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INTRODUCTION

• Given the deficiencies associated with cadaver-based training in surgical education, 3D
printing has been recognized across disciplines and institutions as a promising
alternative

• Advancements in 3D modeling and printing technology allows surgeons to create cost-
effective anatomically correct models with or without pathology that can be useful for
teaching, planning, and testing purposes

1. Using readily available advanced imaging techniques, surgeons can use 3D
modeling to create an accurate computational representation of patient anatomy

2. Surgeons can use 3D printing materials with biomechanical properties similar to
that of healthy or pathologic human anatomy to create accurate physical models.

• Combining high resolution imaging and 3D printing techniques, surgeons can
create highly accurate representations of real human anatomy.

• These models can be used by surgeons to teach surgical residents about the
anatomy of an operative region, to practice surgical procedures prior to
performing them on patients, or to be used in a wide variety of biomedical
testing applications such as testing of pedicle screw application in vitro.

• 3D printing pursuits of spinal structures can be improved by suggesting
materials that are more representative of their biomechanical properties
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All values of Young’s modulus of the FDM materials presented here have been determined in accordance with ASTM D638 or equivalent 
testing standards.

• While FDM technologies are comparatively affordable, their main drawback is that the
prints are notably anisotropic
• This not only impacts the biomechanical properties of the printed components but

also their longevity when subject to repeated use.
• In attempts to mitigate the effects of anisotropy, some software now allows for

specific sections of the model to be designated with certain infills of one’s choosing.
• There now exists the possibility for load-dependent infill placement as well,

which would be especially useful for printing cortical and cancellous bone of
varying porosities, the facet joints, as well as regions of the intervertebral discs.

• Designers can choose an infill pattern and infill percentage prior to printing,
which can be leveraged to develop models of variable strength (subsequently,
Young’s modulus)

Figure 3: Standard infill patterns. Honeycomb yields the strongest print, while 
comparatively weaker prints contain a wiggle infill.

• Infill percentages: a higher value results in stronger prints; yet they are heavier and
more costly since more material is used when printing.

• The strength of a print can be further enhanced by increasing extrusion width, shell
thickness, layer heights, layer adhesion, or by using materials reinforced with glass
or carbon fibers.

• More representative materials may be available for other denominations of 3D printers,
such as the J750 from Stratasys, which allow for customized blending of materials
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Figure 1: The overall process for 3D printing a biomechanically accurate spine model for educational 
purposes involves A) compiling numerical data from across the literature in regards to Young's Modulus 
and Poisson's ratio for key anatomical constructs, B) reviewing data sheets of 3D printing materials 
currently on the market to determine which represent the values from A most appropriately, and C)
modeling the anatomical components via software, printing the components with the chosen materials 
from B with an FDM 3D printer, and finally, assembly of the structures. Biomechanical validation testing 
can be completed on the printed model prior to use for surgical education and training.

Figure 2: Flowchart representing data collection and assignment for cervical spine model 3D printing. A 
flowchart illustrating the process of the literature review and incorporation of data for 3D printing a 
human cervical spine model. Databases consulted and search parameters were listed. General 
descriptions of inclusion and exclusion criteria were outlined, as were specific biomechanical values, 
study design elements, and anatomical features that were pertinent to the review. Biomechanical values 
of the spine, and mechanical values of the 3D printing materials were compiled and compared to one 
another. 3D printing materials were assigned to represent specific cervical spine anatomical features 
according to overlap in biomechanical and mechanical values. 

• Given their high costs and a multitude of limitations, cadavers remain a less-than-ideal
means of surgical planning and case rehearsal

• One alternative to cadaveric material is the use of Finite Element Analysis (FEA) models;
advanced computational techniques to predict or test the mechanical properties of a
structure, but do not allow for hands-on teaching, planning, or testing.

• To avoid the drawbacks from cadavers and Finite Element Analysis studies (FEA), 3D
printing can be used.

• This review intends to identify key biomechanical properties of the human cervical spine
and compare them to 3D printing materials currently available to guide the development
of a high fidelity 3D printed human cervical spine model that can be used to advance
spine care (Figure 1).
• As Fused Deposition Modeling (FDM) 3D printers are the most affordable and

currently have the largest variety of materials that it can use, we focus on comparing
applicable materials for FDM printers to the cervical spine.


