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Abstract
Combining machine learning (ML) and computational logic (CL) is hard, mostly because of the inherently-
different ways they use to represent knowledge. In fact, while ML relies on fixed-size numeric repre-
sentations leveraging on vectors, matrices, or tensors of real numbers, CL relies on logic terms and
clauses—which are unlimited in size and structure.

Graph neural networks (GNN) are a novelty in the ML world introduced for dealing with graph-
structured data in a sub-symbolic way. In other words, GNN pave the way towards the application of
ML to logic clauses and knowledge bases. However, there are several ways to encode logic knowledge
into graphs: which is the best one heavily depends on the specific task at hand.

Accordingly, in this paper, we (i) elicit a number of problems from the field of CL that may benefit
from many graph-related problems where GNN has been proved effective; (ii) exemplify the application
of GNN to logic theories via an end-to-end toy example, to demonstrate the many intricacies hidden
behind the technique; (iii) discuss the possible future directions of the application of GNN to CL in
general, pointing out opportunities and open issues.

Keywords
graph neural networks, machine learning, embedding, computational logic,

1. Introduction

Artificial Intelligence (AI) has gained significant importance in our ever evolving and technology-
focused world. Rising popularity for this field can be attributed to the overwhelming success
of sub-symbolic techniques like deep learning. However, along with AI increase in popularity,
there exists public concern related to the relevant role that intelligent systems will bear in
human society, in particular for the lack of understandability of AI systems.

Whenever intelligent systems play critical roles within human society, they should be made
clearly understandable from a human perspective. This need has been taken under deep consid-
eration by the XAI (eXplainable Artificial Intelligence [1]) research community. XAI approaches
would seemingly require the integration between successful sub-symbolic techniques and sym-
bolic frameworks in order to reach their main goals [2]. Among the symbolic approaches under
scrutiny nowadays, logic-based techniques possibly represent the most straightforward path
towards human understanding. The reason behind that is straightforward: symbols are far
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closer to the way our conscious mind works than the vectors, tensors, and algebraic operations
sub-symbolic AI is built upon. Along this line, it is essential for the future of AI to harmonise and
integrate symbolic – and, in particular, logic-based – and sub-symbolic AI—and, in particular,
neural networks.

The idea that symbolic and sub-symbolic AI are complementary under a number of dimensions
is well understood [3, 4]. Few significant works have been proposed integrating neural networks
with fuzzy logic [5, 6]. However, a general purpose solution to the problem is still lacking.
Should we speculate on what is bringing inertia into this field of research, we would argue that
the two approaches to AI are fundamentally dual w.r.t. the way they represent information—in
short, formulæ vs. tensors. Indeed, a basic requirement of any integrated system involving both
symbolic and sub-symbolic processing is the capability to either convert symbols into tensors,
or vice versa—possibly both. This problem is hard to formalise in the general case.

In this work we focus on the simpler problem of enabling the sub-symbolic processing of
logic knowledge-bases. In particular, we focus on the exploitation of neural networks (NN)
as a means to complement computational logic (CL) when it comes to process symbolic data
expressed in logic form. NN have indeed proven their strengths in many scenarios, ranging
from computer vision to natural language processing, and, more recently, on knowledge graphs
and graph-like data.

Accordingly, in this work we study the possible use of graphs as a bridge between CL –
among the most prominent branches in symbolic AI – and neural networks—among the most
flexible and successful approaches in ML. We consider graphs as the ideal bridge because of
their versatility in representing virtually any sort of data structures, there including recursive
ones—an aspect that is very common in logics as well as quite critical in ML.

Accordingly, we investigate the potential and the intricacies of blending CL and graph neural
networks (GNN) [7]—a novel category of NN which is particularly well-suited to handle graph-
like data. In particular, the aim of the work is to understand how and to what extent CL systems
can benefit from GNN and graph-oriented ML in general. Along this line, the contributions
brought about by this work are the following: (i) we categorise a number of problems from
the field of CL which may take advantage from GNN, given the existence of a clear way to
express the problem in terms of graphs; (ii) we discuss a number of graph-based tasks which
can be suitably tackled via GNN, and discuss how the aforementioned problems can be mapped
into such existing tasks; (iii) we present an end-to-end scenario where GNN are applied to a
simple logic knowledge base to detect missing facts link prediction: the toy example is used
to demonstrate the many intricacies hidden behind the application of GNN over logic data;
(iv) finally, we provide a research roadmap that researchers interested in this field may follow
for future works, eliciting opportunities arising from the integration between CL and GNN.

2. State of the Art

In this section we briefly introduce graph neural networks, along with the tasks these aim
at solving and their working principle (Section 2.1). Then we give an overall background on
computational logic, focussing in particular on the many ways to translate a knowledge base
into a graph—in order to make it processable via GNN (Section 2.2).



2.1. Graph Neural Networks

In recent years, machine (ML) and deep learning (DL) techniques have disrupted the way complex
data-driven tasks – ranging from image classification to speech recognition, natural language
processing and many more – are tackled. However, most ML approaches can handle data having
a fixed structure and size—most notably, vectors, matrices, or tensors of real numbers. This may
be troublesome in some contexts, given the ever-increasing popularity of applications involving
data which cannot be suitably represented by fixed-size, rigid structures. Among the most
relevant applications in this category, we can find a number of graph-processing scenarios. To
tackle this issue, research effort has focused on extending ML approaches to graph-structured
data. Notably, graph neural networks (GNN) are a novel approach to let ordinary NN-based
processing be applied to graphs.

