20 μM. B, extrapolated curves of the MST experiment. The normalized fluorescence difference (Fnorm) at
20 s for different concentrations of ligands was analyzed using the NanoTemper Technologies analysis software. Using the Kd model, it was possible to fit a
curve for every sample except bovine serum albumin, which showed no binding. All ligands show a transition at about 100 nM. C, multiple sampling of
thermophoresis was performed at a concentration of 100 nM, the point of the curve where we expected to observe a biggest difference for a ligand with an
altered affinity. The Fnorm is shown in relationship to an NL (no ligand) sample average coming from the same experimental batch. ECD, extracellular
domain; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor.

EGF mutants elucidate receptor transduction
(>10 nM) concentrations of the EGF peptide (33). The WT
showed the highest decrease in cell population 48 h after
treating with 100 nM WT, while the four mutants had an
intermediate response between WT and the control. Cells
treated with the W50Y mutant have the closest level to the
WT (Fig. 5B). In WT EGF cells, we observed evidence of
apoptosis in cell’s globular processes and increased ratio of
Annexin to confluence signal (Fig. S10). Meanwhile, D46T-
and K48T-treated cells displayed signs of cellular differentia-
tion (Fig. 5C), in comparison with the no ligand and other
mutants (Fig. S11, Data S1). Significantly, these results show
that single amino acid changes in the EGF ligand display dif-
ferential effects on the EGFR transduction mechanism.

The observation that the four mutations in the EGF alter
signal transduction without disrupting any contacts between
the ligand and the receptor can be explained by the “loss of
symmetry”model of EGFR signaling (18). Freed et al. observed
how stable symmetrical dimers show a short-lived nature of
signaling, whereas asymmetric dimers conduct a sustained
activation, lasting longer than 24 h. Such a model provides an
explanation on how a low level of phosphorylation after EGF
treatment causes modifications in the apoptotic behavior
observed in the cellular growth experiments. Compared with
the WT EGF, the D46T variant shows a constantly lower
phosphorylation signal, possibly through the formation of a
less stable, asymmetric dimer. Thus, the observed effects of the
EGF mutations on pEGFR and dimer stability are consistent
with the "loss of symmetry" theory. However, the fact that
some mutants have a similar phosphorylation pattern as the
WT EGF but show different cellular phenotypes suggests that
there might be other factors at play.
Molecular dynamics

To understand how EGF single mutants affect the receptor
signaling transduction, we performed full atomistic MD sim-
ulations of the extracellular EGFR in complex with WT or
mutant ligands (100 ns each). We modeled the receptor
starting from the asymmetric, “unstable” conformation of
5WB7 (22). In this way, we expected to observe a fast
J. Biol. Chem. (2021) 297(1) 100872 5



Figure 4. Short-term response: effects of WT and single-mutant EGF on the receptor phosphorylation and dimerization in A431 cells at different
time points. A, short-term effects on the phosphorylation level of EGFR Tyr-1173 after treating A431 cells with 100 nM concentration of different ligands.
The membrane containing the EGFR and tubulin was separated after the transfer. D46T-treated cells show a statistically significant reduction in the level of
phosphorylation compared with the other samples. B, A431 cells were treated with 100 nM WT or mutant ligand. After 30 min, the cell lysate was run
through a protocol for cross-linking and Western blot. The bars represent the mean ± SD of at least four biological repeats. The number on top of the bars
shows the p-values of a two-way ANOVA (A) or one-way ANOVA (B) multiple comparison corrected for multiple sampling using the Bonferroni correction.
Details of the ANOVA statistics can be found in Table S3. Band intensity estimates were calculated using Bio-Rad Image Lab software (Bio-Rad). Plots and
statistics were performed using PRISM software (GraphPad). EGF, epidermal growth factor; EGFR, epidermal growth factor receptor.

