

SINERGI Vol. 25, No. 3, October 2021: 237-244
http://publikasi.mercubuana.ac.id/index.php/sinergi

http://doi.org/10.22441/sinergi.2021.3.001

Z. Iklima, et al., Self-Learning of Delta Robot Using Inverse Kinematics and Artificial … 237

SELF-LEARNING OF DELTA ROBOT USING INVERSE KINEMATICS
AND ARTIFICIAL NEURAL NETWORKS

Zendi Iklima1, Muhammad Imam Muthahhar1, Asif Khan2, Arifiansyah Zody3
1Department of Electrical Engineering, Faculty of Engineering, Universitas Mercu Buana, Indonesia
2School of Computer Science and Technology, Beijing Institute of Technology, China
3Department of Information Technology, Faculty of Computer Science, Esa Unggul University, Indonesia

Abstract
As known as Parallel-Link Robot, Delta Robot is a kind of Manipulator
Robot that consists of three arms mounted in parallel. Delta Robot
has a central joint constructed as an end-effector represented as a
gripper. An Analysis of Inverse Kinematic (IK) used to convert the
end-effector trajectory (X, Y) into rotations of stepper motors (ZA, ZB
and ZC). The proposed method used Artificial Neural Networks
(ANNs) to simplify the process of IK solver. The IK solver generated
the datasets contain motion data of the Delta robot. There are 11 KB
Datasets consist of 200 motion data used to be trained. The
proposed method was trained in 58.78 seconds in 5000 iterations.
Using a learning rate (α) 0.05 and produced the average accuracy
was 97.48%, and the average loss was 0.43%. The proposed
method was also tested to transfer motion data over Socket.IO with
115.58B in 6.68ms.

This is an open access article under the CC BY-NC license

Keywords:
Artificial Neural Network;
Delta Robot;
Inverse Kinematics;
Motion Data;
Socket.IO;

Article History:
Received: May 20, 2020
Revised: August 22, 2020
Accepted: September 18, 2020
Published: July 2, 2021

Corresponding Author:
Zendi Iklima
Electrical Engineering
Department, Universitas Mercu
Buana, Indonesia
Email:
zendi.iklima@mercubuana.ac.id

INTRODUCTION

Robots can be classified into two
topologies, namely Serial Manipulator and
Parallel Manipulator [1]. The parallel manipulator
has abilities such as acceleration, stiffness, low
inertia, high precision, and faster per-cycle
operations. Serial manipulator produced slower
movement because of its connected link a chain,
and each joint has a mass in which needs to be
calculated to achieve the dynamic manipulator.
Meanwhile, The Delta Robot joints are
mechanically separated to achieves faster
movement by using low inertia. Nevertheless,
there are still shortcomings in the Delta robot
that is a relatively small workspace robot.

Delta Robot consists of three arms that are
connected to the base and effector using a
universal joint. The key of Delta robot design is
using a parallelogram mechanism to maintain the
orientation of the end-effector to the base. Since
the Delta robot’s Original Patent expired in
December 2006 (Europe) and December 2007
(America), the development of research and

implementation of the Delta robot has become
more widespread [2][3]. The implementation of the
Delta robot is used as a type of 3D Printer,
Sketcher Robot, Laser Cutting Robot, and Pick
and Place robot. So far, the Delta robot has been
developed with a focus on a kinematic analysis of
the robot’s movement.

Kinematics is a mathematical model that
describes the movement of end-effectors through
Cartesian coordinates of the active joint position
variable or vice versa. However, mathematical
calculations of kinematics do not fully reflect
perfect results in actual application. There is a
position error caused by component
manufacturing tolerance, assembly programming,
and the dynamic influence of robot mechanics. On
the other hand, the translation of forwarding and
inverse kinematics on Delta robots is a fairly
difficult problem.

