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ABSTRACT 

 

INTRODUCTION: The World Health Organization (WHO) indicates that deaths from non-
communicable diseases (NCDs) are projected to increase to approximately 52 million by the year 
2030. Of these NCDs, cardiovascular diseases (CVDs) constitute the number one cause of death 
globally and are the major source of morbidity and mortality associated with diabetes mellitus 
(DM). CVD manifests early in individuals with DM by way of vascular dysfunction, 
characterized by depressed nitric oxide (NO) production. As such, interventions to mediate the 
comorbidities associated with DM are being investigated.   

 

OBJECTIVES: The primary objective of this study was to investigate the mechanism of action 
for allicin, a naturally-occurring compound in dietary garlic, to increase nitric oxide (NO) 
production in type-I diabetic donor coronary artery endothelial cells (DHCAEC-I).  

 

METHODS: Endogenous H2S production following healthy donor coronary artery endothelial 
cell (HCAEC) and DHCAEC-I treatment with allicin was measured by way of fluorescence 
microscopy using the cell-trappable fluorogenic probe SF7-AM. Similarly, DAF-FM DA was 
used to measure NO production in the presence of allicin with and without wortmannin, an 
inhibitor targeting PI3K. To confirm the findings of DAF-FM DA fluorescence microscopy, 
immunoblots targeting p-eNOSSer1177, eNOS, p-AktSer473, and Akt were employed.  

 

RESULTS: Treatment of HCAEC and DHCAEC-I with allicin resulted in increases in H2S by 
126% and 85%, respectively (p < 0.01). NO production following allicin treatment increased in 
DHCAEC-I by 66% (p < 0.0001), the effect of which was diminished by the use of wortmannin 
(p < 0.0001). eNOSSer1177 phosphorylation in DHCAEC-I increased 89% from baseline after 
treatment with allicin (p < 0.05), the effect of which was also reversed by the use of wortmannin 
(p < 0.01). Allicin had no statistically-significant effects on NO production or eNOSSer1177 
phosphorylation in HCAEC, and had no statistically-significant effects on AktSer473 
phosphorylation in HCAEC or DHCAEC-I.  

 

CONCLUSION: These data strongly support the hypothesis that allicin-mediated NO 
production is dependent on PI3K in DHCAEC-I. Future experiments are needed to determine the 
specific involvement of H2S and the targeted proteins downstream of PI3K.   
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INTRODUCTION 

 

1.1 Cardiovascular Disease 

The World Health Organization (WHO) indicates that deaths from noncommunicable diseases 

(NCDs) are projected to increase to approximately 52 million by the year 2030 (Chestnov, 2014). 

Of these NCDs, cardiovascular diseases (CVDs) constitute the number one cause of death 

globally and represent a host of heart and vascular diseases, including coronary artery disease 

(CAD, i.e., heart attack), cerebrovascular disease (i.e., stroke), and diseases of the aorta and 

arteries such as hypertension, among others (Mendis et al., 2014). CVDs are generally caused by 

risk factors that are divided into two categories: modifiable and non-modifiable. Of those in the 

latter, the most common are age, gender, and family history (Balakumar et al., 2016). 

Hypertension, tobacco use, physical inactivity, unhealthy diet, and diabetes mellitus (DM) 

constitute the most common of the risk factors that are categorized as modifiable (Balakumar et 

al., 2016).  

 

1.1.1 Coronary Artery Disease 

The hallmark of CAD is the impediment of blood flow through the vessel lumen of the coronary 

arteries resulting from the development of atherosclerotic plaques (APs) (Shahjehan and Bhutta, 

2021). APs generally develop from an initial vascular insult to the tunica intima followed by 

recruitment of circulating monocytes (Shahjehan and Bhutta, 2021), which attach and migrate 

through interendothelial junctions in the tunica intima via interactions with PECAM (CD31) 

junctional adhesion molecules (Scott, 2004) where they become macrophages in the 
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subendothelial space. Any one or more of three events may then trigger the formation of foam 

cells from the subendothelial macrophages: 1) uptake of oxidized low-density lipoprotein (ox-

LDL) through expression of scavenger receptors CD36 and SR-A (Scott, 2004); 2) excessive 

cholesterol esterification; and/or 3) impaired cholesterol release (Yu et al., 2013). While these 

subendothelial accumulations of cholesterol-laden foam cells (or “fatty streaks”) are not 

necessarily clinically-significant, they serve as precursors for more advanced lesions 

characterized by a necrotic core surrounded by smooth muscle and extracellular matrix (Lusis, 

2000) that may become calcified over time (Shahjehan and Bhutta, 2021). Consequently, such 

lesions are common risk factors for ruptures that may lead to partial or total occlusion of the 

coronary lumen, thus resulting in acute coronary syndromes (Shahjehan and Bhutta, 2021).  

 

This occlusion of the coronary artery lumen, leading to the cessation of blood flow, typically 

results in acute myocardial infarction (MI), particularly if the cessation ranges in time between 20 

and 40 minutes (Ojha and Dahmoon, 2020). In cases of coronary occlusion, what follows is lack 

of oxygenation of the myocardium, resulting in disruption of the sarcolemma and myofibril 

relaxation (Ojha and Dhamoon, 2020). With sustained cessation follows necrosis of the 

myocardium from the sub-endocardium to the sub-epicardium, and depending on the extent to 

which the necrosis has spread, could compromise normal cardiac function (Ojha and Dhamoon, 

2020). Such necrotic myocardial tissue is ultimately replaced by collagenous tissue that, in quite 

the majority of cases, interferes with the mechanical properties of healthy myocardial tissue, such 

as increasing the resistance of circumferential stretch (Holmes et al., 1997), further compounding 

the risk factors of CVD.  
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1.1.2 Hypertension 

Of the most notable risk factors for the morbidity and mortality associated with CVD is systemic 

arterial hypertension (SAH) (Oparil et al., 2018), which can be defined as persistently elevated 

arterial blood pressure (BP), typically exceeding systolic values of 130 mmHg and diastolic 

values of 80 mmHg (Iqbal and Jamal, 2020). While the pathophysiology of SAH is complex and 

at times multifactorial, genetic predisposition with the addition of environmental factors increases 

the probability SAH development (Oparil et al., 2018).  

 

Of these environmental factors, sodium (Na+) plays a crucial role, particularly due to its 

involvement in blood volume regulation. Increases in dietary Na+ in normotensive individuals is 

typically followed by water retention and/or hemodynamic changes as compensatory mechanisms 

to maintain stable BP levels (Oparil et al., 2018); however, in addition to high water retention, 

sustained increases in Na+ intake may result in increased systemic peripheral resistance, 

endothelial dysfunction, and changes to the structure of the large arteries (Grillo et al., 2019). For 

example, high Na+ intake stimulates the retention of water through an osmolarity gradient, 

resulting in an increase in blood volume, which consequently increases cardiac output (CO) 

(Blaustein et al., 2012). As a result of the increased CO and its contribution to tissue 

overperfusion, total peripheral resistance (TPR) increases, thus sustaining the elevated BP 

(Blaustein et al., 2012).  
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While increased Na+ intake is certainly a risk factor for SAH, it should be noted that the intake of 

Na+ is not the sole contributor. In fact, dysfunctions or inappropriate activation of the renin-

angiotensin-aldosterone system (RAAS) is key as well, which is a significant regulator of blood 

volume and vascular resistance on a prolonged basis (Fountain and Lappin, 2020). Under normal 

conditions, prorenin is both released by and cleaved by juxtaglomerular (JC) cells to form renin in 

response to decreased renal blood pressure, decreased sodium loads in the distal convoluted 

tubule (DCT), or beta-activation (Fountain and Lappin, 2020). Following cleavage, renin can act 

on the liver-produced angiotensinogen, cleaving it to angiotensin I (ATI). Lastly, the inactive ATI 

can be converted to the active angiotensin II (ATII) by angiotensin converting enzyme (ACE) in 

the vascular endothelium of the lungs and kidneys (Fountain and Lappin, 2020). ATII can 

subsequently bind AT receptors I and II in the kidney, adrenal cortex, arterioles, and brain, and 

while the full scope of AT receptor functions are still being investigated, studies have shown 

increases in nitric oxide (NO) production as a result (Fountain and Lappin, 2020). In addition, 

ATII is responsible for increasing Na+ reabsorption directly through the Na-H exchanger in the 

proximal convoluted tubule (PCT), or the insertion of luminal Na+ channels and basolateral 

Na+/K+ ATPase proteins in the DCT by way of aldosterone stimulation in the adrenal cortex 

(Fountain and Lappin, 2020). In all, these mechanisms are targeted to increasing Na+ 

reabsorption.  

 

While these mechanisms are well-suited for managing blood volume on a prolonged basis, 

inappropriate activation of the RAAS can lead to the development of hypertension (Fountain and 

Lappin, 2020). For example, JC cells are prone to sense a decreased blood volume subsequent to a 
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renal artery stenosis, and thereby activate the RAAS, resulting in increased blood volume 

circulation (Fountain and Lappin, 2020).  

 

1.2 Diabetes Mellitus 

DM is a disease in which the β cells of the pancreas are unable to sufficiently produce insulin 

due to autoimmune dysfunction (type I, T1DM) or when cellular responses to insulin are 

resistant (type II, T2DM) (Inzucchi et al., 2010). DM continues to be a growing epidemic in the 

United States with a current prevalence of more than 10% of the population (CDC, 2020) and 

projections that such will rise an additional 200 million by the year 2040 (Goyal and Ishwarlal, 

2020). Of the myriad of secondary complications, vascular dysfunction has been observed in a 

large subset of these patients in a condition that has been termed diabetic vascular disease 

(DVD). 

 

1.2.1 Insulin  

Insulin is an anabolic peptide hormone produced by the β cells of the islets of Langerhans in the 

pancreas. Structurally, insulin is a single-chain polypeptide consisting of both proinsulin and a 

signal peptide, the former being released after translocation into the endoplasmic reticulum 

(Vargas et al., 2021). After release, proinsulin’s A and B chains, which are joined continuously 

through a C domain, are cleaved to release insulin (A and B chains linked via a disulfide bond) 

independently along with C-peptide (Vargas et al., 2021).  
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The soluble insulin peptide hormone exerts its effects through binding of insulin receptors 

(INSRs) on target cells such as those in skeletal muscle, adipose tissue, and the liver (Petersen 

and Shulman, 2018). INSRs comprise an α2β2 heterotetramer consisting of two α-subunits and 

two β-subunits, the former of which are extracellular and the latter being transcellular and 

containing cytoplasmic tyrosine kinase domains (Hubbard et al., 2013). While there are two 

isoforms of INSRs, A and B, the B isoform is more metabolically relevant in adults with a high 

specificity in the skeletal muscle, adipose tissue, and particularly in hepatic cells (Petersen and 

Shulman, 2018).  

 

Functionally, insulin stimulates the uptake of glucose via transmembrane glucose transporter 

(GLUT) proteins, predominantly via GLUT4 in the skeletal muscle and adipose tissue and 

GLUT2 in the liver (Vargas et al., 2020). Insulin-mediated glucose uptake regulated by GLUT4, 

for example, follows that insulin begins by binding to the α-subunit of an INSR, stimulating the 

phosphorylation of one β subunit on specific tyrosine residues within INSR’s activation loop as 

well as autophosphorylation of other tyrosine residues within the intracellular tail (Chang et al., 

2004). This INSR activation subsequently mediates the phosphorylation of insulin receptor 

substrates (IRS) 1-4 (Chang et al., 2004), which bind and activate phosphatidylinositol 3-kinase 

(PI3K), in turn activating Akt (note: the PI3K/Akt pathway is described in detail in section 1.5). 

Upon activation of Akt, intracellular GLUT4-rich vesicles translocate to the cell membrane, 

inserting GLUT4 transcellularly and facilitating the uptake of glucose (Wang et al., 2020).    
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1.2.2 Type I Diabetes Mellitus  

T1DM is a chronic autoimmune disease resulting in the destruction of the β-cells in the 

pancreatic islets, subsequently resulting in the secondary decrease in the production of insulin 

(Lucier and Weinstock, 2021), an anabolic peptide hormone responsible for the regulation of 

glucose uptake in the peripheral tissues and metabolism of carbohydrates, lipids, and proteins 

(Wilcox, 2005). While the precise etiology of T1DM is multifaceted, and much remains elusive, 

the disease is a well-studied heritable polygenic disease with approximately 50% of the 

prevalence being linked to two human leukocyte antigen (HLA) major histocompatibility 

complex II (MHC class II) haplotypes: HLA-DR3-DQ2 and HLA-DR4-Q8 (DiMeglio et al. 

2018). While diagnosis of T1DM through HLA risk or familial risk have increased, non-HLA 

loci have been associated with risk for T1DM as well, yielding early diagnoses problematic, as 

non-HLA loci alone cannot be used to predict the development of T1DM (DiMeglio et al. 2018).  

 

While genetic predispositions account for approximately half of the cases of T1DM (DiMeglio et 

al. 2018), a number of environmental factors may also play an important role in the pathogenesis. 

