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Examination of coalescence as the origin of nuclei in hadronic collisions
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The origin of weakly bound nuclear clusters in hadronic collisions is a key question to be addressed by
heavy-ion collision (HIC) experiments. The measured yields of clusters are approximately consistent with
expectations from phenomenological statistical hadronization models (SHMs), but a theoretical understanding
of the dynamics of cluster formation prior to kinetic freeze-out is lacking. The competing model is nuclear
coalescence, which attributes cluster formation to the effect of final state interactions (FSI) during the propa-
gation of the nuclei from kinetic freeze-out to the observer. This phenomenon is closely related to the effect of
FSI in imprinting femtoscopic correlations between continuum pairs of particles at small relative momentum
difference. We give a concise theoretical derivation of the coalescence-correlation relation, predicting nuclear
cluster spectra from femtoscopic measurements. We review the fact that coalescence derives from a relativistic
Bethe-Salpeter equation, and recall how effective quantum mechanics controls the dynamics of cluster particles
that are nonrelativistic in the cluster center-of-mass frame. We demonstrate that the coalescence-correlation
relation is roughly consistent with the observed cluster spectra in systems ranging from PbPb to pPb and
pp collisions. Paying special attention to nuclear wave functions, we derive the coalescence prediction for
the hypertriton and show that it, too, is roughly consistent with the data. Our work motivates a combined
experimental programme addressing femtoscopy and cluster production under a unified framework. Upcoming
pp, pPb, and peripheral PbPb data analyzed within such a program could stringently test coalescence as the
origin of clusters.
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I. INTRODUCTION

Loosely bound nuclei like the deuteron (hereafter D), 3He,
3H, 3

�H, and their antiparticles are detected among the prod-
ucts of high-energy hadronic collisions at the CERN Large
Hadron Collider (LHC) and other experiments, and their study
is a central objective in heavy-ion collision (HIC) experi-
ments [1–3]. Interestingly, the momentum-integrated yields
of these nuclei are roughly consistent with being drawn from
a thermal distribution with the same temperature parameter
Tch that fits the yields of mesons and nucleons [4–7]. Taken
together from π± to 4He, the hadron yields span some nine
orders of magnitude with only O(1) discrepancies.1 This has
led some authors to speculate that nuclei take part, on equal
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to mesons and nucleons [6].
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footing with the “more fundamental” mesons and nucleons,
in an equilibrium partition function characterizing the high
excitation state (HXS) produced in HICs. A recent account of
this statistical hadronization model (SHM) is given in Ref. [4].

While the SHM is approximately consistent with cluster
yields, no first-principle theoretical framework as of yet ex-
plains the dynamics of cluster formation in the HXS before
kinetic freeze-out.2 Clusters are big (several fm) fragile (bind-
ing energies Eb � 10 MeV, as low as Eb ≈ 0.13 MeV for 3

�H
[10]) objects, while even at kinetic freeze-out the HXS does
not exceed a few3 fm and it is a hot state with characteristic
particle excitation energies of the order of 100 MeV. What
does it mean for a D with diameter of about 4 fm to exist
in an equilibrium distribution in an HXS of diameter 2 fm,
produced in pp collisions? What does it mean for 3

�H, with
effective diameter around 14 fm? This puzzle makes the origin
of nuclei uniquely interesting.

2A recent speculation is the formation of compact “preclusters”
[8,9] due to an in-medium modification of the nuclear potential.

3By this we mainly have in mind the HXS homogeneity radius as
revealed by femtoscopy [11,12], to be discussed later on. But even
the total HXS volume as fitted in the SHM in high multiplicity PbPb
collisions is only of diameter 20 fm, shrinking to 2 fm or so in low
multiplicity pp and pPb collisions [6].

2469-9985/2021/103(1)/014907(19) 014907-1 Published by the American Physical Society

https://orcid.org/0000-0002-8118-9049
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.014907&domain=pdf&date_stamp=2021-01-28
https://doi.org/10.1103/PhysRevC.103.014907
https://creativecommons.org/licenses/by/4.0/


BELLINI, BLUM, KALWEIT, AND PUCCIO PHYSICAL REVIEW C 103, 014907 (2021)

The kinetic theory analysis of [13], focusing on D forma-
tion in high-multiplicity PbPb collisions, may shed some light
on the problem. This analysis demonstrated that, indeed, D
observed at the detector must emerge from the kinetic freeze-
out region and not from the chemical freeze-out region of the
HXS, to which the SHM parameter Tch corresponds. However,
Ref. [13] treated the D as a point particle and it is far from
clear if and how their analysis could be adapted to smaller
systems like pp, pPb, or peripheral PbPb collisions.4

An alternative explanation for the origin of nuclei, by-
passing the limitations of kinetic theory, is proposed by
coalescence. The basic assumption of the coalescence model
is that the expansion of the HXS leads to kinetic freeze-out
with nucleons but—due to their fragility and size—essentially
no nuclei. The HXS at kinetic freeze-out can be described by
a quantum mechanical (QM) density matrix. Projecting the
density matrix onto particle states at the detector gives the ob-
served particle spectra. Final state interactions (FSI) mediated
by nuclear scattering and Coulomb photon exchange enter
this projection as they affect the propagation of the particles
from the HXS to the detector. FSI manifest themselves in two
ways:

(1) FSI imprint momentum correlations among pairs of
continuum particles. The analysis of this phenomenon
is known as femtoscopy.5

(2) FSI also admit discrete bound-state multinucleon solu-
tions, namely nuclei. This is nuclear coalescence.

It is important to note that the coalescence model predicts
that the yields of nuclei approximately inherit the thermal
spectra of their nucleon constituents, up to a dimensionless
QM correction factor. In many cases (e.g., low-pt D and 3He
formation in high multiplicity PbPb collisions) the QM cor-
rection factor is close to unity [1,15]. Thus, the approximately
thermal yield of nuclei need not point to the nuclei taking part
in an equilibrium partition function before kinetic freeze-out.
For some nuclei and systems, however, the QM factor is
predicted to be much smaller than unity. An example is the
production of 3

�H in pp collisions, or (especially at high-pt )
in low multiplicity PbPb collisions. These systems offer a key
discriminator between the coalescence model and the SHM.
Our goal in this paper is to study the theoretical prediction
of coalescence, compare to available experimental data, and
highlight the path to making this test conclusive.

A central feature in this paper is the relation between
coalescence and femtoscopic correlations among continuum
nucleons. From the perspective of the coalescence model,
femtoscopic correlations and nuclei production are closely
related. In a clear sense, the successful reconstruction of the
imprint of FSI on pair correlations lends credence to the basic
framework of coalescence, which deals with the bound state
solutions of essentially the same FSI (in different isospin

4We thank Urs Wiedemann for pointing out this issue during a
workshop at CERN.

5The correlation study is also often referred to as Hanbury Brown–
Twiss (HBT) analysis. For a comparative discussion and historical
notes, see [14].

channels). Moreover, once femtoscopy calibrates the HXS
source characteristics, nuclei yields are predicted without free
parameters. Over the years the community (experimental and
theoretical) developed a habit of considering femtoscopy and
nuclei analyses separately, making it cumbersome to combine
the information content of the measurements. One of our goals
here is to motivate joint experimental analyses of femtoscopy
and cluster yields.

The plan of the paper, along with a brief summary, is as
follows.

In Sec. II we briefly review the underlying relation
between femtoscopy and cluster formation, defining the
coalescence/femtoscopy framework. The basic formalism
was laid out by Lednicky et al. [16–18]. We provide a
quick reduction of this formalism to observationally acces-
sible objects. This is a good starting point for the discussion,
because it demonstrates that coalescence arises in a relativistic
quantum field theoretic (QFT) calculation. In Sec. II A we
show how, subject to two key approximations (the smooth-
ness approximation and the equal-time approximation), the
model-independent coalescence-correlation relation between
deuteron production and two-proton femtoscopy comes about.
The main result here is the manifest relation between the
well-known Eq. (14), for femtoscopy, and Eq. (15), for
the D coalescence factor. This relation was derived first in
Ref. [19] starting from the QM limit. Our independent deriva-
tion here gives another perspective on this result, showing, for
example, that it does not require density matrix factorization
to apply for its validity. In Sec. II B we review how adding
the assumption of density matrix factorization allows one to
connect two-particle femtoscopy analyses to single-particle
spectra and three-body coalescence. In Sec. II B 2 we derive
the coalescence prediction for 3

�H and 3He. Equations (30)
and (31), or their momentum space versions of Equations (34)
and (35), are the most model-independent versions of these
coalescence factors we know of.

None of our results in Sec. II rely on the details of the
underlying nucleon emission function, or needs to specify
a model of the dynamical evolution of the HXS: our re-
sults simply connect femtoscopy with cluster yields, and the
connection should apply to any self-consistent HXS model.
To make contact with measurements, however, we need to
specify the two- and three-particle source. We turn to this in
Sec. III. We start in Sec. III A by appealing to observational
femtoscopy parametrizations of the two-particle source (ex-
tended, with some added assumptions, to the three-particle
source). Relying on experimental fits allows us to keep the
analysis as model independent as we can. While this is not an
essential requirement of the framework, we stick in this paper
to Gaussian or semi-Gaussian parametrizations. An effort to
improve on the precision of the source determination was
carried out in Ref. [20]. In Appendices A and B we give
some quantitative model-dependent theoretical examples that
suggest that an anisotropic [three-dimensional (3D)] Gaussian
source parametrization is probably accurate enough for the
purpose of testing the origin of clusters via the coalescence-
correlations relation.

The next ingredient needed is the nuclear wave func-
tions. In Sec. III B we derive the coalescence factors

014907-2



EXAMINATION OF COALESCENCE AS THE ORIGIN … PHYSICAL REVIEW C 103, 014907 (2021)

corresponding to the simplified Gaussian wave functions.
The Gaussian wave function is an oversimplification in some
cases, but at the cost of an O(1) theoretical error it allows us to
derive analytic results for the coalescence factors, summarized
by Eqs. (49)–(51). We note that the Gaussian wave functions
we consider allow for different cluster length scales for three-
body states; for 3

�H this is crucial, as the p-n factor of the wave
function is considerably more compact than the �-pn factor.
Equations (49)–(51) also account for the intrinsically
anisotropic shape of the two- and three-particle source de-
scribing the HXS. As we illustrate in Appendix B, the
two-particle source is expected to be truly anisotropic, espe-
cially at large pt .

