The Classification of Diffeomorphism Classes of Real Bott Manifolds

Admi Nazra

Abstract

A real Bott manifold ($R B M$) is obtained as the orbit space of the n-torus T^{n} by a free action of an elementary abelian $2-$ group $\left(\mathbb{Z}_{2}\right)^{n}$. This paper deals with the classification of some particular types of $R B M$ s of dimension n, so that we know the number of diffeomorphism classes in such $R B M \mathbf{s}$.

Index Terms-Real Bott manifolds, orbit space, diffeomorphism classes, Seifert fiber space.

I. Introduction

KAMISHIMA et al. [1], [2] defined a real Bott manifold of dimension $n\left(R B M_{n}\right)$ as the total space B_{n} of the sequence of $\mathbb{R} P^{1}$-bundles

$$
\begin{equation*}
B_{n} \rightarrow B_{n-1} \rightarrow \cdots \rightarrow B_{2} \rightarrow B_{1} \rightarrow\{\text { a point }\} \tag{1}
\end{equation*}
$$

starting with a point, where each $\mathbb{R} P^{1}$-bundle $B_{i} \rightarrow B_{i-1}$ is the projectivization of the Whitney sum of a real line bundle L_{i} and the trivial line bundle over B_{i-1}. Then, from the viewpoint of group actions, it was explained that a $R B M_{n}$ is the quotient of the torus of dimension $n, T^{n}=S^{1} \times \cdots \times S^{1}$ by the product $\left(\mathbb{Z}_{2}\right)^{n}$ of cyclic group of order 2 . Such $R B M_{n}$ can be expressed by an upper triangular matrix A of size n (called a Bott matrix of size $n, B M_{n}$) whose entries are either 1 or 0 except the diagonal entries which are 0 . Each row of the $B M_{n}$ A express the free action of $\left(\mathbb{Z}_{2}\right)^{n}$ on T^{n} and the orbit space $M_{n}(A)=T^{n} /\left(\mathbb{Z}_{2}\right)^{n}$ is the $R B M_{n}$. In fact, $M_{n}(A)$ is a Riemannian flat manifold (compact Euclidean space form). To classify $R B M_{n} \mathrm{~s}$, we can apply the Bieberbach Theorem [3] and by this theorem, it was obtained in [1], [4] the classification of $R B M \mathrm{~s}$ up to dimension 4.

Kamishima and Nazra proved in [2] that every $R B M_{n}$ $M_{n}(A)$ admits an injective Seifert fibred structure which has the form $\left.M_{n}(A)=T^{k} \times \mathbb{Z}_{2}\right)^{s} M(B)$, that is there is a k-torus action on $M_{n}(A)$ whose quotient space is an $(n-k)$-dimensional real Bott orbifold $M_{n-k}(B) /\left(\mathbb{Z}_{2}\right)^{s}$ by some $\left(\mathbb{Z}_{2}\right)^{s}$-action $(1 \leq s \leq k)$. Moreover, they have proved the smooth rigidity that two $R B M_{n} \mathrm{~s} M_{n}\left(A_{1}\right)$ and $M_{n}\left(A_{2}\right)$ are diffeomorphic if and only if the corresponding actions $\left(\left(\mathbb{Z}_{2}\right)^{s_{1}}, M_{n-k_{1}}\left(B_{1}\right)\right)$ and $\left(\left(\mathbb{Z}_{2}\right)^{s_{2}}, M_{n-k_{2}}\left(B_{2}\right)\right)$ are equivariantly diffeomorphic. By the above rigidity we can determine the diffeomorphism classes of higher dimensional $R B M s$ when the low dimensional ones with $\left(\mathbb{Z}_{2}\right)^{s}$-actions are classified. $R B M$ s up to dimension 5 have been classified (see [5], [6]).

This paper aims to study the number of diffeomorphism classes in some particular types of $R B M_{n} \mathrm{~s}$.

[^0]
II. Preliminaries

In this section, we shall review some concepts from [2] related to the $R B M$.

A. Seifert fiber space

In a $B M_{n} A$, each i-th row defines a \mathbb{Z}_{2}-action on T^{n} by

$$
g_{i}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\left(z_{1}, \ldots, z_{i-1},-z_{i}, \tilde{z}_{i+1}, \ldots, \tilde{z}_{n}\right)
$$

where \tilde{z}_{m} is either z_{m} or \bar{z}_{m} depending on whether (i, m) entry $(i<m)$ is 0 or 1 respectively while (i, i)-(diagonal) entry 0 acts as $z_{i} \rightarrow-z_{i}$. Note that \bar{z} is the conjugate of the complex number $z \in S^{1}$. It is always trivial; $z_{m} \rightarrow z_{m}$ whenever $m<i$. Here $\left(z_{1}, \ldots, z_{n}\right)$ are the standard coordinates of the n-dimensional torus $T^{n}=S^{1} \times \cdots \times S^{1}$ whose universal covering is the n-dimensional Euclidean space \mathbb{R}^{n}. The projection $p: \mathbb{R}^{n} \rightarrow T^{n}$ is denoted by

$$
p\left(x_{1}, \ldots, x_{n}\right)=\left(e^{2 \pi \mathbf{i} x_{1}}, \ldots, e^{2 \pi \mathbf{i} x_{n}}\right)=\left(z_{1}, \ldots, z_{n}\right)
$$

Those g_{1}, \ldots, g_{n} constitute the generators of $\left(\mathbb{Z}_{2}\right)^{n}$. In fact, $\left(\mathbb{Z}_{2}\right)^{n}$ acts freely on T^{n} such that the orbit space $M_{n}(A)=$ $T^{n} /\left(\mathbb{Z}_{2}\right)^{n}$ is a smooth compact n-dimensional manifold. In this way, given a $B M_{n} A$, we obtain a free action of $\left(\mathbb{Z}_{2}\right)^{n}$ on T^{n}.

