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Simple Summary: Colorectal cancer (CRC) is one of the most common malignancies worldwide.
Next-generation sequencing technologies have identified new candidate genes and deepened the
knowledge of the molecular mechanisms underlying the progression of colonic adenomas towards
CRC. The main genetic, epigenetic, and molecular alterations driving the onset and progression of
CRC in both hereditary and sporadic settings have also been investigated. The evaluation of the CRC
risk based on the molecular characterization of early pre-cancerous lesions may contribute to the
development of targeted preventive strategies development, help define specific risk profiles, and
identify patients who will benefit from targeted endoscopic surveillance.

Abstract: Colorectal cancer (CRC) develops through a multi-step process characterized by the acqui-
sition of multiple somatic mutations in oncogenes and tumor-suppressor genes, epigenetic alterations
and genomic instability. These events lead to the progression from precancerous lesions to advanced
carcinomas. This process requires several years in a sporadic setting, while occurring at an early age
and or faster in patients affected by hereditary CRC-predisposing syndromes. Since advanced CRC
is largely untreatable or unresponsive to standard or targeted therapies, the endoscopic treatment of
colonic lesions remains the most efficient CRC-preventive strategy. In this review, we discuss recent
studies that have assessed the genetic alterations in early colorectal lesions in both hereditary and
sporadic settings. Establishing the genetic profile of early colorectal lesions is a critical goal in the
development of risk-based preventive strategies.

Keywords: colorectal cancer; familial adenomatous polyposis; lynch syndrome; conventional col-
orectal adenomas; serrated colorectal adenomas

1. Introduction

In approximately 75–80% of cases, colorectal cancer (CRC) occurs sporadically, without
a genetic predisposition. At least 10–20% of CRC cases have a positive family history, and up
to 5–7% of cases develop as a consequence of hereditary CRC-predisposing syndromes [1].
In 1988, Vogelstein and colleagues defined the principles of the adenoma-carcinoma se-
quence, also known as the “conventional” CRC pathway and first described the molecular
bases of CRC evolution. Most CRC cases arise from conventional colorectal adenomas
(CNADs) [2]. CNADs (including tubular, tubulovillous, and villous adenomas) are poly-
poid lesions of the colonic mucosa which, in some cases, evolve into CRC [3]. Subsequently,
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another unconventional pathway was described in the pathogenesis of CRC, also known
as the “serrated” pathway [4]. Approximately 15–30% of CRCs develop from serrated
lesions [5–7]. The World Health Organization has classified colorectal serrated lesions as:
(i) hyperplastic polyps (HPs), (ii) sessile serrated lesions (SSLs), previously classified as
sessile serrated adenomas, (iii) SSLs with dysplasia, (iv) traditional serrated adenomas
(TSAs), and (v) unclassified serrated adenomas [8,9]. Traditionally, SSLs and TSAs are
pre-cancerous colorectal lesions, while HPs mainly have a low risk of developing CRC.

Several studies have prospectively analyzed the long-term CRC risk in patients with
CNADs or serrated lesions and found an increased CRC risk in patients with advanced
high-risk adenomas or large serrated polyps [10–15]. A recent study on CRC incidence
and mortality in a large cohort of fecal occult blood test positive subjects showed that
patients with colorectal neoplastic lesions, regardless of subtype, have an increased risk of
developing CRC. The mortality for CRC was higher in patients with SSLs, tubulovillous
adenomas, and villous adenomas [16].

The malignant transformation of normal colonic mucosa towards adenoma and then
CRC requires the accumulation of genetic and epigenetic alterations. These events occur
over an average time span of up to 15 years in the conventional pathway [1]. The genetic
drift, however, accelerates these events in hereditary syndromes, implying an early and
restricted time frame for surveillance [17]. CRC development through the serrated pathway
would also seem to occur more rapidly than the conventional pathway [18].

Three main genetic pathways for CRC development have been described: (i) the
chromosomal instability pathway (CIN, ~80% of CRC cases), frequently observed in the
conventional pathway and distal CRC, driven by chromosomal alterations/rearrangements,
and mutations in known oncogenes (KRAS, BRAF, PIK3CA) and tumor suppressor genes
(APC, SMAD4, TP53); (ii) the CpG island methylator phenotype (CIMP, ~15–30% of CRC
cases) due to a diffuse CpG island methylation mostly observed in proximal CRC and
frequent in the serrated pathway associated with BRAF mutations; iii) the microsatellite
instability pathway (MSI, ~15% of CRC cases), in which the genomic instability is driven
by germline (Lynch syndrome—LS) or sporadic inactivation of the mismatch repair (MMR)
genes (MLH1, MSH2, MSH6, and PMS2) [19]. Notably these pathways can overlap in CRC
pathogenesis and also co-exist within the same tumor [20].

Hereditary CRC syndromes encompass (i) non-polyposis hereditary syndromes in-
cluding LS, Lynch-like syndrome, familial CRC type X, (ii) polyposis syndromes includ-
ing familial adenomatous polyposis (FAP), MUTYH-associated polyposis (MAP), and
the serrated polyposis syndrome (SPS); and (iii) hamartomatous syndromes including
Peutz-Jeghers syndrome, juvenile polyposis syndrome, and PTEN-hamartomatous tumor
syndrome [17,21].

Yurgelun and colleagues recently evaluated the presence of germline mutations in a
large cohort of unselected CRC patients. Interestingly, they found that approximately 10%
of the patients had germline causative mutations in CRC-predisposing genes as well as in
genes not conventionally associated with CRC, thus indicating that the percentage of CRC
cases due to hereditary defects may be higher than generally thought [22]. Many studies
have defined distinct mutational profiles of advanced CRCs [20,23,24] and four distinct
consensus molecular subtypes (CMS1-CMS4) for CRC have been described [25] according
to their patterns of mRNA expression.

