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Abstract  
As known as Parallel-Link Robot, Delta Robot is a kind of Manipulator 
Robot that consists of three arms mounted in parallel. Delta Robot 
has a central joint constructed as an end-effector represented as a 
gripper. An Analysis of Inverse Kinematic (IK) used to convert the 
end-effector trajectory (X, Y) into rotations of stepper motors (ZA, ZB 
and ZC). The proposed method used Artificial Neural Networks 
(ANNs) to simplify the process of IK solver. The IK solver generated 
the datasets contain motion data of the Delta robot. There are 11 KB 
Datasets consist of 200 motion data used to be trained. The 
proposed method was trained in 58.78 seconds in 5000 iterations. 
Using a learning rate (α) 0.05 and produced the average accuracy 
was 97.48%, and the average loss was 0.43%. The proposed 
method was also tested to transfer motion data over Socket.IO with 
115.58B in 6.68ms. 
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INTRODUCTION 

Robots can be classified into two 
topologies, namely Serial Manipulator and 
Parallel Manipulator [1]. The parallel manipulator 
has abilities such as acceleration, stiffness, low 
inertia, high precision, and faster per-cycle 
operations. Serial manipulator produced slower 
movement because of its connected link a chain, 
and each joint has a mass in which needs to be 
calculated to achieve the dynamic manipulator. 
Meanwhile, The Delta Robot joints are 
mechanically separated to achieves faster 
movement by using low inertia.  Nevertheless, 
there are still shortcomings in the Delta robot 
that is a relatively small workspace robot.   

Delta Robot consists of three arms that are 
connected to the base and effector using a 
universal joint. The key of Delta robot design is 
using a parallelogram mechanism to maintain the 
orientation of the end-effector to the base. Since 
the Delta robot’s Original Patent expired in 
December 2006 (Europe) and December 2007 
(America), the development of research and 

implementation of the Delta robot has become 
more widespread [2][3]. The implementation of the 
Delta robot is used as a type of 3D Printer, 
Sketcher Robot, Laser Cutting Robot, and Pick 
and Place robot. So far, the Delta robot has been 
developed with a focus on a kinematic analysis of 
the robot’s movement.  

Kinematics is a mathematical model that 
describes the movement of end-effectors through 
Cartesian coordinates of the active joint position 
variable or vice versa. However, mathematical 
calculations of kinematics do not fully reflect 
perfect results in actual application. There is a 
position error caused by component 
manufacturing tolerance, assembly programming, 
and the dynamic influence of robot mechanics. On 
the other hand, the translation of forwarding and 
inverse kinematics on Delta robots is a fairly 
difficult problem. 

The Inverse Kinematics (IK) of a Delta 
Robot has been derived in several methods. 
Some methods are numerical algorithm, 
geometrical method, genetic algorithm (GA), 
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reduced method, polynomial method, fuzzy 
algorithm, fuzzy PID [4], Feed Forward Neural 
Network, Fuzzy Neural Network, Particle Swarm 
Optimization (PSO), etc. [5]. 

Previous work has been done to solve the 
IK problem using Neural Network (NN). NN can be 
used to control validations of the IK model. IK 
model is created based on the robot’s geometry 
and dynamic to solve the forward kinematics 
problem [4][5].  

Other solutions to solve the IK problem of 
Delta Robot can be by using a  hybrid approach 
are artificial neural network and particle swarm 
optimization (ANN-PSO) model in the behavior 
prediction and optimization of channel connectors 
embedded in normal and high-strength concrete 
(HSC) [6, 7, 8]. 

An interesting topic also explained that IK 
solution could be solved using neural networks 
combined with a genetic algorithm (GA) [9, 10, 11]. 
NN-GA is an optimal design method for the 
parallel robot, which maximizes the volume of the 
workspace of parallel robots. The neural network 
learns the motion model of the robot. Then, the 
genetic algorithm uses this model to generate the 
optimal parameters of the robot [12]. 