In Sec. III C we extend the analysis to more accurate
non-Gaussian wave functions. For D we derive an analytic
coalescence factor formula that applies to the Hulthen wave
function if the underlying two-particle source is approximated
as 1D Gaussian. The more realistic 3D two-particle source
can be easily accounted for by numerical integration. For 3

�H
we consider the recent three-body wave function proposed
by [21]. We show that while the theoretically expected wave
function is non-Gaussian, exhibiting an extended high-q tail,
nevertheless an effective Gaussian wave function fit does a
reasonably accurate job in the coalescence factor calculation
(valid to a factor of 2 or so). What does turn out to be quantita-
tively important, as already noted above, is the consideration
of the two different length scales associated with the p-n and
�-pn factors of the state.

In Sec. IV we give a rudimentary comparison to data. In
Sec. IV A we recap results from [19] for D and 3He, adding
a pPb data point to the PbPb and pp measurements discussed
there; we also correct a few typos in Ref. [19]. In Sec. IV B
we compare the coalescence prediction for 3

�H to PbPb data.
We emphasize (as was done before us [22–24]; but here with
a robust coalescence calculation) that 3

�H data in small sys-
tems (pp, pPb, or low multiplicity PbPb) has the potential to
conclusively rule out (or support) coalescence as the dominant
origin of clusters.

In Sec. V we discuss and summarize our results.

II. THE COALESCENCE/FEMTOSCOPY FRAMEWORK

The description of femtoscopic correlations between nu-
cleons [25] and the coalescence model for nuclei [26,27] are
two aspects of the same theoretical framework. The idea is
that at kinetic freeze-out the HXS can be described by a
multiparticle density matrix ρ̂HX. Depending on the measured
observable, this density matrix can be projected onto final
states of different multiplicities. In what follows we present
a concise derivation of coalescence and the coalescence-
correlations relation [19], aiming to collect different aspects
of the problem under the same roof, so to speak. Many of the
results were also derived elsewhere, notably in Refs. [16–19]
and (albeit with model dependence) in Refs. [15,28–36].

A. Two-particle correlations and the deuteron

If the phase space density of nucleons around the time
when they last scatter against other particles (mostly pions)

in the HXS is not too high, then the subsequent propagation
of pairs of nucleons emitted very near in phase space would be
dominated by FSI, while additional interactions with particles
other than the pair would be subdominant. With this sudden
approximation,6 the Lorentz-invariant yield of nucleon pairs
at total spin s is given by [16,18]

γ1γ2
dN2,s

d3p1d3p2
= 2s + 1

(2π )6

∫
d4x1

∫
d4x2

∫
d4x′

1

×
∫

d4x′
2 �∗

s,p1,p2
(x′

1, x′
2) �s,p1,p2 (x1, x2)

× ρp1,p2 (x1, x2; x′
1, x′

2), (1)

where �s,p1,p2 (x1, x2) is the continuum Bethe-Salpeter ampli-
tude [39] describing the FSI of the pair. Similarly, the yield of
deuterons at momentum P is given by

γ
dNd

d3P
= 2sd + 1

(2π )3

∫
d4x1

∫
d4x2

∫
d4x′

1

×
∫

d4x′
2 �∗

d,P(x′
1, x′

2) �d,P(x1, x2)

× ρp1,p2 (x1, x2; x′
1, x′

2), (2)

where �d,P(x1, x2) is the bound state Bethe-Salpeter ampli-
tude describing the deuteron. The role of the Bethe-Salpeter
amplitudes � is to resum soft diagonal (ladder) FSI diagrams,
factoring their effect out of an assumed underlying short-
distance amplitude forming the density matrix ρp1,p2 .

Obviously, modeling the spectra Eqs. (1) and (2) requires
proper modeling of the FSI, that are either calculable from
first principles (in the case of Coulomb) or measurable (in the
case of nuclear scattering amplitudes) and that we assume to
be known. Modeling ρp1,p2 from first principles, however, is
currently impossible. Our goal in this section, and in the rest of
the paper, is to demonstrate that even without a priori knowl-
edge of ρp1,p2 , the mere fact that the same ρp1,p2 occurs in both
of Eqs. (1) and (2) is enough to allow a model-independent,
approximate prediction of the deuteron (and, with some added
assumptions, other clusters) spectrum based on measurements
of femtoscopic correlations [19].

Let us define c1,2 = (p1,2P)/P2, where the pair total mo-
mentum is P = p1 + p2 ≡ 2p. With these, we define the
center-of-mass coordinate X = c1x1 + c2x2, the relative mo-
mentum7 q = c2 p1 − c1 p2, and the relative coordinate x =
x1 − x2. Both for two-particle correlations and for loosely
bound nuclei, we are interested in nucleon pairs that are
nonrelativistic in the pair rest frame (PRF), q2 � m2, and can
neglect corrections of O(q2/m2). In this case, the dependence
of the amplitude � (be it �s,p1,p2 or �d,P) on the pair total mo-
mentum and center-of-mass coordinate can be approximately

6See [1,26,37] for nonrelativistic formulations. See [38] for
a discussion of corrections to the sudden approximation due
to the residual charge of the HXS, as applied to low energy
(80 MeV/nucleon) HIC.

7Note c1 + c2 = 1, qP = 0 and (p1 − p2)P = (c1 − c2)P2 = m2
1 −

m2
2.
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factored out from the dependence on the relative momentum
and relative coordinate,8 via

�(x1, x2) = e−iPX φ(x). (3)

Using Eq. (3) and changing to convenient coordinates, we can
rewrite Eqs. (1) and (2) as

γ1γ2
dN2,s

d3p1d3p2
= 2s + 1

(2π )6

∫
d4r

×
∫

d4k

(2π )4
D̃s,q(k, r) S̃p1,p2 (k, r), (4)

γ
dNd

d3P
= 2sd + 1

(2π )3

∫
d4r

×
∫

d4k

(2π )4
D̃d (k, r) S̃p1,p2 (k, r), (5)

where we define the relativistic internal Wigner density

D̃(k, r) =
∫

d4ζ eikζ φ

(
r + ζ

2

)
φ∗

(
r − ζ

2

)
(6)

(with D̃s,q and D̃d obtained from φs,q and φd , respectively)
and where

S̃p1,p2 (k, r) =
∫

d4x
∫

d4l1 e−il1(c1P+k)
∫

d4l2 e−il2(c2P−k)

×ρp1,p2

(
x + c2r + l1

2
, x − c1r + l2

2
; x

+ c2r − l1
2

, x − c1r − l2
2

)
. (7)

The Wigner density we would obtain if we could turn
off both FSI and quantum statistics (QS) is D0

s,q(k, r) =
(2π )4δ(4)(k − q), independent of r. With this in mind, and
with an eye to Eq. (4), we can define a hypothetical reference
uncorrelated (and unpolarized) pair spectrum,

γ1γ2
dN0

2

d3p1d3p2
= (2sN + 1)2

(2π )6

∫
d4r S̃0

p1,p2
(q, r), (8)

where sN = 1/2 is the nucleon spin. We stress that the refer-
ence pair spectrum of Eq. (8) is not a real physical quantity:
obviously, we cannot really turn off FSI and QS. To highlight
this fact we add the superscript 0 on the object S̃0

p1,p2
, to

distinguish it from S̃p1,p2 entering Eqs. (4) and (5).9

We can try to mimic the reference pair spectrum ex-
perimentally by pairing particles from different events with

8In general, had we been interested in relativistic motion of the
nucleons in the PRF, we would need to keep track of nontrivial
dependence of the PRF amplitude on the total momentum, φ(x) →
φP(x).

9Even if we could turn off FSI and QS we would still not be guar-
anteed that the HXS provides S̃0

p1,p2
= S̃p1,p2 ; for this identification to

hold, density matrix factorization, introduced in Sec. II B, needs to be
satisfied. But our definition of S̃0

p1,p2
is merely an auxiliary: the results

in the current section up to and including Eq. (18) do not depend on
density matrix factorization and do not require S̃0

p1,p2
= S̃p1,p2 .

similar event characteristics. With this understanding, the pair
correlation function is defined as

C(p, q) =
∑

s γ1γ2
dN2,s

d3p1d3p2

γ1γ2
dN0

2
d3p1d3p2

, (9)

and the coalescence factor for deuteron formation is defined
as

B2(p) = P0 dNd
d3P

p0
1 p0

2
dN0

2
d3p1d3p2

≈ 2

m

γ dNd
d3P

γ1γ2
dN0

2
d3p1d3p2

, (10)

where we approximated mD ≈ 2m.
At this point it is useful to make two approximations:
Smoothness approximation. The smoothness approxima-

tion was discussed widely in the literature [11,12,40]. The
version of this approximation we take here amounts to re-
placing Sp1,p2 (k, r) ≈ Sp1,p2 (0, r) in Eqs. (4) and (5). The
k integral of the D̃ functions can then be done, yielding∫

d4k
(2π )4 D̃(k, r) = |φ(r)|2. Similarly, we replace S0

p1,p2
(q, r) ≈

S0
p1,p2

(0, r) in the reference pair spectrum Eq. (8). The accu-
racy of the smoothness approximation is probably sufficient
for our purpose in PbPb collisions; in pp collisions we think
that a careful assessment is still warranted.

Equal-time approximation. In the PRF we have P =
(M, 0), q = (0, q) and x = (t, x). A key point, derived clearly
in Refs. [16,18] (see especially Appendix A of [18] for a
detailed discussion), is that the Bethe-Salpeter amplitude in
the PRF nonrelativistic limit is approximately independent of
the PRF time:

φ(x) = φ(x)

[
1 + O

(
t

mx2

)]
. (11)

At the level of the leading term in the equal-time approxima-
tion of Eq. (11), φs,q (φd ) is equal to the QM static scattering
wave (bound state) solution of the Schrödinger equation [41].

