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SOMMARIO (ITA)

Introduzione: L’insulino resistenza si presenta quando la risposta delle cellule
all’insulina ¢ diminuita causando un drammatico innalzamento dei livelli di
zucchero nel sangue. I diversi fattori di rischio per I’insulino resistenza includono
uno stile di vita sedentario, obesita, storia familiare di diabete e invecchiamento.
Negli ultimi anni, il diabete di tipo 2, I’insulino resistenza e 1’obesita sono
considerevolmente aumentate nella popolazione contribuendo all’incremento in
morbidita e mortalitd nel mondo. I molti meccanismi proposti per spiegare il
funzionamento dell’insulino resistenza includono varianti genetiche, deregolazioni
trascrittomiche e modificazioni epigenetiche, come per esempio la metilazione del
DNA.

Scopo: L’obiettivo di questa tesi comprende [’'utilizzo di metodologie
bioinformatiche applicate allo studio della metilazione del DNA lungo tutto il
genoma usando I’Infinium Human Methylation EPIC array (~850k CpGs) per
studiare la componente epigenetica dell’insulino resistenza in una coorte di 186
soggetti pediatrici obesi, uniformemente divisi in due gruppi (insulino
resistenti/insulino sensibili).

Risultati: [’analisi bioinformatica della metilazione a livello genomico, suggerisce
una forte modulazione della composizione in termini di tipi cellulari nei soggetti
insulino resistenti, suggerendo un possibile ruolo dell’inflammazione nella
malattia. Inoltre, I’analisi della metilazione differenziale su singoli CpG o regioni,
accompagnata da un’analisi di “gene set enrichment”, mette in evidenza diverse vie
collegate al metabolismo di carboidrati e grassi. In aggiunta, associando i probes
differenzialmente metilati con risultati di studi riportati in letteratura, emergono
ulteriori fattori che si potrebbero considerare durante lo studio di questa condizione.
Conclusioni: In conclusione, abbiamo utilizzato diversi approcci bioinformatici
applicandoli ad una numerosa coorte di individui per studiare la metilazione del
DNA a livello genomico nel contesto dell’insulino resistenza, con risultati che
supportano I’ipotesi che la metilazione sia piu legata a cambiamenti globali

piuttosto che cambiamenti localizzati in pochi loci.



ABSTRACT (ENG)

Background: Insulin resistance occurs when the response of cells to insulin is
decreased hence causing blood sugar levels to rise dramatically. Among others, the
most common risk factors for insulin resistance include sedentary lifestyle, obesity,
family history of diabetes and advanced age. In the last few decades, type 2
diabetes, insulin resistance, and obesity have increased dramatically in the general
population contributing to an increase in morbidity and mortality around the world.
Among others, the main mechanisms proposed for the action of insulin resistance
include genetic variants, transcriptomic dysregulations, and epigenetic changes
such as DNA methylation.

Aim: The aim of this thesis is to employ bioinformatic methods to genome-wide
DNA methylation using the Infintum Human Methylation EPIC array (~850k
CpGs) to study the epigenetic component of insulin resistance in a cohort of 186
obese pediatric individuals equally divided in two groups (insulin resistant/insulin
sensitive).

Results: Bioinformatic analysis of the genome-wide methylation data, suggests a
strong modulation of cell type composition in insulin resistant subjects proposing a
role of inflammation in this disease. Furthermore, differential methylation of single
CpG or regions, coupled with gene set enrichment analysis highlighted several
pathways involved with carbohydrates and fat metabolism.

Additionally, associating differentially methylated probes with previously reported
studies highlights additional factors that may be useful to consider when studying
this condition.

Conclusions: In conclusion, we employed different bioinformatics strategies
applied to a large cohort of individuals to study genome-wide DNA methylation in
IR, with results supporting the hypothesis that methylation is more related to
general methylation landscape changes rather than methylation variations in a few

loci.



INTRODUCTION

Insulin resistance and type 2 diabetes

Insulin is a hormone produced by beta cells in the pancreas and, in healthy subjects
is released in response to rising levels of sugar in the bloodstream due to food
intake, acting like a key and allowing glucose to enter cells in various tissues such

as muscles and fat.

Insulin resistance (IR) occurs when the response of cells to insulin is decreased.
This has several adverse metabolic consequences, like impaired inhibition of
gluconeogenesis and impaired glucose uptake by insulin-dependent tissues, leading
to progressive elevation of fasting and post-load blood glucose up to type 2 diabetes
(T2D); impaired lipolysis by muscle and adipose tissue, which causes increased
synthesis of lipoproteins and increased fatty acids deposition in the liver, leading to
increased VLDL (Very Low Density Lipoprotein) triglycerides and nonalcoholic
fatty liver disease (NAFLD) respectively, elevation of insulin concentration, which
causes suppression of nitric oxide synthase (NOS) and hyperactivation of the renin-
angiotensin-aldosterone (RAA) system, leading to hypertension, as well as chronic
stimulation of the ovary theca cells, leading to the polycystic ovary syndrome
spectrum. Major risk factors for IR include sedentary lifestyle, family history of
diabetes and advanced age. It is possible to reverse the effects of insulin resistance
before it develops into full T2D and other major complications with change in
lifestyle, diet, and pharmacological treatment. In the last few decades, T2D and
obesity have increased dramatically in the general population contributing to an

increase in morbidity and mortality around the world!~.

