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Abstract
Probabilistic complexity classes, despite capturing the notion of feasibility, have escaped any
treatment by the tools of so-called implicit-complexity. Their inherently semantic nature is of course
a barrier to the characterization of classes like BPP or ZPP, but not all classes are semantic. In
this paper, we introduce a recursion-theoretic characterization of the probabilistic class PP, using
recursion schemata with pointers.
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1 Introduction

Implicit computational complexity aims at introducing and studying characterizations of
complexity classes by recursion theory, proof theory, and programming language tools. This
has allowed to shed some light on the impact of programming and recursion schemes to
resource consumption. As an example, nested recursion on notation is known to be harmful
to time complexity, and thus needs to be appropriately controlled if one wants to stay within
the realm of polynomial time computable functions, as shown by Bellantoni-Cook and Leivant
in their works on safe and tiered recursion [2, 9].

If one wants to go beyond polynomial time, a way of enriching recursion schemes without
breaking the correspondence with (relatively small) complexity classes is the use of recursion
schemes based on pointers [3], which leads to characterizations of NP and FPSPACE (the
class of functions corresponding to PSPACE), [14, 13].

One family of complexity classes between polytime and polyspace which has so far escaped
any implicit treatment are the probabilistic ones. Our goal in this paper is precisely the one
of exploring the potential of pointers in recursion-theoretic contexts as a tool to characterize
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35:2 The Probabilistic Class PP

probabilistic classes of computational complexity. In this work we study PP, the class of
decision problems solvable by probabilistic Turing machines in polynomial time with an error
probability of less than 1

2 for all instances. The class PP was originally defined by Gill in [6].
It is well-known that PP contains NP and that it is contained in PSPACE; it is open whether
these inclusions are proper or not.

Our strategy consists in extending the existing recursion scheme for NP going towards
the one for FPSPACE, but without going too far. Surprisingly, this is possible despite the
inherently quantitative nature of PP’s acceptance criterion. This way, we obtain the first
purely recursion-theoretic characterization of the probabilistic class PP.

This characterization is described in two stages, STP and STPP, where STP characterizes
the class of functions computable in polynomial time by deterministic Turing machines,
FPTIME – see [2]. STPP results then from “strengthening” STP with a scheme designed
to characterize the decision problems of PP. That scheme is the tree-recursion scheme of
FPSPACE [13], but with a fixed step function. Therefore, the characterization of the class
PP given here is aligned with the existing recursion-theoretic characterizations of FPTIME
and FPSPACE.

2 Algebras, Functions, and Complexity Classes

In this section, we introduce some preliminary concepts that will accompany us in the rest of
the paper. In particular, we will show how binary strings and functions over them allow us
to capture standard, deterministic classes like FPTIME and FPSPACE.

2.1 Algebras and Recursion Schemes

Let us consider the word algebra W, i.e. the algebra generated by one nullary and two
unary constructors, respectively indicated as ϵ, S0 and S1. The algebra W can naturally be
interpreted over the set {0, 1}∗ of all binary words. We abbreviate S0x and S1x as x0 and
x1, respectively. We consider a predecessor symbol P of arity 1, and a conditional function
symbol C of arity 4. They are defined as follows: P(ϵ) = ϵ, P(xi) = x and C(ϵ, x, y0, y1) = x,
C(zi, x, y0, y1) = yi, i ∈ {0, 1}.

Recursion schemes on the algebra W can be built in two different ways:
1. First of all, one can proceed by recursion on notation, namely by building a function f

out of g and h by stipulating that f(ϵ, x̄) = g(ϵ, x̄) and f(zi, x̄) = h(zi, x̄, f(z, x̄)), where
i ∈ {0, 1};

2. Secondly, one can also build f through tree-recursion with pointers from g and h, namely
by f(p, ϵ, x̄) = g(p, ϵ, x̄) and f(p, zi, x̄) = h(p, zi, x̄, f(p0, z, x̄), f(p1, z, x̄)), i ∈ {0, 1}.

