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ABSTRACT Self-aware robots rely on depth sensing to interact with the surrounding environment, e.g. to
pursue object grasping. Yet, dealing with tiny items, often occurring in industrial robotics scenarios, may
represent a challenge due to lack of sensors yielding sufficiently accurate depth measurements. Existing
active sensors fail at measuring details of small objects (<1cm) because of limitations in the working range,
e.g. usually beyond 50 cm away, while off-the-shelf stereo cameras are not suited to close-range acquisitions
due to the need for extremely short baselines. Therefore, we propose a framework designed for accurate
depth sensing and particularly amenable to reconstruction of miniature objects. By leveraging on a single
camera mounted in eye-on-hand configuration and the high repeatability of a robot, we acquire multiple
images and process them through a stereo algorithm revised to fully exploit multiple vantage points. Using a
novel dataset addressing performance evaluation in industrial applications, our Single camera Stereo Robot
(SiSteR) delivers high accuracy even when dealing with miniature objects. We will provide a public dataset
and an open-source implementation of our proposal to foster further development in this field.

INDEX TERMS Intelligent robots, robot learning, robot vision systems.

I. INTRODUCTION
Is monocular vision enough for self-aware robots? The
answer is no. Although there exist methods which attempt
to estimate 3D information using only 2D images [1], they
usually focus on the perception of a specific set of objects of
interest. In the random bin picking task, for example, the robot
should not only determine the location of the objects but also
perceive the surrounding environment to interact safely with
it (e.g. to avoid obstacles).

But well before the robots this need for advanced percep-
tion was obviously also felt in the animal kingdom. That is
why, during the evolution, animals have acquired stereopsis,
i.e. the capability to infer 3D information by triangulation
between a pair of images sensed from two vantage points.
Not only primates, as previously thought [2], but also all
mammals, birds, amphibians, invertebrates and, according to

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

a recent discovery, even insects [3], deploy multiple eyes,
i.e. images from different vantage points, to perceive depth
through triangulation. Beyond the stereopsis, which can be
considered a form of passive ranging strategy, other animals,
such as whales or bats, developed active methods, e.g. sonar,
to actively reconstruct 3D shapes by emitting and receiving
suitable signals.

Inspired by the animal kingdom, as often occurs, research
on visual sensing has made progress by emulating both
the above mentioned passive and active techniques. Sensors
mimicking stereopsis by deploying two or multiple cameras
are, in most cases, passive. Concerning active sensors, there
exist different technologies. Laser scanners illuminate the
scene through a laser beam swept by a rotating mirror and
estimate depth by analyzing the back-scattering. Time-of-
flight sensors measure distances by computing the return time
of the signal emitted by a source. Structured-light sensors
project a known pattern and estimate depth by observing the
deformations induced by the 3D structure of the scene into an
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image acquired by a 2D camera. Finally, sometimes, a stereo
setup is enriched by a pattern projector, like in the Ensenso
active stereo camera [4], in such a way as to deploy a hybrid
approach.

The techniques mentioned above have been widely used
to address many diverse tasks related to visual perception.
However, in this paper, we wish to investigate an alternative
and quite less popular depth sensing strategy inherited
from the animal kingdom. Indeed, some insects (and others
species), perform side-to-side peering head movements [5]
in order to achieve a 3D perception of the environment.
They move the head in a controlled manner to estimate the
distance of objects through motion parallax by generating
multiple viewpoints according to the movements of the eye.
Although this strategy may sometimes turn out detrimental to
animals causing exposure to predators, we feel comfortable
in gathering inspiration by this behavior to tackle – safely –
robotic scenarios.

Hence, the idea proposed in this work is to perceive depth
using a single camera mounted on a robotic arm in an eye-
on-hand configuration to gather multiple views in a precisely
controlled manner. Taking advantage of the high repeatability
of the robot, it is possible not only to emulate peering
head movements, but also to go beyond by generating more
articulated viewpoint patterns of the 2D camera (e.g. spiral
patterns), where we can know the 3D poses with millimetric
precision. Thus, the proposed solution may be seen as an
evolution of the concept of multi-baseline stereo. Thanks
to the dexterity and precision of a robot, we can generate
seamlessly multiple vantage points to adapt the baseline
between views according to the specific requirements of
the task at hand, thereby obtaining high precision whatever
the size of the sensed object in the scene is. Thanks to its
peculiarities, our system, which we dubbed SiSteR (Single
camera Stereo Robot), can effectively replace both the active
sensors often deployed in robotics (e.g. Kinect or Asus Xtion)
and stereo cameras whenever the scene is stationary. As it
will be shown in our evaluation, we can reconstruct objects of
varying sizes, even tiny components prohibitive for traditional
sensors such as Kinect v2 as shown in Figure 1, and feed
this information to robotic vision modules in applications like
pick&place, random bin picking and inspection.
We have developed two variants of SiSteR: one based on