EGF mutants elucidate receptor transduction
rearrangement for those simulations where a ligand more
favorably induces a stable dimer. In previous literature, an
unstable conformation was observed when removing one of
the EGF ligands (23). For this reason, we also performed one
simulation of the EGFR dimer in complex with only one WT
ligand as a comparison (1ligEGF). The MD simulations quickly
converged to a stable RMSD (Fig. 6A). For each simulation, we
calculated the number of H-bonds between the two receptor
dimers, and between the ligand and receptor. In the WT EGF
simulation, the EGFR dimer had an average of 15 H-bonds,
higher than any other simulation (Fig. 6D). However, the
number of bonds between the receptor and ligand was not
altered (Fig. 6E). In addition, during the course of our simu-
lations, we also noted differences in the RMSF specifically
located at the dimerization arm domain (Fig. 6B). The
conformational space sampled by the dimerization arm of
K48T simulation was much wider than the WT simulation
(Fig. 6C). To analyze the temporal distribution of these mo-
tion, we measured the distance between Pro-272 and Gly-288
of different EGFR monomers. This distance was chosen
because it was able to discriminate between the EGFR dimer in
complex with EREG (PDB ID: 5WB7) and EGF (PDB ID:
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1IVO). In 5WB7, one of the two distances is much bigger
(~1.10 nm versus 0.4 nm) than 1IVO (Fig. 6F). In our simu-
lations, we observe WT showing a sharp peak at 1 nm, while
the mutants and 1ligEGF have a secondary peak at higher
distances (Fig. 6G). Thus, the mutations in the EGF appear to
affect the stability of the EGFR dimer without affecting the
stability of the EGF–EGFR interaction.
Discussion

The prediction of functional residues is a well-developed
field (34), where conservation measures are considered a key
factor to rely on. Tools such as ConSurf (35) and the evolu-
tionary trace-like methods (36) are able to identify slowly
evolving positions that are involved in folding, interaction, or
catalytic activity (34). However, the specific reason why a
residue is conserved often remains unclear. In this work, we
show a new method to identify residues that affect specific
functions in a system of interest. Our approach combines a
conservation score calculated from the structural alignment of
paralogs and among orthologs, with an intramolecular and
intermolecular coevolution score with previously known



Figure 5. Long-term response: Growth assays of cells treated with EGF variants. A, effect of different concentrations of EGF variants on proliferation of
the human normal fibroblast Bj5-tα cell line. Data represent the percentage of the growth rate, calculated from the confluence of cells, relative to the
control (mean ± SD). Percent confluence was estimated 24 h after the treatment (two replicates per treatment). B, apoptosis effect of WT or mutant EGF on
A431 cells. EGF-induced apoptosis is measured as the reduction in total population compared with the control. C, comparison of A431 cell growth after
treatment with 100 nM WT EGF and EGF variants D46T and K48T. Cells were labeled with fluorescent Annexin V green reagent. Plates were prewarmed
before data acquisition to avoid condensation and expansion of the plate, which affect autofocus. Images were captured every 2 h (4× magnification) for
3 days in the IncuCyte system. The number on the top of the bars shows the p-values of a two-way ANOVA (A) or one-way ANOVA (B) multiple comparison
to the control lane, corrected for multiple sampling using the Bonferroni correction. Details of the ANOVA statistics can be found in Table S3. Band intensity
estimates were calculated using Bio-Rad Image Lab software (Bio-Rad). Plots and statistics were performed using PRISM software (GraphPad). EGF,
epidermal growth factor.

EGF mutants elucidate receptor transduction
interactors. Conservation and coevolution give a comple-
mentary signal, thus improving the overall predictive perfor-
mance (37). The coevolution score was introduced to DIRpred
to highlight residues that are directly responsible of an inter-
action with the receptor, at the expenses of those that interact
intramolecularly within the ligand. Although the first part
efficiently identifies Asn-32 and Lys-48 as putative interactors,
the second part does not properly give a penalty to residue
Tyr-29. The interaction of this position with His-10 is also
conserved in the EGF but with reversed positioning (Fig. S12),
resulting in a low paralog conservation (therefore high
contribution to the DIRpred score). While it is still possible to
optimize the coevolution scoring function, integrating con-
servation and coevolution measures is a promising way to
recall information of specific functions involving protein–
protein interactions.

