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Abstract 

This software is designed to support the research reported in Warnings about future jumps: properties of the 
Exponential Hawkes model, by Rachele Foschi, Francesca Lilla, and Cecilia Mancini, where it is assumed that the 
log-prices of a financial asset evolve following a jump diffusion semimartingale, as in (21) within the paper, and 
the process N counting the jumps is an Exponential Hawkes model. Formula (7) quantifies the probability that 
an observed cluster of price jumps is not yet finished, while feasible approximations are given by formulas (5) 
and (6). 
The software allows to verify, on simulated discrete time data, the reliability of the results obtained with the 
practical implementation of (5) and (6). The analysis is mentioned in Appendix B.3.4 and produces the results 
shown in Table 8. 
 

 
Description 
 
This software is designed by Cecilia Mancini to support the research reported in  

Warnings about future jumps: properties of the Exponential Hawkes model 
by Rachele Foschi, University of Pisa; Francesca Lilla, Bank of Italy; and Cecilia Mancini, University of Verona. 
The last revision of the work is the draft of 5/8/2021. 
 
The software aims to verify the reliability of the results obtained with the practical implementation of formulas 
(5) and (6) in estimating the quantity in (7), through their use on simulated prices of a financial asset. The 
analysis is mentioned in Appendix B.3.4 and produces the results shown in Table 8.  
 
Namely, the simulation study assumes that the log-prices of a financial asset evolve following a jump diffusion 
semimartingale, as in (21) within the paper, where the process N counting the jumps is an Exponential Hawkes 
model. Formula (7) quantifies the probability that an observed cluster of price jumps is not yet finished, while  
(5) and (6) provide its feasible counterparts. The latter require the knowledge of an estimate of the number of 
jumps observed within a time interval [U,S], without necessarily knowing their exact time locations; an 
estimate of the jump intensity lambda_U at time U; and an estimate of the parameters lambda_0, alpha and 
beta of the Hawkes process kernel.   
 
Since in practice very often we only can use prices recorded each 5 minutes, the estimates of the mentioned 
quantities need to be done in two steps: firstly estimating the jump time arrivals and then estimating the 
parameters of the jump intensity. The first step is done using the Threshold estimation method of Mancini 
(2009), while the second one through maximizing the likelihood of observing the estimated jump times rather 
than the true jump times. These two steps lead to a sum of measurement errors and may deliver a relevant 
bias in the estimate of probability (7). 
 
This simulation study shows that the probability estimation error is indeed low and makes the practical 
implementation of formulas (5) and (6) a reliable measure of the jump risk that we have studied.  
 
The bibliographic references are in the paper. 
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The Matlab routine nests 4 other routines (names in red). One of them is reported below and in turn nests a 
further routine which is reported. Spot sigma is estimated as in Mancini, Mattiussi and Renò (2015), and the 
routines LogLikelHawMP1 and conHawkes have been written by Francesca Lilla. 
 
The input needed to run the main routine MainGlobEstimErrSuPeBounds is the number n of the observed asset 
prices. 
 
 
Software    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function [output1,output2,output2b,output3,output3b]=MainGlobEstimErrOnPandBounds(n) 

%%inputs 
%we used n=150000, the number of JPM asset prices a tour disposal 

delta= 1/(252*80); %T=n*delta=7.44 years 
%for the Brownian semimartingale part of (21) the parameters are the same as in Cont and Mancini 
(2011) and are simiar to the ones in Huang and Tauchen (2005) 

mu=0; rho=-0.7; LgSigZ=log(0.3);  K=0.09; barLgSig=log(0.25); omega=0.05;    
%parameters of the Exponentila Hawkes process: [lambda0, alpha, beta]:  
the kernel has the form alpha* e^{-beta x}  

parr=[53.27, 4.72, 9.14]; ep=0.01; 
 %%simulation of the lof returns 
[DX,sigmat,meansigmat,NT,tau]=DXStochVolHawkesJs(n,delta,mu,rho,LgSigZ,K,barLgSig,omega,parr); 

%% estimation of sigma and jump times 
ri=DX'; 
ti=delta*[1:n]; 
fn0= 1/(200*delta);  
t=delta*[1:n];  
hatsigmaq = KernelSpotSigma2Thresh(ti,ri,t,fn0,delta);     %row 
thr=2*hatsigmaq*delta*log(1/delta);      %row; log(1/delta)=9.9115 
hatJTimes= ti'.*(ri.^2>thr');  

% estimation of sigma and jump times: second round 
IndNoSalti=ones(n,1).*(hatJTimes==0);          %gives 1 where there is no jump, 0 where a jump was detected 
riSecRound=ri.*IndNoSalti;                               %only the returns not containing jumps 
hatsigmaqSecRound =  sigma2_SecRound(ti,riSecRound,t,fn0,delta, hatsigmaq);     %row 