The Inverse Kinematics (IK) of a Delta
Robot has been derived in several methods.
Some methods are numerical algorithm,
geometrical method, genetic algorithm (GA),

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SINERGI

https://core.ac.uk/display/478735093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://crossmark.crossref.org/dialog/?doi=10.22441/sinergi.2021.3.001&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
mailto:zendi.iklima@mercubuana.ac.id

SINERGI Vol. 25, No. 3, October 2021: 237-244

238 Z. Iklima, et al., Self-Learning of Delta Robot Using Inverse Kinematics and Artificial …

reduced method, polynomial method, fuzzy
algorithm, fuzzy PID [4], Feed Forward Neural
Network, Fuzzy Neural Network, Particle Swarm
Optimization (PSO), etc. [5].

Previous work has been done to solve the
IK problem using Neural Network (NN). NN can be
used to control validations of the IK model. IK
model is created based on the robot’s geometry
and dynamic to solve the forward kinematics
problem [4][5].

Other solutions to solve the IK problem of
Delta Robot can be by using a hybrid approach
are artificial neural network and particle swarm
optimization (ANN-PSO) model in the behavior
prediction and optimization of channel connectors
embedded in normal and high-strength concrete
(HSC) [6, 7, 8].

An interesting topic also explained that IK
solution could be solved using neural networks
combined with a genetic algorithm (GA) [9, 10, 11].
NN-GA is an optimal design method for the
parallel robot, which maximizes the volume of the
workspace of parallel robots. The neural network
learns the motion model of the robot. Then, the
genetic algorithm uses this model to generate the
optimal parameters of the robot [12].

 To overcome this, the proposed method to
solve the IK problem is using an Artificial Neural
Network (ANN). Our proposed method's loss can
be minimised by finding an optimum ANN
architecture by constructing the layers, the
activation function, and the optimizer. On the other
hand, our proposed method is implemented using
Socket.IO channels to distribute the pre-model of
our IK-ANN data.

METHOD

This paper created the Delta robot using the
Inverse Kinematics method as an initializing value
for the Artificial Neural Network training data. The
results of the end-effector position forwarded to
the motor motion execution for a displacement of
the effector position. Figure 1 shows the process
of the proposed method while it trains and tests
the ANN Model.

The IK dataset was generated in small rows
(200 rows of IK data). The inputs contain any
positions of the end-effector on the base frame
𝑅′(𝑂′ − 𝑥’𝑦’𝑧′). The outputs contain any directions

on 𝑍 − 𝑎𝑥𝑖𝑠 (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶). ANN Model (pre-
trained) used to train (the dataset) and to test
(random inputs) to predict the direction on 𝑍 −
𝑎𝑥𝑖𝑠 (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶). Socket.IO implemented as a
communication platform in which will broadcast
any random input (𝑥, 𝑦) from delta robot then
tested on ANN trained model to generate a
predictive value of (𝑍𝐴, 𝑍𝐵 , 𝑎𝑛𝑑 𝑍𝐶).

Figure 1. IK-ANN Block Diagram

Inverse Kinematics (IK) Analysis

Inverse Kinematics on this robot is very
necessary for the design of robot motion. This
function is to find the position of the entire linear
actuator or slider towards the end effector. For
example, if the end-effector position moves to
position X with respect to position 0, then how
much displacement changes (up/down) of the
three linear actuators or sliders. In this section, the
analysis is based on Stolfi [12].

Delta robot consists of the top platform,
bottom platform, and end effector. The reference
remains on the 𝑅(𝑂 − 𝑥𝑦𝑧) frame system located

in the middle on the upper platform (𝐴𝐵𝐶 triangle).
The 𝑍-axis is parallel to the end effector, and the

𝑌-axis is parallel to 𝐶𝑂, as shown in Figure 2.

Figure 2. Delta Robot Kinematics Frame

p-ISSN: 1410-2331 e-ISSN: 2460-1217

Z. Iklima, et al., Self-Learning of Delta Robot Using Inverse Kinematics and Artificial … 239

Another reference is the system 𝑅′(𝑂′ −
𝑥’𝑦’𝑧′) located in the middle of the end effector

(triangle 𝑃1 , 𝑃2, 𝑃3). The 𝑍-axis ’is in the direction

perpendicular to the end effector, and the 𝑌-axis’
is parallel along 𝑃3𝑂’.