In addition, the somatic mutational cancer signatures in CRC and colonic polyposis
have been recently reviewed [26] and various studies have focused on the genetic and
molecular characterization of pre-cancerous colonic lesions.

In this review, we discuss recent findings with regard to defining the somatic alter-
ations of both hereditary and sporadic early colorectal lesions. We focus on FAP, MAP, and
LS-derived adenomas as part of the hereditary setting, as well as conventional and serrated
lesions in the sporadic setting.
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2. Hereditary Settings
2.1. Familial Adenomatous Polyposis and MUTYH-Associated Polyposis

FAP is an inherited autosomal dominant syndrome clinically characterized by the
onset of hundreds to thousands of adenomatous polyps in the gastrointestinal tract at a
young age. Given that FAP patients are at high risk of CRC (almost 100% at a mean age of
39 years), they require close surveillance and endoscopic treatment for CRC prevention.
However, most of them need undergoing prophylactic surgery to counteract the progres-
sion of polyps towards cancers [27]. Moreover, extra-intestinal clinical manifestations are
common in FAP [27]. FAP arises from heterozygous germline mutations in the tumor sup-
pressor APC gene, leading to aberrant Wnt/β-catenin pathway activation and sustained
intestinal hyperproliferation [27]. Somatic mosaicism in the APC gene is also a frequent
causative event for FAP [28], as well as in sporadic polyposis patients [29].

Unlike FAP, MAP is a hereditary autosomal recessive syndrome caused by germline
mutations in the MUTYH gene. Genetic alterations in the MUTYH gene confer an increased
CRC risk (from 43% to 100% at 48 years) due to the improper functioning of one of the
DNA damage repair mechanisms. The clinical phenotype of MAP patients resembles
attenuated FAP, typically presenting from 10 up to 100 colorectal polyps [30,31]. Although
the genetic basis for these syndromes is known, many studies conducted in recent years
have characterized the somatic alterations that cause the progression of adenomas in these
patients (Table 1).

Table 1. Studies evaluating somatic mutations in colorectal adenomas and cancers from patients with hereditary CRC
syndromes.

Syndrome Study Population Samples Analyzed Study Methods
Frequent Mutated Genes

and Candidate Driver
Genes

Notes References

FAP 12 FAP patients 25 adenomas,
10 adjacent NM WES

APC, KRAS, FBXW7,
TCF7L2, BRCA2, ALK,

CNOT3, ARID1A, CDC27,
EWSR1, GNAQ, TTN,

PCMTD1

[32]

FAP 14 FAP patients 37 adenomas and
matched NM

Targeted Ampliseq
sequencing APC, KRAS [33]

FAP and MAP 5 FAP patients
1 MAP patient

20 LGD adenomas,
4 HGD adenomas, 7

carcinomas and 8
adjacent NM

WES,
WGS

APC (69%), TTN (37%),
SMAD4 (35%), GNAS

(33%), ASXL1 (33%), KRAS
(23%), FAT4 (22%), ZFHX3

(22%), FBXW7 (22%),
PTPRT (20%), SOX9 (16%)

Additional potential
driver events with lower
frequency: ERBB3 (8%),

ARID1A (8%), TP53 (8%),
ACVR2A (6%), EPHA5

(6%), TCF7L2 (6%),
PIK3CA (6%), RBM10
(5%), CTNNB1 (5%),

ATM (5%), AMER1 (5%).

[34]

FAP and MAP

2 FAP patients and
2 MAP patients

6 adenomas
8 adenomas WES APC, KRAS,

WTX/FAM123B, SCUBE2,
RELN, FBXW7, MLL3,

OTUD7B, KPRP, ATRNL1,
MAP3K5, NRAS, PLCG2,

PTEN, TP53

Except for APC, WTX
and KRAS, few

adenomas shared the
same set of mutated

driver genes

[35]
3 FAP patients and

4 MAP patients
22 adenomas
33 adenomas

Targeted exome
sequencing

7 FAP patients and
3 MAP patients

41 adenomas
22 adenomas

WTX/KRAS
capillary

sequencing

Lynch 44 patients 86 adenomas,
36 adenocarcinomas

Target NGS

APC (40% of LS-associated
adenomas, 28% of

LS-adenocarcinomas and
60% sporadic adenomas);

CTNNB1 (5% LS-adenomas
and 10% sporadic

adenomas); RNF43 (52%
LS-associated adenomas;

56% LS-adenocarcinomas).

KRAS, BRAF and NRAS
mutations uncommon in

both LS- and sporadic
adenomas

[36]
84 sporadic
adenomas
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Table 1. Cont.