In hadronic collisions we have t ≈ x ≈ few fm, implying
a correction of order 0.2 1 fm

x to the equal-time approximation.
Thus, we are certainly sacrificing some precision when we
adopt it: the incurred theoretical error is probably about 10%
for PbPb collisions, where x ≈ 3 fm, but could be several tens
of percent in pp collisions where x ≈ 1 fm. Nevertheless, the
equal-time approximation would allow us significant utility
with relatively simple notation. We think that it probably
allows for sufficient accuracy to establish (or exclude) coa-
lescence as the main origin of clusters in hadronic collisions.
Note that the free solution in the absence of FSI is the plane
wave φ(x) = e−iqx [(anti)symmetrized by QS] and the equal-
time limit of Eq. (11) is exact in that case, because in the PRF
qx = −qx.

Adopting the smoothness and equal-time approximations,
we are led to the definition10 of the normalized two-particle
source S2, a function of the PRF spatial coordinate r, as an

10It is common practice (e.g., [20,42,43]) to drop the explicit men-
tion of p in S2(r); this, despite the fact that S2(r) does depend on p.
As long as we keep this fact in mind, this practice brings no harm.
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integral in PRF time t = r0:

S2(r) =
∫

dr0S̃p1,p2 (0, r)∫
d4r S̃0

p1,p2
(0, r)

. (12)

The pair correlation function is then given from Eq. (9) as

C(p, q) =
∑

s

wsCs(p, q) (13)

with the spin weights ws = (2s + 1)/(2sN + 1)2 and

Cs(p, q) ≈
∫

d3r |φs,q(r)|2S2(r). (14)

Similarly, the deuteron coalescence factor is given from
Eq. (10) as

B2(p) ≈ 2(2sd + 1)

m(2sN + 1)2
(2π )3

∫
d3r |φd (r)|2 S2(r). (15)

Two general comments are in order. First, the aim of
femtoscopy analyses like, e.g., Refs. [20,42,43] (for reviews,
see [11,12]) is to measure the source S2(r) by solving
the Schrödinger equation for the wave functions φs,q(r)
[18,25,44] and comparing the observed two-particle spectrum
with Eqs. (13) and (14). In this exercise, obtaining agreement
with the experimental data appears to require the use of the
correct set of FSI potentials. We would thus like to emphasize
that the success of the source reconstruction analyses lends
some credence to the basic framework leading to Eqs. (13)
and (14). As we have just seen, this is the same frame-
work that stands behind the coalescence model for nuclei, the
only difference being that femtoscopy deals with continuum
scattering state solutions of FSI and coalescence deals with
discrete bound state solutions of FSI. Thus the mere existence
of successful femtoscopy analyses lends some credence to
coalescence as the origin of (at least some of the) nuclei
observed in hadronic collisions. In the future, it might even
be possible to observe a trace of the bound state formation
directly on the correlation function of, for instance, d-� or
d-p [45].

Second, with S2(r) measured, Eq. (15) predicts the
deuteron yield model independently with no free parameters.
As we show in Sec. IV, this prediction is consistent with
experimental data to within a factor of 2 or so across systems
ranging from PbPb to pPb and pp at different multiplicities
[19,36]. This is strong evidence that coalescence contributes
to the production of deuterons in hadronic collisions at the
O(1) level, at least.

A caveat to keep in mind is that, although Eq. (14) is
commonly used in the literature, we do not know a model-
independent way of checking the quantitative corrections due
to the smoothness and equal-time approximations, which we
have done to reduce Eq. (4) into Eq. (14); or the sudden
approximation itself, allowing us to write Eq. (4) in the first
place. A systematic study of these uncertainties is warranted if
one wishes to narrow down the theory uncertainty associated
with Eq. (15).

As a technical aside, it is convenient to carry out some of
the analysis in momentum space. To this end it is useful to
introduce the momentum space function C2, which is just the

Fourier transform of S2(r):

C2(p, k) =
∫

d3r eikr S2(r). (16)

(We will usually keep the explicit appearance of p in C2.)
Defining the momentum space deuteron form factor Fd

|φd (r)|2 =
∫

d3k
(2π )3

eikr Fd (k), (17)

we can rewrite Eq. (15) as

B2(p) ≈ 2(2sd + 1)

m(2sN + 1)2

∫
d3kFd (k)C2(p, k). (18)

This is the version of the coalescence-correlation relation de-
rived in Ref. [19].

B. Connecting two-particle states with one- and three-particle
states: Density matrix factorization

While two-particle femtoscopic correlations are directly
and model-independently connected to deuteron coalescence,
the connection to single-particle spectra and to the coales-
cence of three-body states requires further assumptions. The
main assumption we need is the factorization of the multipar-
ticle density matrix into the product of single-particle density
matrices (see, e.g., [25,27]),

ρp1,p2 (x1, x2; x′
1, x′

2) ≈ ρp1 (x1; x′
1)ρp2 (x2; x′

2). (19)

Factorization cannot be exact. For example, in low multi-
plicity events total momentum conservation inevitably leads
to the breakdown of Eq. (19), seen observationally as “non-
femtoscopic correlations” at large q. Nevertheless, keeping
these caveats in mind we will adopt the factorization approx-
imation in what follows. Later on we investigate one simple
way to parametrize related corrections.

1. Uncorrelated pair spectrum as a product of one-particle spectra

Considering nucleons (protons and neutrons) with m1 ≈
m2 ≈ m, nonrelativistic in the PRF, we have q ≈ p1 − p2

and the factors c1 ≈ c2 = 1
2 + O(q2/m2). Inserting this into

Eq. (7) and using Eq. (19) leads to

S̃p1,p2 (q, r) ≈
∫

d4x S̃p1

(
x + r

2

)
S̃p2

(
x − r

2

)
, (20)

with the one-particle emission function

S̃p(x) =
∫

d4l e−il pρp

(
x + l

2
; x − l

2

)
. (21)

This S̃p(x) coincides (up to constant factors in the definition)
with the particle source of [25] and with the emission function
or phase space density of [11,12,15,46,47]. The reference pair
spectrum factorizes into the product of single-particle spectra,

γ1γ2
dN0

2

d3p1d3p2
≈

[
γ1

dN

d3p1

][
γ2

dN

d3p2

]
, (22)

γ
dN

d3p
= (2sN + 1)

(2π )3

∫
d4x S̃p(x). (23)
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Finally, the two-particle source S2 is constructed from single-particle emission functions as

S2(r) =
∫

dr0
∫

d4x S̃p
(
x + r

2

)
S̃p

(
x − r

2

)
[ ∫

d4x S̃p(x)
]2 . (24)

It can be more convenient to calculate C2(p, q), by inserting Eq. (24) into Eq. (16), giving the prescription

C2(p, q) =
∣∣ ∫ d4x eiqxS̃p(x)

∣∣2

[ ∫
d4x S̃p(x)

]2 . (25)

In evaluating Eq. (25), recall that we require q = (0, q) as specified in the PRF.
As a slight detour, consider the proton pair correlation with FSI turned off but quantum statistics still on, in the spin-

asymmetric or spin-symmetric state where φs,q(r) = 1√
2
(eiqr ± e−iqr ), respectively. Using Eq. (24) and noting that q0 = 0 in

the PRF, the pair correlation of Eq. (14) would be

Cs(p, q) ≈
∫

d3r|φs,q(r)|2S2(r) = 1 ±
∣∣ ∫ d4x e2iqxS̃p(x)

∣∣2

[ ∫
d4x S̃p(x)

]2 = 1 ± C2(p, 2q) (limit of no FSI), (26)

consistent with the usual expression in the literature [11,12,47,48] (note that q as defined in, e.g., [48] is equal to 2q in our
notation).

2. Hypertriton and 3He

The starting point in the coalescence calculation for the hypertriton 3
�H (pn�) is similar to Eq. (2) for the deuteron:

γ
dN3

�H

d3P
= 2s3

�H + 1

(2π )3

∫
d4xp

∫
d4xn

∫
d4x�

∫
d4x′

p

∫
d4x′

n

∫
d4x′

�

×�∗
3
�H,P(x′

p, x′
n, x′

�) �3
�H,P(xp, xn, x�) ρpp,pn,p�

(xp, xn, x�; x′
p, x′

n, x′
�), (27)

where �3
�H,P(xp, xn, x�) is the bound state Bethe-Salpeter amplitude describing the 3

�H. The total momentum is P = pp + pn +
p� ≡ 3p. We also define Ppn = pp + pn, cI = (pI P)/P2 with I = p, n,�, and c̃J = (pJPpn)/P2

pn with J = p, n. The center-of-
mass coordinate is then X = cnxn + cpxp + c�x�, and useful relative coordinates are rpn = xp − xn and r� = x� − c̃pxp − c̃nxn.
With these definitions the Bethe-Salpeter amplitude factorizes into �3

�H,P = e−iPX φ3
�H(rpn, r�).

The calculation for 3He (ppn) is similar, with the replacements rpn → rpp and r� → rn, etc.
Following the same steps as in Sec. II A and adding to that the smoothness approximation, the equal-time approximation, as

well as density matrix factorization à la Eq. (19) extended to three particles, we are led,eventually, to the normalized three-particle
source expressed as integrals of single-particle emission functions,

S3�(rpn, r�) =
∫

dr0
pn

∫
dr0

�

∫
d4x S̃p

(
x + rpn

2 − r�

3

)
S̃p

(
x − rpn

2 − r�

3

)
S̃(�)

p

(
x + 2r�

3

)
[ ∫

d4x S̃p(x)
]2 ∫

d4x S̃(�)
p (x)

, (28)

S3(rpp, rn) =
∫

dr0
pp

∫
dr0

n

∫
d4x S̃p

(
x + rpp

2 − rn
3

)
S̃p

(
x − rpp

2 − rn
3

)
S̃p

(
x + 2rn

3

)
[ ∫

d4x S̃p(x)
]3 . (29)

The coalescence factors are then found as

B3�(p) ≈ 3

m2

2s3
�H + 1

(2sN + 1)3
(2π )6

∫
d3rpn

∫
d3r�

∣∣φ3
�H(rpn, r�)

∣∣2 S3�(rpn, r�), (30)

B3(p) ≈ 3

m2

2sHe + 1

(2sN + 1)3
(2π )6

∫
d3rpp

∫
d3rn |φ3He(rpp, rn,)|2 S3(rpp, rn). (31)

We highlight that in the S3� calculation one emission function corresponds to the emission of a �, rather than a nucleon. For
simplicity we approximated m� ≈ m in the prefactor, at the cost of an error of about 10%.