In both the recursion schemes above, g is designated as the base function and h as the
step function. In tree-recursion, the first input of f is called the pointer. Noticeably, the
characterization of PP presented here results from considering the scheme (2) with a fixed
step function. Informally, the step function that we fix is a FPTIME function corresponding
to binary addition (we add the number of accepting configurations), but with some nuances
in order to capture the probabilistic class PP.

Above and along the paper, x̄ abbreviates x1, · · · , xn for some natural number n. Moreover,
|x̄| = (|x1|, · · · , |xn|) where, for 1 ≤ k ≤ n, |xk| denotes the length of xk, i.e. the number of
S0 and S1 in xk. We extend these notations to function symbols.



U. Dal Lago, R. Kahle, and I. Oitavem 35:3

2.2 Capturing Polynomial Time and Space: STP and STFPSPACE

If either recursion on notation or tree recursion are applied without any restriction, there is
no hope to capture interesting complexity classes: in either case we end up capturing the
whole class of primitive recursion. From now on, then, we adopt the framework introduced by
Bellantoni-Cook [2], which has proved to be quite useful in appropriately restricting function
algebras so as to capture small complexity classes. In particular, function terms have two
sorts of input positions, dubbed normal and safe. As is customary, we write normal and
safe input positions by this order, separated by semicolon, e.g. in the expression f(x̄; ȳ), the
parameters in x̄ are normal while those in ȳ are safe.

We are now in a position to define the three closure operators which we will employ in
the following, and which will be

▶ Definition 1 (Closure Operators). Let g, h, r̄ and s̄ be sorted functions. The following are
three ways of building a new sorted function term out of (some of) them.

Sorted Composition, SC, by which we can build the sorted function f such that

f(x̄; ȳ) = h(r̄(x̄; ); s̄(x̄; ȳ))

Sorted Recursion on Notation, SR, which allows us to derive the sorted function f

by a recursion scheme:

f(ϵ, x̄; ȳ) = g(ϵ, x̄; ȳ)
f(z0, x̄; ȳ) = h(z0, x̄; ȳ, f(z, x̄; ȳ))
f(z1, x̄; ȳ) = h(z1, x̄; ȳ, f(z, x̄; ȳ)).

Sorted Tree-Recursion, STR, which derives the sorted function f , again by recursion

f(p, ϵ, x̄; ȳ) = g(p, ϵ, x̄; ȳ)
f(p, z0, x̄; ȳ) = h(p, z0, x̄; ȳ, f(p0, z, x̄; ȳ), f(p1, z, x̄; ȳ))
f(p, z1, x̄; ȳ) = h(p, z1, x̄; ȳ, f(p0, z, x̄; ȳ), f(p1, z, x̄; ȳ))

A few observations about the two recursion operators are helpful now. Please note that,
according to the semi-colon discipline, both the pointer p and the recursion variable z are in
normal input positions, while the results of recursive calls go into safe input positions. This,
in particular, prevents the results of recursive calls to be fed to a function itself defined by
recursion on that same variable, ultimately avoiding a blowup in size and complexity.

▶ Definition 2 (Function Algebras). Let I be the class of function terms including the
constructors of W (i.e. the functions ϵ, S0, S1), the predecessor P, the conditional C, and
the projection functions (over both input sorts).
1. STP is the closure of I under SC and SR;
2. STFPSPACE is the closure of I under SC and STR.

As known results one has that:

▶ Proposition 3.
1. STP characterizes FPTIME and STFPSPACE characterizes FPSPACE – see, respectively,

[2] and [13];
2. STP ⊆ STFPSPACE, as classes of input-sorted function terms.

MFCS 2021
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Notice that in this framework one can run a recursion over an output of a function which is
itself defined by recursion. There are some other properties concerning STP that we use in
the paper. We summarize them here for further reference – see [2] and [14], Remark 2.

▶ Remark 4.
1. Let f(x̄) be a polytime function. Then f(x̄; ) is in STP.
2. For any polynomial (with natural coefficients) q, there exists a term t ∈ STP such that

∀x̄ q(|x̄|) = |t(x̄; )|;
3. For any polytime function F there exist a function term f , in STP, and a monotone

polynomial qF such that ∀w̄∀y |y| ≥ qF (|w̄|) ⇒ F (w̄) = f(y; w̄).