Syndrome Study Population Samples Analyzed Study Methods
Frequent Mutated Genes

and Candidate Driver
Genes

Notes References

Lynch 57 patients
59 adenomas: 16

MMR-P; 43 MMR-D
(41 LGD and

18 HGD)

Amplicon-based
NGS

TP53 (24%), KRAS (22%),
SMAD4 (19%), CTNNB1

(15%)

Additional potential
driver events with lower

frequency: ALK (2%),
BRAF (9%), DDR2 (2%),

EGFR (10%), ERBB2
(3%), ERBB4 (5%),

FBXW7 (9%), FGFR1
(2%), FGFR2 (3%), MET

(2%), NOTCH1 (5%),
PTEN (10%), PIK3CA

(5%), STKI1 (3%)

[37]

Lynch 11 patients

Paired tumor
(adenoma and

cancer) and
tumor-distant NM

Whole- genome
DNA- sequencing

ACVR2A, TGFBR2, CDC27,
AIM2, PDS5B, TP53, KRAS

(Frequent in the G1
LS-CRC subgroup)

Paired patient-matched
specimens of tumors

were stratified into two
subgroups based on

their genomic
characteristics (G1 with

higher amount of
mutation and MS
slippage than G2)

[38]

FAP (Familial Adenomatous Polyposis); MAP (MUTYH-associated Polyposis); NM (Normal Mucosa); LGD (Low-Grade Dysplasia);
HGD (High-Grade Dysplasia); WES (Whole-Exome Sequencing); WGS (Whole-Genome Sequencing); NGS (Next-Generation Sequencing);
MMR-P (MMR-proficient); MMR-D (MMR-deficient); MS (microsatellite). The frequency of mutations (%) is shown for those studies that
have reported them.

Somatic Mutational Profile in FAP and MAP

The somatic mutational profile of colorectal pre-cancerous lesions in FAP was recently
investigated in a study on 25 colorectal adenomas and adjacent normal mucosa from 12 FAP
patients with confirmed germline APC gene mutations through whole-exome sequencing
(WES) [32]. This study confirmed the pivotal effect of Wnt signaling alterations in the
early stages of colorectal carcinogenesis in these patients. In fact, a somatic second hit
in the APC gene was found in most adenomas (72%) and a small fraction of sequenced
adenomas also had further somatic mutations in Wnt signaling pathway components
including TCF7L2. Damaging somatic mutations on KRAS and FBXW7 genes also occurred,
as well as potential deleterious mutations in additional genes including CNOT3, EWSR1
and PCMTD1 (Table 1). Allelic imbalance was also frequently observed in the analyzed
adenomas and validated in an additional cohort of 37 adenomas from 14 FAP patients.
In particular, the loss of 5q and amplifications in chromosomes 7 and 13 appeared to be
relevant in the early phases of colonic transformation. The authors also showed an early
development of intra-tumor heterogeneity (ITH) since most adenomas harbored sub-clones
arising from an APC-mutant founder clone [32].

Multiple somatic inactivating mutations in the APC and KRAS genes have also been
found in a study on 37 FAP-derived adenomas. The study provided further evidence about
the early onset of ITH in colorectal tumorigenesis, demonstrating that APC-mutant ade-
nomas have polyclonal characteristics with different mutations arising from independent
lineages. Specifically, the analysis of individual colonic crypts isolated from adenomas
of patients with distinct hereditary polyposis syndromes, as well as from sporadic and
Lynch-syndrome derived carcinomas, demonstrated that the ITH for both APC and KRAS
alterations was detectable in single crypts [33] (Table 1). These results suggest that multiple
clones may compete for malignant transformation within the same pre-cancerous lesion.

Combining next-generation sequencing (NGS) with single-cells transcriptomic analy-
sis, new data have been provided on the genetic and transcriptomic alterations occurring
in the transition from adenomas to carcinoma in FAP individuals. The authors performed
WES, whole-genome-sequencing (WGS) and single-cell-RNA-sequencing on normal mu-
cosa, adenomas and carcinomas from five FAP patients and one patient with MAP. In line
with previous studies, the authors showed that somatic inactivation of the APC gene con-
stitutes the most frequent event in adenomas from FAP patients and that the derangements
of Wnt signaling represented the most affected pathway. Considering all the samples
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analyzed (including normal mucosa) in this study from FAP patients and the single patient
with MAP, the authors found that potential driver alterations in TTN, SMAD4, GNAS,
ASXL1, KRAS, FAT4, ZFHX3, FBXW7, PTPRT, and SOX9 genes occur with a frequency of
between 37% and 16% (Table 1). In addition, by analyzing multiple adenomas from individ-
ual patients, it was found that different lesions collected from closely related colonic areas
might originate from the same cell following a field cancerization process. By sequencing
multiple regions within the same lesion, the authors observed ITH as well intertumoral
heterogeneity in pre-cancerous lesions, confirming that both occur in the early phases
of colonic carcinogenesis. Finally, morphologically normal colonic mucosa from FAP pa-
tients had a transcriptomic profile indicative of an early metabolic switch typical of cancer
cells, particularly regarding the carbohydrate metabolism, as well as a hyperproliferative
signature [34].

A characterization of the somatic mutational profile performed with WES of colorectal
adenomas from FAP and MAP patients showed that adenomas from MAP patients had a
higher rate of missense and nonsense mutations compared with FAP adenomas, due to
genetic defects in the MUTYH gene. Moreover, APC, KRAS, and WTX (AMER1) genes
were frequently mutated in pre-cancerous lesions from these patients. In particular, APC
somatic mutations occurred in 50% of the tumors in this study [35] (Table 1). Mutations in
the WTX gene, encoding for a negative regulator of Wnt/β-catenin signaling [39], have
also been associated with sporadic CRC [40], and might contribute to CRC initiation [35].

A subsequent study employing WES analyzed the somatic mutational signature of
multiple duodenal adenomas, which represent a frequent extra-colonic manifestation in
these syndromes, from 16 FAP and 10 MAP patients, respectively [41]. Similarly to colorec-
tal adenomas, duodenal adenomas from MAP patients also had an increased mutational
burden compared with FAP adenomas. Most somatic mutations found in MAP adenomas
were G>T transversions. Unlike colorectal adenomas, no mutations in the WTX gene were
identified in duodenal adenomas. On the other hand, APC and KRAS have been found to
be recurrently mutated also in duodenal adenomas. Moreover, PTCH2, ERBB2 and PCL1
genes have also been found to be potentially involved in duodenal carcinogenesis in these
patients [41].