Again, we can define the Fourier transform

C3�(p, q1, q2) =
∫

d3r1

∫
d3r2 eiq1r1+iq2r2S3�(r1, r2) (32)

and the momentum space form factor F3
�H,

∣∣φ3
�H(rpn, r�)

∣∣2 =
∫

d3kpn

(2π )3
eikd rpn

∫
d3k�

(2π )3
eik�r�F3

�H(kpn, k�). (33)
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In terms of these (and their equivalents for 3He) the coalescence factors read

B3�(p) ≈ 3

m2

2s3
�H + 1

(2sN + 1)3

∫
d3kpn

∫
d3k� F3

�H(kpn, k�) C3�(p, kpn, k�), (34)

B3(p) ≈ 3

m2

2s3He + 1

(2sN + 1)3

∫
d3kpp

∫
d3kn F3He(kpp, kn) C3(p, kpp, kn). (35)

The coalescence of hypertriton and 3He can be connected
to femtoscopy analyses, to the extent that the three-particle
normalized sources S3� and S3 can be accessed by correla-
tion measurements. This connection would be crucial for the
attempt to use 3

�H, due to its large nucleus size, as a test
of the coalescence framework. However, the connection is
not as direct as it is for deuteron formation. We discuss this
connection further in the next section.

III. COALESCENCE FROM CORRELATION FUNCTIONS

A. Femtoscopy source parametrization

We now want to make practical contact with observa-
tional information on the HXS source size, available from
femtoscopy studies. Experimental analyses commonly fit the
measured two-particle source using a Gaussian approximation
[20,42,43], the simplest version of which is the isotropic (or
1D) Gaussian [16]

S1D
2 (r) = 1(

4πR2
inv

) 3
2

e
− r2

4R2
inv . (36)

The radius parameter Rinv depends on p [20,42,43].
From the theoretical perspective [11,12,40] Eq. (36) could

arise, for example, if the emission function S̃p(x) receives
most of its support near some configuration space location Rs

and is also sharply peaked around kinetic freeze-out time t f ,
as measured in the emitted particle rest frame, allowing the
approximation

S̃p(x) ∝ e
− (r−Rs )2

2R2
inv δ(t − t f ). (37)

Inserting Eq. (37) into Eq. (24) immediately yields Eq. (36).
While more difficult to test experimentally [49], Eq. (37) also
predicts S3 of Eqs. (28) and (29),

S1D
3 (r1, r2) =

∫
d3x e

− (x+ r1
2 − r2

3 −Rs )2+(x− r1
2 − r2

3 −Rs )2+(x+ 2r2
3 −Rs )2

2R2
inv[ ∫

d3x e
− (x−Rs )2

2R2
inv

]3

= 1(
12π2R4

inv

) 3
2

e
− r2

1+ 4
3 r2

2
4R2

inv . (38)

The momentum space versions of the isotropic Gaussian
source model are

C1D
2 (p, q) = e−q2R2

inv , (39)

C1D
3 (p, q1, q2) = e−R2

inv (q2
1+ 3

4 q2
2 ). (40)

Note that here we have considered the correlation of
particles (e.g., protons) with the same underlying emission

function S̃p(x). Soon, however, we will use Eq. (40) to analyze
3
�H production which involves both S̃p(x) and S̃(�)

p (x), and
there is no guarantee that these emission functions involve
the same values of Rs and Rinv in Eq. (37). Experimental
results in pp collisions [20] suggest that Rinv as extracted from
p� correlations actually differs from Rinv extracted from pp
correlations by 20% or so.11 It must then be understood that,
in using our formalism to compute 3

�H, any effective value we
use for Rinv in Eqs. (38) or (40) cannot be more accurately de-
termined than the aforementioned 20%, without introducing
model-dependent assumptions concerning the behavior of the
emission functions. We will comment on this point again in
Sec. IV B when we discuss the comparison between the 3

�H
coalescence prediction and experimental data.

The isotropic Gaussian source model is quite unrealistic.
Even if the HXS “fireball” was somehow isotropic in the
laboratory frame (generally it is not; e.g., [11,48]), it would
be seen as anisotropic in the PRF due to Lorentz boost along
the direction of p. In addition, the beam line, of course, is a
special direction in the initial state forming the HXS. As a
simple generalization that can capture some of these effects
(and others), one can consider an anisotropic (3D) Gaussian
source with a free normalization:12

C3D
2 (p, q) = N2 e−q2

l R2
l −q2

oR2
o−q2

s R2
s , (41)

C3D
3 (p, q1, q2) = N3 e−R2

l (q2
1l + 3

4 q2
2l )−R2

o (q2
1o+ 3

4 q2
2o)−R2

s (q2
1s+ 3

4 q2
2s ).

(42)

Here, we split the 3-vector q into its three components: qo

(“out”) along the direction of the mean transverse momentum
pt ; ql (“longitudinal”) along the beam axis; and qs (“side”)
along the third orthogonal direction pt × ẑ.

Like the femtoscopic radii Ro,s,l , the normalization factors
N2,3 (closely related to the “intercept” or chaoticity parameter
[17,50]; see Appendix A for details) should best be measured
directly from the data.

In Appendix A we briefly review how weak and strong
resonance decays can distort the Gaussian shape of the source.
In Appendix B we give numerical examples of C2 calculated
in the phenomenological blast wave model, illustrating how
anisotropic flow and Lorentz contraction at pt > 0 give rise
to a true 3D source. We find that while the 1D Eq. (39)

11This is attributed in Ref. [20] to the different contributions of
strong resonance decays to the p and � spectra. From the point of
view of our discussion, however, the cause of the difference in Rinv is
not essential.

12Adding off-diagonal components like qoql R2
ol , for example, into

our analysis would be straightforward.
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can fail quite badly, the 3D Eq. (41) as a phenomenological
parametrization is flexible enough to capture the true physical
source to good accuracy.

Given the source parametrization of Eqs. (41) and (42), the
final ingredients we need to evaluate Eqs. (18), (34), and (35)
for the coalescence factors are the nucleus wave functions,
encoded by the form factors Fd,3He,3

�H. We turn to that next.

B. Nucleus wave functions: Gaussian wave
function approximation

The results are particularly tractable if we make the sim-
plifying approximation of Gaussian wave functions. This is
useful for analytic insight and is also reasonable if one wants
to test coalescence at the O(1) level, so we report the results
in this section. In the next section we consider more accurate
parametrizations of the wave functions.

For D we consider

φd (r) =
(

1

πb2
d

) 3
4

e
− r2

2b2
d , (43)

with momentum space form factor

Fd (k) = e− b2
d k2

4 . (44)

vskip-4pt
For 3He we consider a Gaussian that is isotropic in the nor-

malized Jacobi coordinates, related to our natural kinematic

coordinates13 via ηpp = 1√
2
rpp, ηn =

√
2
3 rn:

φ3He(rpp, rn) =
(

1

3π2b4
3He

) 3
4

e
− r2

pp+ 4
3 r2

n

4b2
3He . (45)

With this φ3He the momentum space form factor is

F3He(kpp, kn) =
∫

d3rppe−ikpprpp

∫
d3rne−iknrn |φ3He(rpp, rn)|2

= e− b2
3He
2 (k2

pp+ 3
4 k2

n ). (46)

For 3
�H, as a first approximation we consider a product of

Gaussians,

φ3
�H(rpn, r�) ≈

(
1

3π2b2
pnb2

�

) 3
4

e
− r2

pn

4b2
pn

− r2
�

3b2
� . (47)

The momentum space form factor is then

F3
�H(kpn, k�) ≈ e− 1

2 (b2
pnk2

pn+ 3
4 b2

�k2
� ). (48)

We need to match the b parameters to nuclear data. For
D we take bd = 3.5 fm, corresponding to the RMS charge ra-

dius rrms =
√

3
8 bd = 2.13 fm [51]. For an isotropic three-body

Gaussian wave function, the parameter b as we defined it is
directly the RMS charge radius. For 3He this is b3He ≈ 1.97 fm
[51]. For 3

�H, Hildenbrand and Hammer [21] reported14√
〈r2

pn〉 = √
3bpn ≈ 3 fm and

√
〈r2

�〉 = 3
2 b� ≈ 10.8+3

−1.5 fm.

It is important to note, however, that Ref. [21] reported the
full numerical momentum space form factors and the

√
〈r2〉

parameters they quote refer only to the small-k2 expansion
of these form factors. A more accurate treatment of the wave
function is obtained by using the full form factors, which
we do in Sec. III C. Based on that analysis, for the Gaus-
sian approximation we set bpn = 1.52 fm (as opposed to
bpn = 1.73 fm that would be read from the low-k2 fit) and
b� = 7.2+2

−1 fm.
With the Gaussian nuclear wave functions described in this

section, assuming the femtoscopic source parametrization of
Eqs. (41) and (42) and recalling the spins sN = s3He = s3

�H =
1
2 , sd = 1, the coalescence factors evaluated from Eqs. (18),
(34), and (35) are given by15

B2 ≈ 12π
3
2 N2

m
(
b2

d + 4R2
l

) 1
2
(
b2

d + 4R2
o

) 1
2
(
b2

d + 4R2
s

) 1
2

, (49)

B3 ≈ 16π3N3√
3m2

(
b2

3He + 2R2
l

)(
b2

3He + 2R2
o

)(
b2

3He + 2R2
s

) , (50)

B3� ≈ 16π3λ3�√
3m2

(
b2

pn + 2R2
l

) 1
2
(
b2

� + 2R2
l

) 1
2
(
b2

pn + 2R2
o

) 1
2
(
b2

� + 2R2
o

) 1
2
(
b2

pn + 2R2
s

) 1
2
(
b2

� + 2R2
s

) 1
2

. (51)

We stress again that the analytic results obtained with
Gaussian wave functions are brought here as means for an
easy, rough assessment of the coalescence factor. More ac-
curate calculations should use more accurate wave functions,
especially for the D and 3

�H. We consider this refinement next.