Originally described by epidemiological observations, exposure to viruses (i.e., rubella or 

enteroviruses) or toxins and nutrients (cow’s milk and cereals) may contribute to the generation 

of pancreatic autoantibodies, though the specific effects of these factors remain unclear (Paschou 

et al., 2017).  
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The onset of T1DM typically begins in stage 1 of 3, characterized by normal fasting glucose and 

glucose tolerance, with ≥2 pancreatic autoantibodies (Lucier and Weinstock, 2021). The 

progression to stage 2 is marked by ≥2 pancreatic autoantibodies with the addition of 

dysglycemia (impaired fasting glucose or glucose tolerance, or hemoglobin A1c between 5.7-

6.4%), followed by stage 3 being characterized by hyperglycemia (Lucier and Weinstock, 2021).  

 

1.2.3 Type II Diabetes Mellitus  

While T1DM is a cell-mediated autoimmune dysfunction of pancreatic β-cells, T2DM is 

associated with β-cell dysfunction (Goyal and Ishwarlal, 2020), insulin resistance in the 

peripheral tissues (Freeman and Pennings, 2020), or both, and accounts for the majority of all 

cases of DM (Goyal and Ishwarlal, 2020). Of the peripheral tissues, the three primary sites of 

insulin resistance are the muscle tissue, adipose tissue, and the liver (Freeman and Pennings, 

2020), typically beginning in the muscle (Zhang et al., 2019) as it accounts for 70% of glucose 

uptake (Freeman and Pennings, 2020), thus having a large effect on the turnover of glucose 

(DeFronzo and Tripathy, 2009).  

 

The mechanisms of action for insulin resistance in skeletal muscle are complex, however a 

number of studies, first being suggested by Randle et al. (1963), have proposed an association 

between INSR sensitivity and saturated fatty acids. This study in particular, termed the “Randle 

Cycle”, proposes that increased fatty acid (β) oxidation increases the production of acetyl CoA, 

increasing both the levels of citrate and the ratio of ATP/ADP, and consequently the inhibition of 
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phosphofructokinase (PFK), accumulation of glucose 6-phosphate, and inhibition of hexokinase, 

finally resulting in increased intracellular glucose and thus reduced glucose uptake (Martins et 

al., 2012). An interesting and contrasting consideration, however, finds that intracellular glucose 

accumulation must not necessarily precede its uptake inhibition. Later studies conducted by 

Roden et al. (1996) have suggested that glucose uptake is inhibited by increased plasma fatty 

acids. These studies were further reinforced by the findings that INSRs are inhibited by the 

activation of a number of kinases including protein kinase C (PKC), inhibitor of nuclear factor 

kappa β (IKKβ), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein (MAP) 

kinase, through phosphorylation-mediated proteosome degradation (Martins et al., 2012).  

 

Modern studies have described muscle insulin resistance induced via lipids including 

diacylglycerols (DAGs), triacylglycerols (TAGs), and ceramides. Szebdridei et al. (2014) and Yu 

and Pekkurnaz (2018) have demonstrated a marked increase in DAGs and PKCθ signaling, 

which subsequently impairs IRS-1 activation via tyrosine phosphorylation (Martins et al., 2012). 

As such, the IRS-1/PI3K/Akt signaling cascade is diminished, preventing insulin-stimulated 

glucose uptake via GLUT proteins (Martins et al., 2012).  

 

As obesity is a well-recognized risk factor for T2DM, an important consideration to its 

development is both the amount and distribution of adipose tissue, which has autocrine, 

paracrine, and endocrine functions in the secretion of various adipokines such as leptin, 

adiponectin, resistin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) (Pittas et al., 

2004). These adipokines can further be designated as insulin sensitizers and insulin antagonists.  
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Of the insulin sensitizers, both leptin and adiponectin maintain an essential role in energy 

homeostasis. Studies on leptin deficient (ob/ob) mice reveal conditions including obesity and 

T2DM, the effect of which is reversed via the administration of leptin (Zhang et a., 1994). Leptin 

has also been postulated to increase insulin sensitivity in peripheral tissues including the skeletal 

muscle and liver (Unger et al., 1999 and Minokoshi et al., 2002). Similarly, adiponectin has been 

shown to have a negative correlation with obesity (Arita et al., 1999), diabetic dyslipidemia 

(Matsubara et al., 2002), and particularly with insulin resistance (Weyer et al., 2001). In another 

model, administration of adiponectin to lipoatrophic mice reverses obesity and syndromes 

associated with T2DM (Yamauchi et al., 2001).  

 

The actions of insulin antagonists may also, at least to an extent, mediate T2DM. Resistin, for 

example, has been shown to impair glucose tolerance and insulin action when administered in 

normal mice, and while data still remain to be fully illustrated, suggests that resistin may impair 

the actions of insulin on hepatic glucose production (Rajala et al., 2003). Similarly, mRNA of the 

proinflammatory cytokine TNF-α has been shown to correlate positively with conditions 

including hyperinsulinemia (Kern et al., 1995), possibly in part by facilitating increased free fatty 

acid release by adipocytes and decreased adiponectin synthesis (Bruun et al., 2003). Lastly, IL-6, 

another proinflammatory cytokine, is also partly responsible for decreasing insulin sensitivity by 

mechanisms similar to TNF-α (Boden and Shulman, 2002 and Fasshauer et al., 2003) in mouse 

models that developed obesity and glucose intolerance (Wallenius et al., 2002); however, 
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evidence is conflicting in healthy human models who remained glucose-tolerant (Steensberg et 

al., 2003).  

 

While the exact mechanism has not been fully elucidated, hepatic insulin resistance is a major 

contributor to systemic insulin resistance (Zhang et al., 2020), and insulin resistance in the 

skeletal muscle and adipose tissue as previously described may stem from hepatic insulin 

resistance (Badi et al., 2019). Hepatic insulin resistance follows a similar mechanism involving 

DAGs, TAGs, and ceramides that accumulate in hepatic cells and stimulate PKC-ε, which in turn 

downregulates insulin receptor kinase and IRS-1 and -2 tyrosine phosphorylation (Zhang et al., 

2020) as previously described. Hepatic insulin resistance and T2DM have been demonstrated to 

be almost ubiquitous sequelae in individuals with non-alcoholic fatty liver disease (NAFLD), for 

example, with greater than 90% of obese patients with NAFLD presenting with T2DM (Perry et 

al., 2014). Given that hepatic DAG content along with other lipids are such strong predictors for 

NAFLD with subsequent hepatic insulin resistance, regulation of fat delivery to the liver has 

been a chief focus of biomedical research. Interestingly, Doege and colleagues (2008) have 

found that knockdown of the primary fatty acid transporter in hepatocytes, fatty acid transporter 

protein 5, via RNA interference demonstrated a marked reduction in fatty acid uptake in mice 

that improved whole-body glucose homeostasis and reversed NAFLD, reinforcing the 

contribution of lipids in the development of hepatic insulin resistance and T2DM.  
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1.2.4 Diabetes-Induced Vascular Dysfunction  

The negative effects of glucose begin to occur at thresholds below hyperglycemic levels in a 

concept known as the “glycemic continuum”, exacerbated by insulin resistance or impairment 

and culminating in structural and functional endothelial (vascular) dysfunction: the impaired 

production of endothelium-derived vasodilating and -constricting factors (Paneni et al., 2013 and 

Daiber et al., 2017). Factors that mediate dilation include endothelium-derived relaxing factor 

(EDRF), endothelium-derived hyperpolarizing factor (EDHF), prostacyclin, and of particular 

interest, nitric oxide (NO), while the primary vasoconstricting factor is endothelin-I (Daiber et 

al., 2017). One such causal link between hyperglycemia and decreased NO production is the 

generation of reactive oxygen species (ROS) induced by hyperglycemia, contributing to polyol 

flux, generation of advanced glycosylation end products (AGEs), PKC activation, and activation 

of nuclear factor kappa light-chain enhancer of B cells (NF-κB) (Paneni et al., 2013). A 

prominent contributor to ROS generation involves the aforementioned activation of PKC, 

stemming from the elevation of DAG in a hyperglycemic endothelial environment and leading to 

an increase in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-induced 

superoxide production (Paneni et al., 2013). Indeed, ROS generation is a key contributor to 

endothelial dysfunction, however, the bioavailability of NO, in particular, is affected as well via 

the downregulation of endothelial nitric oxide synthase (eNOS) activity (Paneni et al., 2013), 

limiting the dilatory capacity of the endothelium. It should be noted that ROS can also facilitate 

endothelial dysfunction by directly scavenging NO or by eNOS uncoupling through the oxidative 

phosphorylation of tetrahydrobiopterin (Funk et al., 2012). Further contributing to the generation 

of ROS in hyperglycemic conditions is the retention of non-insulin-dependent GLUTs, in 

contrast to insulin-dependent GLUTs, that are downregulated in these conditions. Non-insulin-
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dependent GLUTs allow for the constitutive uptake of extracellular glucose for enhanced 

glycolytic oxidation and subsequent electron shuttling, stimulating oxidative stress and 

downstream eNOS uncoupling (Funk et al., 2012).  

 

Another prominent contribution to endothelial dysfunction involves the generation of 

hyperglycemia-induced AGEs, the nonenzymatic addition of aldose carbohydrates to proteins in 

a process termed the Milliard reaction (Funk et al., 2012). In this reaction, Schiff bases are 

formed via the addition of a reducing sugar such as glucose or fructose to the α-amino group of 

the N-terminus of a protein or to lysine, followed by rearrangement to form ketoamines and 

subsequently AGEs via either oxidative or nonoxidative pathways (Funk et al., 2012). While 

these products tend to have little clinical significance in healthy humans, hyperglycemia causes 

excessive glycation of proteins found both in the serum (i.e., albumin) and in the vessel wall (i.e., 

collagen) (Funk et al., 2012). The formation of these modified proteins has deleterious effects on 

eNOS coupling both directly and indirectly. In the former, AGEs facilitate the decrease in eNOS 

expression and L-citrulline production while inhibiting histamine-induced NO production in the 

latter (Funk et al., 2012).  

 

1.3 Vascular Endothelium and Coronary Artery Anatomy 

The common structure of a blood vessel comprises three layers: the tunica intima, tunica media, 

and tunica adventitia (externa), which are composed of a single layer of endothelial cells, vascular 

smooth muscle (VSM), and elastic lamina, respectively, from innermost to outermost 
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(Dhananjayan et al., 2016). At its most basic level, the endothelium serves as a selectively 

permeable barrier, regulating the transport of macromolecules between the lumen and VSM layer, 

largely being restricted by interendothelial junctions at the endothelial cells’ lateral borders 

(Cahill and Redmond, 2016). The endothelium is also largely responsible for the maintenance of 

homeostatic functions via a precise balance between regulatory vasoactive factors such as NO, 

endothelin-I, angiotensin and other adhesion molecules and cytokines (Dhananjayan et al., 2016). 

Via these mechanisms, the endothelium tightly regulates blood flow, delivery of nutrients, and 

inflammation (Dhananjayan et al., 2016). As such, these endogenous factors are implicated in 

vascular responses that impact blood flow at a local level.  

 

This thesis will focus exclusively on human endothelial cells of the coronary arteries and their 

roles in vasodilation. The coronary arteries arise from the aorta within the left and right cusps of 

the aortic valve to give rise to both the left main and right coronary arteries (LMCA and RCA), 

respectively (Villa et al., 2016). The LMCA primarily supplies the left atrium and ventricle and 

divides into two branches: the left anterior descending branch and the circumflex artery 

(Ogobuiro et al., 2020). The RCA supplies the right atrium and ventricle, as well as the sinoatrial 

and atrioventricular nodes, and divides into the right posterior descending branch and the acute 

marginal artery (John’s Hopkins, 2020). Because there is a linear relationship between blood flow 

and myocardial oxygen consumption (Saxton et al., 2020), and because of the endothelial 

regulatory functions on vascular tone, it is important to understand the relationship between 

dilatory substances such as NO and their role in the diseased state, such as in DM.  
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1.4 Nitric Oxide Synthase 

While the VSM response to sympathetic stimulation largely contributes to vascular tone, namely 

throughout the vascular tree (Cahill and Redmond, 2016), vascular tone and blood flow are both 

highly regulated by NO, which is enzymatically formed by nitric oxide synthase (NOS) at a local 

level (Chen et al., 2008). As such, the bioavailability of NO is totally dependent on NOS. To date, 

there are three isoforms of NOS that have been elucidated: neuronal NOS (nNOS, NOS1), 

inducible NOS (iNOS, NOS2), and eNOS (NOS3) (Chen et al., 2008). The latter represents a 

pathway by which there are numerous stimuli for activation, including shear stress, vascular 

endothelial growth factor (VEGF), estradiol, sphingosine 1-phosphate, and bradykinin, among 

others, that act in calcium-dependent and -independent pathways (Sessa, 2014). In the former, 

these stimuli can activate phospholipase C-γ, causing an increase in cytoplasmic calcium and 

DAG concentrations (Sessa, 2014). The increased calcium subsequently activates calmodulin 

(CaM), which binds to the CaM-binding domain on eNOS and stimulates the synthesis of NO 

(Sessa, 2014). A number of these stimuli may also activate the PI3K/Akt pathway, one that is 

calcium-independent and tightly controlled via a multistep process (Sessa, 2014).   