$$
\text { Let } \pi(A)=\left\langle\tilde{g}_{1}, \ldots, \tilde{g}_{n}\right\rangle \text { be the lift of }\left(\mathbb{Z}_{2}\right)^{n}=\left\langle g_{1}, \ldots, g_{n}\right\rangle
$$

to \mathbb{R}^{n}. Then, we get

$$
\tilde{g}_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, \frac{1}{2}+x_{i}, \tilde{x}_{i+1}, \ldots, \tilde{x}_{n}\right)
$$

where \tilde{x}_{m} is either x_{m} or $-x_{m}$. One can see that $\pi(A)$ acts properly discontinuously and freely on \mathbb{R}^{n} as Euclidean motions. Note that $\pi(A)$ is a Bieberbach group which is a discrete uniform subgroup of the Euclidean group $\mathbb{E}(n)=\mathbb{R}^{n} \rtimes \mathrm{O}(n)$ (cf. [3]). It follows that

$$
\mathbb{R}^{n} / \pi(A)=T^{n} /\left(\mathbb{Z}_{2}\right)^{n}=M_{n}(A)
$$

Now, we consider the following moves (I, II, III) to A under which the diffeomorphism class of $R B M_{n} M_{n}(A)$ does not change.
I If the j-th column has all 0 -entries for some $j>1$, then interchange the j-th column and the $(j-1)$-th column. Next, interchange the j-th row and the $(j-1)$-th row.

We perform move I iteratively to get a $B M_{n} A^{\prime}$.

$$
A=\left(\begin{array}{lll}
0 & & * \\
& \ddots & \\
0 & & 0
\end{array}\right), A^{\prime}=\left(\begin{array}{cc}
\mathrm{O}_{k} & C \\
0 & B
\end{array}\right),
$$

$$
B=\left(\begin{array}{lll}
0 & & * \\
& \ddots & \\
0 & & 0
\end{array}\right)
$$

O_{k} is a $k \times k$ zero matrix $(1 \leq k \leq n)$ and we call it a block zero matrix of size k.

Note the following.
(1) O_{k} is a maximal block of zero matrix.
(2) As B is an $(n-k)$-dimensional Bott matrix, we obtain a real Bott manifold $M_{n-k}(B)=T^{n-k} /\left(\mathbb{Z}_{2}\right)^{n-k}$.
(3)

$$
\begin{aligned}
M_{n}(A) & =\frac{T^{k} \times T^{n-k}}{\left(\mathbb{Z}_{2}\right)^{k} \times\left(\mathbb{Z}_{2}\right)^{n-k}}=T_{\left(\mathbb{Z}_{2}\right)^{k}}^{\times} M_{n-k}(B) \\
& =M_{n}\left(A^{\prime}\right) .
\end{aligned}
$$

(4) The matrix C corresponds to $\left(\mathbb{Z}_{2}\right)^{k}$-action on T^{n-k}.

II For an m-th row $(1 \leq m \leq k)$ whose entries in C are all zero, divide $T^{k} \times M_{n-k}(B)$ by the corresponding \mathbb{Z}_{2}-action. III If there are two rows, p-th row and ℓ-th row $(1 \leq p<$ $\ell \leq k)$, having the common entries in the C, then compose the \mathbb{Z}_{2}-action of p-th row and ℓ-th row and divide $T^{k} \times M_{n-k}(B)$ by \mathbb{Z}_{2}-action.

By using II, III, the quotient is again diffeomorphic to $T^{k} \times\left(\mathbb{Z}_{2}\right)^{k} M_{n-k}(B)$ but consequently the $\left(\mathbb{Z}_{2}\right)^{k}$-action is reduced to the effective $\left(\mathbb{Z}_{2}\right)^{s}$-action on $T^{k} \times M_{n-k}(B)$. Therefore A^{\prime} reduces to

$$
A^{\prime \prime}=\left(\begin{array}{ccc}
0_{k-s} & 0 & 0 \tag{2}\\
0 & 0_{s} & * \\
0 & 0 & B
\end{array}\right)
$$

in which $M_{n}\left(A^{\prime}\right)=T^{k} \times{ }_{\left(\mathbb{Z}_{2}\right)^{k}} M_{n-k}(B)=$ $\frac{T^{k-s} \times T^{s} \times M_{n-k}(B)}{\left(\mathbb{Z}_{2}\right)^{k-s} \times\left(\mathbb{Z}_{2}\right)^{s}}=M_{n}\left(A^{\prime \prime}\right)$. Since $\left(\mathbb{Z}_{2}\right)^{k-s}$ acts trivially on $T^{s} \times M_{n-k}(B)$, we have $M_{n}\left(A^{\prime \prime}\right) \cong T^{k} \times_{\left(\mathbb{Z}_{2}\right)^{s}} M_{n-k}(B)$. Hereinafter, we write $M_{n}(A)$ in place of $M_{n}\left(A^{\prime \prime}\right)$.
Remark 1: Concerning $*$ in (2), the group $\left(\mathbb{Z}_{2}\right)^{s}=$
$\left\langle g_{k-s+1}, \ldots, g_{k}\right\rangle$ acts on $T^{k} \times M_{n-k}(B)$ by
$g_{i}\left(z_{1}, \ldots, z_{k-s+1}, \ldots, z_{k},\left[z_{k+1}, \ldots, z_{n}\right]\right)$
$=\left(z_{1}, \ldots, z_{k-s+1}, \ldots,-z_{i}, \ldots, z_{k},\left[\tilde{z}_{k+1}, \ldots, \tilde{z}_{n}\right]\right)$
where $\tilde{z}=\bar{z}$ or z. So there induces an action of $\left(\mathbb{Z}_{2}\right)^{s}$ on $M_{n-k}(B)$ by

$$
\begin{equation*}
g_{i}\left(\left[z_{k+1}, \ldots, z_{n}\right]\right)=\left[\tilde{z}_{k+1}, \ldots, \tilde{z}_{n}\right] \tag{4}
\end{equation*}
$$