13One can verify that
∫

d3rpp

∫
d3rn|φ3He(rpp, rn )|2 =

(3)
3
2
∫

d3ηpp

∫
d3ηn( 1

3π2b4
3He

)
3
2 e

− η2
pp+η2

n

b2
3He = 1.

14Please note that
√

〈r2
pn〉 in Ref. [21] refers to the distance between

the n and the p; that is, the diameter, not the radius of that subsystem.
Namely, 〈r2

pn〉 = ∫
d3r�

∫
d3rpnr2

pn|φ3
�

H(rpn, r�)|2 = 3b2
pn. Simi-

larly, the pn-� distance 〈r2
�〉 = ∫

d3r�

∫
d3rpnr2

�|φ3
�

H(rpn, r�)|2 =
9
4 b2

�.
15Our Eq. (49) is consistent with Eq. (28) of [19]. Our Eq. (50) cor-

rects a typo in Eq. (31) of [19], where one should replace (dA/2) →
(dA/

√
2).
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FIG. 1. Deuteron coalescence factor B2, calculated in the
isotropic (1D) Gaussian source model, showing the difference be-
tween the Gaussian and Hulthen wave function parametrizations. We
set N2 = 1.

C. Nucleus wave functions: More accurate parametrization

Here we consider more accurate parametrizations for the
wave functions of the D and the 3

�H. For 3He we maintain the
Gaussian ansatz of Sec. III B.

1. Deuteron wave function

A more accurate parametrization of the D wave function,
that should be used instead of the Gaussian ansatz for quanti-
tative analyses, is given by the Hulthen formula:

φd (r) =
√

αβ(α + β )

2π (α − β )2

e−α|r| − e−β|r|

|r| . (52)

The RMS radius is given by

r2
rms = β(α + β )

8α2(α − β )2

(
1 − 16α3

(α + β )3
+ α3

β3

)

= 1

8α2

[
1 + 3α

β
+ O

(
α2

β2

)]
. (53)

For this parametrization it is assumed that β > α, so above
we expanded in the ratio (α/β ). For the numerical evaluation
we set α = 0.2 fm−1 and β = 1.56 fm−1, reproducing rrms =
2.13 fm [51]. We have checked that using the slightly different
values of α and β quoted in Ref. [52] gives results that are
equal to ours to 5% accuracy. The form factor Eq. (17) can
only be obtained numerically. Amusingly, in the 1D Gaussian
source limit Eq. (39) we do not need it because the coales-
cence factor itself can be obtained analytically [30]:

B2 = 3

2m

∫
d3k e−k2R2

inv

∫
d3r |φd (r)|2 e−ikr

= 3π2

mR2
inv

αβ(α + β )

(α − β )2

(
e4α2R2

inv erfc(2αRinv)

− 2e(α+β )2R2
inv erfc[(α + β )Rinv] + e4β2R2

inv erfc(2βRinv)
)
.

(54)

The coalescence factor B2 is shown in Fig. 1. The solid
line shows the prediction of Eq. (54), obtained for the Hulthen
wave function. For comparison, the dashed line shows the
less accurate Gaussian wave function prediction of Eq. (49).
For simplicity here we use the isotropic 1D Gaussian source
model with Ro = Rs = Rl = Rinv and N2 = 1. As seen in
Fig. 1, the largest sensitivity to the effect of the wave function
is for measurements at small Rinv ≈ 1 fm, which are achiev-
able in pp or pPb collisions [20].

To use the 3D source Eq. (41), the coalescence factor needs
to be calculated numerically from Eq. (18) or (15).

FIG. 2. Hypertriton pn-� form factor. Green squares show the result from the three-body calculation of Hildenbrand and Hammer [21].
(a) Dotted and solid red line shows the effective two-body calculation of Congleton [53] for different values of their Q� parameter. The blue
dashed line shows a Gaussian approximation with the same charge radius as that found in Ref. [21]. For comparison, thick solid black lines
show exponential factors with scale radii R = 1 fm (top) and 5 fm (bottom), respectively. (b) Cyan and magenta markers show a numerical
calculation delimiting the uncertainty due to the 3

�H binding energy, as implemented in Ref. [21].
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FIG. 3. Hypertriton pn form factor. Black squares show the result
from the three-body calculation of Hildenbrand and Hammer [21].
Solid orange and dashed blue lines show a Gaussian approximation
à la Eq. (48) with bpn = 1.52 fm and bpn = 1.73 fm, respectively.

2. Hypertriton wave function

Hildenbrand and Hammer [21] reported a three-body the-
oretical calculation of the 3

�H wave function. Green squares
in Fig. 2(a) show the projected pn-� form factor obtained in
that work. It is well reproduced by the two-body calculation
of Congleton [53], shown by solid red line, provided we
adjust the Q� parameter of [53] from Q� = 1.17 fm−1 in the
original paper to Q� = 2.5 fm−1. For simplicity we therefore
consider the effective pn-� wave function from [53], given in
momentum space by

φ̂3
�H(�d )(q) = A

e
− q2

Q2
�

q2 + α2
�

=
∫

d3r�e−ir�q�φ3
�H(�d )(r�),

(55)

where the normalization constant A is defined such that∫
d3r�|φ3

�H(�d )(r�)|2 = ∫ d3q
(2π )3 |φ̂3

�H(�d )(q)|2 = 1. Using the

pn-� wave function of [53], with Q� = 2.5 fm−1 and α =
0.068 fm−1, we can calculate the integrals in Eq. (34) or (30)
numerically.

In Fig. 2(b) we show numerical calculations from [21],
delimiting the uncertainty due to the 3

�H binding energy.16 We
find that the lower (upper) range for the form factor is well
fitted again by Congleton’s formula, with Q� = 2.5 fm−1 and
α = 0.054 (0.082) fm−1, respectively.

Reference [21] also provided the effective form factor for
the pn subsystem. Their numerical result is shown by black
squares in Fig. 3. This form factor is reasonably well repro-
duced by a Gaussian of the form given by Eq. (48), with
bpn = 1.52 fm (orange solid line). This can be compared with
the low-k2 expansion of the form factor, which would lead to
bpn(low-k2 fit) = 1.73 fm as noted in Sec. III B. Given this
discussion, we can maintain the Gaussian ansatz of the pn
factor in Eq. (48), setting bpn = 1.52 fm.

16We are grateful to Fabian Hildenbrand for providing this calcula-
tion to us.

FIG. 4. Hypertriton coalescence factor B3�, calculated in the
isotropic (1D) Gaussian source model, showing the difference be-
tween the Gaussian (dashed grey) and the more realistic numerical
(red) wave function parametrizations. We set N3� = 1.

In Fig. 4 we plot B3� vs Rinv, showing the difference
between the Gaussian (dashed grey) and the more realistic
numerical (red) wave function parametrizations. The shaded
band around the numerical result reflects the wave function
uncertainty, as depicted in the right panel of Fig. 2.

IV. COMPARISON WITH DATA

A. Deuteron and 3He

Figure 5 shows the theoretical prediction for B2 (a) and B3

(b), calculated as function of the 1D femtoscopy parameter
Rinv using Eq. (54) based on the Hulthen wave function for D
and Eq. (50) based on the Gaussian wave function, for 3He,
with Ro = Rs = Rl = Rinv. For B2, the calculation shown by
the solid line assumes N2 = 1, while the dashed lines assumes

N2 = 0.5. For B3 we use N3 = N
3
2

2 .
Our choice to illustrate the results for N2 in the range

(0.5–1) is motivated as follows. For large Rinv we can estimate
N2 from the PbPb collisions of [42], obtained as the sum
N2 ≈ λ(pp) + λ(p�) in the notation of that paper.17 This sug-
gests N2 ≈ (0.3–0.7), roughly consistent with our illustrative
values. For small Rinv, a measurement of the chaoticity pa-
rameter λ ≈ 0.5 exists from kaon femtoscopy [54], consistent
with our lower value for N2.

Based on our analysis in Appendix B we can expect that
for the pt � 1.5 GeV values, in which the cluster data in Fig. 5
are given, our use of the simplistic 1D source parametrization
should cause us to overestimate a more accurate 3D pre-
diction (not available to us, as the experiments reported 1D

17The λ(i j) parameters were introduced in Ref. [42] to account for
feed-down from weak decays. As recalled in Appendix A 1, while
weak decays do indeed act to dilute the observed femtoscopic corre-
lation signal, their effect is, in principle, distinct from the genuine
femtoscopic quantity N2. However, Ref. [42] let the λ(i j) float in
the fit to the data, rather than imposing

∑
λ(i j) = 1 as would apply

for feed-down probabilities. In doing so they provided an effective
measurement of N2 [19].
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FIG. 5. Summary of D and 3He data, reproduced from Ref. [19] with some improvements (see text). (a) B2 vs Rinv, using the Hulthen wave

function for D. The solid (dashed) line shows the result for N2 = 1 (0.5). (b) B3 vs Rinv, using N3 = N 3
2

2 .

femtoscopy fits only) by �20% or so. We do not include this
uncertainty in the plot. It adds up other sources of systematic
uncertainty, expected to be roughly at a similar level (with
unknown signs), due to the smoothness, equal-time, and fac-
torization approximations (the latter relevant for 3He only).

The comparison to experimental data is as follows. The
red horizontal bands in Fig. 5 show experimental coalescence
factor measurements for PbPb at (0–10%) (for B2) and (0–
20%) (for B3) centrality classes [55]. Each of the three red
bands corresponds to a different bin in mt , among the three
bins shown in the femtoscopy Rinv measurement [42]. The
blue horizontal bands show the result for the (20–40%) (for
B2) and (20–80%) (for B3) events, respectively, again from
[55].