 

1.5 PI3K/Akt/eNOS Pathway 

PI3K is a heterodimeric protein containing a regulatory subunit and catalytic subunit known as 

p85 and p110, respectively (Cantrell, 2001), and is involved in a wide-range of cellular processes 

including protein synthesis, trafficking, regulation of enzyme activity, and proliferation, among 

others (Ciraolo et al., 2014). The activation of PI3K begins with binding of receptor tyrosine 

kinases (RTKs), which can be facilitated by a number of stimuli, including hormones, growth 
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factors, and components of the extracellular matrix (Nicholson et al., 2002), as well as through 

transactivation via the Gα subunit of G-protein coupled receptors (GPCRs) (New et al., 2011).  

Upon binding of these substances to the extracellular N-terminal domain or through activation via 

Gα, RTKs undergo dimerization and autophosphorylation of the tyrosine residues in the 

intracellular domain (Shi et al., 2019). Subsequently, PI3K is recruited to the membrane by the 

p85 subunit, the Src homology 2 (SH2) domain of which binds the pYXXM motif of the tyrosine-

phosphorylated RTK (Jiang et al., 2014), followed by recruitment of the p110 subunit (Liu et al., 

2009). It should be noted that there are three other pathways that can activate PI3K as well: in the 

first, the pYXXM-bound growth factor receptor-bound protein 2 (GRB2) binds GRB2-associated 

binding protein (GAB), which in turn binds the p85 subunit of PI3K (Castellano and Downward, 

2011) followed by recruitment of p110. In the second, the pYXXM-bound GRB2 binds the 

guanine nucleotide exchange factor Son of Sevenless (SOS), which in turn binds and activates 

RAS, and finally activates the p110 subunit of PI3K without the need for p85 (Castellano and 

Downward, 2011). Lastly, the p110 subunit of PI3K can be directly activated by the Gβγ subunit 

of GPCRs (New et al., 2011). 

 

The activation of PI3K subsequently yields phosphorylation of phosphatidylinositol 4,5-

bisphosphate (PIP2) forming phosphatidylinositol 3,4,5-triphosphate (PIP3), and provides 

docking sites for proteins such as Akt (Liu et al., 2009). Because of its high affinity for PIP3 

(Miao et al., 2010), the pleckstrin homology (PH) domain of Akt translocates to PIP3 on the 

membrane and induces conformational changes on Akt that exposes residues Thr308 and Ser473. It 

is important to note that full activation of Akt requires phosphorylation of both of these residues, 
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Thr308 being phosphorylated by phosphoinositide-dependent kinase 1 (PDK1) (Dangelmaier et al., 

2014), and Ser473 phosphorylated by phosphoinositide-dependent kinase 2 (PDK2), integrin-

linked kinase (ILK) (Osaki et al., 2004), mechanistic target of rapamycin complex (mTORC) 

(Sarbassov et al., 2005), and DNA-dependent protein kinase (DNA-PK) (Feng et al., 2004).  

 

Upon full activation of Akt, the downstream effector, eNOS, can be phosphorylated at a number 

of residues, thereby increasing or decreasing eNOS activity, and thus have opposing effects. For 

example, the Thr495 domain acts as an inhibitory site while Ser635 and Ser1177 act as activation sites 

(Zhao et al., 2015). Activation of eNOS through Ser635 or Ser1177 subsequently yields catalysis of 

the five-electron oxidation of a guanidine nitrogen on L-arginine, yielding NO and L-citrulline as 

a byproduct (Barbato and Tzeng, 2004) in the presence of molecular oxygen and NADPH (Chen 

et al., 2008). (Figure 1). 

 

 
Figure 1. Schematic of the PI3K/Akt/eNOS pathway and NO-mediated vasodilation. * = PDK2, ILK, 

mTORC, DNA-PK; ** = PDK1. 
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1.6 Nitric Oxide-Mediated Vasodilation 

Upon diffusion from the endothelium to the VSM, NO binds an N-terminal heme moiety of its 

heterodimeric primary receptor, soluble guanylate cyclase (sGC) (Montfort et al., 2017). This 

binding forms a penta-coordinated iron-NO complex (Pan et al., 2017) and subsequently converts 

guanosine triphosphate (GTP) to a second messenger, guanosine 3,5-cyclic monophosphate 

(cGMP), initiating the cGMP signaling pathway (Pasmanter et al., 2020) and resulting in protein 

kinase G (PKG) activation (Francis et al., 2010).  

 

PKG ultimately induces VSM relaxation through three individual mechanisms: 1) 

phosphorylation of L-type calcium channels, thus reducing calcium influx and preventing 

contraction (Takimoto and Kass, 2012); 2) phosphorylation of ATP-sensitive potassium channels 

resulting in hyperpolarization (Han et al., 2002); and 3) phosphorylation of myosin light chain 

phosphatase (MLCP), which in turn dephosphorylates myosin light chain kinase (MLCK), thus 

preventing the cross-bridge action of actin and myosin, yielding vasorelaxation (Landry et al., 

2006) (Figure 1).  

 

1.7 Allicin and Garlic-Derived Sulfides 

Alliin is an inactive sulfoxide that is derived from the hydrolysis or oxidation of γ-

glutamylcysteine found in raw, dietary garlic (Allium sativum) (Amagase et al., 2001). Upon 
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ingestion, there is activation of the garlic-derived allinase enzyme, which converts the inactive 

alliin into its active form called diallyl thiosulfinate (or allicin) (Amagase et al., 2001). This 

unstable active compound readily breaks down into three organic polysulfides: diallyl sulfide 

(DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS) (Banerjee and Maulik, 2002). 

Furthermore, previous research indicates that these polysulfides produce hydrogen sulfide (H2S) 

via thiol-dependent cellular and glutathione (GSH)-dependent acellular reactions (Benadives et 

al., 2007). While H2S is well-known to be a toxic gas that is produced endogenously via L-

cysteine (Hosoki et al., 1997), Predmore et al. (2011) have demonstrated that H2S upregulates NO 

production via an Akt-dependent mechanism in bovine arterial endothelial cells (BAECs).  

 

1.8 Preliminary Data 

Horuzsko et al. (2019) have demonstrated that treatment of healthy human donor coronary artery 

endothelial cells (HCAEC), type-I diabetic human donor coronary artery endothelial cells 

(DHCAEC-I), and type-II diabetic human donor coronary artery endothelial cells (DHCAEC-II) 

with allicin increases NO production in DHCAEC-I but not in HCAEC nor DHCAEC-II. As 

measured by EVOS imaging, allicin increased mean fluorescence intensity in DHCAEC-I by 

>292% compared to untreated cells, indicating an increase in NO production. Further, 

immunoblot analysis revealed that there was no statistically-significant difference in untreated 

vs. treated HCAEC or DHCAEC-II eNOS expression; however, eNOS expression in DHCAEC-I 

increased by approximately 26% when treated with 5 μM allicin overnight. Given that NO 

production follows the required phosphorylation at a positively-regulating motif on eNOS, these 

data suggest that allicin mediates the restoration of NO and is eNOS-dependent.  
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1.9 Proposed Pathway 

Previous literature has supported that garlic-derived polysulfides induce H2S production via a 

thiol-dependent manner. The unstable active allicin readily breaks down into DAS, DADS, and 

DATS in vivo and in vitro and act as H2S donors when reacting with biological thiols such as 

GSH (Benavides et al., 2007). Further, treatment of BAECs with H2S has demonstrated a time-

dependent 87% increase in NO production at 30 minutes post-treatment, and because it is not 

elevated at subsequent times, this suggests a transient activation of eNOS (Predmore et al., 2011), 

which may possibly be attributed to changes in the enzyme’s phosphorylation status. Data 

strongly suggest that the phosphorylation of eNOS surrounding the Ser1177 motif (RIRTQS1177F) 

is a result of upstream activation of Akt, which is a downstream target of PI3K (Michell et al., 

1999). In BAECs treated with H2S, the Akt inhibitor triciribine prevented an increase in 

eNOSSer1177 phosphorylation, suggesting that H2S stimulates eNOS phosphorylation via an Akt-

dependent mechanism (Predmore et al., 2011). Further, attenuation of PI3K with the inhibitor 

wortmannin has demonstrated a decrease in the phosphorylation of PI3K, Akt, and eNOS (Song 

et al., 2016), lending support to the pathway proposed herein.  

 

In summary, it is proposed that allicin-derived polysulfides stimulate the PI3K/Akt pathway and 

result in downstream phosphorylation of eNOS at the Ser1177 motif, this pathway being 

responsible for increased NO production in DHCAEC-I.    
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METHODS 

 

2.1 Cell Culture 

Passage (P) 2 HCAEC (Lonza) and DHCAEC-I (Lonza) from a 21-year-old (y.o) male donor and 

a 29 y.o female donor, respectively, were removed from liquid nitrogen in sterile cryovials 

combined with dimethyl sulfoxide (DMSO) and grown in 5 mL endothelial cell basal growth 

media (EBM-2, Lonza) and supplemented with microvascular endothelial SingleQuots kit 

(Lonza) and 1% penicillin/streptomycin at 37 °C and 5% CO2 until a confluence of ≥90% was 

reached. Both cell types were subsequently passaged via the addition of 0.25% trypsin/EDTA 

(1X, Thermo Fischer) and incubated at 37 °C for 3 minutes to facilitate cell detachment. Once the 

cells were fully detached, fresh EBM-2 was added, and cells were divided between 3 flasks and 

re-incubated. To maintain an optimal growth environment, cell media was exchanged every two 

days.  

 

2.2 Hydrogen Sulfide Production 

2.2.1 Mechanism of SF7-AM  

Sulfidefluor-7 acetoxymethyl ester (SF7-AM, Cayman Chemical) is a membrane-permeable, 

non-fluorescent indicator of H2S production. Upon entry into the cell, the acetoxymethyl ester 

groups are hydrolyzed by intracellular esterases, yielding a negatively-charged SF7, rendering 

the compound membrane-impermeable and thus remaining trapped inside the cell (Lin et al., 

2013). Once trapped inside the cell, SF7 is weakly-fluorescent; however, in the presence of H2S, 

the azide functional groups are reduced to primary amines, forming a highly-fluorescent 
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derivative (SF7-D) (Lin et al., 2013), allowing for relative quantifications of H2S at nanomolar 

concentrations. (Figure 2). 

 
Figure 2. Schematic of the mechanism for SF7-AM. 

 

 

2.2.2 Baseline Hydrogen Sulfide Imaging  

Aliquots of 1.5 mL P4 HCAEC and DHCAEC-I were plated separately in groups of three until a 

confluence of 60% was reached, with the following conditions: 1) untreated; 2) treated with 5 μM 

allicin (Table 1). 24 hours prior to imaging, the EBM-2 was aspirated and replaced with 1.5 mL 

phenol red free EBM-2 (PRFM, Lonza). 500 μL 2.5 μM SF7-AM/PRFM was added to the cells 

under a dark hood and incubated in the dark at 37 °C and 5% CO2 for 30 minutes followed by 

aspiration and washing three times with 1 mL PRFM. For baseline imaging, cells were incubated 

for 30 minutes once more with 500 μL PRFM and imaged using an EVOS microscope at 40X 

with a GFP filter (ex/em 498/526 nm).  
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HCAEC DHCAEC-I 
Untreated + 5 μM allicin Untreated + 5 μΜ allicin 

 

Table 1. Experimental design and treatment allocation for the measurement of H2S.  

 

 

2.2.3 Allicin Treatment Hydrogen Sulfide Imaging 

After baseline imaging, cells were washed three times with 1 mL PRFM. After the last wash, cells 

were treated with 500 μL 5 μM allicin (Santa Cruz Biotechnology)/PRFM and incubated in the 

dark at 37 °C and 5 % CO2 for 20 minutes. Images were captured at 40X with a GFP filter (ex/em 

498/526 nm). The calculation for allicin dilution is shown below: 

10 𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑚𝑚𝑚𝑚

∗
1 𝑔𝑔

1000 𝑚𝑚𝑚𝑚
∗

1000 𝑚𝑚𝑚𝑚
1 𝐿𝐿

∗
1 𝑚𝑚𝑚𝑚𝑚𝑚

162.27 𝑔𝑔 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
=

10,000
162,270

= 0.0616256 𝑀𝑀 

= 61.6256 𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

1: 10 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 10 𝜇𝜇𝜇𝜇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 90 𝜇𝜇𝜇𝜇 𝑑𝑑𝑑𝑑𝑑𝑑2𝑂𝑂 = 6.16256 𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑉𝑉1 =
𝐶𝐶2𝑉𝑉2
𝐶𝐶1

=
(0.005 𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(2 𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

6.16256 𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

= 0.0016227 𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1.6227 𝜇𝜇𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 2 𝑚𝑚𝑚𝑚 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 5 𝜇𝜇𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

 

2.3 Nitric Oxide Production 

2.3.1 Mechanism of DAF-FM DA  

4-amino-5-methylamino-2’, 7’-difluorofluorescein diacetate (DAF-FM DA, Thermo Fischer) is a 

membrane-permeable, non-fluorescent indicator of NO production. Upon entry into the cell, the 
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acetate groups are hydrolyzed by intracellular esterases, yielding a negatively-charged DAF-FM, 

rendering the compound membrane-impermeable and thus remaining trapped inside the cell 

(Cortese-Krott et al., 2012). Once trapped inside the cell, DAF-FM is weakly-fluorescent; 

however, in the presence of NO and oxygen (NO• + O2  N2O3), a highly-fluorescent 

benzotriazole derivative (DAF-BT D) is formed (Cortese-Krott et al., 2012), allowing for relative 

quantifications of NO at nanomolar concentrations (Ghebremariam et al., 2013) (Figure 3).  