Moreover in [2], it was obtained the following theorem.
Theorem 1 (Structure): For a $R B M_{n} M_{n}(A)$, there is a maximal T^{k}-action $(k \geq 1)$ such that $M_{n}(A)=$ $T^{k} \times_{\left(\mathbb{Z}_{2}\right)^{s}} M_{n-k}(B)$ is an injective Seifert fiber space over the $(n-k)$-dimensional real Bott orbifold $M_{n-k}(B) /\left(\mathbb{Z}_{2}\right)^{s}$;

$$
\begin{equation*}
T^{k} \rightarrow M_{n}(A) \rightarrow M_{n-k}(B) /\left(\mathbb{Z}_{2}\right)^{s} \tag{5}
\end{equation*}
$$

There exist a central extension of the fundamental group $\pi(A)$ of $M_{n}(A)$:

$$
\begin{equation*}
1 \rightarrow \mathbb{Z}^{k} \rightarrow \pi(A) \rightarrow Q_{B} \rightarrow 1 \tag{6}
\end{equation*}
$$

such that
(i) \mathbb{Z}^{k} is the maximal central free abelian subgroup
(ii) The induced group Q_{B} is the semidirect product $\pi(B) \rtimes$ $\left(\mathbb{Z}_{2}\right)^{s}$ for which $\mathbb{R}^{n-k} / \pi(B)=M_{n-k}(B)$.
See [2] for the proof.
Using this theorem, a $R B M_{n} M_{n}(A)$ which admits a maximal T^{k}-action $(k \geq 1)$ can be created from an $R B M_{n-k}$ $M_{n-k}(B)$ by a $\left(\mathbb{Z}_{2}\right)^{s}$-action, and the corresponding $B M_{n} A$ has the form as in (2) above.

B. Affine maps between real Bott manifolds

Next, to check whether two $R B M$ s are diffeomorphic, we can apply the following theorem.

Theorem 2 (Rigidity): Suppose that $M_{n}\left(A_{1}\right)$ and $M_{n}\left(A_{2}\right)$ are $R B M_{n} \mathrm{~s}$ and $1 \rightarrow \mathbb{Z}^{k_{i}} \rightarrow \pi\left(A_{i}\right) \rightarrow Q_{B_{i}} \rightarrow 1$ is the associated group extensions $(i=1,2)$. Then, the following are equivalent:
(i) $\pi\left(A_{1}\right)$ is isomorphic to $\pi\left(A_{2}\right)$.
(ii) There exists an isomorphism of $Q_{B_{1}}=\pi\left(B_{1}\right) \rtimes\left(\mathbb{Z}_{2}\right)^{s_{1}}$ onto $Q_{B_{2}}=\pi\left(B_{2}\right) \rtimes\left(\mathbb{Z}_{2}\right)^{s_{2}}$ preserving $\pi\left(B_{1}\right)$ and $\pi\left(B_{2}\right)$.
(iii) The action $\left(\left(\mathbb{Z}_{2}\right)^{s_{1}}, M_{n-k}\left(B_{1}\right)\right)$ is equivariantly diffeomorphic to the action
$\left(\left(\mathbb{Z}_{2}\right)^{s_{2}}, M_{n-k}\left(B_{2}\right)\right)$.
See [2] for the proof. Here Bott matrices A_{1} and A_{2} are created from B_{1} and B_{2} respectively.

Note that two $R B M_{n} \mathrm{~s} M_{n}\left(A_{1}\right)$ and $M_{n}\left(A_{2}\right)$ are diffeomorphic if and only if $\pi\left(A_{1}\right)$ is isomorphic to $\pi\left(A_{2}\right)$ by the Bieberbach theorem [3]. Moreover, by Theorem 1 and 2 we have,
Remark 2: Let $R B M_{n} \mathrm{~s} M_{n}\left(A_{i}\right)=T^{k_{i}} \times_{\left(\mathbb{Z}_{2}\right)^{s_{i}}} M_{n-k_{i}}\left(B_{i}\right)$ ($i=1,2$). If $M_{n}\left(A_{1}\right)$ and $M_{n}\left(A_{2}\right)$ are diffeomorphic then the following hold.
(i) $k_{1}=k_{2}$.
(ii) $M_{n-k_{1}}\left(B_{1}\right)$ and $M_{n-k_{2}}\left(B_{2}\right)$ are diffeomorphic.
(iii) $s_{1}=s_{2}$.

If two $R B M$ s have the same maximal T^{k}-action, then the quotients $\left(\left(\mathbb{Z}_{2}\right)^{s_{i}}, M_{n-k_{i}}\left(B_{i}\right)\right)$ are compared. So, what we have to do next is to distinguish the $\left(\mathbb{Z}_{2}\right)^{s_{i}}$-action on $M_{n-k_{i}}\left(B_{i}\right)$ when it is the case that $s_{1}=s_{2}=s$ and $M_{n-k_{1}}\left(B_{1}\right)$ is diffeomorphic to $M_{n-k_{2}}\left(B_{2}\right)$.

C. Type of fixed point set

Note that from (4), the action of $\left(\mathbb{Z}_{2}\right)^{s}$ on $M_{n-k}(B)$ is defined by $\alpha\left[\left(z_{1}, \ldots, z_{n-k}\right)\right]=\left[\alpha\left(z_{1}, \ldots, z_{n-k}\right)\right]=$ $\left[\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n-k}\right)\right]$ for $\alpha \in\left(\mathbb{Z}_{2}\right)^{s}$ and $\tilde{z}=z$ or \bar{z}. Since $M_{n-k}(B)=T^{n-k} /\left(\mathbb{Z}_{2}\right)^{n-k}$, the action $\langle\alpha\rangle$ lifts to a linear (affine) action on T^{n-k} naturally: $\alpha\left(z_{1}, \ldots, z_{n-k}\right)=$ $\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n-k}\right)$. Then, the fixed point set is characterized by the equation: $\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n-k}\right)=g\left(z_{1}, \ldots, z_{n-k}\right)$ for some $g \in\left(\mathbb{Z}_{2}\right)^{n-k}$. It is also an affine subspace of T^{n-k}. So the fixed point sets of $\left(\mathbb{Z}_{2}\right)^{s}$ are affine subspaces in $M_{n-k}(B)$.

