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Abstract. Task Scheduling and Resource Allocation (TSRA) is the key focus
of cloud computing. This paper utilizes Smart Message Passing Interface based
Approach (SMPIA) and the Roulette Wheel selection method in order to deter-
mine the best Alternative Virtual Machine (AVM). To do so, the Virtual MPI Bus
(VMPIB) is employed for efficient communication among Virtual Machines (VMs)
using SMPIA. In this matter, SMPIA is applied on different resource allocation and
task scheduling strategies. MakeSpan (MS) was chosen as an optimization factor
and solutions with minimum MS value as the best task mapping performance and
reduced cloud consumption. The simulation is conducted using MATLAB. The
analysis proves that applying SMPIA reduced the Total Execution Time (TET)
of resource allocation, maximum MS time, and increase the Resource Utilization
(RU), as compared to non-SMPIA for Greedy, Max-Min, Min-Min algorithms. It
is observed that SMPIA can outperform non-SMPIA. The effect of SMPIA is more
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obvious as change in the MS and the number of cloud workloads increase. Further-
more, regarding the TET and MS of the tasks, the SMPIA can significantly reduce
the starvation problem as well as the lack of sufficient resources. In addition, this
approach improves the system’s performance more than the previous methods, what
reflects effectiveness of the proposed approach concerning the Message Passing In-
terface (MPI) communication time in the network virtualization. The mentioned
text mining work was prepared concurrently after practical evaluation.

Keywords: Cloud computing, SMPIA, TSRA, resource allocation scheduling, rou-
lette wheel, text mining, AVM, starvation

1 INTRODUCTION

Cloud computing is well known as a model that aims at providing resources and
services through a network. In this matter, the Task Scheduling and Resource Al-
location (TSRA) present the key focus of cloud computing [1]. Message Passing
Interface (MPI) is a standard communication protocol, which has become a legal
standard for communication between processes and implements a parallel program-
ming using the MPI [2, 3]. Typically, High-Performance Computing (HPC) appli-
cations employ the MPI communication [4, 18]. Here, it is worthwhile to mention
that as the mapping tasks problem onto resources (workflow tasks scheduling) is
known as NP-complete in the cloud computing, several scheduling algorithms have
been developed to solve it [5, 13, 14, 15, 16, 29, 38]. The main objective of the
workflow scheduling problem is to reduce Total Execution Time (TET) as well as to
generate a balance between the resources consumption and the Quality of Service
(QoS) [8, 9].

This paper proposes a Smart MPI Approach (SMPIA) to improve MPI commu-
nication time and the lack of sufficient resources, as well as to reduce the resource
involvement level and starvation problem (large waiting time) of the tasks. There-
fore, this paper addresses two issues:

1. whether it is possible to reduce latency of MPI communication time and star-
vation problem by reducing the average TET and completion time, and

2. whether it is possible to reduce the resource consumption time and involvement
level while ensuring efficiency.

To solve the first problem, the SMPIA and the Roulette Wheel selection method
are utilized to determine the probability of choosing Alternative Virtual Machines
(AVMs). In addition, several AVMs are employed instead of one Virtual Machine
(VM) in sub-networks inter-connected. To answer the second question, a suitable
model is developed to calculate the Resource Utilization (RU) in order to decrease
the level of resource involvement in the cloud and resource consumption time in
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such a way that its inputs were MakeSpan (MS) parameters that improved RU and
resource consumption time.

To accomplish this aforementioned aim, several experiments are implemented on
different TSRA strategies using SMPIA in the Ministry of Communication and In-
formation Technology of Iran (MCITI) dataset. After that, the performance metrics
including MS, TET, and RU are measured. The obtained results of the experiment
indicate that the SMPIA outperform standard algorithms including Min–Min algo-
rithm [34] in terms of MS. Moreover, the SMPIA performs better than the algorithm
developed in [4, 6, 20, 30, 35, 17, 31, 33, 36, 37], in terms of ET, MS and RU, re-
spectively.

This paper aims to allocate the appropriate AVMs collection based on the mini-
mum MS time and optimal mapping of current flow onto the selected AVM. Through
choosing the appropriate AVMs and mapping the flow onto them in the shortest MS
time in Virtual MPI Bus (VMPIB), this approach can improve MPI communication
time, starvation problem and performance in the cloud computing. To do so, this
approach encompasses three phases of calculation of resource-ranking, resource se-
lection, and optimal task-resource mapping. In the following, the main contribution
and motivation of this paper is described.

1.1 Contribution and Motivation

The main contributions of this paper are as follows:

1. This paper develops a novel method and technique for efficient communication
between VMs in MPI-based cloud resources using VMPIB. The key idea is the
phases of the resource-ranking, AVM selection, and mapping of the current flow
onto the selected AVM. In this way, the probability of choosing an AVM for
workflows was determined using the Roulette Wheel selection method.

2. This paper improves the resource consumption time and task scheduling in the
cloud computing. In this regard, the parameters of load, capacity, and amount
of computed load, Execution Speed (ES) and execution time of each flow on
the VM are employed to calculate the minimum MS. Besides, the parameters
CPU processing speed of each flow on the VM are considered to calculate the
execution time and TET. It is worth noting that this approach is different from
the previous conducted approaches because the effect of MPIA is more obvious
as changes increase in the MS and the number of cloud workloads.

3. This paper enhances RU, reduction resource consumption, optimal task-resource
mapping model in the cloud computing. To accomplish the aim, the memory
capacity parameters, memory capacity used, total processing capacity, and pro-
cessed capacity on the VMs, are exploited to calculate the RU. It is worthwhile
to mention that this approach is different from the former reviewed approaches,
because decreasing the RU level using heuristic (Max-Min, Min-Min) and Greedy
algorithm indicates that mapping the flows onto the appropriate AVM is carried
out properly. Analysis of the results demonstrates that the proposed approach
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enhances performance in terms of MS up to 55.94%, while it is up to 55.59%
in terms of the TET based on which RU and involvement level are enhanced up
to 12.80%. The need to conduct this research is to delay MPI communication
and starvation problem in the VMPIB. It should be mentioned that utilizing
SMPIA on a telecommunications transaction application increases its efficiency.

The motivation for this research is the implementation of text mining on the telecom-
munications transactions application in order to reduce MPI processing time and
solving starvation problem of the tasks. The main novelty of this research is to
implement text mining on the telecommunications transaction application in order
to achieve proper processing time as well as to manage the proposed cloud system.

The remainder of this paper is organized as follows: the related works are pre-
sented in Section 2. A case study is described in Section 3. Process smart MPIA
and job migration in the text mining is found in Section 4. Solving the resource
allocation scheduling problem using SMPIA is provided in Section 5. Solving the
starvation problem using SMPIA is performed in Section 6. Evaluation of SMPIA is
given in Section 7. Discussions and analysis are in Section 8. Ultimately, conclusions
and future research are presented in Section 9.

2 RELATED WORKS

In this section, some studies conducted on the scheduling and method of resource
allocation in the cloud are presented for the optimal resource use.