 
Figure 3. Schematic of the mechanism for DAF-FM DA. 

 

 

2.3.2 Baseline Nitric Oxide Imaging  

Aliquots of 1.5 mL P4 HCAEC and DHCAEC-I were plated separately in groups of three until a 

confluence of 60% was reached, with the following conditions: 1) untreated; 2) treated with 5 μM 

allicin; 3) pretreated with 5 μM wortmannin (an inhibitor of PI3K; Sigma Aldrich) followed by 

treatment with 5 μM allicin (Table 2). 24 hours prior to imaging, the EBM-2 was aspirated and 

replaced with 1.5 mL PRFM. 500 μL 10 μM DAF FM-DA/PRFM was added to the cells under a 

dark hood and incubated in the dark at 37 °C and 5% CO2 for 30 minutes followed by aspiration 
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and washing three times with 1 mL PRFM. For baseline imaging, cells were incubated for 30 

minutes once more with 500 μL PRFM and imaged using an EVOS microscope at 40X with a 

GFP filter (ex/em 495/515 nm).  

HCAEC DHCAEC-I 
Untreated + 5 μM allicin + 5 μM WRT + 

5 μM allicin 
Untreated + 5 μM allicin + 5 μM WRT + 

5 μM allicin 
 

Table 2. Experimental design and treatment allocation for the measurement of NO. WRT = wortmannin. 

 

 

2.3.3 Allicin Treatment Nitric Oxide Imaging  

After baseline imaging, cells were washed three times with 1 mL PRFM. After the last wash, cells 

were treated with 500 μL 5 μM allicin/PRFM and incubated in the dark at 37 °C and 5 % CO2 for 

20 minutes. Images were captured at 40X with a GFP filter (ex/em 495/515 nm).  

 

2.3.4 Wortmannin Pretreatment Nitric Oxide Imaging  

To measure the effects of PI3K inhibition, cells were incubated with 500 μL 10 μM DAF-FM 

DA/PRFM for 30 minutes at 37 °C and 5 % CO2, followed by aspiration and washing three times 

with 1 mL PRFM. Subsequently, cells were incubated with 500 μL 5 μM wortmannin for 30 

minutes, aspirated and washed three times with 1 mL PRFM, and incubated for 20 minutes with 

500 μL 5 μM allicin at 37 °C and 5 % CO2. Cells were imaged using an EVOS microscope at 40X 

with a GFP filter (ex/em 495/515 nm).  
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2.4 Phospho-eNOS and Phospho-Akt Immunoblots 

P4 HCAEC and DHCAEC-I were grown in sets of three separate 100 mm cell culture dishes to 

≥90% confluence in 10 mL EBM-2. Prior to protein collection, one dish of each set remained 

untreated with 10 mL PRFM only, one received 10 mL 5 μM allicin/PRFM, and one was 

pretreated with 10 mL 5 μM wortmannin for 30 minutes followed by addition of 8.113 μL allicin 

(final concentration = 5 μΜ) (Table 3). The three culture dishes of each cell type were 

subsequently incubated for 20 minutes at 37 °C and 5% CO2 followed by washing with 25 mL 1X 

phosphate buffered saline (PBS).  

 

Cells were lysed with 100 μL ice cold 1X radioimmunoprecipitation assay (RIPA) lysis buffer 

(Thermo Fischer) for 1 hour on ice and centrifuged at 21,754 g for 10 minutes. Cell supernatants 

were transferred to new Eppendorf tubes and protein concentrations were determined with a 

Pierce bicinchoninic acid kit (Thermo Fischer). Samples were prepared by combining 70 μg of 

protein with 10 μL 4X Laemmli Sample Buffer (Bio-Rad) and 1X PBS to a total volume of 40 

μL, followed by boiling at approximately 95 °C for 5 minutes. 40 μL of the samples were loaded 

in Mini-PROTEAN TGX 4-20% 10-well precast gels (Bio-Rad). Sodium dodecyl sulfide 

polyacrylamide gel electrophoresis (SDS-PAGE) of both treated and untreated HCAEC and 

DHCAEC-I were carried out in triplicate with 1X Tris/Glycine/SDS buffer (Bio-Rad) for 

approximately 2 hours at 100 V followed by transfer to a polyvinylidene difluoride (PVDF) 

membrane using a Bio-Rad Trans-Blot Turbo Transfer System in 1X Trans-Blot Turbo Transfer 

Buffer (Bio-Rad). PVDF membranes were then rinsed with and washed in 1X PBS with 1% 

Tween20 (Fischer BioReagents, PBST) for 5 minutes while shaking at room temperature, 
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followed by incubation with Odyssey Blocking Buffer in PBS (Li-Cor) for 1 hour while shaking 

at room temperature.  

 

Primary antibodies against phospho-eNOSSer1177 (rabbit, monoclonal, Invitrogen, 1:1000 dilution), 

eNOS (mouse, monoclonal, BD Biosciences, 1:700 dilution), phospho-AktSer473 (mouse, 

monoclonal, Proteintech, 1:1000 dilution), Akt (mouse, monoclonal, Proteintech, 1:2000 

dilution), and β-actin (mouse, monoclonal, Li-Cor, 1:5000 dilution) were diluted in 5 mL Odyssey 

Blocking Buffer with 10% Tween20 and incubated with the PVDF membranes overnight while 

shaking at 4 °C. On the following day, the membranes were incubated for one additional hour 

while shaking at room temperature and subsequently washed three times with PBST: once for 15 

minutes and twice more for 5 minutes. After washing, the membranes were incubated with a goat 

anti-rabbit or goat anti-mouse antibody (monoclonal, Li-Cor, 1:5000 dilution) solution in 5 mL 

Odyssey Blocking Buffer, 10% SDS, and 10% Tween20 for 1 hour while shaking at room 

temperature. Following incubation with secondary antibody, membranes were washed three times 

with PBST: once for 15 minutes and twice more for 5 minutes, and PBS twice for 5 minutes. 

Membranes were visualized using a Li-Cor Odyssey CLx Imaging System.  

HCAEC DHCAEC-I 
Untreated + 5 μM allicin + 5 μM WRT + 

5 μM allicin 
Untreated + 5 μM allicin + 5 μM WRT + 

5 μM allicin 
 

Table 3. Experimental design and treatment allocation for the measurement of p-eNOSSer1177 and p-
AktSer473. WRT = wortmannin. 
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2.5 Statistical Analysis  

All experiments were conducted on three separate days with three separate cultures for statistical 

purposes and data are expressed as means ± SD. Pixel intensity for all EVOS data and 

immunoblot data were assessed using ImageJ software. H2S data were analyzed via paired t-test; 

NO data, phospho-eNOSSer1177 immunoblot data, and phospho-AktSer473 immunoblot data were 

analyzed via one-way ANOVA with Tukey’s post-hoc; total eNOS expression comparisons were 

analyzed via two-sample t-test. Graphs were generated using GraphPad Prism software.  
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RESULTS 

 

3.1 Allicin stimulates H2S production in HCAEC and DHCAEC-I 

Allicin stimulated H2S production in both HCAEC and DHCAEC-I as indicated by SF7 mean 

fluorescence intensity (MFI). Baseline SF7 MFI in HCAEC was 27.412 ± 2.462 arbitrary units 

(AU; n = 3) and increased after addition of 5 μM allicin to 61.953 ± 5.712 AU (p < 0.01 

compared to baseline; n = 3), representing a 126% increase in H2S production. In DHCAEC-I, 

baseline SF7 MFI was 37.211 ± 3.557 AU (n = 3), which increased by 85% after the addition of 

5 μM allicin (68.945 ± 4.248 AU; p < 0.01 compared to baseline; n = 3). Data are expressed as 

mean ± SD. Student’s paired t-test was performed. (Figure 4). 

 
Figure 4. H2S production in HCAEC and DHCAEC-I detected by SF7-AM. A) Representative 

fluorescence microscopy images of HCAEC and DHCAEC-I at baseline, prior to allicin treatment 
(Bs) and after 20-minute treatment with 5 μM allicin (All). B) Quantification of relative H2S 
production through mean fluorescence intensity. Results are displayed as mean ± SD. ** = p < 
0.01. 
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3.2 Allicin stimulates NO production and wortmannin reverses this effect in DHCAEC-I 

Allicin stimulated NO production in DHCAEC-I and PI3K inhibition by wortmannin prevented 

an increase in NO production. In DHCAEC-I, baseline DAF fluorescence was 12.468 ± 0.468 

AU, and 5 μM allicin treatment increased MFI by 66% (20.798 ± 0.403 AU; p < 0.0001 

compared to baseline; n = 3). In cells pretreated with 5 μM wortmannin followed by allicin 

treatment, this effect was diminished with a MFI of 11.070 ± 0.451 AU (p < 0.0001 compared to 

allicin only; p < 0.05 compared to baseline; n = 3). (Figure 5).  

 

In HCAEC, baseline MFI was 12.110 ± 0.105 AU (n = 3), and 11.718 ± 0.643 AU (p < 0.50 

compared to baseline; n = 3) after treatment with 5 μΜ allicin. In cells pretreated with 5 μM 

wortmannin followed by 5 μM allicin, MFI was 10.795 ± 0.445 AU (p < 0.05 compared to 

allicin only; p < 0.01 compared to baseline; n = 3). All data are expressed as mean ± SD. One-

way ANOVA with Tukey’s post-hoc was performed. (Figure 5).  
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Figure 5. NO production in HCAEC and DHCAEC-I detected by DAF-FM DA. A) Representative 

fluorescence microscopy images of HCAEC and DHCAEC-I at baseline, prior to allicin treatment 
(Bs), after 20-minute treatment with 5 μM allicin (All), and after 5 μM allicin treatment in cells 
pretreated with 5 μM wortmannin (W). B) Quantification of relative NO production through mean 
fluorescence intensity. Results are displayed as mean ± SD. * = p < 0.05, ** = p < 0.01, **** = p 
< 0.0001. 

 

 

3.3 Allicin increases eNOSSer1177 phosphorylation and wortmannin reverses this effect in 

DHCAEC-I 

Allicin treatment of DHCAEC-I with 5 μM allicin increased eNOS phosphorylation at Ser1177 

from baseline (0.496 ± 0.087 AU; n = 3) to 0.938 ± 0.184 AU (p < 0.05 compared to baseline; n 

= 3), representing an 89% increase in eNOS phosphorylation. However, in DHCAEC-I 

pretreated with 5 μM wortmannin, the effect of allicin was diminished, returning MFI to levels 

similar to baseline (0.245 ± 0.113 AU; p < 0.01 compared to allicin only; p < 0.13 compared to 

baseline; n = 3). (Figure 6).  
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In HCAEC, allicin had no effect on eNOSSer1177 phosphorylation (0.904 ± 0.361 AU; n = 3) 

compared to baseline (0.967 ± 0.235 AU; p < 0.95; n = 3). Similarly, in HCAEC pretreated with 

5 μΜ wortmannin, allicin did not increase phosphorylation (0.671 ± 0.166 AU; p < 0.56 

compared to allicin only; p < 0.41 compared to baseline; n = 3). All phospho-eNOSSer1177 data 

are expressed as mean ± SD. β-actin was used as a loading control for all immunoblots. One-way 

ANOVA with Tukey’s post-hoc was performed. (Figure 6). 

 

Lastly, total eNOS expression was elevated in DHCAEC-I compared to HCAEC. Mean total 

eNOS expression (eNOS/β-actin) in HCAEC at baseline was 0.438 ± 0.005 AU (n = 3) 

compared to 0.803 ± 0.071 AU in DHCAEC-I (p < 0.001; n = 3). All total eNOS expression data 

are expressed as mean ± SD. Student’s two-sample t-test was performed. (Figure 6).  
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Figure 6. Phosphorylation of eNOSSer1177 in HCAEC and DHCAEC-I. A) Representative immunoblot 

analysis for p-eNOSSer1177 and total eNOS in HCAEC and DHCAEC-I at baseline, prior to allicin 
treatment (Bs), after 20-minute treatment with 5 μM allicin (All), and after 5 μM allicin treatment 
in cells pretreated with 5 μM wortmannin (W). B) Quantification of eNOSSer1177 phosphorylation 
relative to total eNOS through mean band intensity. C) Quantification of total eNOS expression 
relative to β-actin at baseline through mean band intensity. Results are displayed as mean ± SD. * 
= p < 0.05, ** = p < 0.01, *** = p < 0.001. 