The green band shows the result for p-p collisions [56].18

For 3He we can also add a crudely estimated data point
for pPb collisions. To do so, we combine the 1D femtoscopy
Rinv measurement of kaon femtoscopy reported in Ref. [57]
with the 3He measurement of [58]. To approximately match
mt between the data sets, we use here the highest kt bin in
Ref. [57] and the lowest pt bin in Ref. [58]. We use the
(0–20%) multiplicity class from [57], joining together the
(0–10%) and (10–20%) B3 data from [58]. The result is shown
in purple in Fig. 5(b).

As should be clear by now, a main uncertainty in the theory
prediction shown in Fig. 5 is related to the determination
of the parameters N2 and N3. For N3 we have no direct
measurements, as such data would require three-proton fem-

toscopy. In Fig. 5 we bypassed this by assuming N3 = N
3
2

2 .
Addressing this issue experimentally would be challenging,
and we do not know of a model-independent way to estimate
the associated theory uncertainty. Assessing the uncertainty
within specific HXS models, along the lines of Appendix B,
may be warranted in future work.

Another obvious difficulty is due to the need to con-
struct Fig. 5 patchwise from data at different, often only
partially overlapping, multiplicity class and pt or mt bins. A

18We thank Bhawani Singh and the Fabbietti TUM group for point-
ing out a typo in the plot of the B2 data for pp collisions in Ref. [19].

dedicated experimental analysis combining femtoscopy and
cluster yields would solve this problem.

Altogether, Fig. 5 shows that coalescence is roughly con-
sistent with the D and 3He data for systems ranging from pp
to pPb and PbPb at different regions of pt and at different
multiplicity classes. This comparison spans a dynamical range
of about a factor of 30 for B2 and a factor of 103 for B3.
While, as we discussed, there are theoretical and experimental
uncertainties, there are no free parameters once femtoscopy
calibrates the computation. From this point of view, the usual
claim to fame of the SHM [4], to describe the yields of nuclei
across many orders of magnitude, is seen to be comparably
well applicable to coalescence.

Having said that, it is worth highlighting that for pp col-
lisions the experimental coalescence factors for both D and
3He are found to be higher than the coalescence prediction.
Depending mainly on the precision with which N2 is deter-
mined, but also on possible systematic uncertainties related
to different event classes entering the femtoscopy and cluster
measurements, the discrepancy could be as much as a factor
of 2 for D and a factor of 4 for 3He. We think that this
situation is strong motivation for a joint experimental analysis
of coalescence and femtoscopy in small systems.

B. Hypertriton

Reference [59] reported a measurement of 3
�H in PbPb

collisions. After some interpolations, we extract the measured
B3� from the three pt bins in the left panel of their Fig. 7.
For the bins19 pt ≈ (0.66–1.34), (1.34–2), and (2–2.34)
GeV we find B3� ≈ (7.3–20) × 10−8, (1–4.2) × 10−7, and
(1.7–12) × 10−5 GeV4, respectively. The multiplicity class is
(0–10%). For femtoscopic data, we have Ref. [42] with Rinv

and N2 measured in the same multiplicity class, but binned in
mt rather than pt (see Figs. 7 and 8 in Ref. [42]). We can match
the first low pt bin of [59] into the mt range covered in Ref.
[42]. We also consider the second pt bin of [59] that somewhat
overshoots the coverage of the last mt bin in Ref. [42]. With

19Our pt is corresponds to pt/A as defined in Ref. [59].
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FIG. 6. B3� vs the 1D femtoscopic radius Rinv, showing the coa-
lescence prediction for the numerical wave function of Sec. III C 2.
The width of the red band reflects the wave function uncertainty as
derived from the calculations of [21], while the orange band reflects
the Rinv uncertainty (see text). The solid (dashed) line shows the

result for N3� = N 3
2

2 with N2 = 1 (0.5).

some interpolation (and, for the second bin, extrapolation) of
the results from [42], we obtain the corresponding estimated
ranges in Rinv. The result is shown by markers in Fig. 6.

Once again, to plot the theory prediction, we need an es-
timate of N3�. For definiteness we present the results using

N3� = N
3
2

2 , with N2 = 1 (solid line) and N2 = 0.5 (dashed
line). We would like to illustrate the wave function uncer-
tainty, as well as the uncertainty associated with determining
Rinv from pp vs p� or �� correlations (mentioned earlier in
Sec. III A). The result of varying the numerical wave function
in the range corresponding to the right panel of Fig. 2 is shown
by the red band. To implement the Rinv uncertainty, an orange
band shows the effect of shifting the Rinv argument, entering
the B3� computation, by ±20% with respect to the Rinv value
on the x axis.

We can try to bypass some of the uncertainty associated
with the determination of N3� as follows. If N3 ≈ λ3�, then
the uncertainty associated with N3� may cancel in the ratio20

S3 = B3�

B3
. (56)

For the first pt bin of [59] we find B3 ≈ (1.4–2.7) ×
10−7 GeV4, and for the second bin B3 ≈ (3.3–6.9) ×
10−7 GeV4. We could, in principle, combine this directly with
B3� to extract the measured S3. However, this would ignore
the fact that some of the experimental uncertainty involved in
deriving B3 and B3� could cancel out in the ratio. Instead, we
therefore adopt the following procedure. Taking the hypertri-
ton spectrum from [59] (averaging the 3

�H and 3
�H results),

we divide by the 3He spectrum from [55] and scale by the
�/p ratio taken from [60,61], evaluated in the corresponding
pt interval. The result is shown by markers in Fig. 7.

20Not to be confused with the three-particle normalized source, S3,
defined in Sec. II B 2.

FIG. 7. S3 vs Rinv predicted in the coalescence model compared
with data.

The theoretical prediction for S3, using the numerical 3
�H

wave function of Sec. III C 2, is shown by the red band in
Fig. 7 with the band width determined by the wave function
uncertainty. The effect of varying Rinv by ±20% is shown by
the orange band. For comparison we also show the Gaussian
approximation with a grey dashed line. The coalescence pre-
diction is somewhat below the data, with tension at the 2σ

level.21 It is clear from Fig. 7 that a more precise experimen-
tal measurement of S3 in conjunction with femtoscopy is a
promising observable to exclude (or support) the framework.
At small Rinv, S3 is predicted to be much below unity. Neither
the 3

�H wave function uncertainty nor the details of working
with a 1D vs 3D femtoscopic source parametrization are ex-
pected to enable, e.g., S3 > 0.2 at Rinv ≈ 1 fm, characteristic
for pp collisions.

V. DISCUSSION AND SUMMARY

The formation of nuclei by coalescence and femtoscopic
[or Hanbury Brown–Twiss (HBT)] correlations between con-
tinuum proton pairs are two manifestations of final state
interactions (FSI) that “dress” an underlying high-excitation
state (HXS) produced in hadronic collisions. In Sec. II,
starting from a relativistic quantum field theoretic (QFT) com-
putation, we recalled how the effective quantum mechanical
(QM) description of the dynamics of pairs that are nonrel-
ativistic in the pair rest frame (PRF) gives rise to the usual
femtoscopy formalism, with which a two-particle source,
characterizing the HXS, can be measured. The same two-
particle source enters the coalescence formula for deuteron
formation. Much of our analysis was based on the formalism
reviewed by Lednicky [18]; our contribution was to reduce
this formalism to observationally accessible language in the
context of nuclear clusters. In both cases—femtoscopy and

21To quantify the significance of the tension more precisely we
would need to combine the two data points, which very much overlap
in Rinv. We prefer to leave these details to a dedicated experimental
analysis.
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coalescence—effective QM holds for q2 � m2, where q is
the PRF momentum difference and m is the nucleon mass;
and up to corrections of order 0.2 1 fm

x , where x is the average
PRF characteristic distance between the nucleons in the HXS.
Although it should not be trusted beyond O(10%) accuracy,22

the QM limit is useful for deriving simple physically trans-
parent formulas and should be sufficient for ruling out (or
supporting) coalescence as the origin of nuclei in hadronic
collisions. In principle, while we did not pursue this route,
the QM approximation can be avoided if one works directly
with the relativistic FSI Bethe-Salpeter amplitudes.

Coalescence after kinetic freeze-out must occur at some
level in hadronic collisions, but this does not mean that it is
necessarily the dominant origin of clusters. The key assump-
tion made by the coalescence model is that the long-range
action of FSI can be factored out of an underlying short-range
HXS dynamics. The level of accuracy of this factorization is
not obvious. To some extent, the apparent success of fem-
toscopy analyses [20,42,43] in reconstructing a fit of the
two-nucleon source, using sophisticated physical FSI calcu-
lations, supports the coalescence framework. But we feel that
this is not yet fully convincing: while the femtoscopy analyses
[20,42,43] reported measurements of the two-nucleon source
with a stated precision of O(10%), they did so using a 1D
Gaussian source fit.23 However, the true underlying source is
not expected to be 1D; in fact, at least for mean laboratory
frame momentum p � m, it must be anisotropic at the O(1)
level—as seen in the PRF—due to Lorentz contraction. We
can add to this the uncertainty related to the normalization
or chaoticity parameter N2, which existing analyses typically
did not consider in the fit (an exception is Ref. [42], that may
have accessed N2 effectively and indirectly by allowing the
feed-down probabilities to vary in the fit). Altogether, it is
clear that higher statistics femtoscopy analyses have an im-
portant future role to play [63] in establishing to what extent
true physical HXS information is revealed in femtoscopy. Our
work highlights the importance of this question also to the
origin of clusters.

Keeping the caveats above in mind, the main point of
our work is to establish the coalescence/femtoscopy frame-
work as a means to test coalescence by grounding the
coalescence predictions with femtoscopy information. The
coalescence-correlations relation between femtoscopy and
deuteron formation, summarized by Eqs. (14) and (15) [or
equivalently Eqs. (16) and (18) in momentum space], was
derived first in Ref. [19] in the QM limit. The relation is very
general and model independent. As shown in Ref. [19], it is
consistent with the early model-dependent derivation of [15]
(the latter, however, was specialized to a particular model of
hydrodynamical flow and was limited to small pt ). It is also
consistent with the body of work by Mrowczynski [28–34].