Let B be the Bott matrix as in above. By a repetition of move \mathbf{I}, B has the form

$$
B=\left(\begin{array}{ccccc}
0_{b_{2}} & C_{23} & \ldots & \ldots & C_{2 \ell} \tag{7}\\
& 0_{b_{3}} & C_{34} & \ldots & C_{3 \ell} \\
& & \ddots & & \ldots \\
& 0 & & 0_{b_{\ell-1}} & C_{(\ell-1) \ell} \\
& & & & 0_{b_{\ell}}
\end{array}\right)
$$

where rank $B=b_{2}+\cdots+b_{\ell}=n-k\left(b_{i} \geq 1\right), C_{j t}(j=$ $2, \ldots, \ell-1, t=3, \ldots, \ell)$ is a $b_{j} \times b_{t}$ matrix.

Note that by the Bieberbach theorem (cf. [3]), if f is an isomorphism of $\pi\left(A_{1}\right)$ onto $\pi\left(A_{2}\right)$, then there exists an affine element $g=(h, H) \in \mathrm{A}(n)=\mathbb{R}^{n} \rtimes \mathrm{GL}(n, \mathbb{R})$ such that

$$
\begin{equation*}
f(r)=g r g^{-1}\left(\forall r \in \pi\left(A_{1}\right)\right) \tag{8}
\end{equation*}
$$

Recall that if $M_{n}\left(A_{1}\right)$ is diffeomorphic to $M_{n}\left(A_{2}\right)$ then $M_{n-k}\left(B_{1}\right)$ is diffeomorphic to $M_{n-k}\left(B_{2}\right)$. This implies that B_{1} and B_{2} have the form as in (7).

Using (8) and according to the form of B in (7) we obtain that

$$
g=\left(\left(\begin{array}{c}
\mathbf{h}_{1} \tag{9}\\
\mathbf{h}_{2} \\
\vdots \\
\mathbf{h}_{\ell}
\end{array}\right),\left(\begin{array}{cccc}
H_{1} & & & \\
& H_{2} & & 0 \\
0 & & \ddots & \\
& & & H_{\ell}
\end{array}\right)\right)
$$

where \mathbf{h}_{i} is an $b_{i} \times 1\left(s_{i}=\operatorname{rank} I_{i}\right)$ column matrix (\mathbf{h}_{1} is a $k \times 1$ column matrix $), H_{i} \in \mathrm{GL}\left(b_{i}, \mathbb{R}\right)(i=2, \ldots, \ell), H_{1} \in \mathrm{GL}(k, \mathbb{R})$ (see Remark 3.2 [2]).

Let $\bar{f}: Q_{B_{1}} \rightarrow Q_{B_{2}}$ be the induced isomorphism from f (cf. Theorem 2). Now the affine equivalence $\bar{g}: \mathbb{R}^{n-k} \rightarrow$ \mathbb{R}^{n-k} has the form

$$
\bar{g}=\left(\left(\begin{array}{c}
\mathbf{h}_{2} \tag{10}\\
\vdots \\
\mathbf{h}_{\ell}
\end{array}\right),\left(\begin{array}{ccc}
H_{2} & & 0 \\
& \ddots & \\
0 & & H_{\ell}
\end{array}\right)\right)
$$

which is equivariant with respect to \bar{f}. The pair (\bar{f}, \bar{g}) induces an equivariant affine diffeomorphism $(\hat{f}, \hat{g}):\left(\left(\mathbb{Z}_{2}\right)^{s}, M_{n-k}\left(B_{1}\right)\right) \rightarrow\left(\left(\mathbb{Z}_{2}\right)^{s}, M_{n-k}\left(B_{2}\right)\right)$.

Let $\operatorname{rank} H_{i}=b_{i}(i=2, \ldots, \ell)$. (Note that $b_{2}+\cdots+b_{\ell}=$ $n-k$.) Since $M_{n-k}\left(B_{1}\right)=T^{n-k} /\left(\mathbb{Z}_{2}\right)^{n-k}, \bar{g}$ induces an affine map \tilde{g} of T^{n-k}. Put $X_{b_{2}}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{b_{2}}\end{array}\right), \ldots, X_{b_{\ell}}=$ $\left(\begin{array}{c}x_{b_{\ell^{\prime}}+1} \\ \vdots \\ x_{b_{\ell^{\prime}}+b_{\ell}}\end{array}\right), w_{b_{i}}=p\left(X_{b_{i}}\right) \in T^{b_{i}}(i=2, \ldots, \ell), \quad b_{\ell^{\prime}}=$ $b_{2}+\cdots+b_{\ell-1}$. Since $\tilde{g} p=p \bar{g}, \tilde{g}\left({ }^{t} w_{b_{2}}, \ldots,{ }^{t} w_{b_{\ell}}\right)=$ $\left({ }^{t} w_{b_{2}}^{\prime}, \ldots,{ }^{t} w_{b_{\ell}}^{\prime}\right)$ where $w_{b_{i}}^{\prime}=p\left(\mathbf{h}_{i}+H_{i} X_{b_{i}}\right) \in T^{b_{i}}$. That is, \tilde{g} preserves each $T^{b_{i}}$ of $T^{n-k}=T^{b_{2}} \times \cdots \times T^{b_{\ell}}$, so does \hat{g} on
$M_{n-k}\left(B_{1}\right)=$
$\left\{\left[z_{1}, \ldots, z_{b_{2}} ; z_{b_{2}+1}, \ldots, z_{b_{2}+b_{3}} ; \ldots \ldots ; z_{b_{\ell^{\prime}+1}}, \ldots, z_{b_{\ell^{\prime}}+b_{\ell}}\right]\right\}$ We say that \hat{g} preserves the type $\left(b_{2}, \ldots, b_{\ell}\right)$ of $M_{n-k}\left(B_{1}\right)$. As \hat{g} is \hat{f}-equivariant, it also preserves the type corresponding to the fixed point sets between $\left(\left(\mathbb{Z}_{2}\right)^{s}, M_{n-k}\left(B_{1}\right)\right)$ and $\left(\left(\mathbb{Z}_{2}\right)^{s}, M_{n-k}\left(B_{2}\right)\right)$.