GNN are mathematical models operating upon directed graphs, whose vertices (resp., arcs)
are labelled with vectors (or matrices, or tensors) of real numbers, each one carrying further
numeric information about the corresponding vertex (resp., arc). GNN output depends on the
learning task to be performed, which commonly ranging in any of three wide classes of tasks:
(i) the classification of similar graphs having different topology – i.e. graph classification – [8],
(ii) the classification of vertices of unknown graphs – i.e. nodes classification – [9], or (iii) the
identification of missing but statistically probable arcs—i.e. link prediction [10].

Graphs handled by GNN usually carry information in the form of vertices and arcs vec-
tors/matrices/tensors. Consider for instance the graph representation of a chemical molecule:
it is necessary to represent the sort of atomic element associated with each vertex. The same
holds for the details of the chemical bonds among two any atoms of a molecule—which must be
associated with the graph’s arcs.

Accordingly, we here consider vertices of a graph to be characterised by specific features
called vertex attributes, represented as vectors of the form x𝑣 ∈ R𝑑, where 𝑣 enumerates the
vertices of a graph, and 𝑑 is the dimension of all vectors of all vertices. We also assume the
existence of total ordering among the vertices in 𝑉 , so we may refer to a vertex by its index 𝑖.
We denote by X ∈ R𝑛×𝑑 the matrix of all vertex attributes, attained concatenating each vector
x𝑣 along a single dimension. There, 𝑛 is the number of vertices in 𝐺. We also denote by 𝑁(𝑣)
the neighbourhood of a vertex 𝑣, here considered as the set of all vertices 𝑢 directly linked to
vertex 𝑣 by an outgoing arc, i.e. 𝑁(𝑣) = {𝑢 ∈ 𝑉 | (𝑣, 𝑢) ∈ 𝐸}.

Concerning arcs, we denote by 𝑎𝑣,𝑤 ≡ (𝑣, 𝑤) ∈ A the arc connecting vertex 𝑣 to vertex 𝑤.
Similarly to vertices, we consider arcs in the graph as characterised by specific arc attributes,
represented by vectors of the form a𝑣,𝑤 ∈ R𝑐, where 𝑐 is the cardinality of the all vectors of
all arcs. Finally, we denote by A ∈ R𝑚×𝑐 matrix containing all arc attributes. There, 𝑚 is the
number of arcs in 𝐺.

Figure 1 depicts the general architecture of a GNN. It consists of a cascade of three functional
blocks (each one composed by one or more layers of neurons) serving specific purposes:

Convolutor. The first block of the GNN is in charge of accepting the graph 𝐺 as input
and producing a new convoluted graph 𝐺′ as output, having the same topology of 𝐺, where
the vector associated with each vertex 𝑣 has been replaced by another vector describing the
relevance of each vertex w.r.t. the whole graph 𝐺. Convolutor block relies on convolution
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Figure 1: Graph Neural Networks are composed as a cascade of simpler blocks.

operation, extensively exploited in DL to express relevance of local data w.r.t. to global data.
The application of convolution operation to non-Euclidean data – like graphs – is not straight-

forward. An equivalent notion of convolution over graphs has been proposed to compute the
relevance of each vertex w.r.t. to its neighbours. Graph convolution is defined over a single
vertex 𝑣 and its neighbourhood 𝑁(𝑣) and relies on three successive phases:

propagation — the information x𝑣′ belonging to each vertex 𝑣′ ∈ 𝑁(𝑣) is weighted by the
information a𝑣,𝑣′ belonging to the arc among 𝑣 and 𝑣′ and then propagated to vertex 𝑣;

aggregation — the information propagated from each vertex 𝑣′ ∈ 𝑁(𝑣) to 𝑣 is aggregated
using a parametric aggregation function;

transformation — the aggregated information corresponding to vertex 𝑣 is transformed into
a new embedding vector and assigned back to vertex 𝑣, as its new state x′

𝑣 .

The single convolution operation is applied in parallel to each vertex in 𝐺.
Inside the convolutor block, the graph convolution procedure is repeated 𝑇 times. The overall

effect of step 𝑡 is the production of a new graph 𝐺𝑡 having the same vertices and arcs of 𝐺,
where the 𝑖𝑡ℎ vertex at step 𝑡+ 1 carries a more convoluted information than the same vertex
at step 𝑡. More formally, the relation tying each layer of the convolutor block with its successor
is captured by the following recursive equation:

x𝑡+1
𝑣 = Θ𝑡

(︂
x𝑡
𝑣, ⊎

𝑤∈𝑁(𝑣)
Ξ𝑡

(︀
x𝑡
𝑣,x

𝑡
𝑤,a𝑣,𝑤

)︀)︂
(1)

where functionsΞ𝑡,⊎, andΘ𝑡 represent the propagation, aggregation, and transformation phases
respectively.

Function Ξ𝑡, in particular, propagates the information belonging to all neighbours 𝑤 ∈ 𝑁(𝑣)
of vertex 𝑣 through the arc that connects the two. This function must be differentiable and
parametric – to be amenable of optimisation through the back-propagation algorithm [11] –,
other than layer-specific and shared among all vertices of the graph.

Function ⊎ aims at aggregating the information received by each vertex 𝑣 from its neighbour-
hood. For this reason, it must be variadic and permutation invariant, other than being shared
among all layers and all vertices of the graph.

Finally, Θ𝑡 is a differentiable, parametric, and layer-specific function, aimed at aggregating
neighbourhood information to compute the vertex attributes for vertex 𝑣 at step 𝑡.