2.2. Lynch Syndrome

LS is the most frequent hereditary CRC-predisposing syndrome with an autosomal
dominant pattern [42]. Germline mutations in the mismatch repair (MMR) genes, partic-
ularly MLH1, MSH2, MSH6, and PMS2, are causative for LS development together with
EPCAM gene deletions which result in MSH2 epigenetic silencing [42].

The inactivation of MMR genes thus represents the mechanism underlying LS tumors
onset and progression [43]. However, the identification of small low-grade adenomas with
intact MMR genes in these patients suggests that additional events and factors may be
involved in LS-associated adenoma development [43–46]. Although MSI is the hallmark of
LS-CRCs [45,47], data are conflicting on the precise timing of complete MMR inactivation
during tumorigenesis in LS patients.

Somatic Mutational Profile in LS Tumors

Using NGS, Sekine and colleagues investigated the genetic profile of colonic lesions
from 44 LS patients and 84 sporadic colorectal adenomas. Most adenomas and all the
adenocarcinomas from LS patients were MMR-deficient (MMR-D) and characterized by
high-grade MSI. On the other hand, all the sporadic adenomas analyzed were MMR-
proficient (MMR-P) and microsatellite stable (MSS) [36]. The genetic profile of colonic
lesions showed that RNF43 gene mutations were frequent in both LS-associated adenomas
and adenocarcinomas, while APC gene mutations, despite being detected in 40% of LS-
adenomas, were more frequent in sporadic colorectal adenomas (60% of cases) (Table 1).
The authors observed a distinct somatic mutational profile in LS-associated adenomas
depending on the MMR status, and supported the concept that MMR-deficiency occurs
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prior to the formation of adenoma in LS patients. In particular, MMR-D adenomas were
characterized by RNF43 frameshift somatic mutations in mononucleotide repeats, fre-
quently associated with insertions or deletions of three-repeat sequences in the APC gene.
By contrast, MMR-P adenomas had a higher frequency of APC and CTNNB1 somatic muta-
tions, but no RNF43 somatic mutations [36] (Table 1). Otherwise, other studies provided
evidence of a late MMR inactivation in LS since the loss of MMR proteins has mainly been
found in adenomas with high-grade dysplasia [37,48].

The mutually-exclusive relationship between RNF43 and CTNNB1 mutations in LS
tumors was confirmed in another study which defined two subgroups of LS-CRCs (G1 and
G2), characterized by different amounts and patterns of somatic mutations and microsatel-
lite (MS) slippage [38]. The G1 LS-CRCs subgroup, characterized by the higher amount of
mutations and MS slippage, was associated with MLH1 impairment and somatic mutations
in KRAS, TP53, POLE, MSH3, ACVR2A, TGFBR2, CDC27, AIM2, and PDS5B genes. How-
ever, the G2 subgroup had a lower degree of MS instability and mutation rate [38] (Table 1).
In addition, a transcriptomic analysis of LS adenomas showed increased expression of
colonic stem cell markers CD44, BIRC5, CCND1, MYC and ASCL2, which contribute to
sustaining stem cells proliferation in colonic crypts. In particular, MYC induction in the
G1 LS-CRCs subgroup, seems to be mainly associated with somatic mutations in ACVRA,
TCF7LA, and TGFBR2 genes [38].

When DNA methylation changes and somatic mutations in formalin-fixed and paraffin-
embedded tissues from 57 LS patients were investigated, targeted-NGS showed that so-
matic mutations in LS-adenomas frequently affect CTNNB1, SMAD4, KRAS, and TP53
genes, with a frequency from 15% up to 24% respectively. In addition, a higher mutation
rate was in MMR-D adenomas than in MMR-P lesions [37] (Table 1).

Recent findings have shown distinct associations between MMR mutations and cancer
risks [49,50] (Supplementary Table S1). A prospective study demonstrated that carriers of
MSH2 mutations show the highest risk of developing adenomas and advanced adenomas,
probably as a consequence of the association between germline MSH2 alterations and
somatic APC gene mutations which may contribute to accelerate the colonic malignant
transformation [49]. Although carriers of MSH6 germline mutations, who exhibit a lower
amount of MMR-D adenomas, had a great incidence of adenomas, patients with MSH2
and MLH1 germline mutations showed the highest risk of early CRC onset [36,49,51]
(Supplementary Table S1). In addition, patients with PMS2 germline mutations had a lower
CRC risk, a high frequency of MMR-P adenomas and were negative for CTNNB1 somatic
mutations. On the other hand, CTNNB1 somatic mutations were frequent in MLH1-mutant
CRCs [52] (Supplementary Table S1).

The correlation between CTNNB1 somatic mutations and MLH1 germline mutations
was confirmed in another study, which suggested that MLH1-mutant cancers may develop
from MMR-deficient crypt foci (MMR-DCF) [49]. MMR-DCF have been described as a new
LS-associated lesions, displaying a loss of MMR protein expression, MSI and a distinct
non-adenomatous phenotype associated with a rapid invasive growth. In this setting,
CTNNB1 somatic mutations associated with MMR deficiency may possibly act as driver
events for LS cancer progression [53].