As a geometry parameter, where [4]:

𝑂𝐴 = 𝑂𝐵 = 𝑂𝐶 = 𝑅 (1)
𝑂’𝑃1 = 𝑂’𝑃2 = 𝑂’𝑃3 = 𝑟 (2)

𝐵1𝑃1 = 𝐵2𝑃2 = 𝐵3𝑃3 = 𝐿 (3)

The object of inverse kinematics is to
determine the position of three linear actuators
due to changes in point 𝑂′ (middle of the end

effector) to the global reference of the 𝑅 system.

Point 𝑂′ in frame 𝑅 can be written as:

[𝑂’]𝑅 = (𝑥𝑦𝑧)𝑇 (4)

The coordinates of the point 𝑃𝑖 in frame 𝑅′ can be
written as:

[𝑃𝑖]𝑅’ = (𝑟𝑐𝑜𝑠(𝑛𝑖), 𝑟𝑠𝑖𝑛(𝑛𝑖), 0)𝑇 (5)

Where 𝑖 = 1, 2, 3 and:

𝑛(𝑖) = 4𝑖−3
6

𝜋 (6)

Adding from two vectors at once will get the
position of 𝑃𝑖 with respect to the 𝑂 − 𝑥𝑦𝑧 frame [3].

[𝑃𝑖]𝑅 = (𝑟𝑐𝑜𝑠(𝑛𝑖) + 𝑥, 𝑟𝑠𝑖𝑛(𝑛𝑖) + 𝑦, 𝑧)𝑇 (7)

Meanwhile, to determine the Bi point on frame R:

[𝐵𝑖]𝑅 = (𝑅𝑐𝑜𝑠(𝑛𝑖), 𝑅𝑠𝑖𝑛(𝑛𝑖), 𝑥𝑖)𝑇 (8)

Where 𝑍𝑖 Above is the 𝑍-axis position to be
searched as the position of each linear actuator
concerning the frame R reference.
As it is known:

𝐿 = |[𝑃𝑖 − 𝐵𝑖]| (9)

Then it can be specified as:

(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2 = 𝐿2 (10)

Where:

𝑥𝑖 = (𝑅 − 𝑟)𝑐𝑜𝑠(𝑛𝑖) (11)

𝑦𝑖 = (𝑅 − 𝑟)𝑠𝑖𝑛(𝑛𝑖) (12)

By rearranging Equation 10:

𝑧 = ±√𝐿2 − (𝑥 − 𝑥𝑖)
2 − (𝑦 − 𝑦𝑖)2 (13)

To find the desired position 𝑧 point on each
actuator from the Delta robot, only the positive
form of (13) is used.

Figure 3. Sketch of dots for Dataset in

Workspace

The coordinate frame of the Delta Robot shown in
Figure 2 can be depicted as the desired
coordinates of the end-effector. Figure 3 shows a
sketch of dots for Dataset in Workspace. This
method is easily used to see the data distribution
of the delta robot workspace.

Artificial Neural Network (ANN)

An intelligence platform inspired by the
biological neurons can conveniently learn patterns
and predict high-dimensional data distributions
[6][11]. ANN design is needed as an initial
description of how ANN works as a substitute for
inverse kinematics' repetitive mathematical
calculation process to determine the 𝑍-axis
position of the slider against the 𝑋 − 𝑌 coordinate
end-effector. ANN consists of the input layer,
hidden layer, and output layer. Figure 4 shows the
components among the layers [13, 14, 15].

Figure 4. The architecture of ANN Delta Robot [6]

The Input layer contains activations of end-

effector coordinates defined as 𝑥 and 𝑦 in which
formulated as

𝐹 = 𝑓(𝑛𝑒𝑡) = 𝑓(𝑥, 𝑦) (14)

𝑓(𝑥, 𝑦) defines as the activation function in the
desired direction should be [6, 16, 17],

𝑓(𝑥, 𝑦)𝑗 =
1

1+𝑒
∑ 𝑤𝑗𝑘𝑥𝑗+𝑏𝑗

𝑛
𝑗=1

 (15)