Aggregator. The convoluted graph 𝐺′ is passed to an aggregator block that produces a
fixed-sized representation of the graph 𝐺′—called embedding of 𝐺;



Predictor. The embedding produced by the aggregator block, being fixed in size, can be used
as the input of an ordinary NN – namely, the predictor block – to solve ordinary ML tasks (e.g.,
classification or regression) on the original graph 𝐺.

2.2. Logic Theories as Graphs

Computational Logics (CL) essentially deals with logics as a means for computing [12]. Provided
that knowledge can be expressed in terms of logic theories (a.k.a. knowledge bases, KB), made
up of several logic clauses, CL endows software agents with automated reasoning capabilities,
via many sorts of inference rules.

Knowledge bases can be encoded into graphs in several ways and to serve disparate purposes.
Generally speaking, KB can be encoded into graphs by aggregating the graphs attained by
encoding all clause therein contained. In all such cases, encoding schemas can act at either the
semantic or at the syntactic level.

Encoding schemas operating at the syntactic level capture static relationships inferable from
the mere syntax of clauses and KB. Abstract syntax trees (AST) are the simplest example of
graphs which can be attained from KB. They consist of direct acyclic graphs where vertices are
of as many sorts as the possible syntactical categories of which may occur in a KB – namely,
theories, clauses, predicates, or terms –, whereas arcs simply describe container-contained
relations among vertices. Dependency graphs are another kind of graph that may be attained
from a KB. They consist of directed graphs where each vertex represents a predicate, and
each arc represents a logic dependency among two predicates—meaning that the predicate
corresponding to the destination vertex must be proven true before the predicate corresponding
to the source vertex, in a resolution process.

Encoding schemas operating at the semantic level capture high level relationships that can
be inferred from the actual meaning of a logic theory. Entity-Relationship (ER) graphs are the
simplest kind of graph in this category. They aim at expressing via graphs the same information
a ground KB expresses via formulæ. They consist of directed graphs where vertices may either
represent entities (i.e. terms) or relationships (i.e. predicates) and arcs represent the participation
of an entity into a relationship. Triplet graphs are another simple way of representing ground
theories where all terms are constants and all predicates are either unary or binary. When this
is the case, each constant is considered an entity, binary predicates are considered as relations
among two entities, and unary predicates are considered as properties an entity may or may
not have. Thus, a graph can be attained by defining a vertex for each different constant in a KB,
and arc for each couple of constants involved in at least a binary predicate.

3. Processing Logic Knowledge via GNN

In this section we present a research roadmap eliciting the potential bridges among CL and GNN.
We first identify four relevant tasks from CL where, we believe, sub-symbolic processing may
have a role to play. We then discuss how all such tasks can be mapped into as many well-known
graph manipulation tasks, for which GNN have already been exploited. Finally, we present a
general framework for sub-symbolically processing logic information via GNN, and we elicit
the many constraints a designer should satisfy when doing so.
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Figure 2: Proposed roadmap along with its theoretical framework. Logic level and graph level can be
mapped directly, in order for logical problems to benefit from sub-symbolical techniques – e.g. GNN –
available at the graph level.

3.1. Logical Tasks

Manipulation of logic knowledge enables the resolution of complex queries via logical inference.
There exist, however, relevant tasks which are hard to formalise or solve into the logic realm,
because of either their numerical nature or algorithmic infeasibility. Here, in particular, we iden-
tify four relevant operations on knowledge bases for which, we argue, it is worth investigating
sub-symbolic solutions.

The tasks considered – shown in the upper box of Figure 2 – are (i) knowledge filling,
(ii) knowledge inclusion, (iii) program equivalence, and (iv) resolution speed-up.

Knowledge Filling. Entities and relations available in a logic theory may sometime lack
some instances. For example, this may happen because the human operator handcrafting the
theory was imprecise or when an agent’s knowledge is incomplete. When this is the case, we
consider the knowledge base as fragmented.

To deal with such fragmented theories, it may be useful to identify missing relations between
existing entities. This task may be tackled via statistical analysis of the theory under examination,
which may lead to the identification of latent relations among entities.

A knowledge filling problem would be hard to handle symbolically, as logic reasoners com-
monly struggle in processing knowledge they do not have. While most solvers operate under a
closed world assumption – letting them considers as false everything they do not explicitly know
to be true –, even the ones operating under an open world assumption do not commonly include
mechanisms to generate new knowledge out of thin air. In all such cases, the coherence and
completeness of the knowledge base is usually considered as an a-priori requirement for logic
computations to work properly. Conversely, in the sub-symbolic realm, semantic similarities
among the entities and relations of a logic theory may be better captured, which may help
reconstructing missing facts.

Consider for instance the case of a simple theory representing kinship relationships. The



lack of a single relation – say that “John and Mary are siblings” – may significantly hinder a
solver’s ability to deduce kinships among entities of a family—e.g. “the sons of John and Mary
are cousins”. The solution for this task is not straightforward, thus attracting our attention.

Knowledge Inclusion. Knowledge inclusion represents the task checking whether a given
theory (usually smaller) is complementary w.r.t. another given theory (usually larger) or not. The
same clauses could occur with slightly-different shapes—e.g. using different predicates/functor
names or different positions arguments in the same predicates.

This task requires the ability to express equivalence or similarity among groups of clauses,
which is not straightforward [13, 14]. Computing exact solutions to this problem may soon
become infeasible as the dimensions of the involved theories increases. Conversely, in the
sub-symbolic realm, the same problem may be modelled as a pattern-matching problem. This
may pave the way towards the computation of approximate solutions to the knowledge inclusion
problem in reasonable time.