a traditional stereo matching approach and another based on
deep learning. The code will be released as an open-source
ROS package1 publicly available online.

II. METHOD AND MOTIVATIONS
This work aims at designing an effective robotic perception
pipeline for 3D reconstruction. Despite availability of accu-
rate active 3D sensors, limitations in the working range (usu-
ally, beyond 50 cm [6]) and encumbrance render these devices
often inappropriate for the eye-on-hand configuration. In par-
ticular, when dealing with the reconstruction of tiny objects

1https://cvlab-unibo.github.io/sister/

FIGURE 1. Qualitative reconstructions of tiny and small objects with
SiSteR. In green, the inaccurate reconstructions by a Kinect v2, available
for the latter components only (red crosses are in place of missing
objects).

FIGURE 2. Given a stereo rig of fixed f , by varying b the depth error 1z
(y-axis) changes according to the distance z in the scene (x-axis).
A dashed line highlights the initial portion of each curve that linearizes
the error by modulating b at will, a feature peculiarly achievable by
SiSteR.

such as screws, washers or industrial components, extremely
close acquisition and measurements are required to achieve
high enough accuracy.Moreover, active technologies struggle
in the presence of reflective or dark surfaces. Stereo cameras
represent an attractive alternative, due to their potentially
unconstrained working range. In particular, by knowing the
focal length f and the distance between the two cameras
(baseline b), depth is estimated the disparity d (the horizontal
displacement of corresponding pixels between two images)
through triangulation as z = b·f

d . For this purpose, images are
rectified according to camera parameters obtained through
offline calibration. Given two imaging devices with focal
length f , the depth error 1z depends on the baseline: the
higher b, the lower 1z. However, according to the distance
of the sensed objects from the stereo rig, the baseline affects
also the common field-of-view between the two cameras.
Therefore, the baseline should be small for close range
measurements and large at more considerable distances, so to
keep 1z comparable. Unfortunately, a standard stereo rig
does not allow such behavior due to the fixed baseline.
Figure 2 plots 1z as a function of the distance z from the
camera for different baselines:

1z =
z2

b · f
·1d (1)

The plot shows how a disparity error1d of 1 translates into
a tiny or large gap between estimated and real depth according
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to sensed distance. However, despite ideally unconstrained
to the working range, the extent of the overlapping area
sensed by the two cameras poses an upper bound to the
baseline length depending on the working distance. This fact
limits the adoption of off-the-shelf sensors, e.g. Duo MLX,2

when dealing with the accurate reconstruction of a variety
of medium-sized or tiny objects, typically enabling precise
reconstruction of the former, but being not able to sense the
latter adequately.

For the reasons outlined, our SiSteR framework provides
a versatile solution to infer accurate depth reconstruction
from robotic arms by employing a single camera mounted
as the robot end-effector. Moreover, it also tackles a severe
limitation of off-the-shelf 3D sensors when dealing with the
accurate 3D reconstruction of tiny objects. Specifically, our
proposal has the following advantages:
• A single camera is much more compact than a stereo rig
or an active 3D sensor, thus better suited to the eye-on-
hand configuration.

• The precise movement of the robotic arm allows
emulating the acquisition from a stereo rig, thus ensuring
epipolar geometry without offline calibration between
viewpoints.

• The baseline can be optimally adapted at acquisition
time so as to i) enable accurate reconstruction of both
tiny and larger objects according to the piecewise linear
dashed curve plotted in Figure 2 and ii) maximize the
overlapping area between multiple viewpoints.

• The proposed approach allows for addressing some
well-known limitations of binocular stereo, e.g. occlu-
sions, by acquiring images from multiple viewpoints.
We achieve this by deploying a novel algorithm, referred
to as SiSteR Semi-Global Matching.