Based on the concept that MMR-deficiency may occur both as early or late events,
three different LS CRC pathways were recently proposed [54]. In fact, according to this
hypothesis, LS-associated CRCs may develop following the expansion of adenomas in
a MMR-P setting, in which the loss of functional MMR genes is a later event (23% of
LS adenomas). Most LS CRCs are associated with early MMR proteins loss and would
develop from MMR-D adenomas or MMR-DCF [54]. Importantly, LS-CRCs derived from
MMR-DCF represent only 3.3% of cases [54]. Ahadova and colleagues found that somatic
mutations in APC and KRAS genes were mainly associated with MMR-D adenomas in LS
patients. The occurrence of these mutations was predicted as a secondary event following
MMR-deficiency in MMR-D adenomas. CTNNB1 and TP53 somatic mutations have been
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described as an early event in MMR-DCF [54]. In fact, TP53 somatic mutations have also
been identified in LS-associated adenomas.

Interestingly, most TP53 somatic mutations have been found in MMR-P adenomas or
low-grade dysplastic adenomas. Somatic KRAS mutations (G12V and A146T) have also
been observed above all in MMR-P adenomas, rather than MMR-D [37,38].

3. Sporadic Colorectal Adenomas
3.1. Conventional Colorectal Adenomas

Most CRCs arising from CNADs develop following the canonical adenoma-carcinoma
sequence, characterized by the accumulation, through a multi-step process, of mutational
events in both driver and passenger genes [2].

In 80–90% of CRC cases, the initiating mutational event arises in the APC tumor
suppressor gene. The subsequent mutational events mainly affect the KRAS/NRAS and
TP53 genes. TP53 mutations are also traditionally associated with TGF-β, SMAD4 and
PI3KCA mutations during the later phases of adenoma-carcinoma transition [55]. Despite
being more frequent in the advanced stages of colorectal tumorigenesis, there is also
evidence of TP53 mutations in normal colon epithelial stem cells [56], as well as in early
and premalignant colorectal adenomas [57–59].

Although genetic alterations in CRC are well characterized, the genetic and molecular
events, which take place during the early stages of tumorigenesis, remain largely unknown.
The accumulation of somatic mutations during the adenoma-carcinoma transition is crucial
for CRC development [56,60,61]. In this context, the diffusion of NGS techniques has
increasingly led to enhancements in understanding the complexity of the tumor mutational
landscape [62]. Table 2 summarizes the frequent mutated and new driver genes found in
both conventional and serrated adenomas in recent studies.
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Table 2. Studies evaluating somatic mutations in sporadic conventional and serrated colorectal lesions.

Study Population Samples Analyzed Study Methods Frequent Mutated Genes and Candidate Driver Genes Notes Reference

36 patients 48 colorectal polyps: 33 tubular adenomas, 5
tubulovillous adenomas, 4 SSLs, 6 HPs Target NGS APC (67%), KRAS (15%), NRAS (2%), TP53 (8%), FBXW7 (10%), BRAFV600E (17%,

mainly in SSLs and HPs) [57]

58 patients with colorectal adenomas (retrospective study)

85 samples from 58 adenomas ≥ 2 cm: 19 LGD
adenomas (10 tubular and 9 tubulovillous adenomas);

21 premalignant adenomas; 28 HGD adenomas; and 17
invasive adenocarcinomas

Target NGS

APC (76.5%), KRAS (62.4%), SYNE1 (35.3%), NOTCH4 (23.5%), TCF7L2 (18.8%),
GNAS (17.6%), FBXW7 (15.3%), TAF1L (15.3%), KMT2D (15.33%) BCL2 (12.9%),

KMT2C (11.8%), PKHD1 (11.8%), RNF213 (10.6%), CSDM3 (10.6%), TP53 (20%), BLNK
(17.6%), HNF1A (12.9%), LRP1B (10.6%)

The percentages refer to all the analyzed
adenomatous samples. Data on cancer samples are

described in Supplementary Table S2
[58]

NA
149 adenomas from two independent projects: 100

CNADs (first study); 35 CNADs and 14 SSLs (second
study)

WES and Target sequencing
CNADs: APC, CTNNB1, KRTAP4-5, GOLGA8B, TMPRSS13, TP53, NHEDC1, PI3KCA,

KRAS, FBXW7, SOX9, ATM, CDC27, MED12, NALCN;
SSLs: KRTAP4-5, BRAFV600E

[60]

2 CRC patients
24 NM single cells; 48 adenoma single cells (tubular

adenomatous polyps and inflammatory fibroid polyp
normal appearance)

single-cell WES and bulk WES OR1B1, DCDC5, CSMD1, FBXO15, TCP11, TFAP2D
Small sample size.

Data on CRC single cells are described in
Supplementary Table S2

[63]

NA 11 colorectal adenoma-carcinoma pairs WES APC, CTNNB1, KRAS, TP53, TMPRSS13, TFC7L2, NRAS, FERD3L Data on gastric cancer not included. Data on cancer
samples are described in Supplementary Table S2 [59]

2 large prospective cohort studies: Nurses’ Health Study
(N = 121,700 women followed since 1976) and Health

Professionals Follow-up Study (N = 51,500 men followed
since 1986)

225 colorectal
cancers LGD (=50% gland formation) vs. HGD (<50%

gland formation)

Pyrosequencing
and Sanger sequencing

NRAS activating mutations (5/225 CNADs c.34G>A, c.35G>A and c.35G>T in codon
12 and c.181C>A in codon 61) Only NRAS mutations were analyzed in this study [64]

12 Korean patients

12 high-grade colon adenoma samples (11
non-hypermutated and 1 hypermutated

(POLE-mutated) tubulovillous adenomas) and matched
NM

WES
APC, KRAS, SMAD4, ERBB4, TCF7L2, AMER1, TP53, GNAS, ARID2, RET, MTOR,

NRAS, ACVR1B, GNAQ, ATM, PIK3CA, ERBB2, TRRAP, MAP2K4, MAP3K4, CNOT2,
EP300

[65]