The papers of [2, 4, 6, 7, 10, 11, 12, 19] confirmed that the implementation of
MPI applications is appropriate on the cloud. In [17], the ranking of each task in
Heterogeneous Earliest Finish Time (HEFT) algorithm was performed based on the
average of task connections and cost of computing between the current task and its
substitution. In [20], the Eager Map algorithm for solving mapping problems was
proposed in cluster nodes and cores, which was based on a Greedy heuristic in order
to match application communication patterns to hardware hierarchies. A novel dy-
namic task scheduling algorithm was developed in [26] based on an improved genetic
algorithm. Then, some experimental results indicate that the proposed algorithm
could effectively improve throughput of the cloud computing systems so that it
could significantly reduce the execution time of task scheduling. In [27], a novel
task-scheduling algorithm termed as Genetic Algorithm-based Customer-Conscious
Resource Allocation and Task Scheduling (GACCRATS) is proposed for the hetero-
geneous multi-cloud environment in order to cope with the gap between frequently
changing customer requirement and available infrastructure for the services. After
that, the simulation results were compared with the existing scheduling algorithm.
The aim was to task-resource mapping of the multi-cloud federation in order to
achieve minimum MS time and maximum customer satisfaction. In [28], the prob-
lem of allocating Data Center (DC) resources is considered for the cloud enterprise
customers who required the guaranteed services on demand. For the higher traf-
fic situation, the heuristic approach was much more suitable, which was analyzed
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and then the results are presented for up to 3,200 servers. The proposed heuristic
was fast to solve large-scale problems where the Mixed-Integer Linear Programming
(MILP) problem was difficult to solve. They developed a novel MILP model as well
as alternately a heuristic that was solved in this framework at each review point. In
other words, more frequency options for a server mean higher reduction in the en-
ergy consumption. According to findings of [28], there are several future directions
to address, which do not allow partial fulfillment of a request if there is a lack of
sufficient resources to consider fully a request. Furthermore, they planned to add
performance evaluation on the loads to a DC based on its geographical distance
from different Virtual Networks (VNs). Moreover, they planned to explore different
allocation policies so that the service performance was comparable for different VN
customer groups. In [32], Foundations of Machine Learning (FOML) algorithm is
compared to Min–Min, Max–Min, Sufferage and Enhancement HEFT (E-HEFT)
algorithm. In [33], the simulation results show that the Segmented Min-Min (SMM)
algorithm with the high number of tasks and machines is the best. In [34], the
obtained results indicated that the Max-Min Scheduling Improved Algorithm (MM-
SIA) had the lowest completion time of all VMs, as compared to three algorithms
such as Max-Min, Min-Min, and Round Robin. In [35], an approach presented called
Optimized Process Placement (OPP) found the best placement scheme comparing
to all collective communications on all message sizes.

2.1 Comparison the SMPIA with Benchmarks, Algorithms and Methods

In [16], compared to the previous methods, the heuristic method could improve the
task response time and resource allocation up to 50%. The proposed heuristic ap-
proach performed task scheduling and resource allocation efficiently with high utility.
In this way, the maximum RU was achieved with computing resources such as CPU,
memory and bandwidth. Existing systems such as [16] considered three resources of
CPU, memory, and bandwith in evaluating their performance. In our proposed sys-
tem, the parameters such as (CPU, memory, bandwith, storage), capacity (memory,
CPU), load (VMs, flow), number (VMs, flows), ES (flow, CPU), DC ID, server ID,
CPU number, CPU Freq (HZ), VM ID, flow ID were considered as input parame-
ters to calculate VM capacity. Also, the experimental results show that the SMPIA
outperforms three standard algorithms, i.e., Greedy, Min–Min and Max–Min algo-
rithm and improved these algorithms in terms of TET, MS, and RU metrics. The
obtained result indicated the lower of the starvation problem between tasks and
resources, the lower the level of resource involvement and resource consumption in
MPI communications. Besides, the related performance parameters in SMPIA were
calculated based on the mean values, as obtained after 50 times of the program
execution. This paper conforms results [1, 8, 9, 10, 14, 16, 22, 23, 24, 25, 30, 31, 36]
avoiding Service Level Agreements (SLA) violation and QoS dropping.

In this paper, the SMPIA could improve the resource allocation time and com-
pletion time up to 55.80% and 55.94%, respectively, which caused reducing the
resource consumption and resource involvement levels up to 11.80%. At the mean-
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time, the RU parameter confirms the rate of resource consumption and the extent
of the involvement of hardware resources in the cloud to percentages. In this pa-
per, both high and low percentages do not indicate its high or low quality. Table 1
reports the details of comparison performance parameters the SMPIA with bench-
marks, algorithms and methods for optimization.

3 CASE STUDY

In this study, the general model of the telecommunication cloud system was de-
signed. In this model, as illustrated in Figure 1, the VMPIB and the cloud man-
agement center were considered. To define the concept of the VMPIB, we con-
sidered a topology associated with the connected graph G = (D, V ), where D =
{DC1, DC2, DC3, . . . , DCd} and V = {VM 1,VM 2,VM 3, . . . ,VMm}. In this mat-
ter, we bring the following assumptions to investigate which resource can be allocated
to the flow. The function φ : V → D was considered to control the dependencies of
flows and tasks of all flows including the set F = {F1, F2, F3, . . . , Ff}. In addition,
the function θ : F → V and T = {T1, T2, T3, . . . , Tt} is regarded as well. Here, D
is the total number of DC; V refers to the total number of VMs; T denotes the set
of t transaction, it was defined as the total of transactions. F means the total of
the flows depending on each other. θ is a function to determine which flow could
be executed by VM in Virtuall MPI Bus. In addition, φ is function, in which VM
is assigned to each DC in the Virtuall MPI Bus. To do so, we bring the following
assumptions:

Definition 1 (Cloud management center). The cloud management center contains
the cloud manager (Administrator), the workflow progress manager, and the initial
scheduler. It performs the schedule work, schedule workflows, and resources, and
then sets the initial values. The job scheduler schedules the workflows and resources,
and then adjusts the initial values (Figure 1).

Definition 2 (Cloud provider). The cloud provider was composed from DC and
servers, in which each DC had a number of servers, each of which had several VMs
in the VMPIB (Figure 1).

Definition 3 (Cloud VMs). A set of VMs, they receive and process the super-
clouds as the resources. In this work, each VM has an ID and capacity. We have
a list of VMs and IDs for the VMs. The VMs in a VMPIB include two-way com-
munication with each other and a server. It should be noted that each VM could
process only one type of flow in large numbers. Each DC, server, and VM has an
ID in the cloud.

Definition 4 (Job). A transaction involves a number of jobs. In this way, the flows
in a VMPIB must pass through a number of jobs to perform a transaction. Each
input and output flow was exhibited as an arrow, whereas each job was depicted as
a red, yellow and blue circle in Figures 2 and 3. Similar to array cells, a number of
jobs generate a task.
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Definition 5 (Job migration). Job transfer for running from one AVM to another
one (Table 3, Figures 4 and 5).

Definition 6 (Task). In this paper, the blue circles form a task in Figures 2 and 3.
For example, in Figure 3, flow number 8 is for a task called a tender, which is divided
into general deal (i.e. flow 11) and limited deal (i.e. flow 12).

Definition 7 (Transactions). Transactions (including deals and tenders) are cate-
gorized into two categories of small and big. A transaction involves a number of
jobs. To perform a transaction, the flows in a VMPIB must go through a number
of jobs. Each input and output flow was shown as an arrow, in which each job is
depicted as a circle. Besides, the big and small transactions (i.e. deals and ten-
ders) were shown as small and big workflows. The related details are illustrated
in Figures 2 and 3. Small and big transactions were composed as 28 and 14 jobs,
respectively.

Definition 8 (MPI table). MPI table is the same as Virtual MPI page table. Were
these pages are placed in physical memory is determined by the page table. An ad-
dress obtained with the ampersand operator in program language is not a physical
address, but a virtual address. Its initial values are set using the scheduling algo-
rithms at the start of the algorithm through the specified data tables, which are
updated during program execution and its values change (Figure 8).

Definition 9 (Distributed MPI table). The type of the network is MPI. Because
the servers process in parallel in the MPI network that are distributed in the network.
The memory allocated to MPI tables is distributed so that the pages are stored in
the buffer of the physical memory.

Definition 10 (MPI’s flows). Each transaction (deals and tenders) that enters the
cloud system contains a number of flows. The transaction flows (deals and tenders)
that are exchanged (sending or receiving) between the VMs for processing are called
MPI’s flows in the VMPIB. In this regard, some application developers encounter
the transmissibility problem in communication networks, which led to the definition
of a standard for messaging, so-called the MPI. MPI is a standard interface that is
independent from hardware, platform, and message-based for parallel applications.
Although the MPI sub-layer can be a proprietary protocol, it does not see the
protocols of some applications, except MPI.

Thus, MPI is a middle ware and a simple interface. In MPI, it is assumed that
communication takes place between a specific group of processes, in which each group
contains an ID. On the other hand, each process contains a local ID in each group.
The ID group and ID process of either source or destination identify a message
uniquely which is utilized instead of the transfer layer address. In this paper, we
have a list of MPI flows and their IDs. Each flow contains the amount of load,
ES, and execution time on the VM. As illustrated in Figure 2, the MPI’s flows of
referrals to the supplier dataset (for providing the qualified supplier) and the review
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of technical non-approval (for receiving new requests) are designed as circular while
other flows are linearly defined. Note that the small and big transactions were 28
and 14 jobs composed, respectively.