SINERGI Vol. 25, No. 3, October 2021: 237-244

240 Z. Iklima, et al., Self-Learning of Delta Robot Using Inverse Kinematics and Artificial …

The output layer represents the desired
position of 𝑧 positions on each actuator described

in (13) (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶). To calculate the

backpropagation process defined as 𝑓′ (or called

𝛿𝑗 Aka “delta”). The derivative of the activation

function 𝑓(𝑥, 𝑦) and 𝛾 as a learning rate. So, the
weights will be graded when the gradient descent
is calculated by [18, 19, 20],

𝛿𝑗 = 𝑓′(𝑥, 𝑦) ∑ 𝑤𝑗𝑘
𝑛
𝑗=1 𝛿𝑗 (16)

Socket.IO

Socket.IO is used to distribute the data
among the environment by using events called
‘onListening’ and events ‘onEmit.’ Events
‘onListening’ is an event to retrieve incoming data
in which distributed through its event. Events
‘onEmit’ is an event to transmit any data into its
event [21][22].

Figure 5. Socket.IO Events [20]

Figure 5 represents the Socket.IO events

used to distribute data among platforms. The data
was trained on the Django server and distribution
through socket.IO event onListening ‘𝑥_𝑦_𝑐𝑜𝑜𝑟’ in

which waiting to receive end-effector data (𝑥, 𝑦)
from the robot delta. then emitting an event
′𝑧_𝑎𝑐𝑡_𝑑𝑎𝑡𝑎’, which mean the predictive z actuator

data (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶)

Proposed Design

Table 1 shows the hyperparameter that
might be used to find the optimum ANN
architecture to the Sole IK problem as described
above.

Table 1. Hyperparameter of ANN

Parameters Choices
Selected

Parameters

Number of
Layers

[3,4,5,6,7,8] 3

Number of
Neurons in
Hidden Layers

[2, 4, 6, …] 2, 6, 12

Activation
Functions

[‘ReLU’,
‘Sigmoid’, ‘TanH’,

‘Leaky ReLu’]
‘Leaky ReLu’

Optimizer [‘SGD’, ‘ADAM’] ‘ADAM’
Activation
Functions Rate 𝛾

[0.01. 0.02, ….
1.0]

0.05

The hyperparameters were selected as the

parameter to build ANN architecture in which to
find the optimum values of the number of layers,
number of hidden layers, activation functions,
optimizer, and the learning rate.

RESULT AND DISCUSSION

The following is the prototype that was
completed as describes in Figure 2. As shown in
Figure 3, the inverse kinematics inputs taken by
the coordinate of the end-effector (𝑥 and 𝑦) to

produce the desired 𝑍 position in direction 𝐴, 𝐵 and
𝐶 (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶)

Figure 6. Prototype of Delta Robot

The dataset from robot motion in Figure 6.
200 rows of motion data were collected and stored
as a CSV file.

ANN Training
The training process was performed using

Intel(R) Core© i5-6300HQ CPU@2.30GHz, 16GB
RAM, and NVIDIA GeForce GTX 960M 4GB
VRAM. The training process followed the
hyperparameter shown in Table 1. The training
performance was captured in Figure 7.

p-ISSN: 1410-2331 e-ISSN: 2460-1217

Z. Iklima, et al., Self-Learning of Delta Robot Using Inverse Kinematics and Artificial … 241

Figure 7. The ANN Loss and Accuracy in: (a) 1000 iterations, (b) 2500 iterations, and (c) 5000

iterations

Figure 8. The Testing Performance of Single Motion: (a) Motion Set 1, (b) Motion Set 2, (c) Motion Set

3, and Motion Set 4

Figure 7 shows the performance of the ANN

Loss and Accuracy. The loss is presented as the
red line of the left graph, and the accuracy is
presented as the blue line of the left graph. Figure
7(a) shows the loss decreased and the accuracy
increased in 1000 iterations. Figure 7(b) shows
the loss decreased and the accuracy increased in
2500 iterations. Figure 7(c) shows the loss
decreased and the accuracy increased in 5000
iterations. The detailed values of ANN Loss and
accuracy were captured in this Table 2.