 

 

3.4 Allicin has no statistically-significant effect on AktSer473 phosphorylation 

5 μM allicin treatment of HCAEC decreased phosphorylation of AktSer473 from 1.618 ± 0.310 

AU (n = 3) to 1.476 ± 0.396 AU (p < 0.87 compared to baseline; n = 3). Further, in HCAEC 

pretreated with 5 μM wortmannin followed by 5 μM allicin treatment, mean band intensity 

(MBI) was 1.436 ± 0.337 AU (p < 0.98 compared to allicin only; p < 0.80 compared to baseline; 

n = 3). In DHCAEC-I, 5 μM allicin treatment increased AktSer473 phosphorylation from baseline 
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(1.151 ± 0.323 AU) to 1.301 ± 0.324 AU (p < 0.82; n = 3); however, these data were not 

statistically-significant. With pretreatment of 5 μΜ wortmannin followed by 5 μM allicin, MBI 

was 1.010 ± 0.274 AU (p < 0.51 compared to allicin only; p < 0.84 compared to baseline; n = 3). 

All data are expressed as mean ± SD. β-actin was used as a loading control for all immunoblots. 

One-way ANOVA with Tukey’s post-hoc was performed. (Figure 7). 

 
Figure 7. Phosphorylation of AktSer473 in HCAEC and DHCAEC-I. A) Representative immunoblot analysis 

for p-AktSer473 in HCAEC and DHCAEC-I at baseline, prior to allicin treatment (Bs), after 20-
minute treatment with 5 μM allicin (All), and after 5 μM allicin treatment in cells pretreated with 
5 μM wortmannin (W). B) Quantification of AktSer473 phosphorylation relative to total Akt through 
mean band intensity. Results are displayed as mean ± SD. 
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DISCUSSION 

 

HCAEC play a principal role in the maintenance of endothelial/vascular health through the 

balance of vasodilating (NO, EDRF, EDHF, prostacyclin) and constricting factors (endothelin-I). 

However, insults to vascular integrity increases the risk for pro-atherogenic effects and 

manifestations related to the development of CVD, exacerbated by factors such as ROS and 

AGEs. The chief endothelium-derived factor for maintaining hemodynamic homeostasis is NO; 

as T1DM and T2DM increase the likelihood for the aforementioned CVDs stemming from DM-

induced endothelial dysfunction, new interventions are being explored. With respect to naturally-

occurring allyl thiosulfinates, allicin is the most abundant and studied member and has 

demonstrated lipid-lowering, antioxidant, anti-atherosclerotic, and anticancer effects (Lawson 

and Hunsaker, 2018). Horuzsko et al. (2019) have demonstrated that allicin alleviates endothelial 

dysfunction by increasing NO in DHCAEC-I; however, the mechanism of action remained to be 

elucidated. Here, we have demonstrated that allicin exerts its effects on eNOSSer1177 

phosphorylation via a PI3K-dependent mechanism. Allicin significantly increased NO 

production (p < 0.0001) and eNOSSer1177 phosphorylation (p < 0.05), the effects of which were 

reversed by inhibiting PI3K via the use of wortmannin (p < 0.0001 and p < 0.01, respectively) in 

DHCAEC-I. 

 

These data provide strong implications on the alleviation of endothelial dysfunction via 

increasing eNOS-dependent NO production and build on previous findings by Ma et al. (2018). 

Their particular study suggested that allicin attenuates apoptosis induced by ischemic or hypoxic 

events in H9c2 myoblasts through eNOS. It was shown that treatment of H9c2 myoblasts with 
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allicin significantly reversed the effects of intermittent hypoxia-induced increases in 

malondialdehyde and decreases in superoxide dismutase; further, these effects of allicin were 

diminished by the use of L-arginine methyl ester (L-NAME), an inhibitor of eNOS activity, 

reinforcing the involvement of eNOS in allicin-mediated cardioprotection (Ma et al., 2018). 

Moreover, allicin has been linked to improvements in cardiac functions by reducing 

cardiomyocyte size and decreasing B-type natriuretic peptide (BNP) and β-myosin heavy chain 

(β-MHC) (Ba et al., 2019). BNP, a hormone secreted by ventricular cardiomyocytes in response 

to stretch (Novack and Zevitz, 2020), and β-MHC, the major protein comprising myosin in 

cardiomyocytes (Krenz and Robbins, 2004), both serve as biomarkers for hypertrophic 

cardiomyopathy. Ba et al. (2019) have demonstrated that expression of both BNP and β-MHC 

from cardiomyocytes in rats with cardiac hypertrophy decreased after treatment with allicin, 

underscoring the hypertrophic relief provided by our compound of interest.  

 

In our study, while NO production and phosphorylation of eNOSSer1177 increased in DHCAEC-I 

after treatment with 5 μM allicin (p < 0.0001 and p < 0.05, respectively), it should be noted that 

we did not observe this effect in HCAEC. We currently propose two different hypotheses for 

these findings: 1) given that HCAEC are presumed to be healthy with no indications of 

endothelial dysfunction, it is plausible that any treatments to increase NO may not have a 

significant difference in cells with an optimal level of NO production and eNOSSer1177 

phosphorylation. For example, we see that the mean band intensity in the immunoblots targeting 

p-eNOSSer1177 is 0.967 ± 0.275 AU in HCAEC, while that of DHCAEC-I is 0.496 ± 0.087 AU – 

approximately 48% less than baseline phosphorylation in HCAEC. 2) As there are varying 
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mechanisms to stimulate eNOS, it is possible that different cell types may use different pathways 

or motifs in these phosphorylation cascades. For one, eNOS phosphorylation can occur at a 

number of motifs that may be activating or deactivating: aside from Ser1177, Ser1179, Ser633, and 

Ser615 all participate in positive regulation of eNOS (Rafikov et al., 2011). However, this second 

suggestion does not account for the fact that we did not see an increase in NO production under 

fluorescence microscopy.  

 

Notably, we discovered a marked difference between baseline expressions of eNOS between 

HCAEC and DHCAEC-I. In DHCAEC-I, baseline total eNOS expression was approximately 

83% higher compared to HCAEC. We hypothesize that this is likely due to a mechanism in 

DHCAEC-I to compensate for the reduced bioavailability of NO that is typically seen in DM-

induced endothelial dysfunction. These suggestions stem from data collected by Takahashi and 

Harris (2014) in which eNOS expression was found to be increased early after the onset of 

diabetes and decreased with the disease’s progression. Many cases of endothelial dysfunction, 

particularly in DM, are accompanied by an upregulation of eNOS expression, likely as a (futile) 

counter-regulatory mechanism that ultimately results in superoxide anion production in lieu of 

NO (Li et al., 2002 and Musicki and Burnett, 2007). We therefore suspect that the notable 

increase in total eNOS expression seen in DHCAEC-I compared to HCAEC is the result of a 

compensatory mechanism to increase baseline NO production.  

 

Another very interesting finding from our research was that we did not see a significant change 

in AktSer473 phosphorylation as we initially expected. We hypothesized that activation of PI3K 
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would stimulate PIP2/PIP3 and subsequently the phosphorylation of Akt at Ser473 and Thr308. As 

previously described, full activation of Akt requires the phosphorylation of both residues, and as 

such, we expected to observe an increase in the phosphorylation of AktSer473 given that PI3K is 

clearly involved in this pathway. We now suspect the possibility that AktSer473 may not be 

directly associated with an increase in PI3K-dependent phosphorylation after stimulation with 

allicin in DHCAEC-I. This suggestion stems from the work conducted by Kobayashi et al. 

(2009) in which internal mammary artery endothelial cells with experimental insulin resistance 

demonstrated that the Thr308 site of Akt was significantly impaired, whereas that of total Akt 

expression and phosphorylation at the Ser473 site were not affected, thus directly contradicting 

our initial expectations and supporting this new notion. As such, the phosphorylation of Thr308 by 

PDK1 is likely more closely tied with insulin impairment, providing a likely explanation for our 

data. Given this newfound information, our future studies involving this pathway will be closely 

targeted on measuring the phosphorylation at AktThr308 as opposed to Ser473. It should also be 

noted that our initial proposal included the use of the triciribine, which prevents the activation, 

phosphorylation, and signaling of Akt, in our NO fluorescence microcopy and eNOSSer1177 

immunoblot experiments; however, we were unable to obtain this inhibitor to confirm Akt’s 

involvement.   

 

One of the major potential contributors to the allicin-mediated activation of PI3K that results in 

downstream phosphorylation of eNOS and subsequent NO production is the generation of H2S. 

As allicin is a relatively unstable compound, it readily breaks down into three organic 

polysulfides: DAS, DADS, and DATS, which have previously been shown to produce H2S via 
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thiol-dependent cellular and glutathione (GSH)-dependent acellular reactions (Benavides et al., 

2007). We have successfully demonstrated that allicin results in a significant increase in H2S 

production in both HCAEC and DHCAEC-I (p < 0.01); however, we have not elucidated the 

mechanism nor role of H2S in this pathway. Given that the vasodilatory effects of allicin were 

reversed in DHCAEC-I pretreated with a PI3K inhibitor, we suspect that H2S is likely 

stimulating PI3K, either directly or indirectly. This assumption correlates with a number of 

studies, including one conducted by Lin and colleagues (2020), in which H2S was found to 

alleviate hyperglycemia-induced inactivation of the PI3K/Akt/eNOS pathway in human 

umbilical vein endothelial cells (HUVECs). In this particular study, normoglycemic (control) 

HUVECs had p-PI3K/PI3K, p-Akt/Akt, and p-eNOS/eNOS ratios ranging between 0.75 to 0.85; 

however, exposure of these cells to hyperglycemic conditions reduced all ratios by >50%, and 

administration of NaHS (a H2S donor) returned all ratios to near normoglycemic levels of 

phosphorylation. Moreover, these data reinforce studies conducted by Manna and Jain (2011) in 

which high glucose-induced decreases in PI3K and increases in phosphatase and tensin homolog 

(PTEN; a negative regulator of PI3K) were reversed via treatment with H2S in adipocytes.  

 

Given that PI3K phosphorylation can be mediated by RTKs (among other pathways), we now 

suspect that H2S is directly stimulating vascular endothelial growth factor receptor subtype 2 

(VEGFR2), a RTK on the endothelial cell surface. Data collected by Tao et al. (2013) 

demonstrated that H2S could directly activate VEGFR2, and small interfering RNA (siRNA) 

knockdown of VEGFR2 prevented downstream phosphorylation of PI3K. VEGFR2 contains an 

intracellular disulfide bond between Cys1045-Cys1024 that serves as an inhibitory motif. 



40 
 
 

However, upon diffusion into the cell, H2S reduces the Cys1045-Cys1024 bond (S–S  Cys–SH 

+ HS–SH) via nucleophilic attack, diminishing the inhibitory consequences of the bond (Tao et 

al., 2013) and allowing for subsequent dimerization and autophosphorylation that is typical in 

RTKs, resulting in downstream PI3K activation. We therefore propose that allicin-derived H2S is 

functioning as a “molecular switch”, reducing the Cys1045-Cys1024 bond in VEGFR2 and 

mediating the PI3K-dependent phosphorylation of eNOSSer1177.  

 

While we have indeed demonstrated that PI3K is involved in allicin-mediated phosphorylation of 

eNOS, it is worthy to note that allicin-derived H2S may also target eNOS directly though S-

sulfhydration, a posttranslational modification that targets cysteine residues (Altaany et al., 

2014). S-nitrosylation, the covalent attachment of NO to the thiol group of cysteine residues (Qin 

et al., 2013), reversibly attenuates eNOS activity (Wang et al., 2019). Interestingly, Altaany et al. 

(2014) have found that S-sulfhydration and S-nitrosylation competitively modify eNOS at Cys443 

and that S-sulfhydration of eNOS decreases S-nitrosylation at the same residue. While S-

sulfhydration after NaHS treatment does not directly cause phosphorylation of eNOS, it does 

indirectly promote its phosphorylation by inhibiting the NO-induced concentration-dependent S-

nitrosylation (Altaany et al., 2014).  

 

Given its structure, and as previously described, allicin is readily unstable and ultimately breaks 

down into polysulfides in both aqueous and ethanoic solutions. Our allicin stock solution was 

supplied in a solution of methanol:water:formic acid, and subsequently diluted with double 

distilled water and maintained at -80 °C, and brought to room temperature for no more than 20 
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minutes during use. In a study conducted by Fujisawa et al. (2008), allicin demonstrated 

biological and chemical half-lives of 6 and 11 days, respectively; however, the duration of their 

study was conducted at room temperature (20-22 °C). In a separate study observing the long-

term stability of garlic products, it was determined that there was no loss of any thiosulfinate 

between 3 and 24 months upon storage at -80 °C. While we cannot definitively conclude that 

there was no breakdown of our allicin during thawing periods at room temperature without the 

use of mass spectrometry, we are confident that our compound maintained its stability and purity 

throughout the duration of our research.  