The herein studied mutations do not alter significantly the
ability to bind the EGFR. However, the mutants showed a
different cellular effect on Bj-5ta cells (Fig. 5). A delayed
proliferation response compared with the control might seem
counterintuitive for fibroblasts (38). However, Bj-5ta hTERT
immortalized fibroblasts have features that distinguish them
from in vivo fibroblast, such as differential gene expression and
EREG-dependent proliferation (39). A decrease in cell prolifer-
ation after EGF treatment could be the result of competition
between the endogenously synthesized EREG and EGF, thus
altering the balance between proliferation and differentiation.

A431 cells constitutionally express EGFRs at high levels.
Treatment with the EGF has been observed to promote STAT1-
dependent apoptosis (40). This pathway is dependent on the
internalization of the ligand–receptor complex by the endocytosis
process, a key factor in the ligand-inducedbiased signaling (16). In
our experiments, A431 cells treated with mutant EGF ligands
show a higher growth rate, therefore a decreased rate of apoptosis
compared with the WT. Given the setting of the experiment,
modularity in the endocytosis pathway is a straightforward
explanation to the observed differences in the growth rate and in
protein levels and phosphorylation. Interestingly, D46T- and
J. Biol. Chem. (2021) 297(1) 100872 7



Figure 6. Molecular dynamics of the EGFR extracellular domain. A, RMSD from the initial structure. B, top, root mean square fluctuations (RMSF) of the
100-ns simulations. The WT level is marked in bold and dashed red line. Bottom, focus on the RMSF of the dimerization arm domain. The two plots represent
the two EGFR in the receptor dimer. C, dynamics of the dimerization arm domain in WT (red) and K48T (green) simulations. A structure every 20 ns of
simulation was taken and aligned to 1IVO reference structure (blue surface and black ribbon). The structure at 20 ns is represented in solid colors. K48T
simulation shows a more dynamic dimerization arm. D, the number of H-bonds formed between the two receptors during the 100-ns simulation time. E, the
number of H-bonds formed between the receptor that shows a dynamic dimerization arm and the corresponding ligand during the 100-ns simulation time.
F, the distance used to investigate the fluctuations of the dimerization domain highlighted on the structure. Pro-272 (purple) and Gly-288 (red) are
highlighted both on 5WB7 (green and teal) and in 1IVO (gray). The distance between the alpha carbons of the 5WB7 couple is shown in brown and is notably
longer than 1IVO. G, distribution of the distance between Pro-272 and Gly-288 in all the simulations. WT simulation shows a single peak at ~1 nm, whereas
in all other ligands, the distance has two peaks. EGFR, epidermal growth factor receptor.

EGF mutants elucidate receptor transduction
K48T-treated cells showed an increase in long and thin cellular
processes in all replicates (Fig. 5). D46T was also observed with a
marked difference in the pEGFR compared with the WT (Fig. 4).
A possible explanation could be the EGF-induced tubular for-
mation, an alternative EGF-induced pathway reported in intesti-
nal epithelial cells (41). In both the cellular growth experiments,
the growth rate of the mutants is intermediate between the con-
trol and EGF, and concentration dependent. This phenomenon,
and the cell line–specific response of growth hormones, is
consistent with previous literature reports (42).

The analysis of the fluctuations in the dimerization arm
reveals an underlying bias in ligand-induced receptor
8 J. Biol. Chem. (2021) 297(1) 100872
dimerization, originally not visible from the static images of
structure comparison. K48T is the mutant that induces the
biggest deviation from the WT. Although, all mutants show a
transition. While giving an initial outlook on the effect of the
mutants, our MD simulations do not take into account other
factors that could be important in the mechanism of action of
the EGFR. Differential multimerization (43), oligomerization
(19), receptor glycosylation, and the interaction with the
membrane (23) are factors where the underlying bias induced
by the mutant ligands could also have an effect in.

