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Properties of Generalised Lattice Ordered Groups

Parimi Radha Krishna Kishore and Dawit Cherinet Kifetew

Abstract—A partially ordered group (po-group) is said to be
a generalised lattice ordered group (gl-group) if the underlying
poset is a generalised lattice. This paper is a study of some
properties of finite subsets of a generalised lattice ordered group
(gl-group). Finally obtained a lattice ordered group (I-group)
from the given interally closed gl-group and concluded that every
integrally closed gl-group is distributive.

Index Terms—Poset, lattice, po-group, 1-group.

I. INTRODUCTION

URTY and Swamy [1] introduced the concept of a

generalised lattice and Kishore [2], [3], developed the
theory of generalised lattices. The theory of lattice ordered
groups (l-groups) is well known from the books [4], [5], [6].
The concept of generalised lattice ordered groups (gl-group)
introduced and developed by Kishore [7], [8], [9]. This paper
is a study of some properties of finite subsets of a gl-group. In
this paper, Section II contains preliminaries which are taken
from the references [7], [8]. In Section III, we proved some
properties of a gl-group with respect to the elements of the gl-
group. Section IV discussed some properties of finite subsets
of gl-groups. In Section V, we obtained an l-group from a
given integrally closed gl-group and finally concluded that
every integrally closed gl-group is distributive.

II. PRELIMINARIES

The definitions of partially ordered group (po-group), to-
tally ordered group (o-group), lattice ordered group (l-group),
directed group are well known from the books [4], [5], [6].
The additive identity element of a po-group is denoted by
0. G* ={xz € G | z > 0} which is called positive cone of a
po-group G. A po-group G is said to be integrally closed if for
any a,b € G; na < bforalln € Nimplies a < 0. A po-group
G is said to be semiclosed if for any x € G, n € N; nz >0
implies x > 0.

The concepts of generalised lattice, subgeneralised lattice,
distributive poset are known from [2], [3], [1]. For any finite
subset A of a poset P, define L(A) = {z € P | = < a for all
a € A}, then the set L(P) = {L(A) | A is a finite subset of
P} is a semi lattice under the set inclusion. If a poset P is a
generalised lattice then (L(P),C) is a lattice. A generalised
lattice P is distributive if and only if £(P) is distributive. The
dual concepts are also true for U(A) and U(P).

Definition 1 ([7]): A system (G, + <) is called a gl-
group (generalised lattice ordered group) if (i) (G, <) isa
generalised lattice, (i) (G, +) is a group and (iii) every group
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translation © — a + = + b on G is isotone, i.e., z < y implies
a+z+b<a+y+0bforall abecG.

Here onwards through out this paper G denotes a gl-group
unless specified otherwise. Let X, Y, A and B be subsets of
G. Define X <Y if x <y forall x € X,y € Y. Define
A+ X ={a+z]aec Az e X} In particular if A = {a}
then A + X = a + X. Observe that the following conditions
are equivalent: (iii) of Definition 1, (iii) /' : X < Y implies
a+X+b<a+Y+bforall a,b € Gand (iii)”: X <Y
implies A+ X+ B<A+Y +B.

Theorem 1 ([7]): For any z,y,a,b € G, we have the
following properties: (iv) a + mu{z,y} + b = mu{a + = +
b,a+y+b}, a+ ML{z,y}+b= ML{a+z+b,a+y-+b}. (v)
MUIL{a,b} = {0} and ML{a,c} = {0} = ML{a,b+c} =
{0}, mu{a,b} = {0} and mu{a,c} = {0} = mu{a,b+
c} = {0}. ~vi) ML{z,y} = —mu{—=z,—y}, mu{z,y} =
—ML{—z,—y}. (vii)) a—mu{z,y}+b=ML{a—z+b,a—
y+ b}, a— ML{z,y} + b = mu{a — x + b,a — y + b}.
(viil) x — mu{z,y} +y = ML{x,y}, x — ML{z,y} +y =

mu{z,y}.
Definition 2 ([8]): For any = € @, define |z| =
mu{z, —z}, v+ = mu{x,0} and z= = mu{—=z,0}.

Note that ~ may also be defined as = = MUL{z,0},
but both differ only in negative sign of a set, that is one is
negative set of the other. In this paper, we consider as given
in Definition 2.