3 The Algebra STPP

In this section, we define a function algebra STPP, based on STP and on the tree-recursion
scheme with pointers. The main idea behind STPP is to constrain STFPSPACE in such a way
that tree-recursion is restricted to a very specific step function. The next section is devoted
to introducing and motivating this function.

3.1 On the ⊞ Function
In the following, we will extensively work with the following FPTIME functions:

The unary function read which, on input w, returns 10 if the last bit of w is 1, and 0
otherwise;
Addition on binary words seen as natural numbers, indicated as +. It results from
considering the following

0 1 10 11 100 . . . (binary words)
↕ ↕ ↕ ↕ ↕
0 1 2 3 4 . . . (natural numbers)

and the usual addition over N, extending it to all binary words assuming that the empty
string ϵ and words starting with 0 all correspond to 0 ∈ N. For instance, +(10, 10) = 100,
while +(00, 10) = 10. We use infix notation for +;
The binary function ⊕ such that ⊕(w, v) is read(w)+read(v), for which we also use the infix
notation. As an example, 01⊕100⊕1 = read(01)+read(100)+read(1) = 10+0+10 = 100.
The function ⊕ only depends on the last bit of its two arguments. Notice that any finite
sum

∑
n read(wn) is always a binary word ending with 0, because for every such binary

word w it holds that read(w) is 0 or 10;
The binary function # defined as follows:

#(z, w) =
{

1 if w > 2|z|

0 otherwise,

where 2|z| is the binary representation of the natural number 2|z|, i.e., it holds that 2|ϵ| = 1
and that 2|zi| = S0(2|z|).

We reserve the symbol + for the binary addition as described above. Whenever needed, we
use +N to denote the usual addition over the natural numbers. The “greater than” relation
defined over binary words ordered by length and, within the same length, lexicographically
is indicated as >;
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Finally, let the function ⊞ be a polytime function satisfying the following equations
(where i ranges over {0, 1}):

⊞(ϵ, i, w0, w1) = #(i, w0 ⊕ w1),
⊞(p, i, w0, w1) = w0 ⊕ w1, if p ̸= ϵ

⊞(ϵ, zi, w0, w1) = #(zi, w0 + w1), if z ̸= ϵ,
⊞(p, zi, w0, w1) = w0 + w1, if p, z ̸= ϵ,

The conditions imposed now will become clear later. ⊞ is a polytime function. Therefore
Remark 4(1) ensures the existence of a term in STP – let us reuse the symbol ⊞ to denote it
– such that ⊞(p, z, w0, w1; ) = ⊞(p, z, w0, w1). The input-sorted function ⊞ ∈ STP is used as
step function in the tree-recursion scheme.

3.2 The Algebra STPP

It is now time to introduce the function algebra which constitutes the main contribution of
this paper, and which will be proved to characterize the class PP in the coming section.

▶ Definition 5. STPP is the closure of STP under SCP and TR[⊞], where
Restricted sorted composition, SCP, allows to build a sorted function f out of h and
r̄, s̄ ∈ STP as follows:

f(x̄; ȳ) = h(r̄(x̄; ); s̄(x̄; ȳ))

Tree-recursion with step function ⊞ derives the function f out of g ∈ STP as follows:

f(p, ϵ, x̄; ) = g(p, ϵ, x̄; )
f(p, z0, x̄; ) = ⊞(p, z0, f(p0, z, x̄; ), f(p1, z, x̄; ); )
f(p, z1, x̄; ) = ⊞(p, z1, f(p0, z, x̄; ), f(p1, z, x̄; ); )

As already noticed, under this input-sorted discipline recursive calls are usually taken as
safe arguments of the step function. However, that becomes irrelevant when the recursion
scheme imposes a fixed step function – like in TR[⊞]. The definition of any function term in
STPP involves at most one application of TR[⊞]. This is a consequence of having the base
function of TR[⊞] – g – and the inner functions of SCP – r̄ and s̄ – all in STP.

