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A Rapid Monitoring Method for Natural Gas
Safety Monitoring

Rongli Li and Yuexin Fan

Abstract—The quick leakage alarm and the accurate con-
centration prediction are two important aspects of natural gas
safety monitoring. In this paper, a rapid monitoring method
of sensor data sharing, rapid leakage alarm and simultaneous
output of concentrations prediction is proposed to accelerate the
alarm speed and predict the possible impact of leakage. In this
method, the Dempster-Shafer evidence theory is used to fuse
the trend judgment and the CUSUM (cumulative sum) and the
Gauss-Newton iteration is used to predict the concentration.
The experiment system based on the TGS2611 natural gas
sensor was built. The results show that the fusion method is
significantly better than the single monitoring method. The alarm
time of fusion method was more advanced than that of the
CUSUM method and the trend method (being averagely, 10.4%
and 7.6% in advance in the CUSUM method and the trend
method respectively). The relative deviations of the predicted
concentration were the maximum (13.3%) at 2000 ppm (parts
per million) and the minimum (0.8%) at 6000 ppm, respectively.

Keywords—trend judgment, CUSUM, Dempster-Shafer evi-
dence theory, Gauss-Newton nonlinear fitting, fast alarm moni-
toring, concentration prediction

I. INTRODUCTION

AS an important clean energy, natural gas is widely used in
the world [1], [2]. It would bring great danger to people’s

life and property once the gas leakage occurs, for the special
physical and chemical properties [2], [3]. Strengthening ef-
fective monitoring, preventing and reducing the occurrence
of disaster accidents have attracted wide attention [4]–[9].
Xia, Long et al. studied new types of detection sensors [4],
[5]. Xiao et al. studied a small leak detection method based
on variational mode decomposition adaptive de-noising and
ambiguity correlation classification intended for natural gas
pipelines [6]. Zhou et al. studied natural gas pipeline leakage
through the method of experiment and simulation [7]. He et
al. proposed a new method of gas identification monitoring for
sensor signal processing to get high identification accuracy [8],
[9]. As a leisure and entertainment place, tourist attractions
are usually crowded, and safety monitoring is crucial and
essential [10]. Natural gas in the scenic area mainly comes

This work was supported by the grant No. 41977090 financed from
National Natural Science Fund, the grant No. 19KJB610022 financed from
Natural Science Research Projects of Jiangsu Higher Education Institutions
and the grant No. 2018SJKY006 financed from the School-level Scientific
Research Project of Sanjiang University.

Rongli Li is with Faculty of Sanjiang University, Nanjing, China (e-mail:
li rongli@sju.edu.cn).

Yuexin Fan is with Faculty of Fujian Normal University, Fuzhou, China
(e-mail: yxfan@fjnu.edu.cn).

from restaurants and natural gas vehicles [11], [12]. The
consequences of natural gas leakage might be even worse. At
the same time, leakage may cause environmental problems and
will have a far-reaching influence. Information processing is an
important part of the development for smart scenic spots [13].
Gas safety monitoring has been studied on many occasions
using information system technology [14], [15]. However, the
monitoring in scenic spots has not been reported yet [16],
[17]. The traditional method for monitoring natural gas is
threshold comparison method and the main step is to compare
the gas concentration with the threshold value. This method
is difficult to detect mild dangers and cannot provide target
concentration and it cannot satisfy the rapid and predictive
monitoring requirements in scenic spots.

In the application of scenic spot monitoring, quick response
is needed to leave time for disposal. It is also necessary to
predict and assess the possible consequences. In the present
paper, the rapid monitoring method for sharing sensor data,
leaking quick alarms and simultaneously outputting concen-
tration prediction is proposed to speed up the alarm speed and
predict the concentration of the leakage. The transient response
data is used to alarm and predict the concentration.

II. METHODS

The gas sensor converts the concentration information into
response electrical signal and a typical sensor output curve is
shown in Fig. 1. The response slope of the sensor decreases
with increasing concentration. Considering the measurement
of the gas sensor response process, it is expressed as a discrete
time signal with sampling period. The traditional method
is to compare the measured value with the threshold. The
response signal below the threshold cannot be monitored and
the response rate of the sensor gradually decreases resulting
in slow response. The threshold value comparison method
uses a single point of the measured value for comparison and
cannot predict the ambient gas concentration. The transient
response signal of the sensor contains abundant information
and the comprehensive usage of sensor transient response
information can help make up for the shortcomings of the
threshold comparison method [9].

In order to compatible with the response speed and concen-
tration prediction, the system needs to be designed with both
considerations in mind. Different from the traditional moni-
toring system, the signal processing subsystem is designed for
an integrated method. Signal acquisition consists of the front
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Fig. 1. The measurement x(t) of the process variable x with a variation from
normal condition to abnormal one at the time instant t0 .

end sensor and signal collection modules. Generally, the signal
collection module converts the analog signal of the sensor into
digital signal. The output data of the signal collection module
is provided to the signal processing module.