 To overcome this, the proposed method to 
solve the IK problem is using an Artificial Neural 
Network (ANN). Our proposed method's loss can 
be minimised by finding an optimum ANN 
architecture by constructing the layers, the 
activation function, and the optimizer. On the other 
hand, our proposed method is implemented using 
Socket.IO channels to distribute the pre-model of 
our IK-ANN data. 

 
METHOD 

This paper created the Delta robot using the 
Inverse Kinematics method as an initializing value 
for the Artificial Neural Network training data. The 
results of the end-effector position forwarded to 
the motor motion execution for a displacement of 
the effector position. Figure 1 shows the process 
of the proposed method while it trains and tests 
the ANN Model. 

The IK dataset was generated in small rows 
(200 rows of IK data). The inputs contain any 
positions of the end-effector on the base frame 
𝑅′(𝑂′ − 𝑥’𝑦’𝑧′). The outputs contain any directions 

on  𝑍 − 𝑎𝑥𝑖𝑠 (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶). ANN Model (pre-
trained) used to train (the dataset) and to test 
(random inputs) to predict the direction on 𝑍 −
𝑎𝑥𝑖𝑠 (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶). Socket.IO implemented as a 
communication platform in which will broadcast 
any random input (𝑥, 𝑦 ) from delta robot then 
tested on ANN trained model to generate a 
predictive value of (𝑍𝐴, 𝑍𝐵 , 𝑎𝑛𝑑 𝑍𝐶). 
 

 
Figure 1. IK-ANN Block Diagram 

  
Inverse Kinematics (IK) Analysis 

Inverse Kinematics on this robot is very 
necessary for the design of robot motion. This 
function is to find the position of the entire linear 
actuator or slider towards the end effector. For 
example, if the end-effector position moves to 
position X with respect to position 0, then how 
much displacement changes (up/down) of the 
three linear actuators or sliders. In this section, the 
analysis is based on Stolfi [12]. 

Delta robot consists of the top platform, 
bottom platform, and end effector. The reference 
remains on the 𝑅(𝑂 − 𝑥𝑦𝑧) frame system located 

in the middle on the upper platform (𝐴𝐵𝐶 triangle). 
The 𝑍-axis is parallel to the end effector, and the 

𝑌-axis is parallel to 𝐶𝑂, as shown in Figure 2. 
 

 
Figure 2. Delta Robot Kinematics Frame 
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Another reference is the system 𝑅′(𝑂′ −
𝑥’𝑦’𝑧′) located in the middle of the end effector 

(triangle 𝑃1 , 𝑃2, 𝑃3). The 𝑍-axis ’is in the direction 

perpendicular to the end effector, and the 𝑌-axis’ 
is parallel along 𝑃3𝑂’. 

As a geometry parameter, where [4]: 

𝑂𝐴 = 𝑂𝐵 = 𝑂𝐶 = 𝑅  (1) 
𝑂’𝑃1 = 𝑂’𝑃2 = 𝑂’𝑃3 = 𝑟  (2) 

𝐵1𝑃1 = 𝐵2𝑃2 = 𝐵3𝑃3 = 𝐿 (3) 

The object of inverse kinematics is to 
determine the position of three linear actuators 
due to changes in point 𝑂′ (middle of the end 

effector) to the global reference of the 𝑅 system. 

Point 𝑂′ in frame 𝑅 can be written as: 

[𝑂’]𝑅 =  (𝑥𝑦𝑧)𝑇 (4) 

The coordinates of the point 𝑃𝑖 in frame 𝑅′ can be 
written as: 

[𝑃𝑖]𝑅’ = (𝑟𝑐𝑜𝑠(𝑛𝑖), 𝑟𝑠𝑖𝑛(𝑛𝑖), 0)𝑇   (5) 

Where 𝑖 =  1, 2, 3 and: 

𝑛(𝑖)  =  4𝑖−3
6

𝜋   (6) 

Adding from two vectors at once will get the 
position of 𝑃𝑖  with respect to the 𝑂 − 𝑥𝑦𝑧 frame [3]. 