Table 2 shows the selected hyperparameter
was performed in 1000 iterations, 2500 iterations,

and 5000 iterations. The loss was decreased by
0.0043 in 5000 iterations, and the accuracy was
increased by 0.9748 in 5000 iterations. This
iteration step was executed in 58.7826 seconds.

ANN Testing
 Single point of end-effector coordinated
tested as desired coordinated of 𝑥 and 𝑦 shown in
Figure 7.

The proposed method was tested in single
desired coordinated as a set of motion. Figure 8
represents four motions that were tested in Figure
8(a), Figure 8(b), Figure 8(c), and Figure 8(d). By

SINERGI Vol. 25, No. 3, October 2021: 237-244

242 Z. Iklima, et al., Self-Learning of Delta Robot Using Inverse Kinematics and Artificial …

given any input 𝑥 and 𝑦, will produce any desired

actuators positions in Z-directions (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶).
The detailed values of ANN testing performance
were captured in this Table 3.

The proposed method was implemented to
perform 𝑛 Motions and captured in actuator

direction 𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶. Figure 9 shows the

algorithm performance to generate 50 motions in
the direction 𝑍𝐴 (Figure 9(a)), 𝑍𝐵(Figure

9(b)), 𝑍𝐶(Figure 9(c)), and combined (Figure 9(d)).

Table 2. The ANN Loss and Accuracy in (a) 1000 iterations, (b) 2500 iterations, and (c) 5000 iterations

 1000 iterations 2500 iterations 5000 iterations

Executed time (seconds) 12.5525 29.7373 58.7826
Num of Epoch 1000 2500 5000
Average Loss 0.0787 0.0131 0.0043
Average Accuracy 0.9322 0.9528 0.9748
Activation Function Leaky-ReLu Leaky-ReLu Leaky-ReLu
Optimizer Adam Adam Adam
Learning Rate (𝜶) 0.05 0.05 0.05
Layers 2 6 12 6 3 2 6 12 6 3 2 6 12 6 3

Figure 9. The Testing Performance of 50 Motions: (a) Motion Data of 𝑍𝐴, (b) Motion Data of 𝑍𝐵, (c)

Motion Data of 𝑍𝐶And (d) Motion Data of 𝑍𝐴, 𝑍𝐵, and 𝑍𝐶

Figure 10. The Testing Performance of 100 Motions: (a) Motion Data of 𝑍𝐴, (b) Motion Data of 𝑍𝐵, (c)

Motion Data of 𝑍𝐶And (d) Motion Data of 𝑍𝐴, 𝑍𝐵, and 𝑍𝐶

p-ISSN: 1410-2331 e-ISSN: 2460-1217

Z. Iklima, et al., Self-Learning of Delta Robot Using Inverse Kinematics and Artificial … 243

Table 3. The Testing Performance of Single Motion
(a) Motion Set 1, (b) Motion Set 2, (c) Motion Set 3, and Motion Set 4

Motion Set 1 2 3 4

Inputs
(meter)

X 0.7 0.5 0.3 −0.4

Y 0.2 0.3 0.6 0.7

Target
(Radian)

𝒁𝑨 0.6086 0.5482 0.4784 −0.3098

𝒁𝑩 −1.0696 −0.5705 −0.1597 0.5508

𝒁𝑪 −0.5474 −0.5971 −1.1973 −1.5789

Predicted
(Radian)

𝒁𝑨 0.6256 0.5405 0.4675 −0.3031

𝒁𝑩 −1.0751 −0.5763 −0.1646 0.5553

𝒁𝑪 −0.5255 −0.6099 −1.2226 −1.5499

Figure 10 shows the algorithm performance

to generate 100 motions in the direction 𝑍𝐴 (Figure

10(a)), 𝑍𝐵(Figure 10(b)), 𝑍𝐶(Figure 10(c)), and
combined (Figure 10(d)).

The desired 50 motions` 𝑍 values are
shown in the blue line, which is compared with the
actual values represented in the red line.

Table 4 shows the Socket.IO response
within a set of motion with 115.6B processed in
6.68 ms, 50 sets of motion with 912.3B processed
in 216.35 ms, and 100 sets of motion with 1712.1B
processed in 335.56 ms.