 

Lastly, given that allicin was supplied via a stock vehicle containing both methanol and formic 

acid, it is prudent to acknowledge potential confounds in our data. While methanol is known for 

systemic cytotoxicity, Oyama et al. (2002) demonstrated no statistically-significant differences in 

cell viability up to concentrations of 3 mM. Given that our allicin vehicle concentration was 

diluted from 61.6256 mM to 5 μM (a >1000X dilution), we suspect that the effects of methanol 

had a negligible impact on our results. While formic acid, an inhibitor of cytochrome oxidase, 

has been described as a hypoxia- and acidosis-inducing agent (Liesivuori, 2014), our study 

revealed no demonstrable data that NO production, eNOSSer1177 phosphorylation, or normal cell 

morphology was affected. These data stem from our results that allicin did not stimulate NO 

production nor eNOSSer1177 phosphorylation in HCAEC, though did stimulate both effects in 

DHCAEC-I. Further, both cell types maintained similar morphologies pre- and post-allicin 

treatment. We, therefore, suspect that neither methanol nor formic acid had any statistically-
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significant confounding effects in our study, though future experiments with a vehicle control at 

similar concentrations are needed to confirm these assumptions.   

 

Collectively, our data provide evidence supporting the hypothesis that allicin stimulates eNOS-

dependent NO production via the stimulation of PI3K, however further in vitro studies are 

needed to fully elucidate the mechanism and in vivo studies to support its use in the prevention of 

T1DM-induced CVD. Our data illustrate that allicin increases H2S production, NO production, 

and the phosphorylation of eNOSSer1177, and that the latter two are dependent on PI3K in 

DHCAEC-I. However, allicin has no apparent effect on HCAEC aside from H2S production.  
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SUMMARY 

 

Our data strongly support the hypothesis that allicin can alleviate T1DM-induced reductions and 

bioavailability of NO in human coronary artery endothelial cells. Our findings provide 

supporting evidence that allicin 1) increases H2S production in HCAEC and DHCAEC-I; 2) 

increases NO production in DHCAEC-I only; and 3) increases eNOSSer1177 phosphorylation in 

DHCAEC-I only. These findings provide a preliminary understanding of the allicin’s 

vasodilatory mechanism and a new direction in drug development for the treatment of CVD in 

T1DM.  

 

 

 

 

 

 

 

 

 

 

 



44 
 
 

REFERENCES 

 

Abdul-Ghani, M. A., & DeFronzo, R. A. (2010). Pathogenesis of insulin resistance in skeletal 
muscle. Biomed Research International, 2010, 1-11. Retrieved 
from https://www.hindawi.com/journals/bmri/2010/476279/ 

 

Altaany, Z., Ju, Y., Yang, G., & Wang, R. (2014). The coordination of S-sulfhydration, S-
nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen 
sulfide. Science Signaling, 9(7) Retrieved from https://pubmed.ncbi.nlm.nih.gov/25205851/ 

 

Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and 
its bioactive components. J Nutr., 131, 955-962. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/11238796/ 

 

Anatomy and function of the coronary arteries. Retrieved Aug 2, 2020, 
from https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-and-
function-of-the-coronary-arteries 

 

Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J., et al. (1999). 
Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochemical 
and Biophysical Research Communications, 257(1), 79-83. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/10092513/ 

 

Badi, R. M., Mostafa, D. G., Khaleel, E. F., & State, H. H. (2019). Resveratrol protects against 
hepatic insulin resistance in a rat’s model of non-alcoholic fatty liver disease by down-
regulation of GPAT-1 and DGAT2 expression and inhibition of PKC membranous 
translocation. Clinical and Experimental Pharmacology and Physiology, Retrieved 
from https://onlinelibrary.wiley.com/doi/epdf/10.1111/1440-1681.13074 

 

Bae, L., Gao, J., Chen, Y., Qi, H., Dong, C., Pan, H., et al. (2019). Allicin attenuates pathological 
cardiac hypertrophy by inhibiting autophagy via activation of PI3K/akt/mTOR and 
MAPK/ERK/mTOR signaling pathways. Phytomedicine, 58 Retrieved 
from https://www.sciencedirect.com/science/article/pii/S094471131830583X 

 



45 
 
 

Balakumar, P., Maung-U, K., & Jagadeesh, G. (2016). Prevalence and prevention of 
cardiovascular disease and diabetes mellitus. Pharmacological Research, 113, 600-609.  

 

Banerjee, S. K., & Maulik, S. K. (2002). Effect of garlic on cardiovascular disorders: A 
review. Nutritional Journal, 1(4), 1-14. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/12537594/ 

 

Barbato, J. E., & Tzeng, E. (2004). Nitric oxide and arterial disease. United States: Mosby, Inc. 
doi:10.1016/j.jvs.2004.03.043 

 

Blaustein, M. P., Leenen, F. H., Chen, L., Golovina, V. A., Hamlyn, J. M., Pallone, T. L., et al. 
(2012). How NaCl raises blood pressure: A new paradigm for the pathogenesis of salt-
dependent hypertension. American Journal of Physical Hear Circulation Physiology, 302, 
1031-1049. Retrieved 
from https://journals.physiology.org/doi/pdf/10.1152/ajpheart.00899.2011 

 

Boden, G., & Shulman, G. I. (2002). Free fatty acids in obesity and type 2 diabetes: Defining 
their role in the development of insulin resistance and beta-cell dysfunction. European 
Journal of Clinical Investigation, 32, 14-23. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/12028371/ 

 

Bradley, J. M., Organ, C. L., & Lefer, D. J. (2016). Garlic-derived organic polysulfides and 
myocardial Protection123. The Journal of Nutrition, 146(2), 403S-409S. 
doi:10.3945/jn.114.208066 

 

Bruun, J. M., Lihn, A. S., Verdict, C., Pedersen, S. B., Tuobro, S., Astrup, A., et al. (2003). 
Regulation of adiponectin by adipose tissue-derived cytokines: In vivo and in vitro 
investigations in humans. American Journal of Physiology-Endodrinology and 
Metabolism, 285(3), E527-E533. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/12736161/ 

 

Cahill, P. A., & Redmond, E. M. (2016). Vascular endothelium - gatekeeper of vessel 
health. Atherosclerosis, 248, 97-109. doi:10.1016/j.atherosclerosis.2016.03.007 

 



46 
 
 

Cantrell, D. A. (2001). Phosphoinositide 3-kinase signalling pathways. Journal of Cell 
Science, 114(Pt 8), 1439-1445. Retrieved from https://pubmed.ncbi.nlm.nih.gov/11282020/ 

 

Centers for Disease Control and Prevention. (2020). National diabetes statistics report: Estimates 
of diabetes and its burden in the united states. Retrieved 
from https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf 

 

Chang, L., Chiang, S., & Saltiel, A. R. (2010). Insulin signaling and the regulation of glucose 
transport. Molecular Medicine, 10(7-12), 65-71. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1431367/ 

 

Chen, K., Pittman, R. N., & Popel, A. S. (2008a). Nitric oxide in the vasculature: Where does it 
come from and where does it go? A quantitative perspective. Antioxidants & Redox 
Signaling, 10(7), 1185-1198. doi:10.1089/ars.2007.1959 

 

Chen, K., Pittman, R. N., & Popel, A. S. (2008b). Nitric oxide in the vasculature: Where does it 
come from and where does it go? A quantitative perspective. Antioxidants & Redox 
Signaling, 10(7), 1185-1198. doi:10.1089/ars.2007.1959 

 

Chestnov, O. (2014). Global status report on noncommunicable diseases. World Health 
Organization, , 9. Retrieved 
from https://apps.who.int/iris/bitstream/handle/10665/148114/9789241564854_eng.pdf;jsess
ionid=11DB9EDF6B85966120B1C71D39F4828C?sequence=1 

 

Ciraolo, E., Gulluni, F., & Hirsch, E. (2014). Methods to measure the enzymatic activity of 
PI3Ks. In L. Galluzzi, & G. Kroemer (Eds.), Methods in enzymology (pp. 115-140) 
Academic Press. Retrieved 
from http://www.sciencedirect.com/science/article/pii/B9780128013298000064 

 

Cortese-Krott, M. M., Rodriguez-Mateos, A., Kuhnle, G. G. C., Brown, G., Feelisch, M., & 
Kelm, M. (2012). A multilevel analytical approach for detection and visualization of 
intracellular NO production and nitrosation events using diaminofluoresceins. Free Radical 
Biology and Medicine, 53, 2146-2158. Retrieved 
from https://sfrbm.org/site/assets/files/1240/intracellular-
no_diaminofluoresceins_kelm_frbm2012.pdf 

 



47 
 
 

Creager, M., & Lüscher, T. (2003). Diabetes and vascular disease. Circulation, 108(12), 1527-
1532. doi:10.1161/01.CIR.0000091257.27563.32 

 

Daiber, A., Steven, S., Weber, A., Shuvaev, V. V., Muzykantov, V. R., Later, I., et al. (2017). 
Targeting vascular (endothelial) dysfunction. British Journal of Pharmacology, 174(12), 
1591-1619. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446575/ 

 

Dangelmaier, C., Manne, B. K., Liverani, E., Jin, J., Bray, P., & Kunapuli, S. P. (2014). PDK1 
selectively phosphorylates thr(308) on akt and contributes to human platelet functional 
responses. Thrombosis and Haemostasis, 111(3), 508-517. doi:10.1160/TH13-06-0484 

 

DeFronzo, R. A., & Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect 
in type 2 diabetes.American Diabetes Association, 32(2) Retrieved 
from https://care.diabetesjournals.org/content/32/suppl_2/S157.long 

 

Dhananjayan, R., Koundinya, K. S. S., Malati, T., & Kutala, V. K. (2016). Endothelial 
dysfunction in type 2 diabetes mellitus. Indian Journal of Clinical Biochemistry, 31(4), 372-
379. doi:10.1007/s12291-015-0516-y 

 

DiMeglio, L. A., Evans-Molina, C., & Oram, R. A. (2018). Type 1 diabetes. Lancet, 391(10138), 
2449-2462. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661119/ 

 

Doege, H., Grimm, D., Falcon, A., Tsang, B., Storm, T. A., Xu, H., et al. (2008). Silencing of 
hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver 
disease and improves hyperglycemia. Journal of Biological Chemistry, 283(32), 22186-
22192. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18524776/ 

 

Fasshauer, M., Kralisch, S., Klier, M., Lossner, U., Bluher, M., Klein, J., et al. (2003). 
Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 
adipocytes. Biochemical and Biophysical Research Communications, 301(4), 1045-1050. 
Retrieved from https://pubmed.ncbi.nlm.nih.gov/12589818/ 

 

Feng, J., Park, J., Cron, P., Hess, D., & Hemmings, B. A. (2004). Identification of a PKB/akt 
hydrophobic motif ser-473 kinase as DNA-dependent protein kinase. Journal of Biological 
Chemistry, 279(39), 41189-41196. doi:10.1074/jbc.M406731200 



48 
 
 

 

Fountain, J. H., & Lappin, S. L. (2020). Physiology, renin angiotensin 
system. StatPearls, Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK470410/ 

 

Francis, S. H., Busch, J. L., & Corbin, J. D. (2010). cGMP-dependent protein kinases and cGMP 
phosphodiesterases in nitric oxide and cGMP action. Pharmacological Reviews, 62(3), 525-
563. doi:10.1124/pr.110.002907 

 

Freeman, A. M., & Pennings, N. (2020). Insulin resistance. StatPearls, Retrieved 
from https://www.ncbi.nlm.nih.gov/books/NBK507839/ 

 

Fujisawa, H., Suma, K., Origuchi, K., Kumagai, H., Seki, T., & Ariga, T. (2008). Biological and 
chemical stability of garlic-derived allicin. Journal of Agricultural Food Chemistry, 56(11), 
4229-4235. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18489116/ 

 

Funk. Steven Daniel, Yurdagul Jr., A., & Orr, A. W. (2012). Hyperglycemia and endothelial 
dysfunction in atherosclerosis: Lessons from type 1 diabetes. International Journal of 
Vascular Medicine, 2012, 1-9. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303762/ 

 

Ghantous, C. M., Azrak, Z., Hanache, S., Abou-Kheir, W., & Zidan, A. (2015). Differential role 
of leptin and adiponectin in cardiovascular system. International Journal of 
Endocrinology, 2015 Retrieved from https://www.hindawi.com/journals/ije/2015/534320/ 

 

Ghebremariam, Y. T., Huang, N. F., Kambhampati, S., Volz, K. S., Joshi, G. G., Ansyln, E. V., 
et al. (2013). Characterization of a fluorescent probe for imaging nitric oxide. Journal of 
Vascular Research, 51(1), 68-79. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927988/ 

 

Gloria A. Benavides, Giuseppe L. Squadrito, Robert W. Mills, Hetal D. Patel, T. Scott Isbell, 
Rakesh P. Patel, et al. (2007). Hydrogen sulfide mediates the vasoactivity of 
garlic. Proceedings of the National Academy of Sciences - PNAS, 104(46), 17977-17982. 
doi:10.1073/pnas.0705710104 