It is known that P ⊆ PP ⊆ PSPACE. On the term system side we observe that the
correspondent inclusions are preserved.
▶ Remark 6. STP ⊆ STPP ⊆ STFPSPACE, as classes of input-sorted function terms. The first
inclusion is obvious, the second makes use of items (2) and (3) of Remark 4.

In the rest of this section, we will explain how the TR[⊞] scheme somehow mimics the
acceptance condition underlying PP. Suppose a function is obtained through TR[⊞] from a
base function g; then its evaluation on an input (p, z, x̄; ), for z ̸= ϵ gives rise to a tree similar
to that in Figure 1, where the pointer p and the recursion input z are omitted. By using
them (the first and the second inputs of ⊞), one is able to obtain different outputs for ⊞
depending on the level it occurs in the tree above. Therefore, according to the definition of
⊞, one can distinguish two different situations.

If f is evaluated on arguments in the form (ϵ, z, x̄), then the tree from Figure 1 becomes
the one in Figure 2(a). Again, inputs are omitted. One reads from the leaves, and by
performing binary addition at all internal nodes one brings up to the root of the tree the

MFCS 2021
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⊞

⊞ ⊞

⊞ ⊞ ⊞ ⊞

g g g g g g g g

Figure 1 The unfolding of f(p, z, x̄).

#

+ +

⊕ ⊕ ⊕ ⊕

g g g g g g g g

(a) The case p = ϵ.

+

+ +

⊕ ⊕ ⊕ ⊕

g g g g g g g g

(b) The case p ̸= ϵ.

Figure 2 The unfolding of f(p, z, x̄), depending on the value of p.

information about how many times 1 occurs at the leaves. Notice that the function #,
after performing the binary addition operation, returns 1 if the sum meets the threshold
(i.e. if strictly more than half of the leaves are labeled by 1) and 0 otherwise.
If f is evaluated on arguments in the form (p, z, x̄), where p ̸= ϵ, then the tree becomes
the one in Figure 2(b). The pointer increases along the paths of the tree. So, the first
input of ⊞ does not assume the value ϵ. Therefore, the test function # is not called.
Recall that ⊕ reads the last bit of the leaves, coding the 1’s by 10 (i.e. by the binary
representation of 2). It should be clear that all nodes are labeled by strings ending by
0 (because they are binary representation of even numbers). In particular, the value
returned to the root of the tree is a 0 -1 word ending by 0.

4 STPP Characterizes PP

In this section, we prove that the algebra STPP we introduced in the previous section indeed
characterizes our target class, namely PP.

We adopt the definition of PP given in [1]. In particular, we consider non-deterministic
Turing machines as the underlying model of computation, and we make the assumption
that every step of the computation can be made in exactly two possible ways. Thus, in
the course of the computation, every configuration of the machine has exactly two next
configurations. Machines are “clocked” by some constructible function, and the number of
steps in each computation is exactly the number of steps allowed by the clock. If a final state
is reached before this number of steps, then the computation is continued, doing nothing up
to this number of steps. Moreover, every computation ends in a final state, which can be
either ACCEPT or REJECT. A probabilistic Turing machine M , PTM for short, is a non-
deterministic Turing machine as above in which acceptance is defined quantitatively rather
than logically: the input x̄ is accepted if, and only if, more than half of the computations of
M on x̄ end in the ACCEPT final state.
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PP is the class of boolean functions (or languages) computed (resp. accepted) by poly-
nomially clocked PTMs. While PP is a class of two valued functions, STPP corresponds
to a class of functions whose values can range over binary words. As a consequence, our
correspondence theorem will say that B(STPP) coincides with PP, where B(STPP) denotes
the boolean part of STPP.

4.1 The Lower Bound
In this subsection, we will prove that STPP is powerful enough to capture the behavior of
any polynomially clocked probabilistic Turing machine. This proves that STPP is at least as
expressive as our target complexity class..

▶ Lemma 7. Polynomially clocked PTMs can be simulated by functions in STPP.

