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Abstract
In a previous work (Huber et al. 2020 Phys. Biol. 17 065010), we discussed virus transmission
dynamics modified by a uniform clustering of contacts in the population: close contacts within
households and more distant contacts between households. In this paper, we discuss testing and
tracing in such a stratified population. We propose a minimal tracing strategy consisting of random
testing of the entire population plus full testing of the households of those persons found positive.
We provide estimates of testing frequency for this strategy to work.

1. Introduction

Widespread COVID-19 epidemics have made lock-
down and shelter-in-place policies common in many
countries. These policies make the simplifying pan-
mictic assumption of classic epidemiological models
less appropriate than during the early pandemic phase
[2–4]. Lockdown and shelter-in-place policies make
the contrasting assumption relevant: the population is
divided into small groups (‘households’) with a high
proportion of contacts within the household and a
relatively lower number of contacts between house-
holds. An understanding of epidemic dynamics in
such an inhomogeneous population is important to
predict the spread of infection and to design measures
to mitigate and suppress it.

In a previous work [1], we proposed a minimal
model describing epidemics in such a compartmen-
talized population. The key feature of the model was
the separation of infection into a fast intra-household
mode and a slow inter-household mode. We showed
that the model predicts a non-trivial dependence of
the reproduction number R0 on the household size
H: linear in H for relatively small households, and as√

H for larger households. We argued that the insights
from the minimal model are important to understand

the dynamics of the epidemics and the effect of differ-
ent policies, even while much more detailed models
exist [5–9].

In the present paper, we discuss a policy for testing
and tracing in the above model. It is well established
that testing and tracing are among the best tools for
suppression of epidemics [10]. The household model
provides a ready analog of this policy: if a household
member is known to have the disease, we quarantine
the entire household (or, in a less strict version of the
policy, we test everyone and quarantine any member
who tests positive).

This model can describe several situations. First,
we can randomly test representatives of different
households, triggering entire household testing if the
representative is positive. In another situation, house-
hold testing is triggered by a household member
exhibiting symptoms of the disease. In the latter case,
we assume most infected persons to be asymptomatic
or mildly symptomatic [11], thus the presence of a
highly symptomatic individual points to other infec-
tions in the household.

An attractive feature of this model is the low trac-
ing effort required and the minimal degree of com-
pliance necessary: we simply trace the members of
the household known to contain infected persons. If
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Figure 1. State diagram for an individual.

this measure is accompanied by some degree of inter-
household tracing, the suppression efforts would be
even more successful.

2. Mean-field approach

The assumptions made are close to those in [1]. An
individual can be in one of the following states (we
assume no natural immunity): susceptible s, infected
i, recovered r and quarantined q, as shown in figure 1.
Of course, a quarantined individual also changes their
state to recovered (or dead), but since we are inter-
ested only in the spreading of the infection, that
change does not influence our model. We assume that
the recovery rate (or, in a more pessimistic interpre-
tation, recovery and death rate) is described by the
parameter γ. The rate of discovery and quarantine is
described by the parameter κ.

A household state can therefore be described by
a four-dimensional vector of integers, (s, i, q, r). We
make the same assumption as in [1]: the intra-
household rate of infection is fast. Then the simplified
state diagram for a household is shown in figure 2.
The mean-field transition rate from state G (every-
body is infected) to state Q (everybody is quaran-
tined) is determined in the following way. Consider
a household with H infected members. The proba-
bility for any of them to exhibit symptoms or test
positive during time interval dt is κdt. Therefore the
probability that no one in the household becomes
symptomatic is (1 − κ dt)H, and the probability that
someone becomes symptomatic is 1 − (1 − κ dt)H ≈
κH dt.