Theorem 2 ([8]): For any =z € G, we have (ix) 27 = z +
x7, 27 = —x+at, (—x)t =27, (—z)” =2t. X If
G is semiclosed then |z| = | — 2| > 0, |z| = {0} & = =
0, L(|z|) = L(xz%) Vv L(z™). (xi) If G is distributive and
semiclosed then L(z™) N L(z~) = L(0).

III. PROPERTIES OF A GL-GROUP W.R.T. ITS ELEMENTS

In this section, we prove some properties of a gl-group with
respect to elements of the gl-group.

Theorem 3: If G is distributive and semiclosed then for any
x,y € G, we have ML((x —ML{x,y})U(y— ML{z,y})) =
{0}.

Proof: Consider L((x— M L{z,y})U(y—ML{xz,y})) =
Lmu{0,a—y}Umuly—,0}) = (LO)V L(z—y))N (L(y—
x) VvV L(0)) = L(0) V (L(x —y) N L(y — x)) (since L(G) is
distributive) = L(0) (since G is semiclosed). [ |

Theorem 4: For any z,y € G, we have M L(|z|) < y if and
only if —y <zx <wy.

Proof: Suppose ML(|z]) < y. Then L(z) V
L(—z) = L(mu{z,—2}) = L(Jz|) € L(y) and therefore
L(z), L(—xz) C L(y); that is —y < x < y. Conversely, sup-
pose —y < x < y. Then y € U(s) for some s € mu{x, —x}
and therefore ML(|z|) C L(|z]) € L(s) C L(y); that is
ML(al) < y. .
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Theorem 5: If G is distributive and semiclosed, then for
any x,y € G, the following statements are equivalent: (i)
ML{z,y} = {0} (i) mu{z,y} = {z +y} (i) (z—y)* =
{a} and (z —y)” ={y}.

Proof: (i) if and only if (ii) is clear by the Theorem 1.
Now to prove (iii) if and only if (i): Suppose (iii). Then since
G is distributive and semiclosed, we have L({z,y}) = L((z—
y)T) N L((x —y)~) = L(0); that is ML{z,y} = {0}. The
converse is clear by the Theorem 1. ]

Theorem 6: If GT is a subgeneralised meet semilattice of
G, then for any z,y,2 € G, we have (i) z < y + 2 implies
r =1y + 2 forsome 0 < z; < zand 0 < 97 < y. (id)
ML{z,y + 2z} < mu(ML{z,y} + ML{x, z}).

Proof: (i) Suppose & < y + z. Then z € U(z;) for some
z1 € mu{0,—y+z} = —ML{x,y}+x. Therefore, 0 < z; <
z and x = y; + 21 for some y; € ML{z,y}. Since G is a
subgeneralised meet semilattice of G, we have M L{x,y} C
GT; this gives 0 < yy < y. (i) Let s € ML{x,y + z}. Then
by (i) s = y1+2; forsome 0 < 23 < zand 0 < y; < y. Since
Y1,21 < s < x; we can get y1 < yo and 27 < zo for some
y2 € ML{x,y}, 22 € ML{x,z}. Therefore, U(ML{z,y} +
MI{z,z}) CU(ya + 22) CU(s) forall s € ML{z,y + z},
this implies U(M L{z,y} + M L{z,2}) CU(ML{z,y + z})
and hence the result. ]

Corollary 1: If Gt be a subgeneralised lattice of G, then
for any z,y,z € G+ we have M L{x,y} = ML{x,z} = {0}
implies M L{z,y + =z} = {0}.

IV. PROPERTIES OF A GL-GROUP W.R.T. ITS FINITE
SUBSETS

In this section, we prove some properties of a gl-group with
respect to finite subsets of the gl-group.

Theorem 7: For any finite subset X of G and a,b € G, we
have the following: (i) a + mu(X) = mu(a+ X), mu(X) +
b=mu(X +b), a+mu(X)+b=mu(a+ X +b) and (ii)
a+ML(X) = ML(a+X), ML(X)+b= ML(X +b), a+
ML(X)+b=ML(a+ X + ).