To improve the speed and accuracy of fast detection, the
integrated method combines sensor raw for anomaly detection
and change rate for slope detection. Based on the fusion
results, the concentration prediction module is triggered. The
threshold comparison is used as supplemental information for
the monitoring method. The fusion detection module fuses
anomaly detection and slope detection, as shown in Fig. 2.
The anomaly detection module provides the ability to quickly
identify changes of the sensor and the slope detection module
monitors the severity of signal changes.
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Fig. 2. Fast detection and concentration prediction structure in this study.

In this study, the anomaly detection uses commonly used
CUSUM (cumulative sum) detection algorithm, the slope de-
tection uses the trend judgment method based on least square
method, the information fusion uses Dempster-Shafer evidence
theory algorithm and the concentration prediction uses Gauss-
Newton method based nonlinear fitting algorithm. Compared
with the traditional monitoring method, this method has two
characteristics: the first is that the data is shared which does
not increase the amount of signal acquisition equipment; the
other is that it makes full use of the sensor information and
gives multi-dimensional information.

The CUSUM detection algorithm is a commonly used
algorithm in statistical process control [18]. The algorithm
accumulates small offsets in the process to achieve the effect
of amplification, so that changes in parameters can be quickly
identified and detection sensitivity improved. The CUSUM
detection algorithm is more effective in detecting small shifts
in the mean. According to the degree of data point shift, the
mean change can be detected intuitively and conveniently,
which is defined as

y(n) = y(n− 1) + x(n), y(0) = 0, n = 1, 2, · · · (1)

where x(n) is the observation sequence; y(n) is the cumu-
lative value.

Therefore, when x(n) is transformed from a negative value
to a positive value, the cumulative value y(n) increases and
the change in x(n) can be detected.

When the measured gas concentration changes, the gas sen-
sor output response fluctuates with the concentration change.
In order to detect the gas concentration trend, it is necessary
to make a judgment on the gas concentration trend. The direct
method is to linearly fit the sensor signal. In order to process
the sensor’s output data in real time, the data needs to be
sliding window processed. Using linear fitting can help quickly
detect the trend of the sensor signal.

Assume that the observations are (x1, y1), (x2, y2), ..., (xn,
yn). The mathematical expression for the straight line is

y = a0 + a1x + e (2)

where a0 and a0 are the coefficients representing the inter-
cept and the slope, respectively. The parameter e is the error
or residual between the model and the observations, which can
be represented by rearranging as

e = y − a0 − a1x (3)

Thus, the residual is the discrepancy between the true value
y and the approximate value a0 + a1x, predicted by the linear
equation.

A strategy is to minimize the sum of the squares of the
residuals

Sr =

n∑
i=1

e2
i =

n∑
i=1

(yi − a0 − a1xi)
2 (4)

To determine values for a0 and a1, equation (5) finds
partial derivatives about a0 and a1 respectively. Setting these
derivatives equal to zero will result in a minimum Sr. The
analytical solution of a1 when Sr takes the minimum value
can be obtained as [19]

a1 =
n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi

n
∑n

i=1 x
2
i (
∑n

i=1 xi)
2 (5)

As the slope of the signal, a1 is a key parameter to measure
the trend of the sensor signal.

Dempster-Shafer evidence theory which is a mathematical
theory of evidence, is one of the most widely used because it
has a unique advantage in expressing uncertainty [20]. As an
extension of Bayesian reasoning, Dempster-Shafer evidence
theory does not need to know the exact data about the prior
probability and conditional probability in order to perform
evidence fusion. On the basis of establishing a one-to-one
correspondence between propositions and sets, the problem
of uncertainty of propositions is transformed into the problem
of uncertainty of sets for processing [21].

The basic concept of evidence theory is the identification
framework, Let Θ be a finite set of possible hypothesis. This
set is referred as the frame of discernment and its powerset
denoted by 2Θ. A basic belief assignment function m assigns
a value between 0 and 1 to every subset A of the frame
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of discernment. Then m function is defined to satisfy the
following conditions

m(∅) = 0,
∑

A⊆2Θ

m(A) = 1 (6)

Assume that the basic probability distributions of the two
evidence amounts are m1 and m2 respectively. Using the
Dempster-Shafer synthesis rule, they can be fused into a new
basic probability distribution as

m(A) =
1

N

∑
Ai∩Bj 6=A

m1(Ai)m2(Bj) (7)

where the constant N =
∑

Ai∩Bj 6=∅
m1(Ai)m2(Bj) > 0.