The recovery rate for a household where every-
one is infected is the same as that for an individ-
ual. A fully infected household has a state vector
(0, H, 0, 0) and becomes (0, 0, 0, H) upon recovery. A
household with one infected individual has a state
(H − 1, 1, 0, 0) and becomes (H − 1, 0, 0, 1) after that
individual recovers. Since the following analysis only
looks at short time scales, the final state after indi-
vidual recovery (and, for that matter, full household
recovery) will not play a role in the dynamics. So, in
figure 2, we choose to draw a recovery arrow from
(H − 1, 1, 0, 0) to (H, 0, 0, 0). This choice has two
advantages: it avoids a proliferation of relevant states
(i.e., the number of possible states does not grow with
H), and the number of susceptibles in the population

is nearly the same, even for times beyond the initial
regime.

Following [1], let F be the number of non-
quarantined households with just one person
infected, G be the number of non-quarantined
households with everyone infected, and N be the
total number of persons. Let α be the intra-household
infection rate and β the inter-household infection
rate. Then, in the limit of fast intra-household
transmission, we get:

dG

dt
= αF − γG − HκG, (1)

dF

dt
= β

SH

N
(F + HG) − αF − γF − κF, (2)

dS

dt
= −β

SH

N
(F + HG) + γF (3)

We are interested in the initial regime, when
SH ≈ N. The largest eigenvalue is then

λ =
1

2

{√
[α− β − (H − 1)κ]2 + 4Hαβ

−α+ β − (H + 1)κ
}
− γ. (4)

The outbreak is localized if λ < 0. Let us designate by
κ = κ0 the threshold testing rate at which λ = 0.

Let us assume that the intra-household transmis-
sion rate α exceeds both the inter-household trans-
mission rate β and the testing rate κ. Expanding
equation (4) for large α, we get

λ ≈ H(β − κ) − γ. (5)

This result does not depend on the rate of intra-
household transmission α, which is reasonable since
that is effectively infinite in this approximation. The
minimal testing rate necessary to stop epidemics is
then

κ0 = β − γ

H
. (6)

One consequence of this result is apparent: in the limit
of large households, we need to test everyone at a rate
κ exceeding the individual transmission rate β.

For finite rates α, equation (4) can be used to cal-
culate the values of κ for which epidemics do not
spread. This is done in figure 3. From this figure,
one can see that, in large households, the threshold
value for testing rate is approximately β for all rea-
sonable values of the intra-house transmission rate.
In the following sections, we discuss the changes to
these predictions when a more general approach than
mean-field theory is adopted.

3. Numerical modeling

We performed numerical simulations to validate the
analytical model of household infections described in

2
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Figure 2. Simplified state diagram for a household.

Figure 3. Threshold values of testing rates κ needed to stop epidemics in the household model.

the above section. In each scenario that we simulated,
we imagined a population of N = 200 000 individuals
and divided these into households of a specific size.
We then initialized a random subset of 20 households
with one infected individual. For each step, we divided
the infection into four phases:

(a) Panmictic phase: each actively infected individual
can infect any uninfected individual in the sim-
ulation, with a probability p0 = Δt β

N , where β is
the daily rate of infection in the panmictic phase,

N is the population size and Δt is the time step of
the simulation. We assume that all new infections
from this step are found in previously uninfected
households.

(b) Household phase: each household with a single
infection transitions to a fully infected state with
a probability Δtα, where α is the rate parameter
for in-household infection.

(c) Testing phase: infected individuals are discovered
with a probability κΔt in single-infection house-
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Figure 4. Simulations and mean-field predictions for the testing and tracing model for γ = 0.125 d−1 and κ= 0.06 d−1

holds, and HκΔt in fully-infected households. If
an infected individual is detected inside a house-
hold, that household is removed from the pan-
mictic phase of the infection, corresponding to a
quarantine.

(d) Recovery phase: infected households can recover
fully with a probability γΔ, at which point they
are removed from the panmictic phase of the
simulation and incur no more new infections.