Proposition 1: The $\left(\mathbb{Z}_{2}\right)^{s}$-action on $M_{n-k}(B)$ is distinguished by the number of components and types of each positive dimensional fixed point subsets.
See [2] for the proof.
Definition 1: We say that two Bott matrices A and A^{\prime} are equivalent (denoted by $A \sim A^{\prime}$) if $M_{n}(A)$ and $M_{n}\left(A^{\prime}\right)$ are diffeomorphic.

III. CLASSIFICATION OF PARTICULAR TYPES OF $R B M_{n} \mathrm{~S}$

In this part, we will review some results from [6] and prove some new results regarding the classification of certain n dimensional real Bott manifolds in order to obtain how many diffeomorphism classes of some particular types of $R B M_{n} \mathrm{~s}$.

Proposition 2: [6] There are 4 diffeomorphism classes of $R B M_{n} \mathrm{~s}(n \geq 4)$ which admit the maximal T^{n-2}-actions (i.e. $s=1,2$):

$$
M_{n}(A)=T^{(n-2)} \underset{\left(\mathbb{Z}_{2}\right)^{s}}{\times} M_{2}(B)
$$

Proposition 3: [6] The diffeomorphism class is unique for the $R B M$ of the form $M_{n}(A)=T^{k} \times T_{\mathbb{Z}_{2}}^{n-k}$ for any $k(1 \leq$ $k \leq n-1)$. In particular, if $k=n$ then $M_{n}(A)=T^{n}$.

Remark 3: By Proposition 3, for $n \geq 2$ there are n distinct diffeomorphism classes of $R B M_{n} \mathrm{~s} M_{n}(A)=T^{k} \times_{\mathbb{Z}_{2}} T^{n-k}$ $(1 \leq k \leq n)$.

Corollary 1: [6] If the $R B M M(A)=S^{1} \times_{\mathbb{Z}_{2}} M(B)$ where $M(B)=T^{k} \times_{\mathbb{Z}_{2}} S^{1}$, then for any $k \geq 1$ there is only one diffeomorphism class.

Remark 4: By Corollary 1, for $n \geq 3$ there are $n-$ 2 distinct diffeomorphism classes of $R B M_{n} \mathrm{~s} M_{n}(A)=$ $T^{k} \times_{\mathbb{Z}_{2}} M_{n-k}(B)(k=1, \ldots, n-2)$ where $M_{n-k}(B)=$ $T^{k^{\prime}} \times_{\mathbb{Z}_{2}} S^{1}\left(k^{\prime}=n-k-1\right)$.

Corollary 2: [6] Let $M(A)$ be a real Bott manifold which fibers S^{1} over the real Bott manifold $M(B)$ for which $M(B)$ is $\left.T^{k} \times \mathbb{Z}_{2}\right)^{s} \mathrm{~K}(k \geq 2)$. Here K is Klein bottle. Then the number of diffeomorphism classes of such $M(A)$ is 3 .

Remark 5: By Corollary 2, for $n \geq 5$ there are 3 ($n-$ 4) distinct diffeomorphism classes of $R B M_{n} \mathrm{~s} M_{n}(A)=$ $T^{k} \times_{\mathbb{Z}_{2}} M_{n-k}(B)(k=1, \ldots, n-4)$ where $M_{n-k}(B)=$ $T^{k^{\prime}} \times{ }_{\left(\mathbb{Z}_{2}\right)^{s}} \mathrm{~K}\left(k^{\prime}=n-k-2 \geq 2, s=1,2\right)$.

Corollary 3: [6] Let $M(A)$ be a real Bott manifold which fibers S^{1} over the real Bott manifold $M(B)$ for which $M(B)$ is $T^{k} \times{ }_{\left(\mathbb{Z}_{2}\right)^{s}} T^{2}(k \geq 2)$. Then the number of diffeomorphism classes of such $M(A)$ is 3 .

Remark 6: By Corollary 3, for $n \geq 5$ there are $3(n-$ 4) distinct diffeomorphism classes of $R B M_{n} \mathrm{~s} M_{n}(A)=$ $T^{k} \times_{\mathbb{Z}_{2}} M_{n-k}(B)(k=1, \ldots, n-4)$ where $M_{n-k}(B)=$ $T^{k^{\prime}} \times_{\left(\mathbb{Z}_{2}\right)} T^{2}\left(k^{\prime}=n-k-2 \geq 2, s=1,2\right)$.

Proposition 4: [6] Let $M(A)$ be a real Bott manifold which fibers S^{1} over the real Bott manifold $M(B)$ where $M(B)=$ $S^{1} \times_{\mathbb{Z}_{2}} T^{k}(k \geq 2)$, then the diffeomorphism classes of such $M(A)$ is $\left[\frac{k}{2}\right]+1$. Here $[x]$ is the integer part of x.

Remark 7: By Proposition 4, for $n \geq 4$ there are $\sum_{k^{\prime}=2}^{n-2}\left(\left[\frac{k^{\prime}}{2}\right]+1\right)$ distinct diffeomorphism classes of $R B M_{n} \mathrm{~s}$ $M_{n}(A)=T^{k} \times_{\mathbb{Z}_{2}} M\left({ }_{n-k} B\right) \quad(k=1, \ldots, n-3)$ where $M_{n-k}(B)=S^{1} \times_{\mathbb{Z}_{2}} T^{k^{\prime}}\left(k^{\prime}=n-k-1 \geq 2\right)$.