Proof: For any s € mu(X), we have a + x < a + s for
all z € X. Therefore, a + s € U(a + X) for all s € mu(X),
and this implies ¢,y (x)Ula +s) € U(a + X). On the
other hand let ¢ € U(a + X), then there exists s € mu(X)
such that —a+¢ € U(s) and so that ¢ € ¢, (x) Ula + 5).
Therefore, U(a + X) € Usemu(x) Ula + s). Hence, U(a +
X) = Usemu(x)Ula + s) and then we get mu(a + X) =
a + mu(X). Similarly, we can prove the remaining. [ |

Theorem 8: For any finite subsets A, B,C of G, we have
the following: (i) ML(A U B) = {0}, ML(AUC) = {0}
implies ML(AU (B + C)) = {0} and (ii)) mu(AU B) =
{0}, mu(AUC) = {0} implies mu(AU (B + C)) = {0}.

Proof: (i) Suppose ML(AU B) = {0}, ML(AUC) =
{0}. Then clearly 0 € L(AU (B + C)). Now let p € L(A U
(B+C)), thenp € L((A+A)U(B+A)U(A+C)U(B+C)) =
L((AUB)+(AUC)), later for any y € AUC we have p—y €
L(A U B) = L(0), and this implies p € L(AU C) = L(0).
Therefore M L(AU (B + C')) = {0}. Similarly, we can prove
(i). n

Theorem 9: For any finite subset X of G and a,b € G, we
have the following: (i) M L(X) = —mu(—X) (i) mu(X) =

—ML(—X) (iii) a — mu(X) + b= ML(a— X +b) and (iv)
a—ML(X)+b=mu(a— X +b).

Theorem 10: Let G be a po-group. Then G is a gl-group if
and only if mu(X U {0}) (or ML(X U {0}) ) exists for any
finite subset X of G.

Proof: Suppose G is a gl-group. Then for any finite subset
X of G, since X U {0} is also a finite subset of G, we have
mu(X U {0}) and ML(X U {0}) are finite subsets of G.
Conversely, suppose the condition. Let A be a finite subset of
G. Then for any = € A, by Theorem 7, we have —M L(A) =
mu(—A) = mu({0} U (—A + z)) + {—=} is a finite subset
of G. Therefore M L(A) is a finite subset of G and clearly
mu(A) is a finite subset of G. [ |

Theorem 11: Let G be a po-group. Then G is a gl-group
if and only if G is subgeneralised join semilattice of G and
G generates G (ie., G =G — GT).

Proof: Suppose G is a gl-group. Then for any finite subset
A of G, since A C G and A > 0, we have mu(A4) C G
and mu(A) > 0, that is mu(A) C GT. Therefore, G is a
subgeneralised join semilattice of G. Since every generalised
lattice is directed, by theorem 2.1.2(c) of [6] we have G
generates G (i.e., G = Gt — GT). Conversely, suppose the
condition. Let x € G, then x = a — b for some a,b € G™.
Observe that an element g is a minimal upper bound of {a, b}
in G if and only if g is a minimal upper bound of {a, b} in
G. Since G is subgeneralised join semilattice of G and a, b €
G, the set of minimal upper bounds of {a, b} in GV is a finite
subset of G. Then the set of minimal upper bounds of {a, b}
in G is a finite subset of G. Now, mu{x,0} = mu{a—b,0} =
mu{a,b} —b is a finite subset of G. Therefore, mu{x,0} is a
finite subset of G for all z € G. Hence, mu(X U {0}) exists
for any finite subset X of G. ]

V. INTEGRALLY CLOSED GL-GROUPS

In this section, we obtain an l-group from a given integrally
closed gl-group and concluded that every integrally closed gl-
group is distributive.

Recall from [6] the following results. Let G be a directed
po-group and P(G) be the powerset of G. Then observe
that the map o : P(G) — P(G) defined by o(X) =
LU(X) is a closure operation on G. Moreover for each
X € P(G), o(X) = Ngeu A where A ={A| X CAC
G and 0(A) = A}.

In the following result, we obtain an l-monoid (I-group)
from a given gl-group (integrally closed gl-group).