Definition 11 (Input parameters). It includes flow (ID, load, speed, number),
CPU (ID, number, speed Freq (HZ), DC (ID), server (ID)), bandwidth (Mb/s),
VM (ID, load, size, number) and flow (ID, load, number) (Figure 4).

Definition 12 (Output parameters). It includes capacity (bit/Byte) metrics of
VMs, current flow and VM with minimum Computational Cost (CC), next flow
and VM with low load variance (Figure 4).

Definition 13 (Execution time). Execution time can be modeled as follows:

1. The amount of computational load of the current flow (LCF );

2. The speed of CPU execution (ES).

It is the same as TET and performance metric parameter.

Definition 14 (Completion time). The completion time can be modeled as follows:

1. Time spent by execution flowk of transactionj on VM i namely Tijk.

2. The parameter determining the CC of flowk on VM i namely CCi.

3. The parameter ESi determines the ES of CPU on VM i.

Definition 15 (Efficiency). Efficiency can be modeled as RU and performance met-
ric.

Definition 16 (Task scheduling). Allocating the flow to the selected VM in the
shortest time. Each task is a transaction that consists of a number of jobs. For
example, the task scheduling for a tender in Figure 3 means two general and limited
tenders, which each run with the VM in the shortest time, in which each workflow
consists of a number of tasks while each task consists of a number of jobs and
flows.

Definition 17 (Resource allocation). The best AVM is allocated to the current
flow.

Definition 18 (Workflow). For example, the tender task of three jobs and two
flows was illustrated in Figure 3. Each workflow is a transaction. The cloud in-
put includes two workflows, big and small deals. Here, in order to employ each
workflow to be considered as a service in the process of purchasing deals and ten-
ders, a comprehensive and centralized telecommunication supply chain system is
introduced. The aims of designing this application are as follows: cost reduction,
decreasing administrative bureaucracy, time productivity, accuracy in performing
works, integration and focus on the field of supply, reporting system and prepar-
ing the management dashboard, the mechanized management of stakeholders and
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suppliers, and improving communication and coordination process. This practi-
cal application includes all requirements of the supply chain such as the process
of ordering and purchasing of inquiries and tenders, service contracts, and com-
munication with the personnel system, etc. To design this practical application,
Key Performance Indicators (KPIs) were utilized to decrease the amount of stag-
nant items in warehouses, to decrease the cycle time of work processes, percentage
of centralized purchases, and identifying the products required by the regions to
save on the purchases. Many distribution systems and applications are developed
on the simple message model provided by the transmission layer. In this simula-
tion, 31 telecommunication regions distributed in 31 provinces were chosen, each
of which participated in the tender process of purchasing telecommunication equip-
ment. MPI in the cloud was utilized to improve the tender processing time, to
reduce the process transfer delays, to allocate resources to customers at the suitable
time, to improve execution time and completion time. The MPI communications
are among the VMs, servers, and DCs. The objective of MPI communications is
to get the cloud out of the centralized management. This method, in addition to
reducing execution time, completion time, the level of engagement, and resource
consumption, has also improved the productivity. In this matter, supplying the
resources by allocating resources at the right time has also increased productiv-
ity.

Definition 19 (WaaS). Workflow as a Service (WaaS) is an emerging concept that
offers workflow execution as a service to the scientific community. Note that WaaS
is categorized as either Platform as a Service (PaaS) or Software as a Service (SaaS)
on the cloud stack service model. With the emergence of WaaS in the cloud, it is
more challenging to predict workflow scheduling and estimate the runtime of tasks.
In this way, processing a large volume of data needs to predict real-time changes for
the resource performance [21].

Definition 20. The comprehensive design and implementation of a comprehensive
and centralized supply chain. In order to decrease the costs and administrative
bureaucracy as well as to obtain the productivity on time, punctuality, integration
and focus in the field of procurement, reporting system and management dashboard,
mechanized management of stakeholders and suppliers, improving the communica-
tion process and coordination, an application supply chain (including the compre-
hensive design and implementation of a comprehensive and centralized supply chain)
was introduced. This application encompasses all the requirements of the supply
chain such as the process of ordering and purchasing inquiries and tenders, service
contracts, and communication with the personnel system, etc. Some KPIs were em-
ployed to design this application in order to decrease the amount of stagnant items
in the warehouses, the time of the work process cycle, the percentage of central-
ized purchases, as well as to identify the goods required by the regions to save on
purchases.
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Figure 1. Model of cloud computing based on VMPIB

3.1 Problem Description

In the most basic cloud service model, an infrastructure is considered as a service,
in which computing resources can be provided as VMs [2]. The main problem in
our work is to allocate suitable AVMs and then optimally map the flows onto them
in the minimum processing time in order to

1. simultaneously optimize the performance parameters;

2. to solve the TSRA problem in cloud computing using SMPIA;

3. to address the starvation problem of the tasks (large waiting times for small and
big jobs) and the lake of sufficient resources.

To this end, the non-SMPIA and the SMPIA are developed. In the non-SMPIA
(Greedy, Max-Min, Min-Min), first, the current flow was chosen based on these
aforementioned algorithms from the expected flows. Afterwards, the selected flow
was sent to the selected resource of these algorithms. Then, the SMPIA was applied
to each of these algorithms in order to optimize TET, completion time, and RU.
After optimization, if the VM could not perform the current flow (e.g. the queue
was full, the system crashed, the system was disconnected, etc.), the SMPIA was
applied. The SMPIA was implemented in three phases: calculation of the AVM
ranking, selection of the AVM, and flow mapping onto the AVM. Regarding the MPI
management of the VMs, the rank of AVMs was calculated based on the number of
its connections with other AVMs based on MS’s calculation.
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Figure 2. WaaS of small transaction

To calculate the performance parameters, Equations (1), (2), (3), (4) were em-
ployed for TET, MS, RU, and average utilization, respectively. On the other hand,
the programs were executed at least 50 times in a system to compute the average of
the parameters, with the identical specifications. At the end, the mean values were
recorded. Regarding the above-mentioned information, all the equations are quickly
solved as well.

The execution time is equal to TET using Equation (1):

Problem ET =
The value of calculation load

CPU execution speed
=

Lcpu

EScpu

. (1)

The MS is equal to maximum MS of all tasks using Equation (2):

Problem MS = max

(
m∑
i=1

t∑
j=1

f∑
k=1

(
(CC)i
(ES)i

)
× Tijk

)
. (2)
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Figure 3. WaaS of big transaction

Tijk is time spent by execution flowk of transactionj on VM i, otherwise, it is zero [22].
CCi is the parameter determining the CC of flowk on VM i. ESi is the parameter
determining the ES of flowk on VM i.

The RU is calculated through the following Equation (3):

Problem RUi =
CPi

TPCi

+
MCi −MCUi

MCi

. (3)

CPi is the capacity processed in VM i, TPCi refers to the total processing capacity
of VM i, MCi denotes the memory capacity of VM i, MCUi means the memory
capacity used in VM i

Ave RU =

∑m
i=1 RUi

m
∗ 100. (4)

We considered the following hypotheses using Equations (5), (6), (7), (8), (9), (10),
(11):

L(VM t
i) = N(T, t)/S(VM t

i). (5)

L(VM t
i) means the load on a VM i can be calculated as the number of tasks at the

time t, N(T, t) is the number of tasks at the time t in the service queue of VM i,
S(VM t

i) denotes the service rate of VM i at the time t.

C(VM t
i) = Penumi × Pemipsi + VM bwi. (6)
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Penumi is the number of processors in VM i, Pemipsi is million instructions per second
of all the processors in VM i, VM bwi is the capability of communicational bandwidth
of VM i.

(CC)i = L(VM t
i)/C(VM t

i). (7)

C(VM t
i) is the capacity on a VM i at the time t.

L =
m∑
i=1

L(VM t
i). (8)

L is the loads exerted on all VMs in a DC.