III. RELATED WORK
In subsection III-A and subsection III-B, we review popular
solutions for 3D perception in robotics and stereo vision,
since both topics are relevant to our work.

A. 3D PERCEPTION IN ROBOTICS
Nowadays, 3D perception is essential in several robotic
applications. However, a fundamental distinction has to be
drawn between traditional machine vision approaches and
the latest robotic vision paradigms leveraging on an active
synergy between the robot and the vision sensor. Among the
most compelling examples in this field is the eye-on-hand
configuration, with the optical sensor positioned on a robotic
arm as its end-effector, which enables to go beyond all the
limitations of a fixed point-of-view on the scene (e.g. active
occlusions avoidance and/or controllable interest region
distance). Although there exist several solutions addressing
robotic applications [7] with a stationary 3D sensor (eye-to-
hand), we will mainly deal with cameras mounted directly
on a robot because, when feasible, it is a much more

2https://duo3d.com/product/duo-minilx-lv1

flexible setup. In [8] and [9] a stereo camera is directly
mounted on the agent to tackle the problem of occlusions in
unstructured environments for assistive robotics applications.
More recently, with the introduction of consumer 3D active
sensors, this field has rapidly evolved further and one of the
most popular sensors, probably due to its small size, is the
RealSense,3 widely used, e.g,, in the Amazon Picking Chal-
lenge for 3D reconstruction and object detection [10]–[12].
Equally compact is the PrimeSense4 (with its branded variant
Asus Xtion), also widely used for the above mentioned
challenge [13] and other applications dealing with robotic
manipulation alike [14]–[16]. Another – more expensive and
sophisticated – widely deployed sensor is the Ensenso 3D
Camera [4] thanks to its reduced encumbrance for detection
in narrow spaces [17].

One of the most accurate sensors, recently adopted in
robotics, is theKinect-v25 (successor ofKinect-v1). However,
being not small in size and quite heavy, it usually does not
fit on the final links of the robot, such as the hand, but
on less dexterous portions of it, as the head, with reduced
degrees of freedom [18], or – even – on the back of quadruped
robots [19]. With even greater accuracy, arm-mounted Linear
Laser Scanners can also be used in such a way as to integrate
linear measurements – during armmovement – to obtain very
accurate depth reconstructions [20].

Unfortunately, all previous methods have severe lim-
itations. First of all, most of them have a minimum
operating distance (i.e. from 20 to 50 cm), thus preventing a
sufficiently accurate perception of small objects. Regarding
high-precision sensors, such as laser scanners, their weight
and footprint hinders deployment on small and lightweight
collaborative robots. Conversely, with SiSteR we propose an
easy-to-integrate and flexible solution enabling to accurately
reconstruct even objects a few millimeters in size.

B. STEREO VISION
Binocular Stereo: Scharstein and Szeliski [21] classified
stereo algorithms into two main broad categories, namely
local and global approaches, according to the different steps
carried out: i) cost computation, ii) cost aggregation, iii)
disparity optimization/computation and iv) disparity refine-
ment. While local algorithms are typically fast, they are at the
same time ineffective in the presence of low-texture regions.
On the other hand, global algorithms typically perform better
at the cost of higher complexity and runtime. More often
than not, Hirschmuller’s SGM [22] yields the preferred
trade-off between speed and accuracy and thus deployed in
most practical applications. Because of its popularity, several
works were aimed at improving its accuracy by acting on
different steps of the pipeline [23]–[25], so as to address some
well-known weaknesses such as streaking artifacts [24] by
leveraging confidence measures [26].

3https://en.wikipedia.org/wiki/Intel_RealSense
4https://en.wikipedia.org/wiki/PrimeSense
5https://it.wikipedia.org/wiki/Microsoft_Kinect
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The advent of deep learning in computer vision hit
stereo matching as well. Zbontar and LeCun [27] were
the first to propose learning a matching function by
a Convolutional Neural Network (CNN). This strategy,
requiring a reasonable amount of training samples (i.e. few
hundreds of images [28]), allows for a more robust similarity
estimation between pixels. Moreover, it also allows for
improving well-established pipelines such as SGM when
deployed in place of traditional matching functions such
as absolute difference (AD) or census [29]. Currently, end-
to-end paradigms represent the most effective solution to
tackle stereo matching [30]–[36]. However, to attain accurate
results, a large amount of training data, i.e. thousand of stereo
pairs, is required, such amount of samples usually obtained
through image synthesis [30]. Furthermore, hundreds of real
samples [28] are still necessary to tackle the synthetic-to-
real domain shift, which, indeed, does limit the practical
deployment of end-to-end stereo networks quite significantly.