 



49 
 
 

Goyal, R., & Jill, I. (2020). Diabetes mellitus type 2. StatPearls, Retrieved 
from https://www.ncbi.nlm.nih.gov/books/NBK513253/ 

 

Grillo, A., Salvi, L., Coruzzi, P., Salvi, P., & Parati, G. (2019). Sodium intake and 
hypertension. Νθτριεντσ, 11(9), 1-9. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770596/ 

 

Han, J., Kim, N., Joo, H., Kim, E., & Earm, Y. E. (2002). ATP-sensitive K+ channel activation 
by nitric oxide and protein kinase G in rabbit ventricular myocytes. American Journal of 
Physiology-Heart and Circulatory Physiology, 283(4), H1545-H1554. 
doi:10.1152/ajpheart.01052.2001 

 

Hemmings, B. A., & Restuccia, D. F. (2012). PI3K-PKB/akt pathway. Cold Spring Harbor 
Perspectives in Biology, 4(9), a011189. doi:10.1101/cshperspect.a011189 

 

Holmes, J. W., Nuñez, J. A., & Covell, J. W. (1997). Functional implications of myocardial scar 
structure. American Journal of Physiology, 272(5), H2123-H2130. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/9176277/ 

 

Horuzsko, D., White, R., & Zhu, S. (2019). Allicin reverses diabetes-induced dysfunction of 
human coronary artery endothelial cells. Digital Commons PCOM, Retrieved 
from https://digitalcommons.pcom.edu/cgi/viewcontent.cgi?article=1193&context=biomed 

 

Hosoki, R., Matsuki, N., & Kimura, H. (1997). The possible role of hydrogen sulfide as an 
endogenous smooth muscle relaxant in synergy with nitric oxide. Biochemical and 
Biophysical Research Communications, 237(3), 527-531. doi:10.1006/bbrc.1997.6878 

 

Hubbard, S. R. (2013). The insulin receptor: Both a prototypical and atypical receptor tyrosine 
kinase. Cold Spring Harbor Perspectives in Biology, 5(3) Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578362/ 

 

Inzucchi, S., Bergenstal, R., Fonesca, V., Gregg, E., Mayer-Davis, B., Spollett, H., et al. (2010). 
Diagnosis and classification of diabetes mellitus. Diabetes Care, 33(Suppl 1), S62-S69. 
doi:10.2337/dc10-S062 

 



50 
 
 

Iqbal, A. M., & Jamal, S. F. (2020). Essential hypertension. StatPearls, Retrieved 
from https://www.ncbi.nlm.nih.gov/books/NBK539859/ 

 

Jiang, X., Chen, S., Asara, J. M., & Balk, S. P. (2010a). Phosphoinositide 3-kinase pathway 
activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is 
independent of receptor tyrosine kinases and mediated by the p110β and p110δ catalytic 
subunits. The Journal of Biological Chemistry, 285(20), 14980-14989. 
doi:10.1074/jbc.M109.085696 

 

Jiang, X., Chen, S., Asara, J. M., & Balk, S. P. (2010b). Phosphoinositide 3-kinase pathway 
activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is 
independent of receptor tyrosine kinases and mediated by the p110β and p110δ catalytic 
subunits. The Journal of Biological Chemistry, 285(20), 14980-14989. 
doi:10.1074/jbc.M109.085696 

 

Kern, P. A., Saghizadeh, M., Ong, J. M., Bosch, R. J., Deem, R., & Simsolo, R. B. (1995). The 
expression of tumor necrosis factor in human adipose tissue. regulation by obesity, weight 
loss, and relationship to lipoprotein lipase.Journal of Clinical Investigation, 95(5), 2111-
2119. Retrieved from https://pubmed.ncbi.nlm.nih.gov/7738178/ 

 

Kobayashi, T., Taguchi, K., Nemoto, S., Naomi, T., Matsumoto, T., & Kamata, K. (2009). 
Activation of the PDK-1/akt/eNOS pathway involved in aortic endothelial function differs 
between hyperinsulinemic and insulin-deficient diabetic rats. American Journal of 
Physiology, 297(5), H1767-H1775. Retrieved 
from https://journals.physiology.org/doi/full/10.1152/ajpheart.00536.2009?rfr_dat=cr_pub+
+0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org 

 

Kolluru, G. K., Bir, S. C., & Kevil, C. G. (2012). Endothelial dysfunction and diabetes: Effects 
on angiogenesis, vascular remodeling, and wound healing. International Journal of 
Vascular Medicine, 2012, 1-30. doi:10.1155/2012/918267 

 

Krenz, M., & Robbins, J. (2004). Impact of beta-myosin heavy chain expression on cardiac 
function during stress.Journal of the American College of Cardiology, 44(12), 2390-2397. 
Retrieved from https://www.sciencedirect.com/science/article/pii/S0735109704019278 

 



51 
 
 

Landry, D. W., Anubkumar, S., & Oliver, J. A. (2006). Vascular tone. In R. K. Albert, A. S. 
Slutsky, V. M. Ranieri, J. Takala & A. Torres (Eds.), Clinical critical care medicine (pp. 31-
39). Philadelphia: Mosby. Retrieved 
from http://www.sciencedirect.com/science/article/pii/B9780323028448500093 

 

Lawson, L. D., & Hunsaker, S. M. (2018). Allicin bioavailability and bioequivalence from garlic 
supplements and garlic foods. Nutrients, 10(7) Retrieved from https://www.mdpi.com/2072-
6643/10/7/812/htm 

 

Li, H., Wallerath, T., Munzel, T., & Fostermann, U. (2002). Regulation of endothelial-type NO 
synthase expression in pathophysiology and in response to drugs. Nitric Oxide, 7(3), 149-
164. Retrieved 
from https://www.sciencedirect.com/science/article/pii/S1089860302001118?via%3Dihub 

 

Liesivuori, J. (2014). Formic acid. Encyclopedia of toxicology (pp. 659-661) Reference Module 
 in Biomedical Sciences. 
 
 

Lin, F., Yan, Y., Wei, S., Huang, X., Peng, Z., ke, X., et al. (2020). Hydrogen sulfide protects 
against high glucose-induced human umbilical vein endothelial cell injury through 
activating PI3K/akt/eNOS pathway. Drug Design, Development and Theory, 14, 621-633. 
Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027865/ 

 

Lin, V. S., Lippert, A. R., & Chang, C. J. (2013). Cell-trappable fluorescent probes for 
endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S 
production. Pnas, 110(18), 7131-7135. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645565/ 

 

Liu, P., Cheng, H., Roberts, T. M., & Zhao, J. J. (2009). Targeting the phosphoinositide 3-kinase 
(PI3K) pathway in cancer. Nature Reviews. Drug Discovery, 8(8), 627-644. 
doi:10.1038/nrd2926 

 

Lucier, J., & Weinstock, R. S. (2021). Diabetes mellitus type 1. StatPearls, Retrieved 
from https://www.ncbi.nlm.nih.gov/books/NBK507713/ 

 



52 
 
 

Lusis, A. J. (2000). Atherosclerosis. Nature, 407(6801), 233-241. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826222/ 

 

Ma, L., chen, S., Li, S., Deng, L., Li, Y., & Li, H. (2018). Effect of allicin against 
ischemia/hypoxia-induced H9c2 myoblast apoptosis via eNOS/NO pathway-mediated 
antioxidant activity. Evidence-Based Complementary and Alternative 
Medicine, 2018 Retrieved from https://www.hindawi.com/journals/ecam/2018/3207973/ 

 

Madsen-Rask, C., & King, G. L. (2013). Vascular complications of diabetes: Mechanisms of 
injury and protective factors. Cell Metabolism, 17(1), 20-33. 
doi:10.1016/j.cmet.2012.11.012 

 

Manna, P., & Jain, S. K. (2011). Hydrogen sulfide and l-cysteine increase phosphatidylinositol 
3,4,5-trisphosphate (PIP3) and glucose utilization by inhibiting phosphatase and tensin 
homolog (PTEN) protein and activating phosphoinositide 3-kinase (PI3K)/serine/threonine 
protein kinase (AKT)/protein kinase cζ/λ (PKCζ/λ) in 3T3l1 adipocytes. Journal of 
Biological Chemistry, 286(46), 39848-39859. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220540/ 

 

Martins, A. R., Nachbar, R. T., Gorjao, R., Vinolo, M. A., Festuccia, W. T., Lambertucci, R. H., 
et al. (2012). Mechanisms underlying skeletal muscle insulin resistance induced by fatty 
acids: Importance of the mitochondrial function.Lipids in Health and Disease, 11(30) 
Retrieved from https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-11-
30#citeas 

 

Matsubara, M., Maruoka, S., & Katayose, S. (2002). Decreased plasma adiponectin 
concentrations in women with dyslipidemia. Journal of Clinical Endocrinology 
Metabolism, 87(6), 2764-2769. Retrieved from https://pubmed.ncbi.nlm.nih.gov/12050247/ 

 

Mendis, S., Puska, P., & Norrving, B. (2014). Global atlas on cardiovascular disease prevention 
and control. World Health Organization in Collaboration with the World Heart Foundation 
and the World Stroke Foundation, , 2-4. Retrieved 
from https://web.archive.org/web/20140817123106/http://whqlibdoc.who.int/publications/2
011/9789241564373_eng.pdf?ua=1 

 



53 
 
 

Miao, B., Skidan, I., Yang, J., Lugovskoy, A., Reibarkh, M., Long, K., et al. (2010). Small 
molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin 
homology domains. Proceedings of the National Academy of Sciences, 107(46), 20126-
20131. Retrieved from https://www.pnas.org/content/107/46/20126 

 

Michell, B. J., Griffiths, J. E., Mitchelhill, K. I., Rodriguez-Crespo, I., Tiganis, T., Bozinovski, 
S., et al. (1999). The akt kinase signals directly to endothelial nitric oxide synthase. Current 
Biology: CB, 9(15), 845-848. doi:10.1016/s0960-9822(99)80371-6 

 

Minokoshi, Y., Kim, Y., Peroni, O. D., Fryer, L. G. D., Muller, C., Carling, D., et al. (2002). 
Leptin stimulates fatty-acid oxidation by activating AMP-activated protein 
kinase. Nature, 415(6869), 339-343. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/11797013/ 

 

Molgaard, S., Ulrichsen, M., Olsen, D., & Glerup, S. (2016). Detection of phosphorylated akt 
and MAPK in cell culture assays. MethodsX, 3, 386-398. doi:10.1016/j.mex.2016.04.009 

 

Montfort, W. R., Wales, J. A., & Weichsel, A. (2017). Structure and activation of soluble 
guanylyl cyclase, the nitric oxide sensor. Antioxidants & Redox Signaling, 26(3), 107-121. 
doi:10.1089/ars.2016.6693 

 

Muoio, D. M., & Newgard, C. B. (2008). Molecular and metabolic mechanisms of insulin 
resistance and β-cell failure in type 2 diabetes. Nature Reviews, 9, 193-205. Retrieved 
from https://www.nature.com/articles/nrm2327 

 

Musicki, B., & Burnett, A. L. (2006). Endothelial dysfunction in diabetic erectile 
dysfunction. International Journal of Impotence Research, 19, 129-138. Retrieved 
from https://www.nature.com/articles/3901494.pdf?origin=ppub 

 

New, D. C., Wu, K., Kwok, A. W. S., & Wong, Y. H. (2007). G protein-coupled receptor-
induced akt activity in cellular proliferation and apoptosis. The FEBS Journal, 274(23), 
6025-6036. doi:10.1111/j.1742-4658.2007.06116.x 

 



54 
 
 

Nicholson, K. M., & Anderson, N. G. (2002). The protein kinase B/akt signalling pathway in 
human malignancy. Cellular Signalling, 14(5), 381-395. doi:10.1016/S0898-
6568(01)00271-6 

 

Novack, M. L., & Zevitz, M. E. (2021). Natriuretic peptide B type test. StatPearls, Retrieved 
from https://www.ncbi.nlm.nih.gov/books/NBK556136/ 

 

Ogobuiro, I., Wehrle, C. J., & Tuma, F. (2020). Anatomy, thorax, heart coronary 
arteries. StatPearls (). Treasure Island (FL): StatPearls Publishing. Retrieved 
from http://www.ncbi.nlm.nih.gov/books/NBK534790/ 

 

Ojha, N., Dhamoon, & Amit, S. (2020). Myocardial infarction . StatPearls, Retrieved 
from https://www.ncbi.nlm.nih.gov/books/NBK537076/ 

 

Oparil, S., Acelakado, M. C., Bakris, G. L., Berlowitz, D. R., Cifkova, R., Dominiczak, A. F., et 
al. (2018). Hypertension. National Reviews Disease Primers, 4(18014), 2-10. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477925/ 

 