As an example, consider multiple agents sharing partially-similar information. In this case, it
would be desirable to identify agents common knowledge and ease their interaction. Suppose
that agents information is expressed via two theories 𝜏1 and 𝜏2, both representing family trees.
𝜏1 expresses 1𝑠𝑡 degree relatives only, while 𝜏2 includes also 2𝑛𝑑 degree relatives. 𝜏1 may
consider more/less/different family members w.r.t. 𝜏2, and kinships may also be defined in
different ways between the two theories. However, 𝜏1 is – logically speaking – a subset of 𝜏2,
and we need to detect this property.

Program Equivalence. Program equivalence represents the task of computing a simpler
and equivalent theory 𝜏 ′ starting from a theory 𝜏 . This may imply removing redundancies
and simplifying clauses. As for the knowledge inclusion task, program equivalence requires a
procedure to compare sets of clauses, other than the capability of generating reduced equivalent
variants of clauses. It is our opinion that both these procedures may be better expressed into
sub-symbolical realm.

Considering again agents storing kinships information, it may be desirable to compress a
single agent information to produce a new theory for a simpler agent. This new theory should
ideally have fewer rules, while spanning the same family tree of the original theory. Such a
requirement is difficult to satisfy, and would probably require notions of semantically-equivalent
sets of kinships—e.g., the set of relations containing only parent spans the same family tree of
the set of relations {𝑚𝑜𝑡ℎ𝑒𝑟, 𝑓𝑎𝑡ℎ𝑒𝑟}.

Query Resolution Speed-Up. Logic theories are commonly exploited by logic solvers to
draw inferences, via some resolution procedure. The execution time of any query resolution
vastly depends on the complexity of the algorithm(s) expressed by the logic theory. To this
regard, a number of efficiency tweaks may affect the execution time in the average case. For
instance, the solutions to most frequent queries may be cached, or smart strategies may be
employed to affect the way the solver explores a solution space. However, caching costs space,
wheras any rigid resolution strategy may result efficient on some sorts of queries, while still
being slow on some others.



In all those cases, sub-symbolic sub-systems capable to learn from experience can bring about
huge benefits. There, a sub-symbolic helper may be trained to predict the outcomes of most
frequent queries, thus speeding up queries with constant space requirements. Furthermore,
an online learning procedure may be injected into the solver, making it adapt the resolution
strategy to the query at hand, on the basis of the experience accumulated via previous queries.

This task may be particularly relevant when considering real-time agents working with
complex knowledge bases. Focusing again on kinships, when the number of family members
is huge and relations between family members are complex – e.g., fourth grade cousins –,
query resolution may suffer from delays hindering agents ability to make real-time decision and
perform real-time tasks. Therefore, it may be interesting to use techniques that aim at speeding
up the resolution of queries over such huge theories. Sub-symbolical approaches may ease this
task, by compressing theory knowledge to simple and easy-to-handle embeddings.

3.2. Graphs as Bridges

Here we discuss the role of GNN in addressing the relevant logic tasks from Section 3.1. In
particular, we show how all such tasks can be mapped onto known graph-related problems
which can be addressed via GNN. In other words, we comment the upper part of Figure 2.

Knowledge filling→ Link prediction. The knowledge filling task usually requires seman-
tic knowledge to be taken into consideration. Therefore, to map the knowledge filling task to
an equivalent problem over graphs we should consider preserving the semantic information of
the theory. We can then assume to map entities of a theory to vertices of a graph. Rules and
relations can then be represented as vectorised arcs existing between the graph vertices. Each
position of an arc vector represents a specific relation, preserving the original semantic of the
theory. In this scenario, the task of predicting possible missing relations or rules is mapped to
the problem of identifying which arcs are missing from the graph.

Knowledge Inclusion→ Graph matching. In the same way as for the knowledge filling
task, knowledge inclusion requires semantic knowledge of the theory to be taken into account.
Therefore, we require the mapping between logic and graphs to preserve the theory semantic.
Moreover, knowledge inclusion requires a comparison between two or more theories: entities
and relations from a theory should be compared to their counterparts of the other theory and
matched upon need.

As done for knowledge filling, let us assume entities to be represented as vertices, and rules
or relations as vectorised arcs. The mapping produces as many graphs as the theories available
for the inclusion task. Therefore, from a graph perspective, knowledge inclusion is mapped
to a graph matching problem. Indeed, the two or more graphs corresponding to their theory
counterparts should be matched for some portion of them.

The matching between graphs is still an open research problem, as it is computationally
very expensive, but is easier to tackle than rules and entities matching. This holds in particular
whenever entities do not match exactly, or, rules share analogous semantics but are defined in
different forms—e.g., parent and mother.



Program equivalence→ Graph compression. Given a specific theory, program equiva-
lence aims at obtaining a simpler – smaller – theory that preserve the same expressiveness.
Depending on the considered approach the mapping between logic and graph level may bear
different requirements. In its simplest form program equivalence requires to simply remove
unnecessary relations and rules of a theory to compress it. This approach does not require
explicitly the semantic level to be considered while processing the theory. More interestingly,
program equivalence may also require to map set of rules and relations to a single (or a smaller
set of) rules(s). This increased complexity introduces the need for semantic to be taken into
account and to be preserved in the mapping from logic to graphs. If we consider the same
mapping of previous examples, program equivalence can be linked to the graph compression
problem. Indeed, obtaining a smaller set of equivalent rules and entities can be done removing
or merging together arcs and vertices of the graph theory counterpart.