Table 4. Socket.IO Response

Inputs
(motions)

1 50 100

Data Size
(𝑩𝒚𝒕𝒆)

115.6 912.3 1712.1

Socket.IO
Response
(𝒎𝒔)

6.68 216.35 335.56

CONCLUSION

This study has developed the method to
determine the end-effector position using inverse
kinematics and substitute by Artificial Neural
Network. All the equations are used to determine
the position of the slider that will be dataset for
ANN. The proposed method used Artificial Neural
Networks (ANNs) to simplify the process of IK
solver. The IK solver generated the datasets
contain motion data of the Delta robot. 11KB
Datasets consist of 200 motion data used to be
trained. The proposed method was trained in
58.78 seconds in 5000 iterations. Using a learning
rate (α) 0.05 produced an average accuracy of
97.48%, and the average loss was 0.43%. The
proposed method was also tested to transfer
motion data over Socket.IO with 115.58B in
6.68ms.

ACKNOWLEDGMENT
The author expresses gratitude to the

Electrical Engineering Department and Research
Center of Mercu Buana University, Jakarta,
Indonesia. Under the guidance, the authors have
been completed this research paper.

REFERENCES
[1] Z. Pandilov, V. Dukovski, “Comparison of The

Characteristics Between Serial and Parallel
Robots,” Acta Tehnica Corviniensis: Bulletin
of Engineering, vol. 1, no. 7, pp. 143-160,
2014

[2] J. Brinker, N. Funk, P. Ingenlath, Y. Takeda,
and B. Corves, “Comparative Study of Serial-
Parallel Delta Robot with Full Orientation
Capabilities,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 920-926, April 2017,
doi: 10.1109/LRA.2017.2654551

[3] Z. Iklima, A. Adriansyah, S. Hitimana, “Self-
Collision Avoidance of Arm Robot using
Generative Adversarial Network and Partical
Swarm Optimization (GAN-PSO),” SINERGI,
vol. 25, no. 2, pp. 141-152, 2021, doi:
1022441/sinergi.2021.2.005

[4] H. Yuancan and H. Zongllin, “Neural Network
Based Dynamic Trajectory Tracking of Delta
Parallel Robot,” IEEE International
Conference on Mechatronics and Automation
(ICMA), Beijing, China, Aug. 2015, pp. 1938-
1943, doi: 10.1109/ICMA.2015. 7237782

[5] M. Heidari, S.M.R Faritus, S. Shateyi, “Using
Artificial Neural Network for Feed Kinematic
problem of Under-Constrained Cable
Robots,” Journal of Vibroengineering (JVE),
vol. 20, no. 1, pp. 385-400, Feb. 2018, ISN:
1392-8716, doi: 10.21595/jve.2017. 18633

[6] M. Shariati, et al., “Application of a Hybrid
Artificial Neural Network-Particle Swarm
Optimization (ANN-PSO) Model in Behavior
Prediction of Channel Shear Connectors
Embedded in Normal and High-Strength

https://www.arduino.cc/

SINERGI Vol. 25, No. 3, October 2021: 237-244

244 Z. Iklima, et al., Self-Learning of Delta Robot Using Inverse Kinematics and Artificial …

Concrete,” Applied Sciences, vol. 9, no. 24,
pp. 5534, 2019, doi:10.3390/app9245534

[7] P. Srisuk, A. Sento, Y. Kitjaidure, “Inverse
Kinematic Solution using Neural Network
from Forward Kinematics Equations,” The 9th
International Conference on Knowledge and
Smart Technology (KST), Thailand, 2017, pp.
61-65, doi: 10.1109/KST.2017.7886084

[8] EG López, W. Yu, X. Li, “Optimal Design of a
Parallel Robot Using Neural Network and
Genetic Algorithm,” The 10th International
Conference on Intelligent Control and
Information Processing (ICICIP), Morocco,
February 2017, pp. 64-69, doi: 10.1109/
ICICIP47338.2019.9012182

[9] K. K. Pavan, M. J. Murali, D. Srikanth,
“Generalized solution for inverse kinematics
problem of a robot using hybrid genetic
algorithms,” International Journal of
Engineering & Technology (IJET), vol.7 no.
4.6, pp. 250-256, 2018, p.250-256, doi:
10.14419/ijet.v7i4.6.20486