C =
m∑
i=1

Ci. (9)

C is the capacity of all VMs in a DC.

CC = L/C. (10)

U =
n∑

j=1

and Cmax = max{Cj, j = 1, . . . , n}. (11)

U denotes maximum MS is defined as the maximum total time of completion of all
workflows.

4 PROCESS SMART MPIA AND JOB MIGRATION
IN THE TEXT MINING

The general process of doing work is described in such a way that after designing
the general cloud model, the initial values of input parameters are valued by the job
scheduler. After that, there is the waiting step for a request (flow) to enter. An all-
broadcast query message is sent to all VMs that can respond to the current flow.
The selection of the best VM is conducted based on the algorithms. Afterwards, the
current flow is sent to the VMs using the function “AddJobVM” to execute so that
its status is reported to the cloud management. The function “RetRelatedVMs”
takes the ID of current flow ready on the queue and returns the VM that running
the flow. In this way, the VM executes the current flow and stores the status
of modes. If the query is not done, the next job will be executed. An inquiry
message is sent to those flows which do the next job. Then, the selection of the
best flow is carried out. At the end, the flow is sent to the selected VM. In this
way, it is determined by which VM each of the different flows is executed using the
algorithms. To updating the time step in this text mining work, the MPI run time
of transactions in the dataset is sorted using the function “SortTransTime”. The
time function “AddMinutes” receives a time to generate time steps and then adds it
to the current time and displays the new time in the output. The current and new



120 M. Mokhtari, P. Bayat, H. Motameni

time are compared using another time function “CompareDateTime”, and then the
another new time is generated. In this condition, if the current time is longer than
the new transaction time, then the new request is entered into the ready list. The
flow executing method is that one flow is given for execution and the then next flow
is received (Figure 4).

Any VM that wants to accept a flow to run and requires the cooperation with
other VMs to run, it can communicate with other VMs using MPI-defined com-
munications and send them the message whether they want to run the flow or
not. As such, each cooperation VM that accepts the execution of the flow, the
flow is sent to it. After running the flow by the cooperation VM, the cloud man-
ager is informed that the flow has been completed. This is a voluntary choice of
VMs to run the flows. To describe MPI smartly, each VM contains a list (or Ta-
ble) of other VMs. Over time, each VM prepares a list of its neighbors based on
the number of connections made to other VMs. In other words, this list contains
those VMs that have more connection and send more workflows, which can help
to run flows in the future. The VM that has received the flow while cannot run
the flow for any reason, by checking the list of cooperators VM, it can select a co-
operation VM that contains the relevant conditions to accept the flow so that it
sends the flow with it. The cooperation VMs are called as AVMs in SMPIA (Fig-
ure 4).

It should be noted that if the VM did not work (e.g. the queue was full, the
system crashed, the system was disconnected, etc.), in which it could not execute
the current flow; as a result, the SMPIA would be applied to each of the algorithms.
After updating the time step (by the time function), the list of transactions is
checked. If the current time is greater than the transaction time as well as if the new
transactions are entered into the list, one of them (either big or small) is chosen to be
executed. On the other hand, if the small transaction is chosen, the first flow in the
program is equal to 1 whereas if the big transaction is selected, the first flow is equal
to 2. After transferring the flows of the transactions to the selected VMs, the SMPIA
is applied and an appropriate AVM is selected based on the proposed approach. At
the meantime, if the AVM is appropriate (MSmin), the transaction is processed,
and then the obtained results are saved and the stop condition is rechecked (were
all transactions carried out?). Otherwise, the job migration is carried out (i.e.
transferring the job from one AVM to another one) and the proposed approach is
again applied to select another appropriate AVM (Figure 4).

The nfs-kernel-server and MPICH-3.0.4 packages are installed to implement
MPI, due to a special feature in the master system. After that, Htop software
is installed to monitor those processes running in parallel in MPI. Then, in the
Hosts file, the master system is defined for IP systems. The copy of the program
file was compiled in the “Mirror” folder using the MPI compiler. At the end, the
program file is copied to the mirror folder and compiled it using the MPI compiler.
Then, the program compiled by MPICH was executed using the following command:

/nfsshare$ mpirun –f hosts –n number. /MPI sample.



Multi-Objective Task Scheduling Using Smart MPI-Based Cloud Resources 121

It should be mentioned that instead of number, the number of processors desired to
be involved with the program could be entered. Moreover, the program names are
entered instead of MPI sample. After that, the program run well on all systems
and the performance of the processors was observed on each of the Slave computers
with the help of htop. Ultimately, the user code was copied in the AVM buffer
by MPI, and then it was prepared for parallel execution. To better demonstrate
the above procedure, Figure 4 illustrates the framework of process SMPIA and job
migration in text mining work. Here, Figure 5 illustrates the relationship between
VMs and AVMs in VMPIB.

Figure 4. The framework of our process placement SMPIA and job migration
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Figure 5. The relationship between VMs and AVMs in VMPIB

The SMPIA was performed in the three phases to pick up the current MPI’s
flows from the current VM and to transfer it to the AVM at VMPIB using the
following phases: AVM rank computation phase, AVM rank-based selection phase,
and MPI’s flows mapping phase.

4.1 AVM Rank Computation Phase

4.1.1 Inactive MPI Process

In this case, all VMs were ranked based on the number of their connections with
other VMs in the VMPIB. Note that any VM had a distributed MPI table to com-
pute the ranking of VMs and manage MPI table. After that, the adjacent VMs
were sorted out by managing the VM table based on the number of connections
with other VMs in the VMPIB.
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4.1.2 Active MPI Process

As discussed before, the proposed method was utilized to optimize the task schedul-
ing and resource allocation by the MPIA (active MPI) and the non-MPIA (inactive
MPI). In this way, if the number of transaction is greater than zero, a value is
set for the method variable as follow: with “method = 1” the Greedy algorithm
or “method = 2” the Max-Min algorithm or “method = 3” the Min-Min algo-
rithm is determined. Note that MPI contains two processes; one is defined as
Inactive MPI process due to it is executed prior the application execution; and
the other is defined as Active process due to it is executed parallel user’s ap-
plication. Although the MPI was available in both approaches, it was smart in
the proposed approach, because, with “EnableMPI = 1” the MPI is Active and
“EnableMPI = 0” the MPI is Inactive. The value 1 refers to Enable MPI while
the value 0 is used to Desable MPI. This paper takes advantage the Greedy, and
fixed heuristic algorithms such as Max-Min, Min-Min [14, 17, 23] to find the optimal
solution. These algorithms were implemented in the cloud platform on the datasets
of MCITI.

In this case, all AVMs were ranked based on the number of connection with
other AVM before they reach to the MPI table. The MPI table will be taken into
account for VM configuration in order to choose the best AVM for current MPI’s
flows as well as to avoid congested of the MPI’s flows. The probability of choos-
ing an AVM for MPI’s flows was determined using the Roulette Wheel selection
method. According to this method, the probability of selecting AVM is equal to
the ratio of AVM rank i to total ranking of all AVMs. The probability of selecting
any AVM i(Pi) can be computed using Equation (12). Obviously, the probability
of selecting an AVM with higher rank would be higher. In this matter, the MPI
is defined as the communication of the VM with other AVMs in the distributed
network system. In other words, the AVMs that were in touch along with most of
them as well as those received more flows, were then introduced to run the next
MPI’s flow on the VM list. In each VM, the list of AVMs was provided in a ta-
ble, based on which the minimum rank of each AVM was equal to 1. Pi or Run
Times (RTs) of AVMs was calculated according to Pseudo-Code derived in Table 2.

Pi =
The ratio of AVM rank i

Total ranking of all AVMs
=

fi∑NC
j=1 fj

. (12)

The Pseudo-Code of MPI algorithm is derived in Table 3.