31 patients

90 tissues: 16 CAP cases matched with 15 CFP cases-all
polyps are adenomatous polyps with villous features

-tubulovillous or
villous- and LGD)

WES
TP53, FBXW7, PIK3CA, KIAA1804, SMAD2 and SMAD4 (mutations exclusively in

CAP samples); APC (significantly mutated in both polyp groups, 70% CFPs and 80%
CAPs); MUC19 (CFPs)

[66]

20 patients with multiple SSLs
(16 fulfill WHO clinical criteria for SPS)

1 SSL from each
individual (19/20)

BRAF/
KRAS

SNaPshot genotyping
BRAFV600E (18/19 SSLs) [67]

5 patients(carriers of RNF43 c.953-1, G>A germline
mutation) from 1 SPS family

16 serrated lesions (SSLs/TSAs/HPs), 5 tubulovillous/
villous adenomas and 1 cancer (from 5 SPS patients);

90 sporadic lesions (14 HPs, 47 SSLs/TSAs, 29 CNADs);
WES, Target Gene Sanger Sequencing

RNF43 (18.8% serrated lesions from SPS patients; 20% conventional adenomas from
SPS patients; 34% sporadic SSLs/TSAs; 0% sporadic HPs; 3.4% sporadic CNADs);

BRAFV600E (62.5% SSLs/TSAs from SPS patients; 66% sporadic SSLs/TSAs; 81.2%
sporadic SSLs/TSAs RNF43-mutated)

SSLs and TSAs analyzed as a single group.
Data on cancer samples are described in

Supplementary Table S2
[68]

NA 20 SSLs; 36 TSAs; 37 TSAs with cytologic dysplasia; 30
tubulovillous/ villous adenomas Sanger sequencing

RNF43 (10% SSLs; 28% TSAs; 19% TSAs with dysplasia; 0% tubulovillous/villous
adenomas), BRAF (82% TSAs RNF43- mutated with/without dysplasia), KRAS (11.7%

TSAs RNF43- mutated with/without dysplasia)

Data on cancer samples are reported in
Supplementary Table S2 [69]

NA
130 serrated lesions (26 HPs, 34 SSLs, 70 TSAs) and 58

CNADs (27 tubular adenomas, 31 tubulovillous
adenomas)

Target NGS, Sanger sequencing RNF43 (6% SSLs; 24% TSAs; 0% CNADs); BRAF (73% HPs; 74% SSLs; 60% TSAs; 0%
CNADs); APC (0% HPs and SSLs; 13% TSAs; 59% CNADs) [70]

NA 46 dysplastic SSLs; 45 SSLs without dysplasia Target NGS, Sanger sequencing RNF43 (50% dysplastic SSLs); APC (9% dysplastic SSLs), ZNRF3 (7% dysplastic SSLs);
BRAF (87% dysplastic SSLs; 84% SSLs without dysplasia) [71]

196 patients 200 TSAs (162 ordinary, 38 advanced); 50 tubulovillous
adenomas Allele Specific PCR BRAFV600E (67% TSAs) [72]

8 patients 8 SSLs: 4 SSLs with HGD, 4 SSLs with submucosal
carcinoma Target NGS BRAFV600E (88% SSLs); FBXW7 (38% SSLs); TP53 (25% SSLs); KIT, PTEN, SMAD4,

SMARCB (13% SSLs each) [73]

NA
189 samples: 20 SSLs; 20 dysplastic SSLs; 14 TSAs; 6

dysplastic TSAs; 19 tubular and tubulovillous
adenomas

Targeted amplicon sequencing APC (5% SSLs; 20% dysplastic SSLs; 36% TSAs; 33% dysplastic TSAs; 89% tubular
and tubulovillous adenomas)

Only APC mutations were analyzed in this study.
Data on cancer samples are reported in

Supplementary Table S2
[74]

NA 15 TSAs associated with precursors polyps: 9 associated
with HPs and 6 associated with SSLs Laser microdissection based sequencing RNF43, APC, CTNNB1; BRAFV600E [75]

CNADs (Conventional Colorectal Adenomas); SSLs (Sessile Serrated Lesions); TSAs (Traditional Serrated Adenomas); HP (Hyperplastic Polyps); CAPs (Cancer-Adjacent Polyps); CFPs (Cancer-Free Polyps); NM
(Normal Mucosa); LGD (Low-Grade Dysplasia); HGD (High-Grade Dysplasia); WES (Whole-Exome Sequencing); NGS (Next-Generation Sequencing); NA (Not Available). The frequency of mutations (%) is
shown for those studies that have reported them.
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Using target-NGS, Sievers and colleagues analyzed the genetic profile of 48 small
colorectal polyps (6–9 mm) from 36 patients including conventional, serrated and hyper-
plastic adenomas. As expected, APC gene mutations represented the most frequent genetic
event (67% of all polyps). In addition pathogenic mutations in KRAS, FBXW7 and TP53
genes were also detected in 15%, 10%, and 8% of all the analyzed polyps, respectively [57]
(Table 2). BRAF p.V600E mutations were also detected in small colorectal polyps, above all
in SSAs and HPs. Interestingly, a small percentage of these polyps were characterized by
the simultaneous presence of pathological mutations in different driver genes including
APC, KRAS, TP53 and FBXW7 [57]. These results support the “Big Bang” model of colorec-
tal tumor development according to which different sub-clones are generated during the
tumor growth leading to ITH [76].