In this work, we showed how a single mutation of the EGF is
able to alter the specific functional relationship with the
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receptor. For functional divergence to arise, it could take as
little as mutating 15% of the sequence (44). However, the
EGFR ligands divergence date back to the vertebrate ancestor
of R1/R2 whole-genome duplication, up to 500 million years
ago (45), as hinted by the low (~25%) sequence identity. From
our results, the sequence distance does not reflect the distance
in function. In fact, the functional divergence of the EGF was
altered with just a single targeted mutation.

In conclusion, our data suggests that a single mutant ligand
induces a conformational change of the receptor that then af-
fects receptor dimer stability, with plausible effects on phos-
phorylation level and downstream pathway activation (46). This
shows how the persistence of biased signaling in the EGFR is in
an unstable equilibrium, where the observed conservation of
diverging sites among paralogs is naturally reinforced to main-
tain the functional divergence. To determine whether a short
distance in function space among paralogs is a consequence or a
necessity for living systems, further studies will be required.

Experimental procedures

Sequence and structure analysis

The sequences of EGFR ligands and the MSA of EGF
orthologs were obtained from the Ensembl database (47). MSA
of all ligands was performed with MAFFT software (48). X-ray
structures were obtained from the PDB database (49). Struc-
tural alignments were created using Chimera (50).

Phylogenetic analysis

From the MSA of the EGF from different species, nearly
identical sequences were removed. The Drosophila mela-
nogaster EGF sequence was added as an outgroup in the EGF
phylogeny, while Caenorhabditis elegans EGF was used as
outgroup for the ligand phylogeny. MSA and phylogenetic tree
images were created using Unipro UGENE software (51).
Three phylogenetic trees were made using the neighbor-
joining, maximum likelihood, and Bayesian methods in IQ-
TREE (52), using ModelFinder to scan for the best-fit evolu-
tionary model and parameters (53).

DIRpred

We identified sites in the EGF responsible for functional
divergence using a method that combines evolutionary and
coevolutionary data, called DIRpred. The DIRpred scoring
function combines four components to evaluate each residue:
(i) The combined conservation scores in the ortholog align-
ments. This score is calculated by averaging the conservation
of a reference ligand site with the conservation in the
respective positions of the other ligands’ orthologs alignments.
(ii) The complementary value (1 – x) of the conservation score
in the paralog alignment. This score can be obtained either
from sequence alignment (paralog MSA) or structural align-
ment (paralog MSTA). (iii) The highest coevolution score
between a reference ligand site and all of the receptor sites. (iv)
The complementary value (1 – x) of the highest coevolution
score between a reference ligand site and all of the other ligand
sites in the joint ortholog alignment of all ligands (Fig. 7).
Conservation scores were calculated using three different
formulations: (1) IDENTITY, (2) BLOSUM, and (3) JSDw. The
IDENTITY score measures the frequency of appearance of a
reference residue in the MSA. The BLOSUM score takes the
amino acid substitution frequency into account using the
BLOSUM62 matrix, normalized by the maximum and mini-
mum scores for the BLOSUM matrix. The JSDw score is based
on Jensen–Shannon divergence with a window of residues
(54). The FASTA sequences were imported using Biopython
package, while analysis and plots were performed with Python
3 package seaborn. EGF index positions from the paralogs
MSA and MSTA were, respectively, used to align the MSA-
and MSTA-based scores. A schematic representation of how
the four scores were obtained is shown in Figure S1.

The code used in the analysis of the DIRpred score and plots
and the data used in this article are shared on GitHub: https://
github.com/oist/DIRpred.