Besides, the rank of each AVM varies based on MS’s calculation. For each rank
that MPI gives to the VM, (MPI − VM rank), the rank for AVMs (AVM rank) is
periodically obtained according to the MS’s change. As such, the pseudo-code of
Send and Receive in MPI communications is provided in Table 4 for the user codes
in the buffer.
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(01) Start
(02) Read AVMs / * AVMs denotes AVMs in a data center */

/* resource list contains AV [m]← {AVM 1,AVM 2,AVM 3, . . . ,AVMm} */
(03) AVMsL← Length(AVMs)

/* AVMsL denotes the length of AVMs or the amount of current workload on
AVMs */

(04) For i← 1 to AVMsL
(05) Index ← RAVMs(i)

/* Index denotes array index, RAVMs denotes Related AVMs */
(06) A1 ← Lflow

/* Lflow denotes MPI’s flow load */
(07) B1 ← LAVMs(i, Index )

/* LVMs total computational loads on all of the AVMs */
(08) C1 ← SAVM (Index , 4)

/*SAVM denotes size (capacity) of AVM */
(09) D1 ← FID

/* FID denotes MPI’s flow id, flow list contains F [f ]← {F1, F2, . . . , Ff} */
(10) E1 ← ES(D1, Index )

/* ES denotes execution speed of the D1 MPI’s flow on AVM index */
(11) TT ← ((A1 +B1)/C1)/E1 /* TT denotes temp time */
(12) RT ← TT /* RT denotes run time */
(13) Display “RT”
(14) End for
(15) End

Table 2. Pseudo-code for run times of AVMs

4.2 AVM Rank-Based Selection Phase

In the second phase, the list of AVMs would be checked by the MPI manage-
ment and the AVM via the highest priority was selected. In this approach, the
effect of selecting an AVM on the number of next flows was assessed, which would
lead to an increase in their ranks. In this phase, the AVM’s MS was computed
as well. By comparing the obtained results of the implemented SMPIA and the
applied algorithms, the effect of changing the selection of an AVM was precisely
explored on both decreasing and increasing the time of MS. The best AVM was
selected based on Pseudo-Code in Table 5. In Table 6, SMPIA is implemented for
AVMs.

The third phase consists of SMPI functions that are responsible to allocate MPI’s
flows to the selected AVMs using the proposed method.

4.3 MPI’s Flows Mapping Phase

In phase III, the flows were mapped onto the AVMs using these algorithms as well
as the defined functions. According to the calculated MS, the flow from the VMs
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(01) Start
(02) Upload MPIAVMs(Table)

/* MPIAVMs(Table) denotes the MPI table of AVMs */
(03) Based on the rank of each AVM, the following tasks are done, respectively.
(04) Inquire LAVM

(05) Inquire ESAVM

/* ESAVM denotes the execution speed of current MPI’s flows on the AVM */
(06) Inquire TCF

/* TCF denotes the execution time of current flow on the AVMs */
(07) Inquire CAVM /* CAVM denotes the capacity of the AVM*/
(08) Inquire CVM

(09) Calculate MSAVM

/* MSAVM denotes the MS of the AVM for the current MPI’s flow */
(10) Calculate MSVM

/* MSVM denotes the MS of the VM for the current MPI’s flow */
(11) If MSAVM < MSVM

/* This is a scientific contribution of the paper */
(12) AVM ← CF /* CF denotes current flow */
(13) RAVM ← RAVM + 1 /* RAVM denotes the rank of AVM */
(14) Go to steep 19
(15) Else
(16) RAVM ← RAVM − 1
(17) Go to steep 04 /* Job migration */
(18) End if
(19) End

Table 3. Pseudo-code of MPI algorithm

via higher MS would be transferred to the AVMs via lower MS in order to re-
duce the mapping time (TET and completion time), resource involvement, and
resource consumption. After that, the SMPIA was applied onto these algorithms.
In this phase, the current flow of the current VM was removed and then mapped
onto the selected AVM using the combination of the mentioned algorithms with
the SMPIA. After the run of the flow accepted by the AVM, more flows were
accepted by the AVM to run. In the main program, an AVM was selected to
the each of input MPI’s flows. Then, an ID for each of AVM was determined.
Moreover, a function namely “Size” received the input MPI’s flows and then cal-
culated theirs number and capacity. The process of selecting the AVM and as-
signing the MPI’s flow to the selected AVM was performed using a combination
of these algorithms with SMPI method. Here, it should be mentioned that when
the implementation of the MPI’s flow was accepted by the AVM, the replication
of a MPI’s flow to run by the AVMs intelligently would be more. The cost func-
tion of the SMPIA calculation based on Pseudo-Code was presented as O(P 3) in
Table 7.
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(01) Start
(02) If (SelAVM rank < MPI −VM rank)
(03) {
(04) Send (VM cf ,SelAVM id)
(05) Recv (VM cf ,SelAVM id)
(06) }
(07) Else
(08) {
(09) Recv(VM cf ,SelAVM id)
(10) Send(VM cf ,SelAVM id)
(11) }
(12) End if
(13) End

Table 4. Pseudo-code of send and receive

5 SOLVING THE TSRA AND STARVATION PROBLEM
USING SMPIA

First, the non-SMPIA was implemented to each of the Greedy, Max-Min and Min-
Min. In the following, SMPIA were applied to each algorithm in order to assess
the performance of the proposed approach in the Greedy, Max-Min, and Min-Min
cloud systems. Two approaches were executed parallel to each other. Any kinds of

(01) Start
(02) Input: ORT /* ORT denotes other run time */
(03) Output: OAVM /* OAVM denotes other virtual machine */
(04) ORT ← −1

/* There is always an input to the numbers of tasks plus one, so entries: Number
of jobs +1 */

(05) OAVM (ID)← −1 /* OAVM (ID) denotes the ID of Other AVM */
(06) Read VMs
(07) VMsL← Length(VMs)
(08) For i← 1 to VMsL
(09) If AVM i(TCF ) < TRT

/* TCF denotes execution time of current MPI’s flow */
/* AVM i(TCF ) denotes the execution time of current flow in AVM i */

/* TRT denotes temp run time */
(10) TRT ← AVM i(TCF )
(11) ORT ← TRT
(12) OAVM (ID)← AVM i(RT )
(13) End if
(14) End for
(15) End

Table 5. Pseudo-code of choose the best AVMs
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(01) Start
(02) Input: FID, TCL, TRT.
(03) Output: OAVM (ID), ORT.
(04) OAVM (ID)← −1

/* There is always an input to the numbers of tasks plus one, Entries: Number
of jobs +1 */

(05) ORT ← −1
(06) Related AVMsS ← Related AVMs(FID)

/* Related AVMS denotes size (capacity) of AVMs, Related AVMs denotes all
of Related AVMs */, /* Related AVMs denotes the related AVMs */

(07) RT ← zeros (C (Related AVMs))
(08) AVMs Count ← zeros (C (Related AVMs))

/* AVMs Count denotes the number to each corresponding AVM */
(09) For i← 1 to AVMs Count
(10) Index ← Related AVMS (i)
(11) A1 ← TCL

/* TCL denotes task computation load of the MPI’s flow */
(12) B1 ← AVMs Load(1, Index )

/* AVMs Load denotes the total load of the AVM */
(13) C1 ← AVMS (Index , 4)

/* AVMS denotes size (capacity) of all AVMs */
(14) D1 ← FID
(15) E1 ← ES (D1, Index )
(16) TT ← ((A1 +B1)/C1)/E1

(17) RT (i)← TT
(18) End for
(19) For i← 1 to AVMs Count
(20) If (RT (i) < TRT )
(21) TRT ← RT (i)
(22) OAVM (ID)← Related AVMS (i)
(23) End if
(24) End for
(25) End

Table 6. Pseudo-code of SMPIA implementation for AVM

changes in the state of successor flows in successor VMs (changes in load, capacity,
etc.) affected the next flows of subsequent AVM. The SMPIA is applied on different
TSRA strategies as follows:

5.1 Solving the TSRA Problem with Applying SMPIA
onto the Greedy Algorithm

In the non-MPIA, the best VM was chosen according to the lowest load variance
is calculated with the Greedy algorithm for predecessor flows through the Equa-
tion (13):
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(01) Start
(02) Input: IA and PRs

/* IA denotes individual array, PRs denotes processes that are running */
(03) Output: EV

/* EV denotes an evaluation value function that the same as maximum MS */
(04) TT ← EI (IA,PRs)