Proof. Let M be a PTM which is clocked by some polynomial q (on the length of the input).
We are going to simulate M by STPP function terms. Let us assume, without any loss of
generality, that machine configurations are encoded by binary words so that codes end by the
code of the respective state. Codes of accepting final states end by 1 and any other state ends
by 0. One may assume that, for a given input x̄, all the configuration codes have the same
length, l(|x̄|), which is polynomial on |x̄|. Notice that all non-terminating configurations have
two successor configurations. Therefore, we can split the transition function δ of M into two
δ0 and δ1. Let c be a STPP function such that c(x̄; ) is the code of the initial configuration.
Similarly, let t be a STPP function such that |t(x̄; )| = q(|x̄|). (That t can be defined in STPP
come from the fact that q is a polynomial, cf. Remark 4(2)). For i ∈ {0, 1}, one may consider
polytime computable functions ∆i which, for a given configuration code w, return the next
configuration code according to δi, or return w itself if there is no next configuration according
to δi. Thus, by Remark 4(3), there exists a function term ∆̂i in STP and a polynomial q∆i

such that ∀w ∀y |y| ≥ q∆i
(|w|) ⇒ ∆i(w) = ∆̂i(y; w). Replacing, in the previous expression, y

by L∆i
(x̄; ) one has that ∀w ∀x̄ |L∆i

(x̄; )| ≥ q∆i
(|w|) ⇒ ∆i(w) = ∆̂i(L∆i

(x̄; ); w), where L∆i

is a STP term as follows. Given an input x̄, all configuration codes w satisfy |w| = l(|x̄|) where
l is polynomial in |x̄|. Thus, q∆i

(|w|) is equal to (q∆i
◦l)(|x̄|). The composition of polynomials

is a polynomial, and so q∆i
◦ l is a polynomial in |x̄|. Therefore, by Remark 4(2), there

exists a function term L∆i
in STP such that |L∆i

(x̄; )| = (q∆i
◦ l)(|x̄|). Now, recalling that

q∆i
(|w|) is (q∆i

◦ l)(|x̄|), one has |L∆i
(x̄; )| = q∆i

(|w|) (thus, a fortiori |L∆i
(x̄; )| ≥ q∆i

(|w|)).
Therefore, for any input x̄, given a configuration code w, ∆i(w) = ∆̂i(L∆i

(x̄; ); w) where ∆̂i

and L∆i
are in STP. This means that (reusing the symbol ∆i) we can consider a function

term ∆i(x̄; w) = ∆̂i(L∆i
(x̄; ); w) in STP, which for any input x̄ and a given configuration

code w returns the next configuration code according to δi. Let us define an auxiliary
sorted function, called RUN. RUN is defined, in STP, by SR. For a path p and a (initial)
configuration code c(x̄; ), RUN simulates the (sequential) computation performed by M along
the branch p starting with the configuration code c(x̄; ).

RUN(ϵ, x̄; ) = c(x̄; )
RUN(p0, x̄; ) = ∆0(x̄; RUN(p, x̄; ))
RUN(p1, x̄; ) = ∆1(x̄; RUN(p, x̄; ))

Let us consider the function f defined by TR[⊞] in STPP:

f(p, ϵ, x̄; ) = RUN(p, x̄; )
f(p, z0, x̄; ) = ⊞(p, z0, f(p0, z, x̄; ), f(p1, z, x̄; ); )
f(p, z1, x̄; ) = ⊞(p, z1, f(p0, z, x̄; ), f(p1, z, x̄; ); ).

By construction, one has that M(x̄) = f(ϵ, t(x̄; ), x̄; ). ◀

MFCS 2021
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As a consequence, one can prove the following.

▶ Proposition 8. PP is contained in B(STPP).

Proof. Any boolean function in PP can by definition be computed by a polynomially clocked
PTM. It is thus immediate to conclude, from the previous lemma, that PP is contained in
B(STPP). ◀

Before moving to the dual result, it is instructive to take a further look at how Lemma 7 is
proved. Actually, closure of STPP by TR[⊞] is exploited just once. However, that single use
of TR[⊞] takes a non-boolean function as base function. So, although PP is a class of boolean
functions, the non-boolean functions of the algebra play a crucial role in the characterization.
To show that the boolean functions of the algebra, whose definitions involve TR[⊞] with
arbitrary polytime base functions, remain within the complexity class PP is nontrivial, and
is essentially what we are going to prove in the next section.