[𝑃𝑖]𝑅 =  (𝑟𝑐𝑜𝑠(𝑛𝑖)  +  𝑥, 𝑟𝑠𝑖𝑛(𝑛𝑖)  +  𝑦, 𝑧)𝑇   (7) 

Meanwhile, to determine the Bi point on frame R: 

[𝐵𝑖]𝑅 =  (𝑅𝑐𝑜𝑠(𝑛𝑖), 𝑅𝑠𝑖𝑛(𝑛𝑖), 𝑥𝑖)𝑇   (8) 

Where 𝑍𝑖 Above is the 𝑍-axis position to be 
searched as the position of each linear actuator 
concerning the frame R reference. 
As it is known: 

𝐿 = |[𝑃𝑖 − 𝐵𝑖]|  (9) 

Then it can be specified as: 

(𝑥 − 𝑥𝑖)
2 + (𝑦 −  𝑦𝑖)2  +  (𝑧 −  𝑧𝑖)2  =  𝐿2 (10) 

Where: 

𝑥𝑖 =  (𝑅 −  𝑟)𝑐𝑜𝑠(𝑛𝑖) (11) 

𝑦𝑖 =  (𝑅 −  𝑟)𝑠𝑖𝑛(𝑛𝑖) (12) 

By rearranging Equation 10: 

𝑧 = ±√𝐿2 − (𝑥 − 𝑥𝑖)
2 − (𝑦 − 𝑦𝑖)2  (13) 

To find the desired position 𝑧 point on each 
actuator from the Delta robot, only the positive 
form of (13) is used. 

 

 
Figure 3. Sketch of dots for Dataset in 

Workspace 
 

The coordinate frame of the Delta Robot shown in 
Figure 2 can be depicted as the desired 
coordinates of the end-effector. Figure 3 shows a 
sketch of dots for Dataset in Workspace.  This 
method is easily used to see the data distribution 
of the delta robot workspace. 

 
Artificial Neural Network (ANN)  

An intelligence platform inspired by the 
biological neurons can conveniently learn patterns 
and predict high-dimensional data distributions 
[6][11]. ANN design is needed as an initial 
description of how ANN works as a substitute for 
inverse kinematics' repetitive mathematical 
calculation process to determine the 𝑍-axis 
position of the slider against the 𝑋 − 𝑌 coordinate 
end-effector. ANN consists of the input layer, 
hidden layer, and output layer. Figure 4 shows the 
components among the layers [13, 14, 15]. 

 

 
Figure 4. The architecture of ANN Delta Robot [6] 

 
The Input layer contains activations of end-

effector coordinates defined as 𝑥 and 𝑦 in which 
formulated as 

𝐹 = 𝑓(𝑛𝑒𝑡)  = 𝑓(𝑥, 𝑦)  (14) 

𝑓(𝑥, 𝑦) defines as the activation function in the 
desired direction should be [6, 16, 17], 

𝑓(𝑥, 𝑦)𝑗 =
1

1+𝑒
∑ 𝑤𝑗𝑘𝑥𝑗+𝑏𝑗

𝑛
𝑗=1

  (15) 
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The output layer represents the desired 
position of 𝑧 positions on each actuator described 

in (13) (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶). To calculate the 

backpropagation process defined as 𝑓′ (or called 

𝛿𝑗 Aka “delta”). The derivative of the activation 

function 𝑓(𝑥, 𝑦) and 𝛾 as a learning rate. So, the 
weights will be graded when the gradient descent 
is calculated by [18, 19, 20], 

𝛿𝑗 = 𝑓′(𝑥, 𝑦) ∑ 𝑤𝑗𝑘
𝑛
𝑗=1 𝛿𝑗 (16) 

 
Socket.IO 

Socket.IO is used to distribute the data 
among the environment by using events called 
‘onListening’ and events ‘onEmit.’ Events 
‘onListening’ is an event to retrieve incoming data 
in which distributed through its event. Events 
‘onEmit’ is an event to transmit any data into its 
event [21][22]. 
 