/* EI denotes evaluation individual or temp time */
/* There is always an input to the numbers of tasks plus one, so, the job of
evaluation individual function is to receive an array called individual and the
execution MPI’s flows (processing requests), and calculate how much time in-
dividual needs to execute. that’s mean: Entries: Number of jobs +1, This is
a scientific contribution of the paper */

(05) TL← Lengh(IA)
/* TL denotes task length of the individual array */

/* Task or transaction list contains T [t]← {T1, T2, . . . , Tt} */
/* Any array is a task and any the cell of array is a job */

(06) EV ← −1
(07) For i← 1 to TL
(08) Index ← IA(i)
(09) DO
(10) {
(11) A1 ← PRs(i, 4)
(12) B1 ← LAVMs(1, Index )
(13) C1 ← SAVM (Index , 4)

/* SAVM denotes the size (capacity) of AVM */
(14) D1 ← PRs(i, 3)
(15) E1 ← ES (D1, Index )
(16) TT ← ((A1 +B1)/C1)/E1

(17) If TT > EV /* Founding the maximum run time (MS) */
(18) EV ← TT
(19) End if
(20) }
(21) While EV ! = −1
(22) If EV ← −1
(23) Print “it has not changed”
(24) End if
(25) End do
(26) End for
(27) End

Table 7. Pseudo-code of the cost function to SMPIA
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Var(x) =

∑
(x− x̄)2

m− 1
. (13)

In the third phase for the next flows the appropriate AVM was chosen according to
the calculation of the MS formula for all AVMs in the SMPIA. The shortest MS time
caused the selection of one of the AVMs. By choosing AVM in VMPIB, the speed of
execution tasks could be enhanced, and the mean of the MS and TET parameters
were minimized for the considered workflows. The variables and definitions used in
the paper are listed in Table A1 of Appendix A. IDs is assigned to AVMs by the
“For Loop” of the Greedy algorithm using Pseudo-Code in Table 8. The steps of
applying the SMPIA onto the Greedy algorithm in the cloud system are exhibited
in Figure 6.

(01) Start
(02) Input: AVMsS, InProcessReqs

/* AVMsS denotes the size (capacity) of the AVMs and is global variable, the
InProcessReqs denotes the number of MPI’s flows (requests) */

(03) Output: SAVM (ID) /* SAVM (ID) denotes ID of selected AVMs */
(04) For ipc ← 1 to InProcessCount

/* InProcessCount denotes the number of the InProcessReqs */
(05) FlowID ← InProcessReqs(ipc, 3)
(06) AVMsCount ← Length(AVMS )

/* AVMsCount denotes the lengths (AVMs counter) of AVMs */
(07) For i← 1 to AVMsCount
(08) If (FlowID == AVMS (i, 3))
(09) SAVM(ID) (ipc)← i
(10) End if
(11) End for
(12) End for
(13) End

Table 8. Pseudo-code of assign IDs to AVMs in the Greedy-SMPIA

5.2 Solving the TSRA Problem with Applying SMPIA onto the Max-Min
and Min-Min Algorithms

In the non-SMPIA, the best VM was selected with the minimum completion time
onto the Max-Min and Min-Min algorithms for the predecessor flows. Meanwhile,
in the third phase, the appropriate AVM was chosen for the subsequent flows ac-
cording to the calculation of the MS formula for all AVMs in the SMPIA. Both the
Equations (14) and (15) are calculated for the flow of k on all VMs in Max-Min and
Min-Min, respectively. By calculating these equations for all VMs, the minimum
value would be found, which is clear in the located VM . The variables and defini-
tions used in the paper are listed in Table A1 of Appendix A. The steps of applying
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the SMPIA onto these Max-Min and Min-Min algorithms in the cloud system are
exhibited in Figure 7.

Fitness = (Max-Min)VMmin =
LCF (k) + VMLoad(i)

ES (k, i)
, (14)

Fitness = (Min-Min)VMmin = ((A1 +B1)/C1) /E1. (15)

Obviously, the current flow mappings onto the chosen AVM in the Max-Min and
Min-Min algorithms were almost the same, the only subtle difference was that, in the
Min-Min, the flow with low execution time could be assigned to the AVM with the
minimum completion time.

Figure 6. Flowchart of applying SMPIA to Greedy algorithm

The SMPIA was executed for Greedy, Max-Min and Min-Min algorithms based
on pseudo-code in Table 9.
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Figure 7. Flowchart of applying SMPIA to Max-Min and Min-Min algorithms

6 SOLVING THE STARVATION PROBLEM USING SMPIA

In this paper, the SMPIA is applied onto the Greedy, Max-Min and Min-Min al-
gorithms. Then, the results of solving the starvation problem (i.e. large waiting
times for small and big jobs) and the lack of sufficient resources are achieved as
follows:

1. In comparison with the Greedy algorithm and the SMPIA, the best AVMs were
specified in a short time so that the correspondence successor flows were executed
at less time. Meanwhile, three parameters were simultaneously improved in
Greedy algorithm (see Table 10).

2. In comparison with the Min-Min algorithm and the SMPIA, the TET and the
completion time were considered priority. At first, those tasks were scheduled
that had a minimum TET and a minimum completion time. In this way, the
starvation was fixed for big tasks using the SMPIA, which was advantageous for
bigger tasks in subsequent flows. The predecessor flows were processed earlier
in small jobs. In addition, the subsequent flows with SMPIA were processed in
big jobs earlier. Note that when the number of big tasks became more than the
number of small tasks (i.e. increasing in the workload), this issue was observed
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(01) Start
(02) LSelAVMs ← (LNF + LSelAVMs)

/* LSelAVMs denotes the load of the selected AVMs */
/* LNF denotes the load of the next MPI’s flow */

(03) TRT ← (LNF /CSelAVM )
/* CSelAVM denotes the size (capacity) of the SelAVM */

(04) RT (SelAVM )← TRT
/* RT (SelVM ) denotes the run time of selected AVM */

(05) If Enable-MPI = 1 and method = type of method (number: 1 or
2 or 3)

/* Enables MPI and select the type of algorithm */
(06) Calculate OAVM (ID), ORT /* for next MPI’s flow */
(07) If OAVM (ID) > 0
(08) SelAVM ← OAVM (ID)
(09) TRT ← ORT
(10) RT (SelAVM i)← TRT

/* RT (SelAVM i) denotes run time of selected AVM i */
(11) End if
(12) End if
(13) End

Table 9. Pseudo-code of SMPIA to Greedy, Max-Min and Min-Min algorithms

noticeably. In this way, three parameters were simultaneously improved in the
Min-Min (as listed in Table 10).

3. In comparison with the Max-Min algorithm and the SMPIA, the TET and com-
pletion time were prioritized as well. At first, those tasks were scheduled that
had maximum TET and minimum completion time. This issue was the advan-
tage of smaller tasks in the subsequent flows where the starvation was fixed in
Max-Min for small jobs. It should be noted that the TET of the predecessor
flows became longer especially for small jobs. This issue would lead to creating
a change in the selection of AVMs, which was effective to decrease the minimum
MS. Afterwards, the predecessor flows in small tasks were processed, but with
smart MPI, then, the subsequent flows in small tasks were processed earlier.
When the number of big tasks became more than the number of small tasks (i.e.
increasing in the workload), this issue became noticeable. Subsequently, an in-
crease was obtained in the number of flows of the AVMs due to the smartness
of AVMs, which had minimum MS. At the meantime, the MS was reduced by
changing the selection of AVMs, therefore, the performance of the Max-Min al-
gorithm became more efficient, which was chosen to assign the next flow. Here,
three parameters were improved simultaneously in the Max-Min. The greater
change in AVM selection, the greater the increase or decrease in MS time would
be. According to the previous discussions [38], the Minimum Completion Cloud
(MCC), MEdian MAX (MEMAX) and Cloud Min–Max Normalization (CMMN)
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generate a balance between MS and average cloud utilization in order to achieve
a trade-off between them through solving the problem of starvation. According
to discussions the SMPIA reduces the starvation problem by considering the
TET and MS of the tasks. Other details are provided in Table 10.