Theorem 12: Let G be a gl-group. Then (L£(G),®, C) is an
l-monoid under the operation & defined by L(A) ¢ L(B) =
L(mu(ML(A) + ML(B))) for any L(A),L(B) € L(G).
Moreover, if G is integrally closed then £(G) is an I-group.

Proof: Closure: Since M L(A), M L(B) are finite subsets
of G, mu(ML(A) + ML(B)) is also a finite subset of
G. Identity: L(0) is the identity element. Associative: Let
L(A),L(B),L(C) € L(G). Consider (L(A) & L(B)) &
L(C) = L(D)® L(C) (where D = mu(ML(A)+ ML(B)))
= LU(X) = X* (where X = ML(D) + ML(C)) =
Noea@ where A = {Q | X € Q C G,Q° = Q).
Consider L(A) & (L(B) @ L(C)) = L(A) ® L(E) (where
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E = mu(ML(B) + ML(C))) = LU(Y) = Y* (where
Y = ML(A) + ML(E)) = (\peg P where B={P | Y C
P C G, P* = P}. To show that A = B : Let Q € A. Then for
any z € ML(C) we have ML(D)+z C X C @, this implies
L(D)=LUL(D)=LUML(D)) C(Q—2)*"=Q — z for
all z € ML(C), later since ML(A) + ML(B) C L(D) we
get ML(A)+ (ML(B)+ ML(C)) = (ML(A)+ ML(B)) +
ML(C) C L(D) + ML(C) C Q. Then for any z € ML(A)
we have z + (M L(B) + ML(C)) C @, this implies L(E) =
LUML(B) + ML(C)) C (—2+ Q)* = —z + Q for all
z € ML(A), later since Y C ML(A)+ L(E) C @ we have
Q@ € B. Therefore A C B, similarly we can prove 5 C A.
Hence (L(G),®) is a monoid. Translation order preserving:
Let L(A),L(B),L(C) € L(G) and suppose L(A) C L(B).
Then since U(ML(B) + ML(C)) C U(ML(A) + ML(C))
we have L(A) & L(C) C L(B) @ L(C) and similarly
L(C)® L(A) C L(C) ® L(A). Therefore (L(G),®,C) is
an l-monoid. Now suppose G is integrally closed. Inverse:
Let L(A) € £(G), X = ML(A) and Y = ML(mu(—A)).
Then clearly L(A) & L(mu(—A4)) = LU(X +Y) C L(0).
On the other hand let ¢« € U(X + Y). To show that
na € U(X +7Y) for all positive integers n: We prove this
by induction on n. Assume that it is true for n = k, that
is ka € U(X +Y). Then for any x € X,y € Y we have
ka > x + y, this implies y — ka < t for some t € Y, later
since UX +Y) C U(x +t) C U(x +y — ka) we have
a>x+y—ka, that is (k + 1)a € U(X +Y). Therefore
the result follows by induction. Now since G is integrally
closed we get 0 < a for all @ € U(X +Y), this implies
L(0) C LUX +Y) = L(A) ® L(mu(—A)). Therefore
L(mu(—A)) is the inverse of L(A). Hence (L(G),®,C) is
an l-group. ]
Recall that every l-group is distributive w.r.t. the lattice
operations.
Corollary 2: Every integrally closed gl-group is distributive.
Corollary 3: Every integrally closed gl-group is semiclosed.
Theorem 13: Let G be an integrally closed gl-group.
Then for any z,y € G, we have ML(lz — y|) =
ML(mu(ML(mu{z,y}) — mu(ML{x,y}))). In particular,
if y =0 then M L(|z|) = ML(mu(ML(z") + ML(z™))).

Proof: Since L(0) C L(|lz —y|) = Lz —y) V L(y — x)
and by Theorem 12 we have L(|z —y|) = L(0) V L(x —y) V
Ly —x) v L(0) = (L(z) & L(=x)) V (L(z) & L(-y)) V
(L(y) & L(—z)) v (L(y) & L(-y)) = (L(z) & (L(-z) V
L(=y))) v (L(y) ® (L(=x) V L(=y))) = (L(x) vV L(y)) ®
(L(=z) vV L(—=y)) = L(mu{z,y}) & Limu{-z,—y}) =
L(mu(ML(mu{z,y}) — mu(ML{z,y}))). u
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