4.2 The Upper Bound

Knowing that STP characterizes FPTIME, it is clear that B(STP) – which corresponds to P,
the class of the polytime boolean-functions – is contained in PP. But how about the inclusion
between B(STPP) and PP? This is precisely what we are going to prove in this section.

We first of all need the following lemma, which tells us, essentially, that TR[⊞] makes
sense from the point of view of the class PP. In this statement only boolean base functions
are considered.

▶ Lemma 9. Let G be in P and let F be a function defined as follows:

F (p, ϵ, x̄) = G(p, ϵ, x̄)
F (p, z0, x̄) = ⊞(p, z0, F (p0, z, x̄), F (p1, z, x̄))
F (p, z1, x̄) = ⊞(p, z1, F (p0, z, x̄), F (p1, z, x̄)).

Then the function Fϵ defined as Fϵ(z, x̄) = F (ϵ, z, x̄), is in PP. Moreover, if G is computable
in time tG (on the sum of the length of its inputs), then F (ϵ, z, x̄) is clocked by c · |z| +N
tG(|p| +N |z| +N

∑
i |xi|) +N 1, for some constant c.

Proof. In order to compute Fϵ it is enough to compute something with the following structure

⊞

⊞ ⊞

⊞ ⊞ ⊞ ⊞

G G G G G G G G

where G is in P and, at each step, the first input (pointer) increases one bit and the second
input (recursion input) decreases one bit. At the root of the tree the pointer is ϵ, and at all
leaves the recursion input is ϵ. Therefore, what we really have is
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#

+ +

⊕ ⊕ ⊕ ⊕

G G G G G G G G

Intuitively this is clearly in PP. In order to prove it we consider PTMs with as many tapes
as the arity of F (and G). We also assume that each component of the input is placed in
one of the tapes (by the order that they show up), i.e. the n-th input is on the n-th tape,
and that the machines are initialized with the heads scanning the right most non-empty cell
(if there is one).

Let BRANCH be a TM with initial state qB, which works according to two transition
functions – Left and Right. Informally speaking, Left adds the bit “0” at the end of the first
input (in the first tape), and deletes the last bit of the second input (in the second tape).
The heads move one cell to the right and one cell to the left, respectively. Right proceeds in
an analogous way, but adds the bit “1”. This can be done in constant time.

G is in P, so there exists a deterministic TM, MG, which computes the boolean function
G, let us say, in time bounded by tG. We denote by qG the initial state of MG, and we
assume that the output – 0 or 1 – is written in the last tape.

A PTM for F , MF , can then be described as follows:
(1) if the head of the second tape scans ϵ, go to (3);

otherwise, go to state qB and (2);
(2) run BRANCH and (1);
(3) go to state qG and (4);
(4) run MG.
We say that final configurations of MF are accepting configurations if, and only if, the
rightmost bit of the last tape is 1.

To determine the computing time of MF notice that the only possibility of going into a
loop is when an instruction calls a previous one, i.e. in (2). Moreover, notice that, inputting
p, z, x̄ to the machine, (1) is called |z|-times, and each loop uses constant time. Therefore,
before reaching the instruction (3) the machine performs c · |z| steps, for some constant c.
(3) is one step, and (4) uses, at most, tG steps (notice that the inputs change along the
process, but the sum of their lengths remains constant). Thus MF runs in time bounded by
c · |z| +N tG(|p| +N |z| +N

∑
i |xi|) +N 1.

MF accepts (ϵ, z, x̄) if, and only if, more than half of the computations of MF on
(ϵ, z, x̄) end in the ACCEPT final state. Noticing that MF final configurations are MG

final configurations, we have that MF accepts (ϵ, z, x̄) if, and only if, more than half of
G(p, ϵ, x̄) with |p| = |z| end by 1. Abbreviate 0 · · · 0 and 1 · · · 1, of length |z|, by 0|z| and
1|z| respectively. Considering the lexicographic order, between 0|z| and 1|z| we have all
0 − 1 words with |z| bits. There are 2|z| different paths p of length |z|. So, MF accepts
(ϵ, z, x̄) if, and only if2,

∑1|z|

p=0|z| last-bit of G(p, ϵ, x̄) > 2|z|

2 , or equivalently, if and only if∑1|z|

p=0|z| 2 · last-bit of G(p, ϵ, x̄) > 2|z|. This is exactly what TR[⊞] tests: ⊕ doubles the last
bit of it inputs and add them; + adds the inputs; and # (at the root of the tree) tests
whether the global sum (i.e.