Proposition 5: For any $k \geq 1$ and $m \geq 2(n-3 \geq k+$ $m=t \geq 3$), there are $\left[\frac{n-t}{2}\right]+1$ diffeomorphism classes in $R B M_{n} \mathrm{~s} M_{n}(A)=T^{k} \times_{\mathbb{Z}_{2}} M_{n-k}(B)$, where $M_{n-k}(B)=$ $T^{m} \times_{\mathbb{Z}_{2}} T^{n-k-m}$.

Proof: Similar with the proof of Proposition 4 (see [6]).
Remark 8: By Proposition 5, for $n \geq 6$ there are

$$
\sum_{k=1}^{n-5} \sum_{t=k+2}^{n-3}\left(\left[\frac{n-t}{2}\right]+1\right)
$$

distinct diffeomorphism classes of $R B M_{n} \mathrm{~s}$
$M_{n}(A)=T^{k} \times_{\mathbb{Z}_{2}} M_{n-k}(B)(k=1, \ldots, n-5)$ where $M_{n-k}(B)=T^{m} \times_{\mathbb{Z}_{2}} T^{n-t}(m \geq 2, n-3 \geq t \geq 3)$.

Proposition 6: [6] Let $M_{n}(A)=S^{1} \times_{\mathbb{Z}_{2}} M_{n-k}(B)$ be a $R B M_{n}$. Suppose that B is either one of the list in (11). Then $M_{n-k}(B)$ are diffeomorphic to each other and the number of diffeomorphism classes of such $R B M_{n} \mathrm{~s} M_{n}(A)$ above is $(k+1) 2^{n-k-3}(k \geq 2, n-k \geq 3)$.

$$
\begin{aligned}
& B_{1}=\left(\begin{array}{ccccccc}
0 & 1 & 1 & \cdots & \cdots & \cdots & 1 \\
& 0 & 1 & \cdots & \cdots & \cdots & 1 \\
& & \ddots & & & & \vdots \\
& & & 0 & 1 & \ldots & 1 \\
& 0 & & & & o_{k} &
\end{array}\right), \\
& B_{2}=\left(\begin{array}{ccccccc}
0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
& 0 & 1 & \cdots & \cdots & \cdots & 1 \\
& & \ddots & & & & \vdots \\
& & & 0 & 1 & \cdots & 1 \\
& 0 & & & & o_{k}
\end{array}\right), \ldots, \\
& B_{n-k-1}=\left(\begin{array}{cccccccc}
0 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
& 0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
& & \ddots & & & & & \vdots \\
& & & 0 & 1 & 0 & \cdots & 0 \\
& 0 & & & & & \cdots & 1 \\
& & & & & \mathrm{O}_{k} &
\end{array}\right) \text {, }
\end{aligned}
$$

$$
\begin{align*}
& B_{n-k+(n-k-4)}=\left(\begin{array}{cccccccc}
0 & 1 & \cdots & \cdots & 1 & 0 & \cdots & 0 \\
& 0 & \cdots & \cdots & 1 & 0 & \cdots & 0 \\
& & \ddots & & \vdots & \vdots & & \vdots \\
& & & 0 & 1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 1 \\
& 0 & & & & & o_{k}
\end{array}\right) . \tag{11}
\end{align*}
$$

Remark 9: By Proposition 6, for $n \geq 5$ there are

$$
\sum_{\ell=5}^{n} \sum_{k=2}^{\ell-3}(k+1) 2^{\ell-k-3}
$$

distinct diffeomorphism classes of $R B M_{n} \mathrm{~s}$
$M_{n}(A)=T^{k^{\prime}} \times_{\mathbb{Z}_{2}} M_{n-k^{\prime}}(B)\left(k^{\prime}=1, \ldots, n-4\right)$ where B is either one of the list in (11).

Now we consider the other type of real Bott manifolds.
Proposition 7: Let $M_{n}(A)=T^{k} \times_{\left(\mathbb{Z}_{2}\right)^{2}} T^{\ell},(n=k+\ell \geq$ $5, \ell \geq 3$) be a $R B M_{n}$. Then the number of diffeomorphism classes of such $M_{n}(A)$ is

$$
\sum_{\ell=3}^{n-2}\left(\left[\frac{\ell}{2}\right]+\sum_{x=1}^{\left[\frac{\ell}{3}\right]}\left(\left[\frac{\ell-x}{2}\right]-(x-1)\right)\right)
$$

Proof: The proposition follows from Lemmas 1, 2 below.

Lemma 1: Let $M_{n}(A)$ be an $R B M_{n}(n \geq 5)$ corresponding to the Bott matrix

$$
\begin{equation*}
A=\left(\right) \quad(\ell \geq 3) \tag{14}
\end{equation*}
$$

Then the number of diffeomorphism classes of such $M_{n}(A)$ is $\sum_{\ell=3}^{n-2}\left[\frac{\ell}{2}\right]$.

Proof: We associate with the pair (y, x) the Bott matrix (14) where $y=n-x$ and x are the numbers of zero entries in the $(k-1)$-th row and k-th row respectively of the right-upper block matrix. Here $1 \leq x \leq \ell-1$. Because of move I, we may assume that $x \leq \ell-x$. So $1 \leq x \leq\left[\frac{\ell}{2}\right]$. For a fixed numbers ℓ and x, it is easy to check that the fixed point sets of $\left(\left(\mathbb{Z}_{2}\right)^{2}, T^{\ell}\right)$ corresponding to (14) are 2^{x} components $T^{\ell-x}$ and $2^{\ell-x}$ components T^{x}.