Statistical validation of EGF DIRpred

The statistical analysis of EGF DIRpred scores was done as
in the study by Mirny and Gelfand (55) with some modifica-
tions. The key point is that a null-hypothesis dataset should
take into account the higher similarity found between ortho-
logs, rather than between paralogs. Such a dataset was ob-
tained through a simulated evolution performed using the
Python package Pyvolve (25). The sequences in the output
dataset were required to have a relationship akin to those of
the EGF homologs. Using the WAG model (56), a random 53–
amino acid–long protein sequence was evolved from the root
of the EGF homolog tree until each leaf node, simulating a
scenario of neutral evolution. Then, the sequences were
divided in orthologs and paralogs using the original tree
classification. The output was used as input for the DIRpred
pipeline to obtain four partial scores for each site. After 100
repetitions, the partial scores were gathered together to form
four background distributions. Through the assumption of
normality, it was possible to estimate the probability of a site to
have a higher or equal score as a randomly evolved site, that is,
without functional constrains (26). The scores were considered
significant only on the side where they contribute positively to
the total DIRpred score, for example, when there is a lower
level of paralog conservation than expected. For this reason,
only one side of the normal distribution is used for the
calculation of the p-value. (Fig. S3). In this way, it was possible
to isolate the highly conserved cysteine positions, which usu-
ally get a misleading high overall DIRpred score. About the
relative contributions of individual scores, an equal weighting
system was preferred over the use of arbitrary values, which
might not be always optimal. However, the pipeline allows the
user to provide his own weighting system that might be more
optimized for the user’s study subject.

Selection of the mutations

Along with the DIRpred score, the choice of positions for
mutation was influenced by two manually curated factors: the
distance from the receptor and the amino acid variation
J. Biol. Chem. (2021) 297(1) 100872 9
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Figure 7. DIRpred rationale. The prediction of divergence-inducing residues consists of a linear combination of four site-specific scores, in roman nu-
merals. In I, the ortholog MSA of each paralog is used to compute a conservation score (as exemplified from the histograms on the alignments). Alignment
images were produced using Unipro software (51). In II, the human paralog sequences or structures were aligned, and the same conservation score function
was used. In the purple box, the conservation score functions are represented. In III, the coevolution score between the EGF and each receptor site was
computed using mutual information (MI). The yellow lines on the structure connect the highest scoring coevolving residues between the ligand and re-
ceptor. In IV, the MI coevolution score was computed from the combined ligand ortholog alignment. The circular plot was performed using MISTIC2 (72).
DIRpred, divergence-inducing residue prediction; EGF, epidermal growth factor; MSA, multiple sequence alignment.

EGF mutants elucidate receptor transduction
among ligand types. We designed mutations with the aim of
inferring a transition to the amino acid properties in sites
where the ligands show a different pattern. Overlapping res-
idues at a given position were divided into two groups, based
on an EGF-like and non-EGF–like stabilization of the re-
ceptor dimer. This property was previously shown to follow
binding affinity (18). Residues that introduced a noticeable
shift in amino acid properties between the two groups were
selected. For example, position N32 is hydrophobic in the
high-affinity ligand group, positively charged in the low-
affinity group, and negatively charged in the EGF. Finally,
we carefully analyzed exceptional cases in the DIRpred
10 J. Biol. Chem. (2021) 297(1) 100872
scoring. Some of the residues that show a high score have
intramolecular interactions with another amino acid in the
ligand. These residues, if mutated, will lose EGF structural
stability (namely “residue swapping” behavior shown in
Fig. S12). The decision of which mutation to introduce was
made using the paralog alignment, with a preferential choice
over the residue found in EREG or EPGN. Positions 32, 48,
and 50 have a high DIRpred score. Position 46 was included
although having a lower score because the substitution
pattern matches the groupings of two ligands. Furthermore,
positions 46, 48, and 50 were preferred because, given pre-
vious experiments and the overall scores, the EGF C-terminal
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tail seems to play a critical role in the ligand function (see, for
example, (57)).

Synthetic peptides

The WT, N32R, D46T, K48T, and W50Y variants of the
EGF were ordered from Scrum Net Co with purity >90% and
quantity 5 mg/ml. These peptides were used for ITC mea-
surements, CD measurements, proliferation studies, and WB
analyses.