∑1|z|

p=0|z| 2 · last-bit of G(p, ϵ, x̄)) is greater than 2|z| – it returns
1 if YES, and 0 otherwise. ◀

2 In numeric notation.
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Let us now show that any boolean function in STPP can be seen as one in the class PP.

▶ Proposition 10. B(STPP) is contained in PP.

Proof. It is enough to show that, for all f ∈ STPP, the function F such that F (x̄, ȳ) is 1 if
f(x̄; ȳ) ends by 1, and F (x̄, ȳ) = 0 otherwise, is in PP. We prove this by induction on the
definition of the function terms inside STPP.

Whenever the scheme TR[⊞] is not involved in the definition of f , one has that f ∈ STP
and therefore the result is immediate. Thus, the relevant cases are the ones where the TR[⊞]
is used in the definition of the function term. There are two cases:

First of all, let f be defined by TR[⊞] with base function g ∈ STP ⊆ STPP. Let G ∈ PP
be given by induction hypothesis. Consider

F (p, z, x̄) =


G(p, ϵ, x̄) if z = ϵ

0 if p, z ̸= ϵ

f(ϵ, z, x̄; ) if p = ϵ ∧ z ̸= ϵ.

F results from easy case distinctions involving three functions: G and the constant
function equal to 0 are in PP. Notice that for z ̸= ϵ, f(ϵ, z, x̄; ) = TR[⊞](g)(ϵ, z, x̄; ) =
TR[⊞](last-bit of g)(ϵ, z, x̄; ), where last-bit of w is C(w, 0, 0, 1; ). g belongs to FPTIME,
so last-bit of g is a boolean function in P. Thus, for z ̸= ϵ, f(ϵ, z, x̄; ) is equal to a function
– TR[⊞](last-bit of g)(ϵ, z, x̄; ) – which is in PP due to Lemma 9. So, F ∈ PP. It remains
to prove that

F (p, z, x̄) =
{

1 if f(p, z, x̄; ) ends by 1
0 otherwise.

Let us further distinguish three sub-cases:
1. If z = ϵ, then

F (p, ϵ, x̄) = G(p, ϵ, x̄) =
{

1 if g(p, ϵ, x̄; ) ends by 1
0 otherwise

=
{

1 if f(p, ϵ, x̄; ) ends by 1
0 otherwise.

2. If p, z ̸= ϵ, then f(p, z, x̄) is the value returned to the root of a tree as described in
Figure 2(b) of Section 3, because the function # is not involved (the pointer only
increases along the recursion, therefore if it is not ϵ at the root, it is never ϵ). Thus, as
explained in Section 3, the value returned to root of the tree is the binary representation
of an even number. Therefore, f(p, z, x̄) does not end by the bit 1. Consequently, in
this case, F (p, z, x̄) = 0.

3. If p = ϵ and z ̸= ϵ then, noticing that f(ϵ, z, x̄; ) is a single bit, we have that

F (ϵ, z, x̄) = f(ϵ, z, x̄; ) =
{

1 if f(p, ϵ, x̄; ) ends by 1
0 otherwise.