% in the second round the estimate of sigma was lowered 
thrSecRound=2*hatsigmaqSecRound*delta*log(1/delta);        %row  
hatJTimesSecRound= ti'.*(riSecRound.^2>thrSecRound');   

%% Estimation of the Hawkes parameters  
LB=[1e-9,1e-9,1e-9];          % constraints for fmincon: lambda_0, alpha, beta >0;  
T=n*delta; M=1; P=1;  
[MLE,f_opt] = fmincon(@(x) -LogLikelHawMP1(x,tau,T),theta0,[],[],[],[],LB,[],@(x)conHawkes(x)) 
 % conHakes imposes alpha<beta 

%% OUTPUT1 
ISalti=ones(n,1).*(hatJTimes>0)+ ones(n,1).*(hatJTimesSecRound>0);  
hatJTimes=ti'.*ISalti; 
lambda0=parr(1); alpha=parr(2); beta=parr(3); 
hLambda0=MLE(1); halpha=MLE(2); hbeta=MLE(3); 



%  
EMeanSig=abs(mean(sqrt(hatsigmaqSecRound))-meansigmat)/meansigmat;  
ENJ=abs(length(ISalti(ISalti>0))-NT)/NT; 
ELambda0=abs(parr(1)-hLambda0)/lambda0; Ealpha=abs(parr(2)-halpha)/alpha; Ebeta=abs(parr(3)-
hbeta)/beta; 
output1=[EMeanSig, ENJ, ELambda0, Ealpha, Ebeta]; 

%% computation of: P(T_{i+k}<S + t_ep(S)), formula (7), and estimation error; of the bounds and their 
estimates, S=0.215; U=0.18;  

              % S, S2 have to differ form delta*i, for any i, so that sum((hatJTimes==S2))==0   
% Note that P>0 iff lambdaS+alpha*I_{jump in S}>lambda0*(1+ep) !!!!!!  
% that is, ep ha to be sufficiently small, in both the cases where   
% S= the time of a true jump and S is not a jump time 
% Note that the bounds in Proposiition 1 are give only in the case where S is not a jump time 

S=0.215; U=0.18;   
[P,hP,lambdaS,hatLambdaS,lambdaU,hatLambdaU,LowerB,UpperB,hLowerB,hUpperB]=... 

ErrOnPandBds(U,S,tau,hatJTimes,lambda0,alpha, beta,hLambda0, halpha,hbeta, ep); 
%not meaningful to compute the average value of: lambdaS, lambdaU, LowerB, P, UpperB, 
%hLowerB,hP, hUpperB 

 % 
%% OUTPUT  S; U;  

ElambdaS=(hatLambdaS-lambdaS)/lambdaS; ElambdaU=(hatLambdaU-lambdaU)/lambdaU; 
EP=abs((P-hP)/P); 
distPeLB=(P-LowerB)/P;  distPehLB=abs(P-hLowerB)/P;  
distPeUB=(UpperB-P)/P; distPehUB=abs(hUpperB-P)/P; 
rangeBs=(UpperB-LowerB)/P; rangehBs=(hUpperB-hLowerB)/P; 
ELB=abs(LowerB-hLowerB)/LowerB; 
EUB=abs(UpperB-hUpperB)/UpperB; 
if  lambdaS+alpha*sum((tau==S))>lambda0*(1+ep)...  
    & hatLambdaS+halpha*sum((hatJTimes==S))>hLambda0*(1+ep)...  
    & sum((tau==S))==0 & sum((hatJTimes==S))==0   
    output2=[P, hP, EP, LowerB, hLowerB,ELB, UpperB, hUpperB, EUB]; 
    output2b=[distPeLB, distPehLB, distPeUB, distPehUB, rangeBs,rangehBs,ElambdaS, ElambdaU]; 
else  output2=2*ones(1,9); output2b=2*ones(1,8);  
end;  

%% computation of: P(T_{i+k}<S + t_ep(S)) and error of its estimate; bounds  and their estimates,  
% with S2=0.07 U2=0.02 lower than before 

S2=0.07; U2=0.02;    
[P2,hP2,lambdaS2,hatLambdaS2,lambdaU2,hatLambdaU2,LowerB2,UpperB2,hLowerB2,hUpperB2]=... 
ErrOnPandBds(U2,S2,tau,hatJTimes,lambda0,alpha, beta,hLambda0, halpha,hbeta, ep); 