 
Figure 5. Socket.IO Events [20] 

 
Figure 5 represents the Socket.IO events 

used to distribute data among platforms. The data 
was trained on the Django server and distribution 
through socket.IO event onListening ‘𝑥_𝑦_𝑐𝑜𝑜𝑟’ in 

which waiting to receive end-effector data (𝑥, 𝑦) 
from the robot delta. then emitting an event 
′𝑧_𝑎𝑐𝑡_𝑑𝑎𝑡𝑎’, which mean the predictive z actuator 

data (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶) 
 
Proposed Design 

Table 1 shows the hyperparameter that 
might be used to find the optimum ANN 
architecture to the Sole IK problem as described 
above. 

 
 

 
 

Table 1. Hyperparameter of ANN 

Parameters Choices 
Selected 

Parameters 

Number of 
Layers 

[3,4,5,6,7,8] 3 

Number of 
Neurons in 
Hidden Layers 

[2, 4, 6, …]   2, 6, 12 

Activation 
Functions 

[‘ReLU’, 
‘Sigmoid’, ‘TanH’, 

‘Leaky ReLu’] 
‘Leaky ReLu’ 

Optimizer [‘SGD’, ‘ADAM’] ‘ADAM’ 
Activation 
Functions Rate 𝛾 

[0.01. 0.02, …. 
1.0] 

0.05 

 
The hyperparameters were selected as the 

parameter to build ANN architecture in which to 
find the optimum values of the number of layers, 
number of hidden layers, activation functions, 
optimizer, and the learning rate.  
 
RESULT AND DISCUSSION 

The following is the prototype that was 
completed as describes in Figure 2. As shown in 
Figure 3, the inverse kinematics inputs taken by 
the coordinate of the end-effector (𝑥 and 𝑦) to 

produce the desired 𝑍 position in direction 𝐴, 𝐵 and 
𝐶 (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶) 

 
 

 
Figure 6. Prototype of Delta Robot 

 

The dataset from robot motion in Figure 6. 
200 rows of motion data were collected and stored 
as a CSV file. 

ANN Training  
The training process was performed using 

Intel(R) Core© i5-6300HQ CPU@2.30GHz, 16GB 
RAM, and NVIDIA GeForce GTX 960M 4GB 
VRAM. The training process followed the 
hyperparameter shown in Table 1. The training 
performance was captured in Figure 7.  
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Figure 7. The ANN Loss and Accuracy in: (a) 1000 iterations, (b) 2500 iterations, and (c) 5000 

iterations 
 

 
Figure 8. The Testing Performance of Single Motion: (a) Motion Set 1, (b) Motion Set 2, (c) Motion Set 

3, and Motion Set 4 
 
Figure 7 shows the performance of the ANN 

Loss and Accuracy. The loss is presented as the 
red line of the left graph, and the accuracy is 
presented as the blue line of the left graph. Figure 
7(a) shows the loss decreased and the accuracy 
increased in 1000 iterations. Figure 7(b) shows 
the loss decreased and the accuracy increased in 
2500 iterations. Figure 7(c) shows the loss 
decreased and the accuracy increased in 5000 
iterations. The detailed values of ANN Loss and 
accuracy were captured in this Table 2.  

Table 2 shows the selected hyperparameter 
was performed in 1000 iterations, 2500 iterations, 

and 5000 iterations. The loss was decreased by 
0.0043 in 5000 iterations, and the accuracy was 
increased by 0.9748 in 5000 iterations. This 
iteration step was executed in 58.7826 seconds. 

 
ANN Testing  
 Single point of end-effector coordinated 
tested as desired coordinated of 𝑥 and 𝑦 shown in 
Figure 7. 

The proposed method was tested in single 
desired coordinated as a set of motion. Figure 8 
represents four motions that were tested in Figure 
8(a), Figure 8(b), Figure 8(c), and Figure 8(d). By 
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given any input 𝑥 and 𝑦, will produce any desired 

actuators positions in Z-directions (𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶). 
The detailed values of ANN testing performance 
were captured in this Table 3. 

The proposed method was implemented to 
perform 𝑛 Motions and captured in actuator 

direction 𝑍𝐴, 𝑍𝐵, 𝑎𝑛𝑑 𝑍𝐶. Figure 9 shows the 

algorithm performance to generate 50 motions in 
the direction 𝑍𝐴 (Figure 9(a)), 𝑍𝐵(Figure 

9(b)), 𝑍𝐶(Figure 9(c)), and combined (Figure 9(d)).  