In this paper, the recognition framework consists of two
processing, namely alarm, no alarm. The CUSUM method
and the trend method are the basic probability distribution
functions m1 and m2 respectively.

The dynamic response characteristics of the gas sensor meet
the exponential function( [9], [22]) and the response model to
be fitted can be written in the universal form

f(x) = a0(1− e−a1x) + e (8)

In a short form, it can be expressed as

yi = f(xi) + ei (9)

where yi is the measured value of the dependent variable
and f(xi) is the measurement equation, which is a function
of the independent variable xi.

The parameter values are determined based on the criterion
of minimizing the sum of squared residuals and the solution
process is performed iteratively [19]. At the parameter value,
expand by Taylor series and omit the terms after the first
derivative

yi − f(xi)j =
∂f(xi)j
∂a0

∆a0 +
∂f(xi)j
∂a1

∆a1 + ei (10)

Represented as a matrix, that is

{D} = {Zj}{∆A}+ {E} (11)

The expressions of {D},{Zj},{∆A} and {E} are as follows

{D} =


y1 − f(x1)
y2 − f(x2)

...
yn − f(xn)

, {Zj} =


∂f1

∂a0

∂f1

∂a1
∂f2

∂a0

∂f2

∂a1

...
...

∂fn
∂a0

∂fn
∂a1

,

{∆A} =

[
∆a0

∆a1

]
, {E} =


e1

e2

...
en


and n is the number of data points.
The normal equation is obtained as follows

{Zj}T {Zj}{∆A} = {Zj}T {D} (12)

By solving Equation (12), {∆A} is obtained, and the
parameter value after iteration is

a0,j+1 = a0,j + ∆a0, a1,j+1 = a1,j + ∆a1 (13)

Repeat the above process until the iteration process con-
verges.

III. RESULTS

A. The experiment system

In order to validate the rapid monitoring method and
simulate the operating environment, the experimental system
was built. The main component of natural gas is methane, so
the methane sensor is used to study natural gas monitoring.
The metal oxide semiconductor methane sensor TGS2611 and
supporting test circuit were placed in a 10-L volume test
chamber. The gas sensor resistance was installed in a half-
bridge configuration and the matching resistance RL is 7.5 kΩ.
The measuring circuit was supplied with a DC power supply
by the Agilent E3631A. The voltage Vout was measured by the
Agilent 34410A Multimeter and the result was uploaded to the
computer in real time. For the explosive limit for methane is 5
to 15 percent, a concentration less than 1 percent was selected
in order to study the early warning of methane leakage. The
gas sensor was placed in the middle of the chamber, and
a pair of fans in the side wall was used for the balance
of concentration in the chamber. The high concentration gas
enters the chamber through the gas injection device and the
wanted gas concentration was diluted by pure methane and
air. The system composition is shown in Fig. 3
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Fig. 3. Experimental set-up used in this study.

The real-time program embedded signal processing runs
on the computer and the fast detection and concentration
prediction algorithm runs when data is received.

B. Fast detection

When there is no methane in the experimental chamber, the
sensor outputs a low concentration value close to 0. When
the gas concentration is set to 5000 ppm (parts per million),
with the injection of methane, the output response starts to
rise rapidly and then slows down as shown in Fig. 4. After
about 200 seconds, the sensor response increases slowly and
it is close to the preset concentration value. If the alarm
concentration is set slightly above 5000 ppm, it will take more
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than 200 seconds to trigger the alarm signal. For a gas hazard
warning signal, the alarm is given earlier, the more disposal
time is left for people.
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Fig. 4. The gas sensor output at the preset 5000 ppm.

In order to fuse the sensor’s transient information, the
CUSUM method and the trend method need to be uniformly
expressed as an alarm probability form. The CUSUM of con-
centration and the probability of alarm are shown in Fig. 5(a).
With the gas injected, CUSUM gradually rises. In order to
calculate the alarm probability of the CUSUM method, the
buffer length is set to be 10 seconds and the number of
deviations from the mean 3 times the standard deviation in the
buffer is used as the comparison value. Therefore, the quotient
of the comparison value and the buffer length is taken as the
probability of alarm, as shown in the blue curve in Fig. 5(a).
The probability of the CUSUM method gradually increases
from 0 to 1. In 131 seconds, the alarm probability of CUSUM
method reaches 90%. The rate of concentration change and
the probability of concentration change rate are shown in
Fig. 5(b). The upward trend is particularly pronounced in the
early stages of gas injection and this is reflected in the gradual
increase in the slope of the sensor output curve. Similarly, the
number of concentration growth rate continuously greater than
10 ppm/second is taken as a reference value. The quotient of
the comparison value and the buffer length is taken as the
probability of alarm, as shown in the blue curve in Fig. 5(b).
In 129 seconds, the alarm probability of trend method reaches
90%.