Query resolution speed-up→ Graph classification. Query resolution speed-up aims at
obtaining faster execution of given queries over a logic theory. It may be helpful for query
resolution to maintain the semantic information embedded in the theory. Therefore, the
mapping between logic and graphs may benefit from the preservation of semantic information,
and generally speaking vastly depends on the requirements of the desired speed-up. Differently
from previous tasks, for query resolution speed-up we consider obtaining graphs for queries to
be solved—rather than a single graph for the whole theory. The graph representing a query
is matched with the query resolution, considered as the graph label. Following this mapping,
the query resolution speed-up is mapped to a graph classification problem, where the label
of a graph should be predicted. Any approach can then be leveraged to classify graphs—i.e.
obtain query solutions. This approach may not be significant for simple queries applied to small
knowledge basis. However, it may result in great speed-up when complex knowledge bases
and queries are considered. Indeed, GNN scalability over large graphs is mostly not an issue,
resulting in quick graph classification.

3.3. The Framework Perspective

Here we summarise the general framework to process logic theories sub-symbolically, via GNN.
In a nutshell, the whole framework consists in transforming the problem into the graph domain
and let a GNN to do the job, then possibly transform back the problem into the logic domain.
The same framework is depicted in the lower part of Figure 2.

Let us assume the overall goal of the whole processing, at a logic level, is to perform a task
𝑇—say, knowledge filling or inclusion. Let us also assume that an adequate mapping exists for
𝑇 towards the graph level, such that 𝑇 ′ is graph-related task corresponding to 𝑇 , at the graph
level. Under such assumptions, the framework involves the following steps:

1. a logic theory must be encoded into a graph using a suitable graph encoding schema;

2. a GNN must be designed and trained to perform 𝑇 ′, choosing

• the functions Ξ𝑡, ⊎, and Θ𝑡 for the GNN convolutor block,

• the structures of the GNN aggregator and predictor blocks;



3. optionally, the output of the GNN shall be decoded back into a logic theory using a
suitable graph decoding schema.

The emphasised words above represent choice points for the designer. While the possibilities
are manifold, it is worth pointing out that each choice affects the others. For instance, while the
encoding schema should be chosen by taking the nature of the logic clauses into account, the
architecture of the predictor block, as well the choice of functions ⊎ and Θ𝑡, should be tailored
on the task 𝑇 ′—and in particular on its nature under the learning perspective (e.g. whether 𝑇 ′

is classification, regression, or clustering task).
Whether it is needed to perform step 3 (decoding) or not, is another source of constraints.

There may be tasks – such query resolution speed-up, corresponding to graph classification –
for which the outcome of 𝑇 ′ is a Boolean datum, which needs not a decoding step. Conversely,
other tasks may require the outcome of 𝑇 ′ to be transformed back into the logic domain—cf.
knowledge inclusion via link prediction. When this is the case, it is of paramount importance
to choose an encoding schema which is invertible. This implies the encoding and decoding
schemas are deeply entangled in the general case.

Summarising, symbolic processing may greatly benefit from the exploitation of sub-symbolic,
GNN-based approaches. However, when this is the case, the overall data-processing framework
must be carefully designed, as it involved may inter-dependent design choices.

4. Case Study

In this section we describe a case study that puts the theoretical framework introduced in
Section 3 to test. We consider the knowledge filling task as the subject of this case study, as we
believe it to be a nice introductory example to the world of logic manipulation using GNN. We
proceed to set up our study case over a controlled environment, considering the knowledge basis
representing kinship relations—i.e. family tree. We “mutilate” the knowledge base – meaning
that we throw away a random part of the knowledge base – and use the remaining part to
reconstruct the information removed by using the proposed framework.

4.1. Logic to Graph

As already mentioned, measuring the effectiveness of our framework requires to “mutilate” an
otherwise exhaustive knowledge base. Theory mutilation can be then attained both at a logical
level and at the graph level. In our experiments we mutilate the theory at graph level, to avoid
multiple translations between the two levels. We now introduce the mapping function between
logic level and graph level used in our experiment.

Translation toGraph Let 𝒞 be the set of all ground Horn clauses of the form ℎ← 𝑏1∧. . .∧𝑏𝑚
s.t. all 𝑏𝑖 as well as ℎ are predicates of arity non-greater than 2, and all arguments of all
predicates are constant inℋ. We consider 𝜏 ∈ 𝒞⋆ to be a ground theory containing 𝑁 clauses
and representing a family tree. We then define the properties of the theory 𝜏 to be the set of
all the unary predicates mentioned in all clauses of 𝜏 . The set of properties is considered to be
ordered through an index 𝑘, allowing to obtain a property calling it with the corresponding



sibling(X, Y) :- parent(Z, X), parent(Z, Y), X \= Y. 
united(X, Y) :- parent(X, Z), parent(Y, Z), X \= Y. 
grandparent(C,D) :- parent(C,E), parent(E,D). 
aunt(X, Y) :- female(X), sibling(X, Z), parent(Z, Y). 
uncle(X, Y) :- male(X), sibling(X, Z), parent(Z, Y). 
 
male(matt). 
male(theo). 
male(joseph). 
 
female(susy). 
female(lisa). 
female(jane). 
 
parent(matt, joseph). 
parent(susy, joseph). 
parent(jane, matt). 
 
sibling(susy, theo). 
sibling(theo, susy). 
sibling(matt, lisa). 
sibling(lisa, matt).
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Figure 3: Example of the mapping function used in this case study. vertex attributes (x𝑣) represent
unary predicates – i.e. properties – while arc attributes (a𝑣,𝑤) represent binary predicates—i.e. relations.

index. We then define the relations of the theory 𝜏 to be the set of all the binary predicates
mentioned in all clauses of 𝜏 . The set of relations is also considered to be ordered through an
index 𝑙, allowing to obtain a relation calling it with the corresponding index.