Hence, the function F ∈ PP defined above, is 1 if f ends by 1, and it is 0 otherwise.
If f is defined by SCP , let us say f(x̄; ȳ) = h(r̄(x̄; ); s̄(x̄; ȳ)) with r̄, s̄ ∈ STP. By induction
hypothesis for h, the function H such that H(x̄, ȳ) is 1 if h(x̄; ȳ) ends by 1, H(x̄, ȳ) = 0
otherwise, is in PP. Let MH be a PTM computing H in polynomial time pH . r̄, s̄ are in
STP, so let Mr̄ and Ms̄ be the correspondent deterministic Turing machines working in
polynomial time. One may define the desired machine for F in the obvious way. First
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running the deterministic polytime machines Mr̄ and Ms̄ in order to produce the input
(r̄(x̄; ); s̄(x̄; ȳ)). Let us say that this is done in time dominated by pr̄,s̄(|x̄|, |ȳ|). Second,
running MH on this input. The resulting machine is a PTM which computes F and works
in time dominated by pr̄,s̄(|x̄|, |ȳ|) +N pH(|r̄(x̄; )|, |s̄(x̄; ȳ)|). Evoking now the monotonicity
of the polynomials and knowing that the length of STP functions (i.e. FPtime functions)
is polynomial bounded – let us say |r̄(x̄; )| ≤ qr̄(|x̄|) and |s̄(x̄; )| ≤ qs̄(|x̄|, |ȳ|) for some
polynomials qr̄ and qs̄ – we have that the working time of MF , on the input x̄, ȳ, is
bounded by the polynomial pr̄,s̄(|x̄|, |ȳ|) +N pH(qr̄(|x̄|), qs̄(|x̄|, |ȳ|)).

This finishes the proof. ◀

4.3 Wrapping Up
From Proposition 8 and Proposition 10 one concludes that

▶ Theorem 11. STPP characterizes PP (i.e. PP = B(STPP)).

This establishes a purely recursion theoretic characterization of the probabilistic class
of complexity PP by adding a specific form of tree-recursion to FPTIME functions. One
should notice that the step function of the tree-recursion makes use of the pointer p and the
recursion variable z. The same happens in the characterization of FPSPACE given in [13], but
it contrasts with the similar characterization of NP given in [14]. For NP the tree-recursion
scheme is actually a tree-iteration scheme, i.e. pointers and recursion variable are used only
at the bottom (and not all the way along the tree). There the pointers and recursion variable
are not taken as inputs of the step function. It is, for instance, not known which class one
obtains by restricting the tree-recursion of [13] to tree-iteration.

Whenever working with the tree-recursion scheme or with restricted forms of it, as it
is the case here and in the papers mention above, one adopts W (i.e. 0 − 1 words) as base
algebra, instead of N. The pointers and the tree-recursion scheme have a natural formulation
over W, but the present work can be rewritten in numeric notation. Actually, the seminal
paper of Bellantoni and Cook for FPTIME [2], which uses recursion on notation only, is in
numeric notation.

A similar characterization of PP can be obtained working in a non-sorted context, by use
of explicit bounds on the recursion on notation scheme. Such formulation of PP is based
on Cobham’s characterization of FPTIME [4] and uses the TR[⊞] scheme neglecting the “;”.
There is no need of imposing explicit bounds to the non-sorted version of TR[⊞], because
due to the fixed step function the scheme is implicitly polynomial bounded.

5 Related Work

The recursion-theoretic approach to implicit computational complexity has proved to be
remarkably robust, with many different classes between logarithmic and polynomial space
characterized by various forms of recursion schemes [2, 9, 10, 11, 12, 13, 14]. Tree recursion
with pointers, in particular, is known to be capable of capturing classes larger than P. But no
probabilistic class of complexity was known to admit a recursion-theoretic characterization,
so our result is certainly novel. With the given syntactic approach, one cannot expect to
capture truly semantic classes like BPP and ZPP, but it may serve as a recursion-theoretic
substratum for characterizations of these classes. In addition, it may provide as basis for
proof-theoretic characterizations as provided for FPTIME and related classes by Strahm [15]
or for the polynomial hierarchy of functions in [8].
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Other logical approaches to computational complexity have faced the challenge of charac-
terizing probabilistic classes. As an example, a study of randomization and derandomization
in descriptive complexity is due do Eickmeyer and Grohe [5], who were also able to char-
acterize BPP in fixed-point logic with counting. The relationships between theories of
bounded arithmetic and probabilistic complexity classes have been studied by Jerábek [7].
The present work complements these approaches by exploiting the framework of safe/tiered
recursion [2, 9].
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