The results of Dempster-Shafer fusion method are shown
in Fig. 5(c). The alarm probability of the Dempster-Shafer
fusion algorithm rises at a faster rate. This is because both the
CUSUM method and the trend method take full advantage of
the sensor’s transient response to help increase alarm speed.
The Dempster-Shafer algorithm integrates the information of
the two methods, which is helpful to further improvement.
In 118 seconds, the alarm probability of the Dempster-Shafer
fusion method reaches 90%, which is significantly earlier than
the CUSUM method and the trend method.
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Fig. 5. The output of rapid monitoring method. (a) The CUSUM of concen-
tration and the probability of CUSUM alarm. (b) The rate of concentration
change and the probability of change rate. (c) The fusion curve of the proposed
method.

C. Concentration prediction

The steady-state concentration of methane is an important
reference to determine whether there is a risk of combustion
or explosion. Gas diffusion, space size and other factors affect
the speed of the response and the time to reach a stable
concentration. It takes a large number of sampling points to
reach the steady-state concentration of the sensor, as shown in
Fig. 4. As a reference for the alarm signal output, the slow rise
of the sensor signal is not conducive to the rapid perception
of the gas concentration. When the fusion signal triggers the
start of concentration prediction, the software automatically
fetches the buffered data to fit the target concentration value.
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The injected methane concentration was 5000 ppm and Fig. 6
shows the methane concentration curves in 20, 40, 60 and
80 seconds after the signal is triggered. It can be seen that
as the number of sampling points increases, the prediction
curve becomes closer to the actual measurement value. Since
the cache is already used when the trend is detected, it helps
more data to participate in the fitting and improves the fitting
accuracy. In 80 seconds, the difference between the predicted
concentration and the actual measurement value is 190 ppm.

D. Fast detection and concentration prediction
In order to study the relationship between alarm and con-

centration, the alarm experiments were conducted at 2000,
4000, 6000, 8000 and 10000 ppm. The CUSUM method, trend
method and Dempster-Shafer evidence theory based fusion
method were applied to the alarm judgment respectively.
Figure 7 is the change curves of alarm time with concentration
and it can be seen that the trend method is faster than CUSUM
method to give the alarm signal. With the increase of gas
concentration, the alarm time of CUSUM method and trend
method decreased and the difference between the output of
gas sensor and that of pure air becomes more obvious. This
helps to distinguish between normal and alarm state. The
Dempster-Shafer evidence theory based fusion method utilizes
the information of CUSUM method and trend method to
improve the alarm speed. When the threshold is lower than
the set value, the alarm state can be predicted by the fusion
algorithm. It can be seen from the experimental results that
the alarm judgment result of the fusion method is significantly
faster than that of CUSUM method and trend method. With
the increase of gas concentration, the alarm advance of the
fusion method decreases slightly. It can be concluded that the
fusion method is 10.4% ahead of the CUSUM method and
7.6% ahead of the trend method on average.

In this experiment, in order to give consideration to the
accuracy of prediction and the rapidity, the detection trigger
probability is selected as 90%. This implies that when the
Dempster-Shafer output alarm probability is not less than 90%,
the concentration prediction is turned on. Under the above
five different concentrations, the concentration prediction was
analyzed as shown in Fig. 8. The predicted concentration
error fluctuated with different methane concentrations and
the relative deviation of the predicted concentration was the
maximum (13.3%) at 2000 ppm and the minimum (0.8%) at
6000 ppm.

IV. CONCLUSIONS

The monitoring of combustible gas leakage has a great
influence on the safety of tourists, the environment and the
reputation of scenic spots. In this paper, the integrated rapid
monitoring method is established to accelerate the alarm speed
and predict the concentration. By sharing sensor data, multi-
source information fusion and nonlinear prediction, the alarm
status is given quickly and the steady state concentration is
predicted accurately.

The CUSUM and the trend judgment are processed based
on the gas sensor data. The two methods give the alarm proba-
bility respectively and then enter the data fusion processing to
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accelerate alarm judgment. Based on transient data, the steady
state concentration is predicted by nonlinear fitting method. In
order to improve the fitting accuracy, the data is stored in the
cache in advance to assist in improving the fitting accuracy.

A simulation test system was set up, containing the gas sen-
sor TGS2611, whose data was processed according to the fast
detection and concentration prediction structure. Compared
with the separate CUSUM method and the trend prediction
method, the fusion method can alarm the judgment earlier
(being averagely, 10.4% and 7.6% in advance in the CUSUM
method and the trend method respectively). The fitting method
can predict the concentration earlier and the relative deviations
of the predicted concentration were the maximum (13.3%) at
2000 ppm and the minimum (0.8%) at 6000 ppm, respectively.
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