For a fixed number ℓ, suppose that Bott matrices A_{1} and A_{2} correspond to the pairs $\left(y_{1}, x_{1}\right)$ and $\left(y_{2}, x_{2}\right)$ respectively. If $x_{1} \neq x_{2}$, then by Proposition $1, M_{n}\left(A_{1}\right)$ is not diffeomorphic to $M_{n}\left(A_{2}\right)$.

Therefore for a fixed number ℓ, there are $\left[\frac{\ell}{2}\right]$ diffeomorphism classes of such $R B M_{n} \mathrm{~s}$. This implies the lemma.

Lemma 2: Let $M_{n}(A)$ be a $R B M_{n}(n \geq 5)$ corresponding to the Bott matrix

$$
\begin{equation*}
A=\left(\right)(\ell \geq 3) \tag{15}
\end{equation*}
$$

Then the number of diffeomorphism classes of such $M_{n}(A)$ is

$$
\sum_{\ell=3}^{n-2} \sum_{x=1}^{\left[\frac{\ell}{3}\right]}\left(\left[\frac{\ell-x}{2}\right]-(x-1)\right)
$$

Proof: We associate with the pair (t, x) the Bott matrix (15) where x is the number of zero entries in the k-th row of the right-upper block matrix and $t(\neq 0)$ is the number of columns having two non zero entries. Because of move I, we may assume that $1 \leq x \leq t \leq \ell-x-t$ and $x \leq\left[\frac{\ell}{3}\right]$. So $1 \leq x \leq t \leq\left[\frac{\ell-x}{2}\right]$. For fixed numbers ℓ, x and t, it is easy to check that the fixed point sets of $\left(\left(\mathbb{Z}_{2}\right)^{2}, T^{\ell}\right)$ corresponding to (15) are 2^{t+x} components $T^{\ell-x-t}$ and $2^{\ell-x}$ components T^{x}.

For a fixed number ℓ, suppose that Bott matrices A_{1} and A_{2} correspond to the pairs $\left(t_{1}, x_{1}\right)$ and $\left(t_{2}, x_{2}\right)$ respectively. If $t_{1} \neq t_{2}$ or(and) $x_{1} \neq x_{2}$, then by Proposition $1, A_{1}$ is not equivalent to A_{2}.

Therefore for fixed numbers ℓ and x, there are $\left[\frac{\ell-x}{2}\right]-(x-$ 1) diffeomorphism classes of such $R B M_{n} \mathrm{~s}$. Hence there are

$$
\sum_{\ell=3}^{n-2} \sum_{x=1}^{\left[\frac{\ell}{3}\right]}\left(\left[\frac{\ell-x}{2}\right]-(x-1)\right)
$$

diffeomorphism classes of such $M_{n}(A)$ corresponding to Bott matrices as in (15).

Since the fixed point sets of $\left(\left(\mathbb{Z}_{2}\right)^{2}, T^{\ell}\right)$ corresponding to Bott matrices (14) and (15) are different, the corresponding real Bott manifolds are not diffeomorphics.

$$
\begin{align*}
& (\ell \geq 3) \tag{13}
\end{align*}
$$

Remark 10: It is hard task algebraically to determine the number of n-dimensional $M_{n}(A)=T^{k} \times_{\left(\mathbb{Z}_{2}\right)^{s}} T^{\ell}$ for $3 \leq$ $s \leq \min \{n-\ell, \ell\}$. However we shall consider a special type in (12).

We associate with $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{s-1}, \ell_{s}\right)$ the Bott matrix (12) where $\ell_{1}=\ell-\sum_{i=2}^{s} \ell_{i}, \ell_{2}, \ell_{3}, \ldots, \ell_{s-1}, \ell_{s}$ are the number of nonzero entries at k-row, $(k-1)$-row, $(k-2)$-row, $\ldots,(k-(s-$ $2)$)-row, $(k-(s-1))$-row respectively in the right-upper block matrix. As in the arguments in the proof of Lemmas 1, 2 above, in order to obtain the diffeomorphism classes $R B M M(A)$, we may assume that $\ell_{1} \geq \ell_{2} \geq \ell_{3} \geq \cdots \geq \ell_{s-1} \geq \ell_{s} \geq 1$ and $1 \leq \ell_{s} \leq\left[\frac{\ell}{s}\right]$. For any ℓ_{s} we determine the values of ℓ_{s-1}, namely $\ell_{s} \leq \ell_{s-1} \leq\left[\frac{\ell-\ell_{s}}{s-1}\right]$. For any ℓ_{s-1}, similarly we can determine that $\ell_{s-1} \leq \ell_{s-2} \leq\left[\frac{\ell-\ell_{s}-\ell_{s-1}}{s-2}\right]$. Repeating the previous argument, we obtain that

$$
\ell_{t+1} \leq \ell_{t} \leq\left[\frac{\ell-\sum_{i=t+1}^{s} \ell_{i}}{t}\right], \quad t=2, \ldots, s-2, s-1
$$

It is easy to check that for fixed natural numbers $\ell_{t}, t=$ $3,4, \ldots, s-1, s$ and ℓ, there are $\left[\frac{\ell-\sum_{i=3}^{s} \ell_{i}}{2}\right]-\left(\ell_{3}-1\right)$ diffeomorphism classes of $R B M \quad M(A)$. Hence for fixed numbers ℓ and s, there are

$$
\begin{aligned}
& N_{\ell}^{s}=\sum_{\ell_{s}=1}^{\left[\frac{\ell}{s}\right]} \sum_{\ell_{s-1}=\ell_{s}}^{\left[\frac{\ell-\ell_{s}}{s-1}\right]} \ldots \sum_{\ell_{t}=\ell_{t+1}}^{\left[\frac{\ell-\sum_{i=t+1}^{s} \ell_{i}}{t}\right]} \ldots \sum_{\ell_{3}=\ell_{4}}^{\left[\frac{\ell-\sum_{i=4}^{s} \ell_{i}}{3}\right]} \\
& {\left[\frac{\ell-\sum_{i=3}^{s} \ell_{i}}{2}\right]-\left(\ell_{3}-1\right) }
\end{aligned}
$$

diffeomorphism classes of $M(A)$ for $3 \leq s \leq \min \{n-\ell, \ell\}$.
Hence the number of diffeomorphism classes of $R B M$ $M(A)$ is

$$
\sum_{\ell=3}^{n-3} \sum_{s=3}^{\min \{n-\ell, \ell\}} N_{\ell}^{s}
$$

Let N_{n} be the number of diffeomorphism classes of $R B M_{n} \mathrm{~s}$.