Cell lines

The Bj5-tα human normal fibroblast cell line was purchased
from the American Type Culture Collection. Cells were grown
in Dulbecco’s modified Eagle’s medium (DMEM) with 10%
fetal bovine serum (FBS) and 5 μg/ml hygromycin B. The Swiss
Albino 3T3 mouse normal fibroblast cell line was obtained
from the RIKEN Cell Bank. Cells were grown in DMEM, 10%
FBS, 50 μg/ml gentamycin at 37 *�C in a 5% CO2 atmosphere
with 95% humidity. The A431 human epithelial carcinoma
adherent cell line (RIKEN Cell Bank) is a model skin cancer
cell line with an overexpressed EGFR used for oncogenic
pathway studies (58). Cells were cultured in DMEM supple-
mented with 10% FBS (Sigma-Aldrich), 50 μg/ml gentamycin
antibiotic or a combination of 100 unit/ml Penicillin G
(Nacalai Tesque), and 100 μg/ml streptomycin sulfate (Nacalai
Tesque). Experiments were conducted at 37 �C in a 5% CO2-
enriched air atmosphere with 95% humidity. Cell lines were
grown and used for WB and cell proliferation studies.

Cell proliferation assay

We measured cell proliferation using a label-free, noninva-
sive, cellular confluence assay with IncuCyte Live-Cell Imaging
Systems (Essen BioScience). Human Bj5-tα (2500 cells/well)
and Mouse Swiss Albino 3T3 (1000 cells/well) were seeded
overnight on a 96-well plate (Corning) at 37 �C in an incu-
bator. The next day, cells were treated with WT EGF and
mutants at 1 nM, 10 nM, and 100 nM concentrations and
placed in an XL-3 incubation chamber maintained at 37 �C.
The plate was scanned using a 4× objective at 2-h intervals
over 3 days. Cell confluence was measured using IncuCyte
Analysis Software. The IncuCyte Analyzer gives real-time
confluence data based on segmentation of high-definition
phase-contrast images. Cell proliferation is shown as an in-
crease in the confluence rate relative to the control.

Apoptosis assay

Experiments were performed with the A431 human cancer
cell line. 5000 cells/well were seeded on a 96-well plate
(Corning) and incubated at 37 �C for 24 h. Media were
replaced with fresh DMEM containing WT EGF, or EGF
mutants at 1, 10, and 100 nM concentrations, and fluorescent
annexin V green reagent. Plates were prewarmed before data
acquisition to avoid condensation and expansion of the plate,
which affect autofocus. Images were captured every 2 h (4×)
for 3 days in the IncuCyte system. Cell proliferation is reported
as in the previous assay.
Statistics

Proliferation and apoptosis experiments were performed in
duplicates. All results are shown as the mean ± SD. Raw data
were analyzed by two-way ANOVA with 95% confidence level.
The multiple comparison test was corrected using the Bon-
ferroni post hoc test. Prism 8 software was used for statistical
analysis. Asterisks in the pictures show p-values using
GraphPad convention: 0.1234 > (ns), 0.0332 > (*), 0.0021 >
(**), 0.0002 > (***), 0.0001 > (****).

Isothermal titration calorimetry

All ITC studies used a MicroCal PEAQ-ITC System (Mal-
vern). For titration, both the EGFR ECD (Sigma-Aldrich) and
EGF variants were dialyzed into the same reaction buffer Milli-
Q H2O (22 μm) at 25 �C. Each titration involved serial in-
jections of 13 × 3 μl aliquots of EGF variants (200 μM) into a
solution of EGFR ECD (20 μM) in the sample cell. In each case,
the reference cell was filled with the same reaction buffer as
the control to determine the heat upon binding of the two
components. The measured heat constant value was sub-
tracted from the heat per injection before analysis of the data.
The experiment was replicated twice. Results were analyzed by
MicroCal PEAQ-ITC analysis software.

CD

Far-UV measurements were taken at a protein concentra-
tion of 0.1 μM, using a cuvette with a path length of 0.1 cm.
The secondary structure content was calculated from far-UV
spectra using CAPITO software (59). Five scans in the 190-
to 240-nm wavelength range were taken.