The connection of femtoscopy with deuteron formation
does not rely on density matrix factorization. To derive for-

22Making some interesting proposed O(10%) tests potentially chal-
lenging [45,62].

23This is true also for [20], which assumed a 1D core source and
modulated it by strong resonance decays.

mulas for three-body clusters, though, factorization is needed.
Assuming factorization we derived the formulas for 3

�H and
3He, summarized in Eqs. (30) and (31) [or Eqs. (34) and (35)
in momentum space]. As an aside, we note that the derivation
does not leave room for the confusion between “pn� channel”
and “D� channel” advocated in Refs. [22,23] for 3

�H. Three-
body coalescence comes from three-body FSI and is captured
by a single formula, involving the three-body nucleus wave
function.

In Sec. III we combined formulas for the two-nucleon
source, constrained by experimental femtoscopy fits, with nu-
clear wave functions to obtain expressions for coalescence
factors that can be compared to data. Exploring different
forms for the wave function of 3

�H, we showed that, although
a full numerical representation of the wave function deviates
significantly from a Gaussian, the numerical impact on the
coalescence factor is modest, about a factor of 2 (with the
more realistic numerical wave function predicting a higher
coalescence factor). Our calculations allow for different scales
in the wave functions of three-body states. This is particularly
important for 3

�H where the pn-� factor is significantly more
extended than the effective pn factor. Some earlier implemen-
tations [24] of the coalescence-correlations relation for 3

�H did
not account for this fact.

Our calculations also account for the anisotropic shape of
the two- and three-nucleon source describing the HXS. As we
illustrate in Appendix B, the two-particle source is expected
to be truly anisotropic in nature, especially at large pt .

In Sec. IV we compared our theoretical predictions to data.
Figure 5 shows that coalescence, calibrated by femtoscopy,
is consistent at the O(1) level with the pt -differential yields
of D and 3He for systems ranging from pp, pPb to PbPb
and across different centralities. This comparison spans a
dynamical range of 30 for B2 and 103 for B3. Some ten-
sion, at the 2σ level or so, is seen for pp in both of the
D and 3He yields. This situation gives strong motivation for
a dedicated experimental analysis, studying femtoscopy and
cluster yields side by side in the same data set under the
same kinematic conventions and cuts. On the femtoscopy side,
we urge the experiments to report femtoscopy measurements
adding the chaoticity parameter N2 to the fit. In addition, as
much as statistics permits, measurements of the 3D source
(in the out-side-long parametrization) would be preferred
over 1D measurements of Rinv. Such combined experimen-
tal analysis could zoom in on the coalescence-correlations
prediction beyond the O(1) level by which it can currently
be tested. This could, in principle, sharpen tensions with D
and/or 3He data where they are currently difficult to establish
conclusively.

Hypertriton 3
�H is known as a sensitive test of coales-

cence because of its large size, suggesting that the QM factor
discriminating coalescence from the statistical hadronization
model (SHM) should be small and discernible. Our calcula-
tion, depicted in Fig. 6, shows that the current measurements
of B3� in PbPb collisions are consistent with the coalescence
prediction. The observable S3 = B3�/B3 may be more robust
than B3�, because some experimental and theoretical uncer-
tainties may cancel in the ratio. We compare our calculation
of S3 with the data in Fig. 7, finding some tension: the S3
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data tend to be somewhat higher than coalescence predicts.
This discrepancy is not (yet) very significant, around 2σ .
A higher statistics measurement, and measurements in small
systems like pp, pPb, or low multiplicity PbPb collisions—in
short, systems with small femtoscopic radius—would provide
a critical test of coalescence.
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APPENDIX A: CORRECTIONS TO THE GAUSSIAN
SOURCE APPROXIMATION

The Gaussian source considered in Sec. III A cannot be
exact. It is therefore important to estimate the uncertainty in
the coalescence calculation, that comes about if this approx-
imation is used. In this section we consider mechanisms that
violate the Gaussian source approximation and estimate their
quantitative impact.

1. Feed-down from weak decays and source chaoticity

In comparing theory to data one should account for the
effect of feed-down from weak decay, where a particle that
is emitted from the HXS as � or � decays into a proton
in the detector (see [50] for a parallel discussion for pions).
The decay vertex is displaced by O(1 cm) from the HXS,
which means that the FSI relevant for two-particle correlation
are those involving � or �. Reference [20] estimated that a
fraction αp ≈ 0.82 of detected protons in their analysis orig-
inate from a genuine emitted proton, while a fraction α� ≈
0.12 and a fraction α� ≈ 0.06 of detected protons originate
from an emitted � or �, respectively.24 Neglecting particle
misidentification (which add up to about 1% in Ref. [20]) we
have αp ≈ 1 − α� − α� . Thus, if femtoscopic correlations are
ignored, a fraction λ(pp) ≈ (1 − α� − α� )2 ≈ 0.7 of detected
pp pairs come from genuine emitted pp, while, for example,
a fraction λ(p�) ≈ 2α�(1 − α� − α� ) ≈ 0.2 of detected pp
pairs come from an emitted p� pair, etc.

In constructing the observable two-proton correlation,
Refs. [20,42,43] divided the measured proton pair spectrum
by the spectrum of pairs from uncorrelated mixed events,
without feed-down subtraction. Then, in fitting a model of the
correlation to the data, the correlation function was split into a
part coming from genuine emitted pp pairs and parts coming
from emitted p�, ��, p�, and �� pairs, using the relevant

24The feed-down fractions in Ref. [20] were allowed to vary by
20% as part of the systematic uncertainty estimate. Indeed, these
fractions were different by about 20% in Ref. [43], although this may
be in part due to different experimental kinematical cuts and selection
criteria.

FSI for each part:25

Cmodel(p, q) = 1 +
∑

i=pp,p�,...

λ(i)[C(i)(p, q) − 1], (A1)

with the channel-specific weights and correlation functions

C(i)(p, q) =
∑

s

ws

∫
d3r S (i)

2 (r)
∣∣φ(i)

s,q(r)
∣∣2

. (A2)

Here, for example, for i = p� the wave function at spin
channel s is given by φ

(p�)
s,q (r), etc. In Ref. [20], the nu-

cleon source functions S (i)
2 (r) were modeled differently for

different i, to account for strong resonances that have a
different characteristic decay range for p and � daugh-
ters. In contrast, Refs. [42,43] assumed a common nucleon
source S (i)

2 = S2.
As long as the λ(i) parameters are correctly calibrated

to account for weak decays, a quick check verifies that the
correlation functions C(i) in Eq. (A2) do indeed match with
the theoretical definition of the same objects as derived in
Sec. II A. References [20,43] assumed that this was the case
and fixed the numerical values of the λ(i) according to the
experimentally determined single-proton purity. In contrast,
Ref. [42] did not fix the value of λ(pp) and λ(p�), but rather
considered these parameters as part of the experimental fit.
Interestingly, the fit resulted in λ ≡ λ(pp) + λ(p�) ≈ 0.3–0.7,
significantly less than unity.26

Both approaches, [42,54] as well as [20,43], assume in
their fit the 1D Gaussian form, Eq. (36), of the source func-
tion S2(r) [12,19]. This source function integrates to unity,∫

d3r S2(r) = 1, corresponding to C2(q = 0) = 1. However,
there is no a priori reason to assume that the true C2 (or
S2) satisfy this normalization exactly. In fact, observing a
departure from this normalization in the data could hint, for
example, at a violation of the factorization assumption of
Sec. II B. In addition, it is well known that if the experimental
fit assumes a Gaussian form for C2(q), but the true C2(q) is
non-Gaussian, then adding an intercept parameter N2 to the
fit, as in Eq. (41), can absorb some of the difference. We can
interpret the λ measurement of [42] as an approximation of the
parameter N2, via N2 ≈ λ. In contrast, as Refs. [20,43] fixed
the λ parameters as feed-down probabilities, these analyses
may well have better control on the impact of weak decays
in the observed correlation function, but they do not yield an
estimate of N2.

An optimal experimental procedure may be to add N2 as
a true femtoscopic fit parameter describing the normalization
of the source function, while at the same time following the
self-consistent feed-down procedure of [20,43].

Considering now the coalescence factor, a direct compari-
son to the femtoscopy analysis is possible if the single-proton

25Reference [64] also used a similar formalism in studying baryon-
antibaryon correlations.

26Useful details can be found in Ref. [65]. For comparison, the
single-particle purity estimates of [20,43] read λ(pp) + λ(p�) ≈ 0.87
and 0.9, respectively; the remaining probability being associated
mostly with p� pairs.
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FIG. 8. (a) The source S2(r), reproduced from the experimental fit result of Fig. 4 in Ref. [20]. (b) C2, the Fourier transform of the sources
on the left.

spectrum used in the experimental definition of BA [e.g.,
Eq. (10)] is obtained subtracting the weak decay feed-down
contributions. With this the coalescence-correlation relation
of Eq. (15) or Eq. (18) applies as is. For B3,3�, a fully data-
driven analysis would require an experimental measurement
of C3. In the absence of that, we can roughly estimate that for
N2 �= 1 the Gaussian source expressions for B3,3� should be

modified by B3,3� → N
3
2

2 B3,3� [19].
Unrelated to weak decays, a correction to the expressions

of Sec. III arises from the fact that Ref. [20] actually found
different fit results for the sources S2(r) deduced from pp and
p� pairs. One physically motivated reason for the difference
stems from the different decay range of the strong resonances,
that feed into p and � states in the HXS. The same effect
also predicts a non-Gaussian form for S2(r) [and C2(q)], as
we discuss next.