To map the theory 𝜏 to its graph counterpart 𝐺𝑓𝑖𝑙𝑙, we first consider all the entities mentioned
in all clauses of 𝜏 and associate a vertex to each entity. Therefore, obtaining a graph 𝐺𝑓𝑖𝑙𝑙 with
𝑛 vertices. Vertex features are then built as vectors x𝑣 ∈ R𝑑, where 𝑑 represents the size of the
set of properties of 𝜏 . Vector x𝑣 has value at position 𝑘 ∈ {1, . . . , 𝑑} equal to 1 if property 𝑘
holds true for entity 𝑣 and 0 otherwise. The obtained vertex feature vector is thus a one-hot
encoded vector representing the properties that characterise the entity. Similarly to vertices,
arc features are built as vectors a𝑣,𝑤 ∈ R𝑐, where 𝑐 represents the size of the set of relations of
𝜏 . Vector a𝑣,𝑤 has value at position 𝑙 ∈ {1, . . . , 𝑐} equal to 1 if relation 𝑙 between entities 𝑣 and
𝑤 holds true and 0 otherwise. The obtained arc feature vector is thus a one-hot encoded vector
representing the relations satisfied for couples of vertices. Figure 3 exemplifies the mapping
described above for a small family tree. In our experiment, predicates are the same of the figure,
along with some added unary predicates – e.g. has_siblings, is_parent, is_grandparent, etc. –,
which are used to give more information concerning single entities.

Once 𝐺fill is obtained, we proceed to mutilate the theory. Mutilation is attained removing
some arcs – i.e. relations – between vertices of the graph. We call the graph obtained through
this procedure 𝐺 and the set of removed arcs 𝐴𝑡𝑒𝑠𝑡.

The proposed mapping allows constructing uniquely a graph from a grounded knowledge
bases and is evidently bijective, as it is possible to reconstruct entities, properties and relations
from x𝑣 and a𝑣,𝑤. However, it still presents some issues, as it requires groundisation of the
knowledge bases and it can handle at most binary facts. The former can be considered a mild
requirement as it is commonly considered for manipulation of symbolic knowledge. The latter
instead has to be attributed to the nature of state-of-the-art GNN. Predicates of arity greater
than 2 would require arcs linking more than two vertices at the time. Graphs having such
links are called hypergraphs. These peculiar graphs are still an exception in the world of
graph manipulation. There have been proposed very few solutions to handle these graphs [15],
presenting strong drawbacks like the absence of arc features.



4.2. Graph Manipulation

Given the mutilated theory represented by the graph 𝐺, the task is to train a GNN model capable
of mining the missing arcs. The GNN model is required to identify not only the existence of a
missing arc between two vertices, but also to classify the arc into its class—i.e. which relation(s)
the arc is representing. Due to graphs nature, link prediction can be tackled either considering 𝐺
as a unique entity – i.e. plain approach – or as a pool of subgraphs—i.e. subsampling approach.

Plain approach. We consider the graph 𝐺 as a whole and predict one solution for each
couple of vertices. Indeed, each vertex can be involved in a relation with any other vertex of
the graph. Here, we consider the set of arcs belonging to 𝐺 as positive examples, called 𝐴. We
then sample a set of negative examples �̄� as all the arcs that are not in 𝐴, nor in 𝐴𝑡𝑒𝑠𝑡. Given in
input the graph 𝐺, a GNN model is then trained over 𝐴 and �̄� to output two predictions:

• A binary matrix 𝑌𝑒 ∈ R𝑛×𝑛. Where 𝑛 is the number of entities in the graph. The value
for position {𝑣, 𝑤} is 1 if the GNN predicts that an arc should exist between vertex 𝑣 and
vertex 𝑤 and 0 otherwise.

• A binary tensor 𝑌𝑡 ∈ R𝑛×𝑛×𝑐. Where 𝑛 is the number of entities in the graph and 𝑐 is
the number of available facts (kinship relations). The 𝑐-dimensional vector at position
{𝑣, 𝑤} corresponds to the one-hot encode of the arc type that the GNN predicts between
vertices 𝑣 and 𝑤.

The GNN model is composed of two graph convolutional layers that extract relevant information
from 𝐺 and produce a graph embedding 𝐺′. Given the need to predict a solution for each couple
of vertices, we define as aggregation function the concatenation of vertices in the graph. The
function is iterated over each couple of vertices 𝑣, 𝑤 producing a vector x̄𝑣,𝑤 = x′

𝑣 ‖ x′
𝑤 that

represents the embedding for a possible arc between vertices 𝑣 and 𝑤. Two parallel fully
connected layers are then used as predictors to predict the existence – i.e. 𝑌𝑒 – of arc 𝑣, 𝑤 and
its type – i.e. 𝑌𝑡 – from x̄𝑣,𝑤 . During training, cross-entropy loss ℒ𝑒 is computed using 𝑌𝑒, while
binary cross-entropy over class types is ℒ𝑡 is computed using 𝑌𝑡 [16]. The overall loss is then
obtained through weighted summation of the two and used to optimize the GNN parameters.

ℒ = ℒ𝑒 + 𝛾ℒ𝑡 (2)

where 𝛾 is an hyperparameter balancing the importance of predicting arc existence or its type.