Leveraging on more than two viewpoints has the potential
to overcome the limits of a binocular setup. For instance,
[37], [38] deployed a triangular rig to deal with occlusions,
while [39]–[41] used multiple horizontally aligned cameras
in order to combine the strengths of short and wide baselines.
A virtual trinocular setup was recently proposed in [42]
to improve self-supervised monocular depth estimation.
Although not very popular, there exist also some off-the-shelf
multi-baseline stereo systems, such as the Bumblebee XB3.

In contrast, our proposal relies on a single camera onboard
of a robotic arm which is precisely moved to emulate a
multi-baseline setup similar to [43], with the difference
that we use not only millimeter baselines (in order to
perform reconstruction of very tiny objects), but also vertical
movements in addition to horizontal ones (to minimize
occlusions sources). The very high precision enabled by the
robot allows to acquire aligned frames and to run stereo
correspondence algorithms, as traditionally performed on
rectified images, by choosing the baseline according to the
particular task.

IV. SiSteR SEMI-GLOBAL MATCHING
By leveraging on the setup mentioned above to perform
multiple single-camera acquisitions, in analogy to traditional
binocular stereo, we look for corresponding pixels between
the different views to estimate disparity and triangulate depth.
Our algorithm extends the SGM pipeline [22], the preferred
choice for most binocular stereo frameworks, so as to process
an unconstrained number of images. In particular, we will
refer to a set of images I acquired by our framework and to
the reference image as the originO of our scene, on which we
will compute the final depth map. Our pipeline consists of
three main steps: i) Binocular Matching Cost Computation,
ii) Multi-Frame Cost Fusion, iii) Semi-Global Optimization.

A. BINOCULAR MATCHING COST COMPUTATION
At the very beginning of any binocular stereo pipeline,
raw matching scores CL,R(p, d) are computed between each

pixel p in the left image L and possible candidates p − d,

d ∈ [0,Dmax] in the right image R. A popular choice consists
in using the census transform to assign a binary string to each
pixel p computed on a patch P(p), where each bit encodes the
relationship between the intensities of p and the remaining N
pixels in P(p). Then, matching scores are obtained using the
Hamming distance on census transformed images L andR.

CL,R
census(p, d) =

N∑
i=0

L(p)[i] 6= R(p− d)[i] (2)

Often, a 9 × 7 patch is chosen to compute the census
transform, resulting in 63bit strings.

A recent alternative deals with training a CNN to
estimate similarity scores between image patches [27], which
provides a much more reliable matching function. Being
s(< PL(p),PR(p − d) >) the output of a CNN trained for
this purpose, matching scores are obtained as

CL,R
CNN(p, d) = −s(< PL(p),PR(p− d) >) (3)

By using a fully convolutional network [27] and deploying
a high-end GPU (e.g. Titan X), the runtime can be kept
equivalent to traditional matching functions.

According to either of two outlined methods, in the very
first phase of our pipeline, we compute binocular matching
costs CO,T (p, d) between the origin frame O and each
additional image T ∈ I acquired by our setup.

B. MULTI-FRAME COST FUSION
Traditionally, binocular stereo suffers in the presence of
occlusions occurring between the left and the right views.
In particular, assuming the former as the reference image,
both the left border and the left-most part behind depth
discontinuities have no correspondences in the other frame,
making the matching assignment for such pixels ill-posed.
To overcome this issue, we leverage the setup mentioned
above to acquire a set I made out of pairs of images
that are complementary to the origin O of the scene.
By keeping a constant baseline between O and each image
of a complementary pair, matching pixels for a given p in
the O image will be found at the same disparity on both
views. This strategy can be extended to all the images in
our set I if such radius (i.e. the baseline) is kept constant,
thereby allowing for seamless integration of the matching
scores between O and any image in I on the same cost
volume representation centered in O. Thanks to the accurate
movement of the robot, the search domain for corresponding
points will be 1D as for conventional binocular rectified
images. Only the search direction will change according to
the relative position between O and the acquired image. For
instance, Figure 3 shows a set of three images, made of an
origin frame O in between two other images T x and T y on
its left and right, respectively. Binary costs CO,T x and CO,T y