7 EVALUATION OF SMPIA

Max-Min and Min-Min [24] and Greedy algorithms [25] were utilized extensively
and successfully to map independent tasks onto resources in computational systems.
They had O(N2 ∗M) [24] and O(M ∗ N) [25], respectively, in which N represents
the number of tasks and M represents the number of processors.

In order to evaluate the proposed approach in the distributed system, some per-
formance parameters such as TET, MS, and RU were utilized. Moreover, Greedy,
Max-Min, and Min-Min algorithms were employed to investigate the proposed ap-
proach in the distributed system. The performance of the SMPIA was assessed by
calculating the performance of the TET, MS, and RU parameters in both non-MPIA
and SMPIA. Note that both parameters of the number of records and number of
VMs were assumed to be constant. Some practical tests were implemented on the
actual data in a homogenous environment including 4 DCs, 22 servers, 132 VMs,
132 flows, and 324 telecommunication equipment. In the following, programs were
executed at least 50 times in a system with identical specifications to compute the
average of parameters. Ultimately, the mean values were recorded as well. To do so,
201 535 records were collected on transactions (including deals and tenders) of the
telephone company from 2011 to 2017. The simulation and implementation were
carried out using MATLAB software. Besides, the considered experiments were
done on a system the follow features: CPU 1.83GHz, Core i7 4GB RAM. First, the
non-SMPIA was implemented to each of the Greedy, Max-Min and Min-Min. In the
following, MPIA were applied to each algorithm in order to assess the performance
of the proposed approach in the Greedy, Max-Min, and Min-Min cloud systems.
Two approaches were executed parallel to each other. Any kinds of changes in the
state of successor flows in successor VMs (changes in load, capacity, etc.) affected
the next flows of subsequent AVM.

7.1 Evaluation of Total Execution Time

In this process, the execution time was calculated as the TETs using Equation (1).
As illustrated in Figure 8, the TET decreases at 132 cloud workloads with SMPIA.
Moreover, the maximum percent of improvement TET is 55.80% at 132 cloud work-
loads in Min-Min algorithm; but SMPIA performs better than the non-SMPIA. In
addition, the TET in Greedy-SMPIA and Max-Min-SMPIA improved in compari-
son with Greedy and Max-Min algorithms. This decrease reflects the impact of the
SMPIA to optimize the TET parameter as well as to improve the performance of the
proposed system. The implementation of next flows of transactions (i.e. deals and
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tenders) with a minimum execution time was prioritized, due to the use of AVMs
and ranking based on having the most number of connections with other AVMs.
The initiating of any requests of transactions (deals and tenders) in the cloud-based
system was carried out in a due time and in a short while. In this way, each request
was answered in a short time. Other details are provided in Table 10.

7.2 Evaluation of Maximum Makespan

In this process, the MS was calculated as the maximum MS using Equation (2). As
can be observed from Figure 9, the MS time was decreased to 132 cloud workloads
with the MPIA. The maximum percent of improvement MS time is 55.94% at 132
cloud workloads in Max-Min algorithm; but SMPIA outperforms the non-SMPIA.
The maximum percent of improvement in Min-Min is 53.04% but SMPIA performs
better than non-MPIA. Furthermore, the maximum completion time of transactions
(deals and tenders) in the proposed system with Greedy was less than other algo-
rithms. The processing of each job was performed faster and completed in a short
time. This decrease reflects the impact of the SMPIA to optimize the completion
time parameter as well as to improve the system performance. Note that changing
the choice of AVMs can be effective to reduce MS. In addition, the execution of
next flows of transactions (deals and tenders) via a minimum completion time was
prioritized because of the simultaneous use of AVMs and the obtained ranks based
on the highest number of connections. After all, the requests for transactions (deals
and tenders) were answered faster and the last jobs were completed sooner. The
aforementioned results confirmed the effect of proposed approach on the appropriate
distribution of load on the proposed system resources. Other details are provided
in Table 10.

7.3 Evaluation of Resource Utilization

Equation (3) is formed to calculate the RU. As exhibited in Figure 10, the RU
increases at 132 cloud workloads with SMPIA. Besides, the maximum percent of
improvement RU is 12.28% at 132 cloud workloads in Greedy algorithm; but SMPIA
performs better than non-SMPIA in this way. The utilization of cloud resources for
the Greedy has increased up to 87% (12.28%), which revealed the impact of the
SMPIA to optimize the RU parameter. Greedy scored better value in utilization of
resources than Max-Min and Min-Min. Note that any increase in the utilization of
cloud resources emphases that the system was performing more efficiently using the
SMPIA. Other details are listed in Table 10.

8 DISCUSSIONS AND ANALYSIS

The TET and the completion time of the workflows with the Min-Min and Max-Min
algorithms were noticeably decreased using the application of MPIA. In addition,
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Figure 8. Effect of 132 cloud workloads on total execution time with Non-SMPIA and
SMPIA

Figure 9. Effect of 132 cloud workloads on makespan with Non-SMPIA and SMPIA

Dataset Non-SMPIA SMPIA Improvement (%)

TET MS RU [%] TET MS RU [%] TET [%] MS% RU [%]
MCITI 155 445 19 668 74.72% 75 523 12 027 87% 51.10% 38.84% 12.28%
MCITI 143 172 17 976 75.72% 76 008 7 919 87.52% 49.91% 55.94% 11.80%
MCITI 143 517 18 921 76.87% 63 430 8 884 88.73% 55.80% 53.04% 11.86%

Table 10. Comparison performance parameters with Non-SMPIA and SMPIA
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Figure 10. Effect of 132 cloud workloads on resource utilization with Non-SMPIA and
SMPIA

the RU was meaningfully increased as well. It should be noted that changing the
choice of an AVM to execution flows in the Min-Min and Max-Min algorithms was
further evident on a number of workflows. This is due to the fact that in SMPIA,
when AVM accepts the execution of the flow, it will again have a request to run by
other AVMs. The effect of changing the choice of AVMs in MS time variations was
increased with Min-Min and Max-Min algorithms. By choosing AVM in VMPIB,
the speed of execution tasks could be enhanced, and the mean of the MS and TET
parameters were minimized for the considered workflows.

The achieved results of calculating the time complexity of algorithms, the cost
function of the SMPIA, and comparing the simulation, indicated that the Max-Min
algorithm performance was noticeably better than the other algorithms; hence, the
Max-Min algorithm was chosen to allocate the next job. Comparing the TET and
MS of algorithms confirmed that the TET and MS with the SMPIA decreased,
as compared to ones of the non-SMPIA. In addition, implementing the proposed
approach decreased the TET from 143 517 seconds in the Min-Min algorithm to
63 430 seconds (55.80%). Meanwhile, the MS time from the 17 976 seconds in Max-
Min algorithm decreased to 7 919 seconds (55.94%). Furthermore, the MS time
in Min-Min decreased from 18 921 seconds to 8 884 seconds (53.04%). Moreover,
the RU rate in Max-Min algorithm increased from 75.72% to 87.52% (11.80%).
Accordingly, the executing of a workflow was purposefully enhanced. The cloud
computing metrics (execution time and MS) and cloud providers (e.g. RU) were
considered as part of the Multi-Objective Optimization (MOO) of real environments.
Concerning the results of SMPIA in three parts, particularly those obtained with
the proposed algorithm, optimal utilization of resources was provided to enhance the
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system efficiency. Comparison of the results indicated the significant performance of
the proposed approach by improving the efficiency and proper distribution of load
in the cloud.

8.1 Resource Utilization with Total Execution Time

As illustrated in Figure 11, TET in non-SMPIA was 59.2% greater than SMPIA at
74.72% involvement levels and RU; nevertheless, TET in SMPIA was 59.2% less
than the non-SMPIA at 88.73% involvement levels and RU. That is, the performance
of the SMPIA was better than one of the non-SMPIA.

8.2 Resource Utilization with Makespan Time

In Figure 12, MS in non-SMPIA is 54.84% greater than SMPIA at 74.72% involve-
ment levels and RU; nonetheless, MS in SMPIA is 54.84% lesser than non-SMPIA at
88.73% involvement levels and RU. Thus, the SMPIA outperforms the non-SMPIA
in terms of the performance.