2. Strong resonance decays

Even if the underlying emission function was an exact
Gaussian, the decay of strong resonances with lifetimes of
the order of a few fm would distort the effective source.
Reference [20] studied this problem for pp and p� correla-
tions in pp collisions. An isotropic source model including
strong resonance decay, which was found in Ref. [20] to give
an adequate fit to the correlation data, is reproduced here in
Fig. 8(a). The full (non-Gaussian) source is shown by circles,
compared with the Gaussian source in dotted lines. Strong
resonances lead to a non-Gaussian tail of S2(r). In Fig. 8(b)
we show the C2(q) curves corresponding to the S2(r) curves
on the left.

Quantitatively, despite the strong resonance contribution,
the Gaussian approximation can be seen to give a rather
accurate description of the source: the difference between
the full non-Gaussian C2 and the Gaussian approximation is
smaller than about 10% throughout the range where C2 > 0.1.
While Ref. [20] dealt with pp initial state, we might expect

that in larger systems like PbPb the relative impact of strong
resonance decay could be even less significant.

We emphasize that Ref. [20], which provided the ex-
ample for our discussion, assumed an underlying Gaussian
source which they then deformed by strong resonances. What
we learn from this exercise, then, is that if the underlying
“genuine” emission function is Gaussian, then the effective
two-particle source after strong decays is also consistent with
Gaussian to 10% accuracy, in the range of r (or, in momen-
tum space, q) that is relevant for coalescence. We stress,
however, that while the assumed 1D Gaussian source of [20]
was experimentally consistent with femtoscopy data, there
is no guarantee that the true physical source is Gaussian. In
Appendix B we recall theoretical reasons to expect otherwise.

APPENDIX B: DEVIATIONS FROM AN ISOTROPIC
GAUSSIAN SOURCE IN THE PHENOMENOLOGICAL

BLAST WAVE MODEL

Relativistic expansion of the HXS “fireball” is expected to
proceed differently along and transverse to the beam line. This
unisotropic flow predicts that the source S2(r) should depend
on the direction of r with respect to the beam line and also
with respect to the pair mean momentum vector p. Even if
the nucleon source was somehow isotropic in the laboratory
frame, it would not be seen as isotropic in the PRF for p �= 0,
due to Lorentz contraction. These effects were not modeled in
the experimental analyses of Refs. [20,42,43], that performed
fits to the 1D source, Eqs. (39). Here we consider these effects
from the point of view of the phenomenological blast wave
model (BWM). Our goal is not to argue either in favor of or
against the validity of the model, but simply to gain some idea
of the possible systematic error associated with adopting the
1D Gaussian source approximation, if that is applied to coa-
lescence calculations via the coalescence-correlation relation.

To recall the BWM, we take the beam line to
be along the ẑ axis. The space-time coordinates are
chosen as τ = √

t2 − z2, ρ =
√

x2 + y2, η = arctanh(z/t ),
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FIG. 9. The two-particle source C2(p, q) calculated in the blast wave model and projected onto the out, side, long directions. Solid lines
show the numerical result, while dotted lines show independent Gaussian fits to each projection. The black dashed line shows the 1D Gaussian
source with Rinv = (RoRsRl )

1
3 . The BWM parameters are chosen to mimic PbPb collisions at the LHC (see text). (a)–(d) pt = 0, 0.5, 1, 2 GeV.

and the azimuthal angle φ. The position 4-vector is
then Rμ = (τ cosh η, ρ cos φ, ρ sin φ, τ sinh η) and d4R =
dττ dρρ dη dφ. The 4-momentum vector of a particle emitted
at rapidity Y , azimuthal angle �, and transverse momentum
pt , is pμ = (mt cosh Y, pt cos �, pt sinh �, mt sinh Y ), with
mt =

√
m2 + p2

t . The single-particle emission function is pa-
rameterized using six parameters, τ0,�τ, R0, βS, n, T (we
neglect chemical potentials), as follows [θ (x) is the Heaviside
step function]:

S̃p(R) =
√

2

π

mt

m
cosh (η − Y )J (τ )θ (R0 − ρ)e− pu

T , (B1)

uμ(R) = (cosh η cosh ηt , sinh ηt cos φ, sinh ηt sin φ,

sinh η cosh ηt ), (B2)

ηt (ρ) = tanh−1

(
ρn

Rn
0

βS

)
, (B3)

J (τ ) = 1√
2π�τ

e− (τ−τ0 )2

2�τ2 . (B4)

With these definitions we can evaluate C2(p, q) numeri-
cally via Eq. (25). In doing so, recall that we require q =
(0, q) specified in the PRF, while the emission function
S̃p(x) depends on space-time coordinates in the laboratory
frame. Defining b = p/m, we can write q′ in the labora-
tory frame as q′0 = bq, q′ = q + bq

1+b0 b [15]. For simplicity,

in the examples below we choose p = (mt , pt , 0, 0). With
this choice pu = mt cosh η cosh ηt − pt sinh ηt cos φ and us-
ing the ql , qo, qs decomposition we have qx = pt

m qoτ cosh η −
mt
m qoρ cos φ − qsρ sin φ − qlτ sinh η. We consider separately
the cases q = (qo, 0, 0), q = (0, qs, 0), and q = (0, 0, ql ).

In Fig. 9 we plot C2(p, q), projected onto the out, side, and
long directions (solid blue, orange, and green, respectively).
Independent Gaussian fits to each projection are shown by
dotted lines. Black dashed line shows the 1D Gaussian source
computed with Rinv = (RoRsRl )

1
3 . For definiteness we take

T = 100 MeV, n = 1, βs = 0.5 and τ0 = 7 fm, �τ = 1.5 fm,
R0 = 7 fm, chosen to roughly represent PbPb collisions [55].
Note that the phenomenological BWM is based on classical
intuition and satisfies by construction, effectively, the density
matrix factorization assumption. Thus the chaoticity parame-
ters N2 = N3 = 1 in this computation, and we are guaranteed
that C2(p, 0) = 1.

The source depicted in Fig. 9 was chosen to resemble PbPb
collisions. From the fits in the plot, the radii of homogeneity
for this source at pt = 0, for example, are Ro = Rs ≈ 3.2 fm,
Rl ≈ 2.5 fm, extended compared to the deuteron RMS radius
rrms = √

3/8bd ≈ 2.1 fm. To see the size of the effect for
smaller systems, e.g., pp collisions, we recalculate C2 for dif-
ferent values of R0 = τ0 = 2 fm, leading to Ro = Rs ≈ 0.9 fm,
Rl ≈ 1 fm at pt = 0. (The other BWM parameters are un-
changed.) The results are shown in Fig. 10.
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FIG. 10. Same as Fig. 9, with BWM model parameters chosen to mimic pp collisions at the LHC.

Figures 9 and 10 demonstrate how unisotropic flow leads
to an unisotropic source. Notably, the width along the out
direction shows Lorentz contraction in the PRF at pt > 0.
This perspective should also be taken into account in future
studies that attempt to fit the details of S2(r) to O(10%)
precision based on the 1D isotropic Gaussian model as in
Ref. [20].

Our main interest is to check to what extent the deviation
from 1D Gaussian source affects the coalescence calculation.
Again from Figs. 9 and 10 (as well as from the discussion in
Sec. A 2), we expect that a 3D Gaussian approximation may
do a reasonably accurate job describing C2; thus we will use
the 3D Gaussian parametrization as a standard for compari-
son. For a rough estimate of the error, incurred by using the 1D
fit of Eq. (39) to describe a 3D source, we calculate Ro, Rs, Rl

in the BWM and define

Rinv = (RoRsRl )
1
3 . (B5)

We can now compare the results of using Eq. (49) with Ro =
Rs = Rl → Rinv to the results of the original Eq. (49):

B1D
2

B3D
2

≈
√√√√(

b2
d + 4R2

l

)(
b2

d + 4R2
o

)(
b2

d + 4R2
s

)
(
b2

d + 4R2
inv

)3 . (B6)

Note that in both limits bd → 0 and bd → ∞ this correction
factor is equal to 1. The results are summarized in Table I.

We give a rough estimate of the correction to B3� in a
similar way:

B1D
3�

B3D
3�

≈
√√√√(

b2
pn + 2R2

l

)(
b2

� + 2R2
l

)(
b2

pn + 2R2
o

)(
b2

� + 2R2
o

)(
b2

pn + 2R2
s

)(
b2

� + 2R2
s

)
(
b2

pn + 2R2
inv

)3(
b2

� + 2Rinv2
)3 . (B7)

The calculation for B3 is the same up to bpn → b� → b3He.
The results are also summarized in Table I.

We have also done a numerical calculation of the ratio
B1D

2 /B3D
2 using the Hulthen D wave function. In this exercise

we calculated B3D
2 from Eq. (15), comparing that with the

result of Eq. (54). The results we find for PbPb and pp and

for all values of pt are numerically very close to those found
in Table I using the Gaussian wave function.

The conclusion from Table I is that the 1D Gaussian
parametrization tends to slightly overestimate the coalescence
factor, in comparison to the more accurate 3D parametriza-
tion. The effect is more pronounced in small systems than
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TABLE I. The corrections of Eqs. (B6) and (B7), comparing between the coalescence factor obtained from a 1D and a 3D Gaussian fit to
C2 computed in the BWM. We round the result to two significant digits.

pt mt B1D
2 /B3D

2 B1D
2 /B3D

2 B1D
3 /B3D

3 B1D
3 /B3D

3 B1D
3�/B3D

3� B1D
3�/B3D

3�

(GeV) (GeV) PbPb pp PbPb pp PbPb pp

0 0.94 1 1 1 1 1 1
0.5 1.07 1 1 1 1 1 1
1 1.37 1 1.1 1 1.1 1 1.1
2 2.2 1.1 1.3 1.2 1.9 1.2 1.5

in PbPb, and increases with increasing pt . Using the 1D
Rinv parametrization results in O(10%) error at pt ≈ 1 GeV,
rising to as much as a factor of 2 for 3He at pt = 2
GeV in pp collisions. It should be stressed that these

conclusions are drawn from simple, model-dependent cal-
culations in the BWM, and should only be taken as crude
estimates of the theoretical uncertainty in the coalescence
calculation.
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