(respectively in red and blue) are obtained by searching for
the horizontal displacement on the right and left of T x and
T y, respectively. The combination of such costs into the green
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FIGURE 3. SiSteR in action. We acquire a set of images (a), running binocular stereo between origin image O and one of the four targets produces
inaccurate reconstructions (b), but SiSteR effectively combines all the views to get a high accuracy (c).

FIGURE 4. On the left, the actual setup used for our experiments. On the
right, the simulated counterpart. Synthetic views of real objects are
generated in the simulated environment based on their 3D CAD model
and used as ground-truth in the experiments.

volume, as outlined below, yields a more accurate disparity
map while enabling to handle occluded areas. Consequently,
CO,I is obtained by summing all the pairwise matching costs
between O and any other views in I as follows

CO,I (p, d) =
∑
T∈I

ωO,T (p) · CO,T (p, d) (4)

where ωO,T (p) is a binary confidence score assigned to the
matching curve of each pixel p computed between (O,T ).
This latter term is crucial to neglect the contribution of
unreliable pixels that would introduce noise in the matching
cost volume. In particular, being occlusions significant
sources of mismatches, we obtain ωO,T by enforcing an
Origin-to-Target consistency check (OTC) between disparity
computed with respect to both O and T. This is traditionally
known as left-right consistency check (LRC) in binocular
stereo and it is generalized to our setup as follows

ω(O,T )(p) =

{
1 if |DO(p)− DT (p− DO(p))| ≤ ε

0 otherwise
(5)

We will show in the experimental results how leveraging
multiple images acquired from the same, moving camera

FIGURE 5. Front-facing image of the Camera Module mounted on the
robot’s flange. By a semi-transparent overlay we also show the four
additional vantage points which contribute to gather the images set I in
Equation 4. The dashed line shows a suitable trajectory to obtain the
5 images.

provides higher accuracy compared to a traditional binocular
stereo setup.

C. SEMI-GLOBAL OPTIMIZATION
The multi-frame sourced CO,I term is then further optimized
by the subsequent steps of the pipeline to obtain the
final disparity map. The SGM framework [22] aims at
regularizing a cost volume by means of minimization of an
energy function E(p, d), sum of data and smoothness terms
Edata(p, d) and Esmooth(p, d)

E(p, d) = Edata(p, d)+ Esmooth(p, d) (6)

The data term Edata consists of a matching cost CL,R(p, d)
in traditional binocular stereo, replaced by CO,I (p, d) in our
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FIGURE 6. Proposed dataset and examples of estimated disparity maps (colormap jet). From left to right, three main categories of objects according to
size: Tiny (< 1 cm3), Small (6.5 cm3) and Medium (up to 280 cm3). From top to bottom, reference images, reconstructions by means of binocular SGM
(choosing the baseline according to Figure 2) and SiSteR.

setup. The smoothness term Esmooth(p, d) enforces spatial
continuity in the disparity domain as follows

Esmooth(p, d) = min
q>1

[CO,I (p′, d),CO,I (p′, d ± 1)+ P1,

CO,I (p′, d ± q)+P2]− min
k<Dmax

(CO,I (p′, k))

(7)

being P1 and P2 two smoothness penalties, discouraging
significant disparity gaps between p and previous pixel p′

along the scanline path. Finally, a Winner Takes All (WTA)
strategy is applied to select for each pixel p the disparity
hypothesis d with the minimum cost.

V. EXPERIMENTS
A. DATASET ACQUISITION
The setup used in our experiments consists of a UR5 Uni-
versal Robot with a flange-mounted VGA Camera Module,
as depicted in Figure 4. Although the camera has been
mounted with CAD-aided precision on the flange axis
(Figure 5), the extrinsic parameters are further refined
using the approach described in [44]. In practice, using
a chessboard calibration pattern, stationary in the world,
and framing it from multiple viewpoints with the eye-on-
hand camera, one can estimate the pose of the camera with
respect to the end-effector by solving a bundle adjustment
problem [45].