 
Table 2. The ANN Loss and Accuracy in (a) 1000 iterations, (b) 2500 iterations, and (c) 5000 iterations 

 1000 iterations 2500 iterations 5000 iterations 

Executed time (seconds) 12.5525 29.7373 58.7826 
Num of Epoch 1000 2500 5000 
Average Loss 0.0787 0.0131 0.0043 
Average Accuracy 0.9322 0.9528 0.9748 
Activation Function Leaky-ReLu Leaky-ReLu Leaky-ReLu 
Optimizer Adam Adam Adam 
Learning Rate (𝜶) 0.05 0.05 0.05 
Layers 2 6 12 6 3 2 6 12 6 3 2 6 12 6 3 

 

 
Figure 9. The Testing Performance of 50 Motions: (a) Motion Data of 𝑍𝐴, (b) Motion Data of 𝑍𝐵, (c) 

Motion Data of 𝑍𝐶And (d) Motion Data of 𝑍𝐴, 𝑍𝐵, and 𝑍𝐶 
 

 
Figure 10. The Testing Performance of 100 Motions: (a) Motion Data of 𝑍𝐴, (b) Motion Data of 𝑍𝐵, (c) 

Motion Data of 𝑍𝐶And (d) Motion Data of 𝑍𝐴, 𝑍𝐵, and 𝑍𝐶 
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Table 3. The Testing Performance of Single Motion 
(a) Motion Set 1, (b) Motion Set 2, (c) Motion Set 3, and Motion Set 4 

Motion Set  1 2 3 4 

Inputs  
(meter) 

X 0.7 0.5 0.3 −0.4 

Y 0.2 0.3 0.6 0.7 

Target 
(Radian) 

𝒁𝑨  0.6086 0.5482 0.4784 −0.3098 

𝒁𝑩  −1.0696 −0.5705 −0.1597 0.5508 

𝒁𝑪  −0.5474 −0.5971 −1.1973 −1.5789 

Predicted 
(Radian) 

𝒁𝑨  0.6256 0.5405 0.4675 −0.3031 

𝒁𝑩  −1.0751 −0.5763 −0.1646 0.5553 

𝒁𝑪  −0.5255 −0.6099 −1.2226 −1.5499 

 
Figure 10 shows the algorithm performance 

to generate 100 motions in the direction 𝑍𝐴 (Figure 

10(a)), 𝑍𝐵(Figure 10(b)), 𝑍𝐶(Figure 10(c)), and 
combined (Figure 10(d)). 

The desired 50 motions` 𝑍 values are 
shown in the blue line, which is compared with the 
actual values represented in the red line. 

Table 4 shows the Socket.IO response 
within a set of motion with 115.6B processed in 
6.68 ms, 50 sets of motion with 912.3B processed 
in 216.35 ms, and 100 sets of motion with 1712.1B 
processed in 335.56 ms. 

 
 

Table 4. Socket.IO Response 

Inputs 
(motions) 

1 50 100 

Data Size 
(𝑩𝒚𝒕𝒆) 

115.6 912.3 1712.1 

Socket.IO 
Response 
(𝒎𝒔) 

6.68 216.35 335.56 

 
CONCLUSION 

This study has developed the method to 
determine the end-effector position using inverse 
kinematics and substitute by Artificial Neural 
Network. All the equations are used to determine 
the position of the slider that will be dataset for 
ANN. The proposed method used Artificial Neural 
Networks (ANNs) to simplify the process of IK 
solver. The IK solver generated the datasets 
contain motion data of the Delta robot. 11KB 
Datasets consist of 200 motion data used to be 
trained. The proposed method was trained in 
58.78 seconds in 5000 iterations. Using a learning 
rate (α) 0.05 produced an average accuracy of 
97.48%, and the average loss was 0.43%. The 
proposed method was also tested to transfer 
motion data over Socket.IO with 115.58B in 
6.68ms. 
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