By performing single-cell WES and bulk WES on both adenomas and carcinomas
from two patients, Wu and colleagues described new early driver alterations in CRC.
A mutation in the OR1B1 gene was described as an early causative event for adenoma
development. Mutations in CSMD1, FBXO15, and TFAP2D genes were also identified as
sub-clonal mutations contributing to the ITH [63] (Table 2).

Through WES and target sequencing, another study evaluated somatically mutated
genes in both CNADs (n = 135) and SSAs (n = 14). In CNADs, APC gene mutations repre-
sented the most frequent causative event. KRTAP4-5 (rs411367), CTNNB1 (rs121913409),
GOLGA8B (rs200544945), and TMPRSS13 (rs61900347), KRAS (rs1291913529, rs121913530)
were also proposed as driver oncogenic mutations in CNADs [60]. In addition, muta-
tions in the tumor suppressor genes FBXW7 and SOX9 were found to be driver events in
CNADs [60] (Table 2).

In line with these results, a study on 11 colorectal adenoma-carcinoma pairs, found that
alterations in TCF7L2 and TMPRSS13 genes also contributed to CRC initiation. Interestingly,
the authors found two TCF7L2-adenoma-specific mutations [59] (Table 2). They also found
recurrent mutations in the NRAS gene, despite being reported with a low frequency in
another study [59,64].

The pivotal role of alterations in the Wnt-pathway related genes in colorectal tumori-
genesis was also supported in a retrospective analysis of 58 CNADs with different grades
of dysplasia, 17 of which were classified as adenocarcinomas [58]. APC gene mutations
frequently occurred in this study (76.5% of cases). KRAS mutations were found in most
of the adenomas analyzed (62.4% of cases), particularly in pre-malignant and high-grade
dysplasia adenomas. Mutations in other genes, including BCL2, FBXW7, GNAS, HNF1A,
MLL2/KMT2D, MLL3/KMT2C, SYNE1, TCF7L2, NOTCH1, PBRM1, RET, RARA, and FN1,
were also detected [58] (Table 2). Mutations in the Wnt-related genes CTNNB1, EP300,
TCF7L2, and the AMER1 genes were also observed, but at a lower frequency, in accor-
dance with previous data on adenomas with high grade dysplasia [65]. The authors also
reported previously undescribed mutations in MTOR, ACVR1B, GNAQ, ATM, CNOT1,
EP300, ARID2, RET, and MAP2K4 genes have been reported in colonic adenomas in this
study [65] (Table 2).

Another study has helped to establishing which alterations, early identifiable in
adenomatous tissues, may play a critical role in CRC development. The authors evaluated
the genetic and molecular characteristics of multiple adenomatous tissues from 38 patients
through WES and RNA sequencing. They analyzed the differences between cancer-adjacent
polyps (CAPs) and cancer-free polyps (CFPs) and found a higher mutation rate in the first
group. Interestingly, while both CAPs and CFPs shared causative mutations in the APC
gene, somatic mutations in TP53, FBXW7, PIK3CA, KIAA1804, and SMAD2 were detected
only in CAPs and were related to cancer progression [66] (Table 2).

3.2. Colorectal Serrated Lesions

Through an exome-sequencing based approach on peripheral blood or mouthwash
samples, the first study to investigate the hereditary genetic alterations associated with
the development of SSLs was conducted by Gala and colleagues on 20 unrelated patients
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with multiple SSLs, most of which met the clinical criteria for SPS. The authors found
that loss of function germline mutations in genes involved in the regulation of senescence,
particularly ATM, PIF1, TELO2, XAF1, and RBL1, led to the genetic predisposition of
developing multiple SSLs. In addition, this study was the first to identified RNF43 R113X
germline mutation as a causative driver gene for SPS onset. Genotyping one representative
SSL from 19 individuals of the 20 enrolled patients, the authors found out that all the
lesions, except one, carried the somatic BRAFV600E mutation [67] (Table 2).

The RNF43 gene encodes for an E3 ubiquitin-protein ligase implicated in the ubiquiti-
nation and internalization of the Frizzled receptors, thus representing a crucial negative
regulator of the Wnt/β-catenin signaling pathway [77–79].

After the first evidence suggesting the causative role of germline inactivating mu-
tations in the RNF43 gene on SPS onset, another study confirmed the pathogenic role of
hereditary RNF43 mutations in one SPS family and further demonstrated that somatic
mutations in the RNF43 gene represent also a frequent event in SSLs (34%), despite not
being found in HPs. Importantly, in most sporadic SSLs/TSAs analyzed in this study, the
authors found co-occurrent mutations in both RNF43 and BRAF genes (the latter were
found only in SSLs/TSAs but not in CNADs) [68] (Table 2). Similar results were reported by
Tsai and colleagues. In agreement with other studies, they observed that RNF43 mutations
in TSAs are frequently associated with BRAF mutations (14/17 TSAs), rather than KRAS
mutations (2/17 TSAs) [69] (Table 2).

Although RNF43 loss of function mutations have been found in both SSLs and TSAs,
different studies have shown a higher frequency of somatic RNF43 mutations in TSAs
rather than SSLs [69,70] (Table 2). The presence of mutations in Wnt-related genes was
investigated in another study in a series of SSLs with or without dysplasia. The authors
found that RNF43 inactivating mutations constitute the most frequent event in dysplastic
lesions, while APC and ZNRF3 alterations were only observed in a few cases (Table 2).
Alterations in Wnt signaling components and the consequent β-catenin nuclear accumula-
tion were characteristic of dysplastic lesions, while BRAF mutations, found almost in all
characterized lesions, did not depend on whether there was dysplasia or not [71].