%% OUTPUT  %S2; U2;      %~= 
ElambdaS2=(hatLambdaS2-lambdaS2)/lambdaS2; ElambdaU2=(hatLambdaU2-lambdaU2)/lambdaU2; 
EP2=abs((P2-hP2)/P2); 
distPeLB2=(P2-LowerB2)/P2;  distPehLB2=abs(P2-hLowerB2)/P2;  
distPeUB2=(UpperB2-P2)/P2; distPehUB2=abs(hUpperB2-P2)/P2; 
rangeBs2=(UpperB2-LowerB2)/P2;   rangehBs2=(hUpperB2-hLowerB2)/P2; 
ELB2=abs(LowerB2-hLowerB2)/LowerB2; 
EUB2=abs(UpperB2-hUpperB2)/UpperB2; 
if   lambdaS2+alpha*sum((tau==S2))>lambda0*(1+ep)...  
     & hatLambdaS2+halpha*sum((hatJTimes==S2))>hLambda0*(1+ep)... 



     & sum((tau==S2))==0 & sum((hatJTimes==S2))==0   
     output3=[P2, hP2, EP2, LowerB2, hLowerB2,ELB2, UpperB2, hUpperB2, EUB2]; 
     output3b=[distPeLB2,distPehLB2,distPeUB2,distPehUB2,rangeBs2,rangehBs2,ElambdaS2,ElambdaU2]; 
else output3=2*ones(1,9); output3b=2*ones(1,8);  
end;  
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function [DX,sigmat,meansigmat,NT,tau]= DXStochVolHawkesJs(n,delta,mu,rho,LgSigZ,K,barLgSig,omega,pars) 

% Simulation of one path of a process having stochastic volatility as in Huang and Tauchen (2005) and   
% Exponential Hawkes jumps. Step delta, n= n di oss. 
% J sizes iid N(0, 0.03) independent on sigma: 0.03 stresses the difficulty in identifying the jumps and 
%renders the path of X similare to the one of JPM observed each 5 minutes on [2006, 2013] 
%% continuous part 

DW=randn(1,n); 
DW2=rho*DW+sqrt(1-rho^2)*randn(1,n); 
LgSig(1)=LgSigZ; 
for i=2:n u=LgSig(i-1); % definiz di u 
      LgSig(i)=u-K*(u-barLgSig)*delta+omega*sqrt(delta)*DW2(i);  
end; 
sigmat=exp(LgSig);   
DXc=(mu-sigmat.^2/2)*delta+ sqrt(delta)*sigmat.*DW; 

%% DN 
T=n*delta; Tau= simulHawkCec(lambda0, alpha, beta, T) 
DN=zeros(1, n); clear i;      %row 
if floor(tau(1)/delta)==0  
        DN(1)=1; 
end; 
for k=2:length(tau),  
    if floor(tau(k)/delta)== floor(tau(k-1)/delta)  
        DN(floor(tau(k)/delta)+1)=DN(floor(tau(k-1)/delta)+1)+1; 
        else DN(floor(tau(k)/delta)+1)=1;   
    end;  
end;  

% DN(i)=m if we have m components k of tau within ((i-1)*delta, i*delta]  
NT=sum(DN); 

%% J sizes     
%J sizes are Gauss and independent on sigma 

clear i;  
for i=1:n,  DJ(i)=sum(randn(1,DN(i))*0.03);  end; 

%% price path  
DX=(mu-sigmat.^2/2)*delta+ sqrt(delta)*sigmat.*DW + DJ;  
meansigmat=mean(sigmat); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 
 
function tau = simulHawkCec(mu, alpha, beta, T) 

%I simulate one path of a univariate Exponential Hawkes process (Rasmussen, 2011) 
% I take m(t)= lambda(t)= mu + alpha \sum_{t_i<t} e^{-beta(t-t_i)}, ell(t)=+\infty 
% the distribution function of the exponential law with par. lambda is 1-e^{-lambda x} 

  % For example: mu=0.5; alpha=0.9; beta=1, as in e.g. in Rasmussen p. 6 
%n=152559; delta=1/(252*80);  are only needed to define T=n*delta; 

t=0; c=0; lambdat=mu;  
while t<=T 
    V=rand(1); s=-log(1-V)/lambdat; U= rand(1);  
    lambdatpius=mu+ (lambdat-mu+alpha)* exp(-beta*s); 
    thresh=lambdatpius/lambdat; 
    if (t+s>T)+(U>thresh)>0, t=t+s; 
    else c=c+1, tau(c)=t+s, lambdat=lambdatpius; t=t+s; 
    end; 
end                  

%figure(1), plot(tau, zeros(1, length(tau)), '.') 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

 

 

 

 

 

 

 

 
 
 