Thanks to the high precision and accuracy provided by
the robot, it is feasible to control the camera 6-DoF pose
arbitrarily, i.e. as if it were the end-effector of themanipulator.
With these operational conditions, it was possible to collect
a dataset (shown in Figure 6), by varying the object-camera
distance and producing several images sets I, as described
in section IV. At the same time, due to availability of 3D
CAD models for all objects, it was possible to reproduce a

FIGURE 7. Manual alignment (below) between a real image (top left) of
an object belonging to our dataset (in this case the NodeMcu) and its
synthetic model (top right).

simulated counterpart (often referred to as digital twin) of the
real scenes, as illustrated in Figure 4. This simulation made
it possible to move a virtual camera according to the robot
feedback and then render the Z-Buffer of the corresponding
viewpoint so as to obtain a synthetic Depth ground-truth,
as long as the 3D pose of each object, in the robot’s reference
frame, is computed. Although calculating this 3D pose may
seem like a hard-working approach, it is straightforward
if the extrinsic parameters of the camera and the precise
elevation of the worktable are known. The latter can be
easily inferred upon installation of the robot. In our settings,
we have chosen to place all the objects in an upright position.
Thus, by knowing the exact elevation of the plane on which
they lay, estimating their 3D pose boils down to finding the
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TABLE 1. Experiments on the proposed dataset. We collected eight objects, grouped into Medium (a), Small (b) and Tiny (c) according to their size. Each
object was acquired from two different distances.

3 degrees of freedom (x-y plane coordinates and yaw angle)
with which they can be placed on the working table. Finding
these 3 degrees of freedom manually by comparing the two
RGB images, i.e. the real and the synthetic ones, turns out a
trivial problem, as illustrated in Figure 7.
Hence, by determining the exact 3D pose of our objects

in the real and virtual world, we can move the real and
virtual cameras simultaneously to collect any viewpoint of
our targets with a depth ground truth perfectly aligned to the
real RGB image. We collected images according to a set of
baselines (listed in Figure 2) and from different distances
to the target object (1 cm, 5 cm, 10 cm). This setup will
allow for highlighting the limitations of standard off-the-
shelf stereo cameras, ineffective for very close acquisitions
whereas our framework succeeds. The dataset is made of
eight objects, depicted in Figure 6, organized into three
main splits: Tiny, Small and Medium according their size.
In the figure, we report name and dimensions on top of each
component.

B. 3D RECONSTRUCTION ACCURACY
We evaluate the effectiveness of SiSteR by reconstructing the
objects included in our dataset. Purposely, we measure the
difference between the estimated depth maps and the ground-
truth, obtained through the alignment procedure described in
subsection V-A, by computing the Root Mean Square Error
(RMSE).

We report the outcome of these experiments in Table 1a,
Table 1b and Table 1c for Medium, Small and Tiny objects,

respectively. As reported in the tables, for each object we
acquired images from two distances, with the best result for
each distance highlighted in bold and the best for each object
in red. Besides, in each table, we report results obtained by
the following approaches and configurations:
• SGM - COTS, by processing image pairs acquired with
a fixed stereo baseline (25mm) and the SGM algo-
rithm [22], with the purpose of emulating a commercial
off-the-shelf (COTS) device, e.g. the Duo MLX camera.

• SGM -BTB, by processing image pairs acquired beyond
the baseline (BTB), traditionally fixed in stereo cameras.
The baseline is set in order to minimize the error with
respect to the distance according to Equation 1, i.e.
2mm, 10mm and 25mm at distances 1cm, 5cm and 10cm,
respectively.

• SiSteR-SGM w/o ω, our baseline implementation of
SiSteR leveraging four target views, as in Figure 3,
without occlusion handling during cost aggregation.

• SiSteR-SGM in its full configuration, i.e. with occlu-
sion handling.

• SiSteR-MC-CNN-fst, replacing in the previous con-
figuration the conventional matching cost computation
by a Convolutional Neural Network [27] in charge of
estimating initial matching costs between pixels across
the five images.