Western blot analysis

A431 epidermoid carcinoma cells were harvested using the
lysis buffer (0.4% SDS and 1 mM DTT, 1%). Samples were
incubated at 37 �C for 10 min with Benzonase and centrifuged
at 15,000 rpm at 22 �C for 10 min. Supernatants were used for
further analysis. Sample concentrations were measured with a
BCA protein assay kit (Thermo Fisher Scientific). Lysates were
mixed with 4× sample loading Laemmli buffer and incubated
at 90 �C for 5 min. Equal amounts of protein were loaded in
12% Mini PROTEAN TGX SDS-PAGE gel (Bio-Rad) and
transferred to PVDF membranes (Trans-Blot Turbo RTA Mini
0.2-μm PVDF Transfer Kit). Membranes were blocked for
10 min with Bullet Blocking One (Nacalai) and reacted with
monoclonal rabbit anti-EGFR antibody (Cell Signaling Tech-
nology, Inc.), Phospho-EGF Receptor (Tyr1173) (Cell
Signaling Technology, Inc.), and rabbit anti-α-tubulin pAb
(MBL) at a dilution of 1:1000. Samples were incubated with
goat anti-rabbit IgG HRP at a 1:5000 dilution, and chemilu-
minescent signals were detected by CDP Plus (Thermo Fisher
Scientific) and ChemiDoc Touch MP (Bio-Rad).

Cross-linking assay

A431 cells were cultured in a 6-well plate to subcon-
fluency. The cells were starved for 16 h. After activation
J. Biol. Chem. (2021) 297(1) 100872 11
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with EGF and EGF mutants for 30 min at 4 �C, the cells
were washed 3 times by using ice-cold PBS. The cross-
linking reaction was performed as previously reported
(60). Briefly, crosslinking reagents bis(sulfosuccinimidyl)
suberate (BS3) (Dojindo) were then added to a final con-
centration of 3.0 mM in PBS, and the reaction was incu-
bated on ice for 15 min. The reaction was quenched by
further incubation with 250 mM glycine in PBS and
incubated for 15 min on ice. The cells were washed 3 times
by ice-cold PBS and then lysed with 1% SDS in PBS con-
taining proteinase inhibitor cocktail (Nacalai) on ice. The
EGFR dimerization was analyzed by SDS-PAGE and
Western blotting.

Microscale thermophoresis

Recombinant human EGFR Protein (ECD, His Tag) was
purchased from Sino Biological Inc. (Cosmo Bio). The protein
was labeled with Large Volume His-Tag Labeling Kit RED-tris-
NTA second Generation (NanoTemper) and diluted to
200 nM with 0.05% tween-PBS. EGF WT, N32R, D46T, K48T,
W50Y, and bovine serum albumin were prepared by 2-fold
serial dilution with 0.05% tween-PBS (4000 nM–0.122 nM).
The EGFR and ligands were mixed 1:1 and incubated at room
temperature for 5 min and then loaded into standard capil-
laries. Microscale thermophoresis measurements were per-
formed by using Monolith NT.115 (NanoTemper).

MD

All the simulations were performed with GROMACS
version 2020 (61) using charmm36-mar2019 force field (62)
and SPC216 for water. PDB ID 5wb7 was used as a model
and template. EGF structure model was extracted from PDB
ID 1ivo and superimposed to the ligand using UCSF
Chimera Matchmaker algorithm (63). Mutants were
generated using SWISS-MODEL webserver (64), while
missing atoms were compensated using Scwrl4 (65). A
system was composed of the EGFR dimer in complex with
one or two EGF WT, N32R, D46T, K48T, or W50Y was
solvated and neutralized using NaCl ions in a dodecahedral
box. Then, energy, temperature, and pressure equilibrations
were performed to the system following the guidelines in
the study by Lemkul, 2019 (66).

A 100-ns production simulation was run using the Verlet
cut-off scheme (67) for nonbonded interactions and LINCS as
the constraint algorithm (68). All the simulations reached
convergence of RMSD. Long-range electrostatic interactions
were computed using the Particle Mesh Ewald method (69)
using a dedicated GPU. We checked for differences in relative
motions between the three simulations by extracting and
concatenating the backbone trajectories using catDCD plugin
of VMD (70) and then performing a principal component
analysis using Bio3D R package (71).

Data availability

The source code and alignment data to reproduce the
analysis of this article are available at https://zenodo.org/
12 J. Biol. Chem. (2021) 297(1) 100872
badge/latestdoi/287415954. All remaining data are contained
within the article and supporting information.
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