Subsampling approach. Similarly to [17], it is possible to consider the graph 𝐺 as a pool of
subgraphs each of which is used to predict if one arc exists. Here, one subgraph 𝐺𝑠𝑢𝑏 is obtained
for each arc in 𝐴. For each arc 𝑎𝑣,𝑤, the subgraph is obtained by keeping vertices 𝑣 and 𝑤, as
well as their neighbours 𝑁(𝑣) and 𝑁(𝑤). The same sampling procedure is repeated for a set of
negative examples �̄�. Therefore, following this approach we obtain a set 𝒢 = {𝐺1

𝑠𝑢𝑏, . . . , 𝐺
𝜈
𝑠𝑢𝑏}

of 𝜈 graphs, each focused on an arc 𝑎𝑣,𝑤.
A GNN model is then trained over 𝐴 and �̄�, receiving in input a graph 𝐺𝑠𝑢𝑏 at the time, to

output two predictions:



• A binary value 𝑌𝑒 ∈ {0, 1}. The value is 1 if the GNN predicts that the arc 𝑎𝑣,𝑤 should
exist and 0 otherwise.

• A binary vector 𝑌𝑡 ∈ ℛ𝑑. Where 𝑐 is the number of available facts. The vector corresponds
to the one-hot encode of the arc type that the GNN predicts for arc 𝑎𝑣,𝑤.

The GNN model is similar to the one of plain approach. It is composed of two graph convolutional
layers that extract relevant information from 𝐺𝑠𝑢𝑏 and produce a graph embedding 𝐺′

𝑠𝑢𝑏.
Given the need to predict a single solution for each graph, we define as aggregation function
the global averaging pooling of vertices in the graph. Global average pooling produces in
output a 𝑘-dimensional vector x̄, averaging vertex features of all vertices in the graph 𝐺′

𝑠𝑢𝑏,
x̄ = 1

𝑁

∑︀𝑁
𝑣=1 x

′
𝑣 . Two parallel fully connected layers are then used as predictors to predict the

existence – i.e. 𝑌𝑒 – of arc 𝑣, 𝑤 and its type – i.e. 𝑌𝑡 – from x̄. GNN of both approaches are built
using PyTorch Geometric [18] and Deep Graph Library [19]. Finally, loss computation remains
the same of plain approach.

Considerations. It must be stressed that link prediction over graph is usually considered
to be a binary prediction problem only. Indeed, state-of-the-art approaches focus only on the
output 𝑌𝑒. This is due to the nature of common link prediction applications – e.g. chemistry,
social networking – where arcs between vertices belong mainly to one category only. As a
consequence, the link prediction problem we face is more complex, as it represents the mixture
of binary classification and multi-label classification—as there may exist multiple relations
linking two entities. Tackling multi-label classification is not straightforward due to class
overlapping and scalability issues [20].

It would be desirable to have relations semantically distant from each other to aid GNN in
the multi-label classification task. Indeed, classes characterised by similar semantics are less
separable and are probably subject to higher misclassification. Moreover, the scalability issue of
multi-label classification hinders the performance of GNN when considering a high number
of relation types. Although they could be overcome, these issues must be taken into account
during the evaluation of the proposed experiment.

4.3. Results

During GNN training procedure we split either 𝐺 (plain approach) or 𝒢 (subsampling approach)
between training set and validation set. The former is used for backpropagation, while the latter
is used to check GNN performance and save the best model. The best model obtained from
training is then applied over 𝐴𝑡𝑒𝑠𝑡 to test the final performance of the GNN.

We measure model performance over both predictions tasks—i.e. over 𝑌𝑒 and 𝑌𝑡. We measure
how the model behaves for the arc existence prediction task using the Area Under the Curve
(AUC) [21, 22], Average Precision (AP) and accuracy metrics.

Evaluation of multi-label classification is not straightforward, as it introduces the notion of
partially correct prediction—i.e. those predictions where a subset of the labels are identified
correctly, but not all of them. To measure how the model behaves in the arc type prediction
task we leverage the well known 𝐹1 score, the Exact Match Ratio (EMR), and the Per Example
Accuracy (PEA). EMR ignores partially correct predictions, considering them as incorrect and



Approach
Edge Existence Edge Class

AUC AP Accuracy EMR F1 PEA
Plain 0.786 0.786 0.786 0.143 0.148 0.768
Subsampling 0.908 0.892 0.906 0.691 0.386 0.911

Table 1
Performance of the two different approaches over 𝐴𝑡𝑒𝑠𝑡.

computes the score as the ratio between correct predictions and total predictions. On the other
hand, PEA computes the accuracy of the single sample 𝑖 for each 𝑖 in 𝐴𝑡𝑒𝑠𝑡 and then average
them together to obtain an overall accuracy metric.

Table 1 shows the performance of the two approaches on the link prediction task over 𝐴𝑡𝑒𝑠𝑡.
Obtained results demonstrate the effectiveness of the proposed approach. The prediction of
arc existence is successful with acceptable level of performance for the plain approach, while
being highly successful when graph subsampling is applied. On the other hand, for the arc type
prediction task we can notice the clear superiority of the subsampling approach.

Subsampling approach superiority can probably be attributed to the setup of the learning
task. For the plain approach, the same input 𝐺 is used to predict arcs belonging to training,
validation and test, increasing the tendency of overfitting. On the other hand, subsampling
approach allows to assign a different input 𝐺 ∈ 𝒢 to each arc to predict. These inputs are
different between training, validation and test, therefore allowing the model to train more easily,
avoiding possible overfitting issues.