Except for the latter, tuned as in [27] and deployed without
additional optimizations, such as CBCA and post-processing
to avoid over-smoothing, all other configurations rely on a
7× 9 census transform to compute the initial matching costs,
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FIGURE 8. Nodemcu acquisitions at 1cm (top) and 5cm (bottom). From
left to right, origin image O, SiSteR-SGM and SiSteR-MC-CNN-fst depth
estimations. The low textured appearance from a very close viewpoint
leads to noisy estimates while acquiring the object from a higher distance
and with an appropriate baseline leads to more accurate reconstructions.

P1 and P2 are set according to [46], and ε is set to 3. For
all methods, pixels without valid disparities (e.g. discarded
by LRC in the binocular case) are interpolated as in [28].
In the reminder, we will analyze in detail how each of the
configurations listed above does behave across the three splits
of the dataset.

1) BEYOND THE BASELINE
By looking at the results achieved by SGM-COTS across
the three splits, we can perceive how an off-the-shelf stereo
camera is not suited to close range accurate depth perception.
In particular, although it is quite reliable at 10 cm when
dealing with Medium components, as shown in Table 1a,
the 25 mm baseline chosen to emulate such setup fails at
estimating reliable depth at 1cm and 5cm distance from the
sensors, these distances being required to achieve enough
resolution in the case of Small and Tiny objects, as shown
in Table 1b and Table 1c. This behaviour is mainly due
to the chosen baseline being too wide for these very close
acquisitions, dramatically reducing the overlapping regions
in the two images and thus preventing many correspondences
between pixels to be established. This results in noisy
disparity maps and much higher RMSE, as reported in row
1 in the tables.

In contrast, removing the fixed baseline constraint (BTB)
leads to much more accurate results on the very close
acquisitions at 1 cm and 5 cm. Although the accuracy
achieved at 10 cm by a COTS solution is not improved,
confirming that the 25 mm baseline is effective in this
latter case, the capability of going beyond the fixed baseline
enabled by our single camera configuration allows for
much more precise reconstructions at closer distances,
crucial to accurately reconstruct details in small and tiny
objects.

2) SiSteR AND OCCLUSIONS HANDLING
Considering the complete acquisition setup enabled by
SiSteR, we can further improve the quality of reconstructed
objects. At first, we focus on Medium objects and acquisi-
tions at 10cm distance, i.e. the case for which the considered
COTS solution is effective. Although the baseline distance

is not an issue under this hypothesis, occlusions still limit
the effectiveness of a binocular stereo algorithm. Run-
ning SiSteR-SGM even without explicit occlusion handling
(w/o ω) already soften the errors in these regions (rows 1 vs
3 in the table), further improved when explicit handling is
enabled (row 4). Thus, improvements achieved by SiSteR
setup are not limited by the possibility of choice of the
baseline distance.

Moving to close acquisition distances, i.e. 5 and 1 cm,
COTS baseline is no longer effective and thus we compare
the SiSteR framework with SGM-BTB, observing moderate
improvements introducedwithout explicit occlusion handling
(w/o ω), with just few exceptions as reported by rows 2 and 3.
In particular, this occurs in the presence of large occlusions
in Medium and Small objects, i.e. Component1B-5 cm and
Nodemcu-1 cm, where the cost fusion does not filter out
noisy matching scores near boundaries and a proper strategy
is necessary to overcome this issue. Indeed, the accuracy
consistently improves on all configurations when enabling
the OTC check, as it can be perceived by comparing
rows 3 and 4 of each table. In particular, all SiSteR-SGM
setups outperform both binocular strategies when handling
occlusions by the OTC check.