Choi[7] classified $R B M_{n}$ s corresponding to the following Bott matrices. He considers $\ell \times \ell$ Bott matrices A_{ℓ} of rank $\ell-1$ all of whose diagonals are 0 . Then for such each $A_{\ell},(i, i+1)$ entry must be 1 for $i=1, \ldots, \ell-1$. Masuda[8] proved that for such matrices, there are $2^{(\ell-2)(\ell-3) / 2}$ diffeomorphism classes of ℓ-dimensional real Bott manifolds.

Next Choi considers an $n \times n$ Bott matrix A such that the rank of submatrix consisting of the first ℓ columns is $\ell-1$ and
the last $n-\ell$ columns are zero vectors (i.e, $A=\left(\begin{array}{cc}A_{\ell} & 0 \\ 0 & 0\end{array}\right)$).
By move \mathbf{I}, the Bott matrix A is equivalent to

$$
A=\left(\begin{array}{cc}
0 & 0 \tag{16}\\
0 & A_{\ell}
\end{array}\right)
$$

By using the result of Masuda above, Choi [7] obtained that the number of diffeomorphism classes of $R B M_{n} \mathrm{~s}$ corresponding to Bott matrices (16) for $\ell=2, \ldots, n$ is $\sum_{\ell=2}^{n} 2^{(\ell-2)(\ell-3) / 2}$.

Masuda [8] found that

$$
2^{(n-2)(n-3) / 2} \leq N_{n},
$$

by considering the Bott matrices A_{ℓ} above. Then, Choi [7] improved the Masuda's result where he considers Bott matrices (16).

Theorem 3 ([7]): $2^{(n-2)(n-3) / 2}<\sum_{\ell=2}^{n} 2^{(\ell-2)(\ell-3) / 2} \leq$ N_{n}.

By using Propositions 7, 2, Theorem 3, Remarks 3, 4, 5, 6, $7,8,9,10$, we obtain an improvement of the previous results about N_{n}.

Theorem 4: For $n \geq 4$,

$$
\begin{aligned}
N_{n} \geq & 8 n+\sum_{\ell=2}^{n} 2^{(\ell-2)(\ell-3) / 2}+\sum_{\ell=2}^{n-2}\left(\left[\frac{\ell}{2}\right]+1\right)+ \\
& \sum_{k=1}^{n-5} \sum_{t=k+2}^{n-3}\left(\left[\frac{n-t}{2}\right]+1\right) \sum_{\ell=5}^{n} \sum_{m=2}^{\ell-3}(m+1) 2^{\ell-m-3}+ \\
& \sum_{\ell=3}^{n-2}\left(\left[\frac{\ell}{2}\right]+\sum_{x=1}^{\left[\frac{\ell}{3}\right]}\left(\left[\frac{\ell-x}{2}\right]-(x-1)\right)\right)+ \\
& \sum_{\ell=3}^{n-3} \sum_{s=3}^{\min \{n-\ell, \ell\}} N_{\ell}^{s}-26
\end{aligned}
$$

with

$$
\begin{aligned}
& N_{\ell}^{s}=\sum_{\ell_{s}=1}^{\left[\frac{\ell}{s}\right]} \sum_{\ell_{s-1}=\ell_{s}}^{\left[\frac{\ell-\ell_{s}}{s-1}\right]} \ldots \sum_{\ell_{t}=\ell_{t+1}}^{\left[\frac{\ell-\sum_{i=t+1}^{s} \ell_{i}}{t}\right]} \cdots \sum_{\ell_{3}=\ell_{4}}^{\left[\frac{\ell-\sum_{i=4}^{s} \ell_{i}}{s}\right]} \\
& {\left[\frac{\ell-\sum_{i=3}^{s} \ell_{i}}{2}\right]-\left(\ell_{3}-1\right) . }
\end{aligned}
$$

We assume that if $u<u_{0}$ in a summation $\sum_{\ell=u_{0}}^{u}$, the value of such summation is equal to zero.

REFERENCES

[1] Y. Kamishima and M. Masuda, "Cohomological rigidity of real bott manifolds," Algebraic \& Geometric Topology, vol. 9, no. 4, pp. 2479 2502, 2009.
[2] Y. Kamishima and A. Nazra, "Seifert fibred structure and rigidity on real bott towers," Contemporary Mathematics, vol. 501, p. 103, 2009.
[3] J. A. Wolf, Spaces of constant curvature. American Mathematical Soc., 1972, vol. 372.
[4] A. Nazra, "Real bott tower," Master's thesis, Tokyo Metropolitan University, 2008.
[5] _-, "Diffeomorphism type of real bott towers (geometry of transformation groups and related topics)," 2008.
[6] _-, "Diffeomorphism classes of real bott manifolds," Tokyo Journal of Mathematics, vol. 34, no. 1, pp. 229-260, 2011.
[7] S. Choi, "Counting on real bott manifolds," RIMS Kokyuroku, vol. 1670, pp. 69-71, 2009
[8] M. Masuda, "Classification of real bott manifolds," arXiv preprint arXiv:0809.2178, 2008.

[^0]: A. Nazra is with the Department of Mathematics, Andalas University, Kampus Unand Limau Manis 25161, Padang, Indonesia e-mail: nazra@sci.unand.ac.id.

 Manuscript received May 28, 2020; accepted December 4, 2020.