Oral, E. O., Simha, V., Ruiz, E., Andwelt, A., Premkumar, A., Snell, P., et al. (2002). Leptin-
replacement therapy for lipodystrophy. The New England Journal of Medicine, 346, 570-
578. Retrieved from https://www.nejm.org/doi/full/10.1056/nejmoa012437 

 

Osaki, M., Oshimura, M., & Ito, H. (2004). PI3K-akt pathway: Its functions and alterations in 
human cancer. Apoptosis, 9, 667-676. Retrieved 
from https://link.springer.com/article/10.1023/B:APPT.0000045801.15585.dd 

 

Oyama, Y., Sakai, H., Arata, T., Okano, Y., Akaike, N., Sakai, K., et al. (2002). Cytotoxic 
effects of methanol, formaldehyde, and formate on dissociated rat thymocytes: A possibility 
of aspartame toxicity. Cell Biology and Toxicology, 2002(18), 43-50. Retrieved 
from https://link.springer.com/content/pdf/10.1023/A:1014419229301.pdf 

 

 



55 
 
 

Pan, J., Yuan, H., Zhang, X., Zhang, H., Xu, Q., Zhou, Y., et al. (2017). Probing the molecular 
mechanism of human soluble guanylate cyclase activation by NO in vitro and in 
vivo. Scientific Reports, 7(1), 43112. doi:10.1038/srep43112 

 

Paneni, F., Beckman, J. A., Creager, M. A., & Cosentino, F. (2013). Diabetes and vascular 
disease: Pathophysiology, clinical consequences, and medical therapy: Part I. European 
Heart Journal, 34(31), 2436-2443. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743069/ 

 

Paschou, S. A., Papadopoulou-Marketou, N., Chrousos, G. P., & Kanaka-Gantenbein, C. (2017). 
On type 1 diabetes mellitus pathogenesis. Endocrine Connections, 7(1), R38-R46. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776665/ 

 

Pasmanter, N., Iheanacho, F., & Hashmi, M. F. (2020). Biochemistry, cyclic GMP. StatPearls (). 
Treasure Island (FL): StatPearls Publishing. Retrieved 
from http://www.ncbi.nlm.nih.gov/books/NBK542234/ 

 

Perry, R. J., Samuel, V. T., Petersen, K. F., & Shulman, G. I. (2014). The role of hepatic lipids in 
hepatic insulin resistance and type 2 diabetes. Nature, 510(7503), 84-91. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489847/ 

 

Petersen, M. c., & Shulman, G. I. (2018). Mechanisms of insulin action and insulin 
resistance. Physiological Reviews, 98(4), 2133-2223. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170977/ 

 

Peterson, M. c., & Shulman, G. I. (2018). Mechanisms of insulin action and insulin 
resistance. Physiological Reviews, 98(4), 2133-2223. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170977/ 

 

Pittas, A. G., Joseph, N. A., & Greenberg, A. S. (2004). Adipocytokines and insulin 
resistance. The Journal of Clinical Endocrinology & Metabolism, 89(2), 447-452. Retrieved 
from https://academic.oup.com/jcem/article/89/2/447/2840733 

 



56 
 
 

Predmore, B. L., Julian, D., & Cardounel, A. J. (2011). Hydrogen sulfide increases nitric oxide 
production from endothelial cells by an akt-dependent mechanism. Frontiers in 
Physiology, 2, 104. doi:10.3389/fphys.2011.00104 

 

Qin, Y., Dey, A., & Daaka, Y. (2013). Chapter nineteen - protein S-nitrosylation measurement. 
In M. Conn (Ed.), Methods in enzymology (pp. 409-425) Elsevier. 

 

Rafikov, R., Fonseca, F. V., Kumar, S., Pardo, D., Darragh, C., Elms, S., et al. (2011a). eNOS 
activation and NO function: Structural motifs responsible for the posttranslational control of 
endothelial nitric oxide synthase activity. The Journal of Endocrinology, 210(3), 271-284. 
doi:10.1530/JOE-11-0083 

 

Rafikov, R., Fonseca, F. V., Kumar, S., Pardo, D., Darragh, C., Elms, S., et al. (2011b). eNOS 
activation and NO function: Structural motifs responsible for the posttranslational control of 
endothelial nitric oxide synthase activity. Journal of Endocrinology, 210(3), 271-284. 
Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326601/ 

 

Rajala, M. W., Obici, S., Scherer, P. E., & Rossetti, L. (2003). Adipose-derived resistin and gut-
derived resistin-like molecule-beta selectively impair insulin action on glucose 
production. Journal of Clinical Investigation, 111(2), 225-230. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/12531878/ 

 

Randle, P. J., Garland, P. B., Hales, C. N., & Newsholme, E. A. (1963). The glucose fatty-acid 
cycle. its role in insulin sensitivity and the metabolic disturbances of diabetes 
mellitus. Lancet, 1(7285), 785-789. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/13990765/ 

 

Roden, M., Price, T. B., Perseghin, G., Petersen, K. F., Rothman, D. L., Cline, G. W., et al. 
(1996). Mechanism of free fatty acid-induced insulin resistance in humans. The Journal of 
Clinical Investigation, 97(12), 2859-2865. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/8675698/ 

 

Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and 
regulation of akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098-1101. 
Retrieved 



57 
 
 

from https://science.sciencemag.org/content/307/5712/1098.abstract?ijkey=776975788499e
7d50835c058c479fe9df4eaa113&keytype2=tf_ipsecsha 

 

Saxton, A., Chaudhry, R., & Manna, B. (2020). Anatomy, thorax, heart right coronary 
arteries. StatPearls (). Treasure Island (FL): StatPearls Publishing. Retrieved 
from http://www.ncbi.nlm.nih.gov/books/NBK537357/ 

 

Scott, J. (2004). Pathophysiology and biochemistry of cardiovascular disease. Current Opinion 
in Genetics & Development, 14(3), 271-279. Retrieved 
from https://www.sciencedirect.com/science/article/pii/S0959437X04000589?via%3Dihub 

 

Sessa, W. C. (2014). eNOS at a glance. Journal of Cell Science, 117, 2427-2429. Retrieved 
from https://jcs.biologists.org/content/117/12/2427 

 

Shahjehan, R. D., & Bhutta, B. S. (2021). Coronary artery disease. StatPearls, Retrieved 
from https://www.ncbi.nlm.nih.gov/books/NBK564304/ 

 

Shi, X., Wang, J., Lei, Y., Cong, C., Tan, D., & Zhou, X. (2019). Research progress on the 
PI3K/AKT signaling pathway in gynecological cancer (review). Molecular Medicine 
Reports, 19(6), 4529-4535. doi:10.3892/mmr.2019.10121 

 

Sigma-Aldrich. (2013). Hydrogen sulfide test strips. Retrieved 
from https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-
Aldrich/Datasheet/1/06728dat.pdf 

 

Song, C., Liu, B., Shi, Y., Liu, N., Yan, Y., Zhang, J., et al. (2016). MicroRNA-130a alleviates 
human coronary artery endothelial cell injury and inflammatory responses by targeting 
PTEN via activating PI3K/akt/eNOS signaling pathway. Oncotarget, 7(44), 71922-71936. 
doi:10.18632/oncotarget.12431 

 

Steensberg, A., Fischer, C. P., Sacchetti, M., Keller, c., Osada, T., Schjerling, P., et al. (2003). 
Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body 
glucose disposal in healthy humans. The Journal of Physiology, 548(2), 631-638. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/12640021/ 

 



58 
 
 

Szendroedi, J., Yoshimura, T., Philip, E., Kolaiki, C., Marcus, M., Zhang, D., et al. (2014). Role 
of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in 
humans. Pnas, 111(26), 9597-9602. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/24979806/ 

 

Takahashi, T., & Harris, R. C. (2014). Role of endothelial nitric oxide synthase in diabetic 
nephropathy: Lessons from diabetic eNOS knockout mice. Journal of Diabetes 
Research, 2014 Retrieved from https://www.hindawi.com/journals/jdr/2014/590541/ 

 

Takimoto, E., & Kass, D. A. (2012). Regulation of cardiac systolic function and contractility. In 
J. A. Hill, & E. N. Olson (Eds.), Muscle (pp. 285-297). Boston/Waltham: Academic Press. 
Retrieved from http://www.sciencedirect.com/science/article/pii/B9780123815101000211 

 

Unger, R. H., Zhou, Y. T., & Orci, L. (1999). Regulation of fatty acid homeostasis in cells: 
Novel role of leptin. Pnas, 96(5), 2327-2332. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/10051641/ 

 

Vargas, E., Joy, N. V., & Sepulveda, M. A. C. (2021). Biochemistry, insulin metabolic 
effects. StatPearls, Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK525983/ 

 

Vargas, E., Podder, V., & Sepulveda, M. A. C. (2020). Physiology, glucose transporter type 
4. StatPearls, Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK537322/ 

 

Villa, A. D., Sammut, E., Nair, A., Rajani, R., Bonamini, R., & Chiribiri, A. (2016). Coronary 
artery anomalies overview: The normal and the abnormal. World Journal of 
Radiology, 8(6), 537-555. doi:10.4329/wjr.v8.i6.537 

 

Wallenius, V., Wallenius, K., Ahren, B., Rudling, M., Carlsten, H., Dickson, S. L., et al. (2002). 
Interleukin-6-deficient mice develop mature-onset obesity. Nature Medical, 8(1), 75-79. 
Retrieved from https://pubmed.ncbi.nlm.nih.gov/11786910/ 

 

Wang, T., Wang, J., Hu, X., Huang, X., & Chen, G. (2020). Current understanding of glucose 
transporter 4 expression and functional mechanisms. World Journal of Biological 
Chemistry, 11(3), 76-98. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672939/ 



59 
 
 

 

Wang, W., Wang, D., Kong, C., Li, S., Xie, L., Lin, Z., et al. (2019). eNOS S-nitrosylation 
mediated OxLDL-induced endothelial dysfunction via increasing the interaction of eNOS 
with β-catenin. Biochimica Et Biophysica Acta (BBA) - Molecular Basis of 
Disease, 1865(7), 1793-1801. Retrieved 
from https://www.sciencedirect.com/science/article/pii/S0925443918300668 

 

Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Partly, R. E., et al. (2001). 
Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin 
resistance and hyperinsulinemia. Journal of Clinical Endocrinology Metabolism, 86(5), 
1930-1935. Retrieved from https://pubmed.ncbi.nlm.nih.gov/11344187/ 

 

Wilcox, G. (2005). Insulin and insulin resistance. The Clinical Biochemist Reviews, 26(2), 19-39. 
Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1204764/ 

 

Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., et al. (2001). The fat-
derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy 
and obesity. Nature Medicine, 7(8), 941-946. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/11479627/ 

 

Yu, S. B., & Pekkurnaz, G. (2018). Mechanisms orchestrating mitochondrial dynamics for 
energy homeostasis. Journal of Molecular Biology, 430(21), 3922-3941. Retrieved 
from https://pubmed.ncbi.nlm.nih.gov/30089235/ 

 

Yu, S., Wong, S. L., Lau, C. W., Huang, Y., & Yu, C. (1959). Biochemical and biophysical 
research communications. Biochemical and Biophysical Research Communications, 407(1), 
44-48. Retrieved 
from http://www.sciencedirect.com/science/article/pii/S0006291X11003019 

 

Yu, X., Fu, Y., Zhang, D., Yin, K., & Tang, C. (2013). Foam cells in atherosclerosis. Clinica 
Chimica Acta, 424, 245-252. Retrieved 
from https://www.sciencedirect.com/science/article/pii/S0009898113002477?via%3Dihub 

 

Zhang, C., Zhou, B., Sheng, J., Chen, Y., Cao, Y., & Chen, C. (2020). Molecular mechanisms of 
hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment 



60 
 
 

strategies. Pharmacological Research, 159 Retrieved 
from https://www.sciencedirect.com/science/article/pii/S1043661820312925 

 

Zhang, X., Shai, H., & Zheng, X. (2019). Amino acids at the intersection of nutrition and insulin 
sensitivity 
. Drug Discovery Today, 24(4), 1038-1043. Retrieved 
from https://www.sciencedirect.com/science/article/pii/S1359644618303799?via%3Dihub 

 

Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). 
Positional cloning of the mouse obese gene and its human homologue. Nature, 372(6505), 
425-432. Retrieved from https://pubmed.ncbi.nlm.nih.gov/7984236/ 

 

Zhang, Y., Proence, R., Maffel, M., Baron, M., Leopold, L., & Friedman, J. M. (1994). 
Positional cloning of the mouse obese  gene and its human homologue. Nature, 372, 425-
431. Retrieved from https://www.nature.com/articles/372425a0.pdf 

 

Zhao, Y., Vanhoutte, P. M., & Leung, S. W. S. (2015). Vascular nitric oxide: Beyond 
eNOS. Journal of Pharmacological Sciences, 129(2), 83-94. doi:10.1016/j.jphs.2015.09.002 

 

 

 


	Allicin stimulates the phosphorylation of eNOSSer1177 via a PI3K-dependent mechanism in type-I diabetic donor coronary artery endothelial cells
	Recommended Citation

	tmp.1626104084.pdf.y0Nbm