Given the number of possible arcs types (8) and their possible overlapping – e.g. parent and
father –, the performance obtained by the subsampling approach are very satisfactory. The
proposed model is capable to completely match an arc to its label – i.e. exact match over all 8
classes that define the arc – nearly 70% of the times, while the single arc types are predicted
correctly more than 90% of the times. These results show the effectiveness of both the GNN
model and the proposed theoretical framework of Section 3.

Figure 4 shows the three possible outcomes of arc predictions. An arc prediction may be
completely correct—e.g. Gabriel→ Julia. There may also exist partially correct predictions—e.g.
Gabriel→ Albert. Finally, Lisa→ Gabriel shows that there may exist arcs wrongly predicted.

Figure 4 also highlights a peculiar property of the model. The Lisa → Gabriel prediction
considered as wrong is actually a daughter relation. This prediction is considered as wrong since
neither daughter nor son are defined in the original theory 𝜏 . Indeed, to solve the knowledge
filling task we rely only on the predicates already defined. However, the ability of the model of
predicting this relation is sign of the GNN ability to understand the semantic of 𝜏 . This GNN
capability is encouraging, as it may help in tasks such as the discovery of new predicates.

Role of overlapping classes. As shown by Figure 3, the results obtained for Table 1 are
influenced by class overlapping. Indeed, some arc types considered are semantically similar—e.g.
mother and parent. Therefore, their vectorial representation produces label overlapping, which
may negatively affect GNN performance.

To study the effect of semantically-similar classes on our approach, we consider a new theory



Gabriel Julia

Lisa

Theo

Bob

p & f p & f

p & f
s

s

t

s

p & m
p & m

p & m

Albert
p & f

u

a

Figure 4: An example of three arc predictions involving entity Gabriel. Vertices represent entities and
arcs represent relations, which can be aunt (a), father (f), grandparent (g), mother (m), parent (p), sibling
(s), together (t), uncle (u). Black arcs and relations identify arcs in 𝐺, while gray arcs are arcs belonging
to 𝐴𝑡𝑒𝑠𝑡 and used for testing. Coloured arcs are the ones belonging to 𝐴𝑡𝑒𝑠𝑡 and involving Gabriel. For
these arcs 𝑌𝑡 and 𝑍𝑡 represent model prediction(s) and label(s) respectively. Green colour means the arc
is predicted correctly, orange identifies partially correct arcs, while red pinpoint arcs wrongly predicted.

Approach
Edge Existence Edge Class

AUC AP Accuracy EMR F1 PEA
Plain 0.857 0.857 0.857 0.286 0.214 0.738
Subsampling 0.949 0.961 0.938 0.670 0.340 0.935

Table 2
Performance of the two different approaches over 𝐴𝑡𝑒𝑠𝑡 when overlapping arc types – e.g. father and
parent – are not considered.

𝜏 ′ identical to 𝜏 – i.e., representing the same family tree –, but formulated without semantically-
similar predicates. Practically speaking this requires to remove the notion of father and mother

from 𝜏 and redefine kinships using only the notion of parent.
We apply the same approaches of Section 4.2 to the new theory 𝜏 ′, and measure their

performance. Table 2 shows the performance of the two approaches on the link prediction
task over 𝐴𝑡𝑒𝑠𝑡 when overlapping arc types are not considered. As expected, the superiority
of the subsampling approach is unaffected. Instead, it is interesting to point out the effects of
overlapping relations on the arc prediction task. The removal of overlapping arc types seems to
affect positively Edge Existence prediction. Arc existence prediction compresses the knowledge
of arc type to its mere existence. Therefore, overlapping relations might confuse the model in
this scenario.



On the other hand, metrics related to the task of classifying arc type – i.e. Edge Class – seem to
be untouched. This is a positive indication, as it hints at the fact that GNN can handle overlapping
relations between entities. However, further study of this behaviour for the proposed model is
required.

5. Conclusions

In this paper we propose a theoretical framework leveraging translation techniques between
logic theories and graphs so as to tackle relevant logical problems. We identify the relevant
logical problems and describe how they can benefit from the use of sub-symbolical approaches.
Along with our framework, we identify possible mappings between logic and graphs, stressing
their properties and defining how these should be identified by users. We then consider the
filling of a fragmented theory as a study case and apply the proposed framework to this task.
Obtained results show the goodness of our approach, introducing the possibility to leverage
GNN to identify missing latent relations between entities of a theory. Finally, a brief study on
GNN behaviour for overlapping classes in link prediction problem is presented, showing hints
of GNN reliability.

Future works should focus on applying our framework for tackling relevant logical tasks in
the CL world. Moreover, we consider relevant for future works to focus on some limitations
of GNN, emerged from the work on our framework. Many logical tasks require mapping of
predicates having arity grater than two to hypergraphs. Furthermore, some logical tasks require
considering many relations, mapped to highly dimensional arc vectors. State-of-the-art GNN
still suffer these requirements, especially when combined. We believe that future research in
GNN should propose models capable of working on complex highly-dimensional hypergraphs.
Finally, given the centrality role of arc relations in our framework, it would be desirable to
have GNN models more focused on arc attributes relevance. Indeed, information is commonly
updated only at vertices level, while logical tasks, and GNN performance more in general, would
benefit from updating arc information as well. Few works so far have tackled this issue [23, 24],
characterised by strong requirements and poor generalisability. Therefore, it exists research
potential leveraging arc information more efficiently in GNN.
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