Performing WES on both CNADs and SSLs, Lin and colleagues found no differences
in the mutation frequencies between these adenoma subtypes. However, the mutational
profile of CNADs and SSLs was different. The most frequent somatic mutations found in
SSLs were BRAF (V600E; rs113488022) and KRTAP4-5 (rs411367). Somatic mutations in
the KRTAP4-5 were found in both CNADs and SSLs, while APC gene mutations, observed
in most CNADs, were not found in the SSLs analyzed [60] (Table 2). In fact, APC gene
mutations were found in another study to be more common in CNADs and completely
absent in HPs and SSLs, although APC mutations were observed in a small fraction of
TSAs [70] (Table 2).

The BRAF V600E missense somatic mutation was observed in the 67% of cases in
a study that prospectively analyzed 200 TSAs. In this study, BRAF-mutated adenomas,
while having a MSS profile, frequently showed a CIMP-high profile [72] (Table 2). Recently,
another study characterized the genetic and molecular profile of a small SSL series with
dysplasia or carcinoma showing β-catenin nuclear accumulation in all the analyzed lesions,
nearly all of which had BRAF mutations. By performing target sequencing, the authors
found that about half of the lesions also had mutations in FBXW7, particularly MSI-H SSLs,
while MSS SSLs partially harbored mutations in the TP53 gene. Somatic mutations in KIT,
PTEN, SMAD4, and SMARC1B genes were also detected at low frequencies in the same
case series [73] (Table 2).

APC gene inactivating mutations represent the most common initiating event during
the development of CNADs [2,80]. In an evaluation of the frequency of APC gene alterations
in the serrated pathway, compared with CNADs, truncating APC gene mutations occur over
all at a low frequency in serrated lesions, particularly in SSLs, despite their higher rate in
TSAs (Table 2). APC gene missense mutations have been reported more frequently in MSI-
BRAF-mutant serrated CRCs (Supplementary Table S2). Despite the low frequency of APC
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gene mutations, increased levels of nuclear β-catenin have been found in both dysplastic
SSLs and TSAs, indicating that the hyperactivation of the Wnt/β-catenin pathway might
contribute to the malignant progression of serrated lesions with a mechanism that is
probably not tied to the APC gene inactivation [74].

The R-Spondin (RSPO) gene fusions, leading to RSPO protein induction, represent
an alternative mechanism leading to Wnt/β-catenin signaling induction in TSAs. RSPO
genes encode for leucine-rich repeat-containing G-protein coupled receptor (LGR) ligands
and constitutes potent Wnt agonists, which impair the internalization of Frizzled receptors
mediated by RNF43 and ZNRF3 [78,81]. RSPO fusions have been proposed as drivers in
human CRC [82], and have been detected as causative genetic alterations in TSAs [68,70].
Sekine and colleagues found that PTPRK-RSPO3 fusions were the most frequent cause
of RSPO overexpression in this setting [70,83]. In addition to the known and most rep-
resentative RSPO fusion transcripts, PTPRK(exon 1)-RSPO3 and PTPRK(exon 7)-RSPO3,
the authors revealed novel RSPO fusion isoforms involving the fusion of PTPRK exon
6 and 13 to RSPO3 exon 2, respectively, and the fusion of NRP1(exon 2/3) to RSPO2
exon2 [83]. The same authors confirmed previous results in a further TSAs series and
identified EIF3E-RSPO2 and PIEZO1-RSPO2 fusions in a small percentage of traditional
serrated lesions, which concurrently showed KRAS mutations [84]. Moreover, the analysis
of precursor polyps associated with TSAs showed that the acquisition of genetic alterations
in Wnt-related genes (such as RNF43, APC and CTNNB1) could occur during the transition
from precursor polyps to TSAs, which was more frequent in TSAs [75] (Table 2).

This evidence supports the idea that, although the aberrant activation of the MAPK
cascade has a pivotal role in the initiation of the serrated CRC pathway [73], Wnt/β-catenin
signaling hyperactivation is critical not only in the malignant progression of CNADs
following the classical adenoma-carcinoma sequence, but also in the serrated pathway.

4. Conclusions

The main genetic, epigenetic, and molecular alterations driving the onset and progres-
sion of CRC in both hereditary and sporadic settings have frequently been investigated.
The diffusion of NGS and transcriptomic technologies has led to the identification of new
candidate driver genes and to improving the knowledge on the molecular mechanisms
underlying the progression of colonic adenomas towards CRC development.

Figure 1 summarizes the most common mutated genes in both hereditary and sporadic
settings emerging from the studies discussed in this review. Although the mutations of
a few genes were shared among these different settings, the studies highlight the wide
genetic heterogeneity of both early and advanced pre-cancerous lesions, thus making it
difficult to develop effective therapeutic strategies.

Several studies have investigated the long-term CRC risk based on the endoscopic
and histological characteristics of colonic lesions. However, studies on large series, simulta-
neously assessing the risk of developing CRC in relation to the histopathologic, genetic,
and molecular characteristics of pre-cancerous lesions, are lacking.

In conclusion, the evaluation of the CRC risk based on the molecular characterization
of early pre-cancerous colorectal lesions, both in hereditary and sporadic settings, may
speed up the development of targeted preventive strategies. This would consequently
define specific risk profiles, as well as identify those patients who would most benefit from
strict endoscopic surveillance. Further studies will be pivotal to establish the individual
CRC risk according to the genetic alterations detectable in early colorectal lesions and to
define the impact of such characterization in clinical practice.
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