3) SiSteR AND DEEP LEARNING
Finally, we embed a learning-based matching function in
SiSteR when running the binocular matching cost com-
putation step, as this this strategy is known to be more
accurate than traditional matching measures like the census
transform. We choose the MC-CNN-fst network by Zbontar
and LeCun [27] because of its fast processing time on a
high-end GPU hardware. Although such setup is currently
not common in most practical robotic applications, this
experiment proves that SiSteR is amenable to the more
recent trends in computer vision. However, obtaining enough
samples to train the network from scratch may require a
substantial overhead. Thus, in our experiments, we use the
weights made available by the authors [27] and trained on
the KITTI dataset [28], as they better generalize to our
environment compared to the Middlebury v3 weights. The
last row in each table report the accuracy achieved with this
configuration, namely SiSteR-MC-CNN-fst. We can see how
it produces the most accurate results on any object in our
dataset in most cases, with very few exceptions such as for
Arduino-1 cm on which SiSteR-SGM results much more
effective.We ascribe this to the challenging, reflective surface
shown in Figure 9. In fact, despite the excellent quality of
the overall reconstruction, the magnitude of errors onto the
reflective surfaces is much higher deploying the learning-
based matching cost MC-CNN-fst. Moreover, sometimes
SiSteR-MC-CNN-fst performs worse when dealing with
close-range acquisitions, where it is outperformed by SiSteR-
SGM, like in the case of Nodemcu-1 cm and Washer-1 cm.
This is caused by the very different image content observed at
such close distance with respect to what observed at training
time.
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FIGURE 9. Arduino acquisition at 1cm. From left to right, origin image O,
SiSteR-SGM and SiSteR-MC-CNN-fst depth estimates.

FIGURE 10. Reconstruction (top right) of a Bunch of Nuts (left image). The
bottom-right picture shows the 3D instance segmentation obtained by a
Plane Segmentation Algorithm [47].

FIGURE 11. Reconstruction (top right) of a Bin of nuts (left image). The
bottom-right picture shows detection of an item by a 3D Object Detection
pipeline [48].

4) RUNTIME ANALYSIS
Compared to a classical binocular stereo algorithm, the exe-
cution time required to run SiSteR is bound to the number
of cost volumes computed. For instance, to run SiSteR-MC-
CNN-fst on the whole set of targer views requires to compute
four cost volumes, thus requiring 3.2 secs instead of 0.8 on a
Titan X GPU [27].

C. QUALITATIVE RESULTS AND APPLICATIONS
Finally, we report some qualitative results obtained by
SiSteR, showing some examples of potential applications
enabled by our novel 3D reconstruction approach. Figure 10
depicts the outcome of a 3D segmentation algorithm applied
to a bunch of nuts acquired by our robot. We can see
how running a Plane Segmentation Algorithm [47] allows
us to easily detect all the single nuts laying on the plane.
Figure 11 illustrates the results obtained by means of a 3D
object detection pipeline [48] run on a large set of nuts.
We can perceive again how the fine details recovered by the
SiSteR reconstruction allow for effective detection of a single
instance of multiple objects in the scene.

D. SUPPLEMENTARY MATERIAL
In the supplementary material, we show a proof-of-concept
robotic manipulation task, of a tiny object, in which the 3D

FIGURE 12. Example of experimental setup. (a) Top view RGB image,
(b) reconstructed point cloud, (c) RGB mesh.

Reconstruction of the environment is entirely carried out by
Sister. Figure 12 frames the experimental setup on which we
deploy SiSteR to fully reconstruct the scene with multiple
levels of detail, reducing the baseline according to the size of
the target objects, in order to obtain a point cloud (b) or mesh
(c) representation. We refer the reader to the supplementary
video material for a full demonstration.

VI. CONCLUDING REMARKS
We have proposed a simple, yet effective, approach to 3D
reconstruction based on robotic vision which is particularly
amenable to small objects. Indeed, the proposed SiSteR
approach enables 3D perception of the environment by
leveraging a camera mounted in eye-on-hand configura-
tion on a robotic manipulator. Moreover, our OpenSource
implementation, available either as a ROS service [49] or a
standalone C++ library, makes it straightforward to generate
a Colored Point Cloud associated to the central vantage point
of the cross-shaped – variable baseline – acquisition setup
sketched in Figure 5.

We have assessed the performance of our proposal on
a specific viewpoints configuration (the cross-shape) on a
novel dataset with ground-truth aimed at reconstruction of
Medium, Small and Tiny objects. Our experiments vouch
for the superior quality of the 3D reconstructions enabled by
SiSteR, thanks to i) its capability of adjusting the baseline
to keep the error linear with respect to the distance from the
acquired objects and maximize the overlap between images,
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and ii) the joint deployment of multiple viewpoints in order
to handle occlusions.

As future work, we plan to carry out a more in-depth
investigation on other possible viewpoint configurations as
well as on the deployment of the minimum baseline allowed
by the current set-up (2mm). As a further evolution of
SiSteR, we will also consider the end-to-end deep learning
approaches that proved to be very effective in standard
binocular stereo.
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