[10] E. McCormick, W. Yanjun; L. Haoxiang,
“Optimization of a 3-RRR Delta Robot for a
Desired Workspace with Real-Time
Simulation in MATLAB,” The 14th
International Conference on Computer
Science & Education (ICCSE 2019), Canada,
August 2019, pp. 935-941, doi:
10.1109/ICCSE. 2019.8845388

[11] A.G.C Premachandra, et al., “Genetic
Algorithm Pick and Place Sequence
Optimization for a Color and Size Sorting
Delta Robot,” The 6th International
Conference on Control, Automation and
Robotics (ICCAR), Singapore, April 2020, pp.
209-213, doi: 10.1109/ICCAR49639.2020.
9108045

[12] F. Tolfi, A. Avanzini, B. Welker, and A.
Isinhue, "Design Review of Delta Robot,"
MECE E3430 Engineering Design, pp. 10-19,
2014

[13] A. A. Jaber and R. Bicker, “Industrial Robot
Backlash Fault Diagnosis Based on Discrete
Wavelet Transform and Artificial Neural
Network,” American Journal of Mechanical
Engineering, vol. 4, no. 1, pp. 21-31, January
2016, doi:10.12691/ajme-4-1-4

[14] R.Y. Putra, et al., “Neural Network
Implementation for Invers Kinematic Model of
Arm Drawing Robot,” International
Symposium on Electronics and Smart
Devices (ISESD), Bandung, Indonesia,

March 2017, pp. 153-157, doi: 10.1109/
ISESD.2016.7886710

[15] T. Collins, W. Shen, “PASO: An Integrated,
Scalable PSO-based Optimization
Framework for Hyper-Redundant
Manipulator Path Planning and Inverse
Kinematic,” ISI Tech Report, January 2016

[16] H. Su, C. Yang, H. Mdeihly, A. Rizzo, G.
Ferrigno and E. De Momi, "Neural Network
Enhanced Robot Tool Identification and
Calibration for Bilateral Teleoperation,"
in IEEE Access, vol. 7, pp. 122041-122051,
2019, doi: 10.1109/ACCESS.2019.2936334

[17] B. A. Garro and R. A. Vazquez. “Designing
Artificial Neural Networks using Particle
Swarm Optimization Algorithms,”
Computational Intelligence and
Neuroscience, ID: 369298, June 2015, doi:
10.1155/2015/369298

[18] L. F. Carlos et al., “A soft computing
approach for inverse kinematics of robot
manipulators,” Engineering Applications of
Artificial Intelligence, vol. 74, pp. 104–120,
September 2018, doi: 10.1016/j.engappai.
2018.06.001

[19] S. Mahdi, et al., “Application of a Hybrid
Artificial Neural Network- Particle Swarm
Optimization (ANN-PSO) Model in Behavior
Prediction of Channel Shear Connectors
Embedded in Normal and High-Strength
Concrete,” Applied Sciences, vol. 9, no. 24,
December 2019, doi: 10.3390/app9245534

[20] L. Peiyuan, “Deep Neural Network Based
Subspace Learning of Robotic Manipulator
Workspace Mapping,” International
Conference on Control, Artificial Intelligence,
Robotics & Optimization (ICCAIRO), 2018,
vol.1, pp. 109-120, doi: 10.1109/ICCAIRO.
2018.00027

[21] T. Dewi, C. Anggraini, P. Risma, Y, Oktarina,
and M. Muslikhin, “Motion Control Analysis of
Two Collaborative Arms Robots in Fruit
Packaging System,” SINERGI, vol. 25, no. 2,
pp. 217-226, 2021, doi: 1022441/sinergi.
2021.2.013

[22] Z. Iklima, “Design of Distributed Control
Systems in Lighting Installation in 3-Floor
Buildings based on IoTaaS (Internet of
Things as a Service) using Docker
Container”, Jurnal Teknologi Elektro, vol.10,
no.1, pp. 26-33, 2019, doi: 10.22441/
jte.v10i1.004