We ran simulations for Δt = 0.1 d and vari-
ous combinations of α, β, γ and H. The results
for γ = 0.125 d−1 and κ = 0.06 d−1 are shown in
figure 4 together with mean-field predictions based
on numerical solution of equations (1)–(3) without
the assumption SH ≈ N (i.e., both inside and outside
the linear regime). The figure shows that the outbreak
is indeed localized at β < κ and spreads at κ much
smaller than β. The dynamics at β close to κ depends
on the intra-household transmission rate α (assumed
to be infinite in the analytical approximation). Also,

as expected, the discrepancy between mean-field the-
ory and simulation is largest at the phase boundary,
β ≈ κ.

The total number of infected cases during epi-
demics is shown in figures 5–7. The figures show
that testing and (limited-to-a-household) tracing can
indeed stop epidemics.

4. Testing and discovery of infected
patients

The parameter κ in our model is the true rate of dis-
covery of infected persons. We should stress that this
is not the rate of testing: to get the rate of discovery
we need to multiply the testing rate by the sensitivity
of the test. For the case of COVID-19, testing tech-
nology is under rapid development [12], but already
the sensitivity and specificity of swab tests with PCR
have been widely discussed in the literature [13–16].
Specificity seems, with general agreement, to exceed
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Figure 5. Total number of infected cases (out of 200 000) for the no-testing scenario.

95% [15]. Sensitivity of a single test in practice is
believed to vary depending on the conditions in the
field under which testing is performed and because
standardization is inconsistent [14]. A commonly
used value for single-test sensitivity is 70%. The data
indicate that this value varies widely over the dura-
tion of infection and the reliability of this number is
uncertain [13].

Recently, it has been observed that the empha-
sis on sensitivity of a one-time test may not always
be justified. Multiple lower-sensitivity (and, therefore,
potentially less expensive and technically demand-
ing) tests administered at suitable intervals may be
more effective at preventing spread of infection. This
observation shifts attention away from the analytical
sensitivity of a one-time test (for example), toward
the sensitivity of a testing regimen [12]. The perfect-
sensitivity testing scheme proposed here represents
such a regimen, folding neatly into the recent observa-
tions [12], with a prescription for obtaining an inter-
test interval with a defined impact on the spread of
infection. It may be worth understanding how rela-

tively low-sensitivity testing affects the dynamics of
the model studied here.

5. Discussion and conclusions

The two parts of the phrase ‘testing and tracing’ are,
in a sense, complementary. If we test everyone, we
do not need tracing contacts to suppress epidemics.
On the other hand, perfect tracing would obviate
the need for testing. A real strategy combines testing
and tracing to compensate for deficiencies in either:
we randomly test because we do not have perfect
tracing, and we trace contacts because we cannot
test everyone frequently enough. In this paper, we
discussed the situation where a minimal version of
tracing is implemented: we trace only the most fre-
quent contacts of an infected person, i.e. the people
sharing a household with them. Obviously, any trac-
ing strategy must include these contacts, so this is
indeed the minimal tracing policy, as discussed in the
Introduction.
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Figure 6. Total number of infected cases (out of 200 000) for a moderate-testing scenario, κ= 0.126 d−1.

Figure 7. Total number of infected cases (out of 200 000) for a high-testing scenario, κ= 0.221 d−1.
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The main conclusion of our analysis is that the
minimal approach works as long as the testing rate is
high enough. The minimal testing rate (up to correc-
tions of the order 1/H, H being the household size) is
described by a simple and intuitively acceptable rule:
the time between the tests for a randomly selected
individual should be smaller than the average time to
infect someone during inter-household contacts. This
rule can be used to estimate the required testing fre-
quency — or to determine whether inter-household
tracing is necessary with said testing frequency.

As for the real-world application of these results,
one should keep in mind several points. First, as
discussed in section 4, the testing rate should be
increased for low-sensitivity tests, keeping the discov-
ery rate high enough. Second, studies have shown that
socioeconomic factors impact the ability to quaran-
tine, which means many symptomatic people will be
unable to isolate even with a positive test. In this case,
the calculations here provide lower estimates for the
required levels of testing.
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