Figure 11. Effect of total execution time on resource utilization with SMPIA and non-
SMPIA

9 CONCLUSIONS AND FUTURE RESEARCH

In this paper, a SMPIA with the probability of choosing the AVM was developed
for the workflows using the Roulette Wheel selection method. This approach was
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Figure 12. Effect of makespan on resource utilization with SMPIA and non-SMPIA

provided in three phases: resource-ranking, resource selection, and optimal task-
resource mapping. In this way, MS and TET were significantly reduced using this
approach, based on which the RU rate was simultaneously enhanced. The simulation
results in the MATLAB confirmed that the minimum MS value was considered as
the best solution for the optimal resource allocation and task mapping in the MPI
based on the cloud resources. The best mode was belonged to Max-Min, which with
SMPIA the MS up to 55.94% and TET by up to 49.91% improved. MS was chosen
as an optimization factor, in which those solutions containing the minimum MS
were chosen as the best task-resource mapping performance, which could reduce the
cloud resource consumption. According to the obtained result, regarding the TET
and MS of the tasks, the proposed SMPIA could reduce the starvation problem
(large waiting time for small and big tasks) and the lack of sufficient resources.
In addition, a multi-objective improvement approach was developed with a less
complex time O(p3) for the SMPIA. An analysis of experimental actual data in the
environment confirmed that the SMPIA was more efficient than the non-SMPIA and
previous methods in the proposed system. As such, through the selection of AVMs
and the computing the rank of them, the volume of jobs was properly distributed
on the resources so that the operational efficiency of the system increased. In the
following, an efficient task scheduling model was proposed using the SMPIA and
Roulette Wheel selection method. However, some limitations of this paper could
be the traffic congestion caused by MPI communications in the virtual network,
the hidden topology of the network from the users’ point of view, the delay caused
through sending and receiving flows in the VMPIB. The mentioned system was
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ready for the use immediately after practical application evaluation. Therefore, for
future research, the performance prediction of SMPIA application will be developed
using a fuzzy SMPIA to propose a minimum MS.
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APPENDIX

A VARIABLES AND DEFINITIONS USED IN THE PAPER

Variable Definition
ORT The Other Run Time is the execution time of another AVM

while its initial value is equal to −1.
EI The job of Evaluation Individual function is to receive an

array called Individual and the execution flows, and calculate
how much time Individual needs to execute, which is the same
as the temp time.

EV An Evaluation Value function that calculates maximum run
time (MS).

ES(k, i) The speed of execution flowk on VM i

MS MS is defined as completion time of the last job. Maximum
MS is defined as the maximum total time of completion of all
workflows. MS.

ET Execution Time is defined as the TET of every single task
from the beginning to the end.

RU RU shows the extent of the involvement of hardware resources
in the cloud to percentages, which are defined as the amount
of resource involved.

TET TET of all tasks from the beginning to the end.
TT Temp Time, which takes to run an array called individual (the

initial value is -1), AVMmin

VMLoad(i) The amount of current workload on AVM i

LCF The computational Load of Current Flow.
A1 The computational load (workloads) of the flows (process re-

quests).
B1 The total load of the AVMs.



140 M. Mokhtari, P. Bayat, H. Motameni

C1 The total capacity of the AVMs.
D1 Flow type.
E1 The execution speed of the flow on the VM.
OAVM(ID) The Other AVM ID is the ID of another AVM and its initial

value is equal to −1.
RT (AVM i) The Run Time of AVM i.
ARU Average RU.
x Mean values.
P The number of execution transactions during the current time

step.
m The number of machines.
ART Average Response Time.
ACT Average Completion Time.
Zeros Takes the array of the corresponding VMs and calculates ma-

trix size (execution time) of each MPI’s flow of AVMs in them
and put it in the RTs.

TMLB Task Mapping and Load Balancing.
CCS Cloud Computing and Simulation.
NCT Network Communication Time.
SMM Segmented Min-Min.
WSRA Workflow Scheduling and Resource Allocation.
ACU Average Cloud Utilization.
MCS Maximize Customer Satisfaction.
MCM MPI Communication Management.
LAMPICS Latency-Aware-MPI-Cloud-Scheduler.
MPAR MPI-Performance-Aware-Reallocation.
IGATS Improved Genetic Algorithm Task Scheduling.
CG Conjugate Gradient.
NPA Network Performance Awareness.
NPB NAS Parallel Benchmarks.
CMPI Cloud-MPI.

Table A1: List of variables and definitions
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[11] Esṕınola, L.—Franco, D.—Luque, E.: Improving MPI Communications
in Cloud. ACM-W Europe WomENcourage Celebration of Women in Com-
puting, 2016, https://womencourage.acm.org/archive/2016/poster_abstracts/
womENcourage_2016_paper_20.pdf.

[12] Antonenko, V.—Chupakhin, A.—Petrov, I.—Smeliansky, R.: Improving
Resource Usage in HPC Clouds. In: Korenkov, V., Strizh, T., Nechaevskiy, A., Zaik-
ina, T. (Eds.): Proceedings of the XXVII International Symposium on Nuclear Elec-
tronics and Computing (NEC 2019). CEUR Workshop Proceedings, Vol. 2507, 2019,
pp. 180–184, http://ceur-ws.org/Vol-2507/180-184-paper-31.pdf.

[13] Xie, Z.—Shao, X.—Xin, Y.: A Scheduling Algorithm for Cloud Computing Sys-
tem Based on the Driver of Dynamic Essential Path. PloS One, Vol. 11, 2016, No. 8,
Art. No. e0159932, doi: 10.1371/journal.pone.0159932.

https://doi.org/10.1007/s00607-017-0573-6
https://doi.org/10.1016/j.procs.2017.05.069
https://doi.org/10.1109/icsai48974.2019.9010101
https://doi.org/10.1109/icsai48974.2019.9010101
https://doi.org/10.1109/tpds.2013.96
https://doi.org/10.1145/1851476.1851535
https://doi.org/10.1016/j.jnca.2017.01.016
https://acadpubl.eu/jsi/2018-119-9/articles/9/32.pdf
https://acadpubl.eu/jsi/2018-119-9/articles/9/32.pdf
https://doi.org/10.1109/sysose.2015.7151909
https://womencourage.acm.org/archive/2016/poster_abstracts/womENcourage_2016_paper_20.pdf
https://womencourage.acm.org/archive/2016/poster_abstracts/womENcourage_2016_paper_20.pdf
http://ceur-ws.org/Vol-2507/180-184-paper-31.pdf
https://doi.org/10.1371/journal.pone.0159932


142 M. Mokhtari, P. Bayat, H. Motameni

[14] Almezeini, N.—Hafez, A.: An Enhanced Workflow Scheduling Algorithm in
Cloud Computing. Proceedings of the 6th International Conference on Cloud Com-
puting and Services Science (CLOSER 2016), Vol. 2, 2016, pp. 67–73, https://www.
scitepress.org/Papers/2016/59083/59083.pdf, doi: 10.5220/0005908300670073.

[15] Samadi, Y.—Zbakh, M.—Tadonki, C.: E-HEFT: Enhancement Heterogeneous
Earliest Finish Time Algorithm for Task Scheduling Based on Load Balancing in
Cloud Computing. 2018 International Conference on High Performance Computing
and Simulation (HPCS), IEEE, 2018, pp. 601–609, doi: 10.1109/hpcs.2018.00100.

[16] Gawali, M.B.—Shinde, S.K.: Task Scheduling and Resource Allocation in Cloud
Computing Using a Heuristic Approach. Journal of Cloud Computing, Vol. 7, 2018,
No. 1, Art. No. 4, doi: 10.1186/s13677-018-0105-8.

[17] Singhal, S.—Patel, J.: Load Balancing Scheduling Algorithm for Concurrent
Workflow. Computing and Informatics, Vol. 37, 2018, No. 2, pp. 311–326, doi:
10.4149/cai 2018 2 311.

[18] Sakellariou, R.—Zhao, H.: A Hybrid Heuristic for DAG Scheduling on Hetero-
geneous Systems. Proceedings of IEEE 18th International Parallel and Distributed
Processing Symposium, 2004, pp. 111, doi: 10.1109/IPDPS.2004.1303065.
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