Recent studies have also connected conditions in the intrauterine and postnatal
environment to deleterious metabolic outcomes in children, these phenomena fall
into the definition of Developmental Origin of Health and Disease (DOHaD) which
states that exposure to certain environmental conditions during critical steps of
development (before and/or after birth) may have significant effects on an

individual short- and long- term health status. Some of the most studied



environmental conditions include poor nutrition (micro- or macro- nutrient

deficiency), exposure to chemical agents, hormonal and metabolic perturbations'>.

Contrarily to T1D which is caused mainly by an autoimmune response of the body
leading to pancreatic beta cells destruction, T2D is a multigenic complex disease
with heritability risk from 25% to 80%, involving some known genetic variants
accounting only for 10% of the total risk. In the recent years, the focus has shifted
from genome studies to epigenome studies, since epigenetic modifications are now
considered to be a strong plausible mechanism of action for the disease because,

they act like a fast environmental adaptation®*,

In the past decade, many studies tried to link insulin resistance and type 2 diabetes
to epigenetic modifications, gene expression dysregulations and single nucleotide
polymorphisms (SNPs) in the adult, providing a list of potential markers for
diagnosis and drug testing although not many studies focused on IR among obese

children.

Epigenetics

Diversity is a natural consequence of both evolution and inheritance and, for
decades, scientists have attempted to understand the underlying mechanisms
driving life both at macro- and microscopic levels. Darwin’s theory of evolution in
1859 together with Watson, Crick and Franklin’s discovery of the DNA structure
in 1953 started a revolution in life sciences leading up to genomics, transcriptomics
and epigenomics studies as they are known today. At first the variation seen within
a population was attributed to nucleotide changes in the DNA double helix
molecule leading to aminoacidic changes in the final protein. Epigenetics added
another layer of complexity, where previously heritable changes were thought to be
propagated exclusively through DNA polymorphisms, a set of newly discovered
mechanisms would ensure fine regulation of gene expression and constitute a
strategy for a quick but soft adaptation to the environment”.

The epigenome consists of a set of chemical changes in DNA and supporting
structures (like histones) acting at the cellular level for the maintenance and
regulation of DNA-related processes. Therefore, changes to the epigenome usually

result in modification of the chromatin structure and regulation system of the



genome without changes in the nucleotide sequence itself. These changes can be
passed down to the offspring via transgenerational epigenetic inheritance. Although
virtually all cells within an organism contain the same genetic information, not all
cells express the same genes at the same time. In a broad sense epigenetic
modification mediate the diversified gene expression profiles in a variety of cells
and tissues in a multicellular organism in fact the roles of the epigenome are to
regulate gene expression, development, tissue differentiation and suppression of
transposable elements. Unlike the genome which generally remains unchanged
within an individual, the epigenome can also be dynamically altered by

environmental conditions.

In general Epigenetics is the study of heritable phenotype changes that do not
involve alterations in the DNA sequence itself. Specific epigenetic processes
include paramutation, bookmarking, imprinting, gene silencing, X chromosome
inactivation, position effect, DNA methylation reprogramming and regulation of
histone modification. In the past decade, epigenetics has become increasingly
important in life sciences since various epigenetic changes are associated with
development and disease making them a potential target for new pharmacological
treatments. Moreover, high-throughput technologies offer an opportunity to study
epigenetic alterations in an “epigenetic wide” fashion by considering a very high
number of loci (depending on the specific technology) and trying to associate their
epigenetic status to phenotypic traits including diseases. With the rise of
genome/epigenome wide approaches, bioinformatics and biostatistics have become
key disciplines in order to obtain strong, reproducible and accurate results in every
phase of an epigenomics project allowing us to better understand complex

phenomena.

The epigenetic machinery

In eukaryotes, the DNA is contained in the nucleus and it’s tightly packed, allowing
for a better organization/storage of the genetic material. DNA organized in
chromatin restrict its accessibility to some parts of the genome while giving easier
access to other specific areas. There are two forms of chromatin, euchromatin which

is loosely condensed, allowing active transcription, and heterochromatin which is



tightly condensed, hence preventing transcription. Chromatin regulation is dynamic
and can change according to cell cycle stage, cell type, environment, and many
other factors, actively influencing what can be produced and, at which efficiency
level. The systematic arrangement of chromatin allows for the creation of a
structure called nucleosome consisting of DNA packed around octamers, which are
made of five histone proteins H2A, H2B, H3, H4 and H1 (for an increased stability
- Figure 1).

Core 1
Histones

Linker Histone

H1

Histone
Tails

Nucleosome core particle (NCP) Nucleosome

Figure 1: Nucleosome and chromatosome formation. Schematic representation of histone proteins
and how they are assembled to form complete nucleosomes and chromatosome®.

The combination of histones and nucleosome have an N-terminal tail which is prone
to modifications such as acetylation and methylation of lysine residues or
phosphorylation of serine residues. Histones are involved in epigenetic changes
through the remodeling process which alters the compaction status of the
chromatin, rendering DNA more, or less accessible to a wide variety of cellular
processes and components like, small non-coding RNA mediated regulation or

DNA methylation’.
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DNA methylation
DNA methylation (DNAm) occurs when a methyl- group (CH3-) is covalently

attached to the carbon 5 within a cytosine ring forming 5-methylcytosine (5SmC —
Figure 2) by the action of DNA methyltransferase enzymes (DNMT) and S-
adenosylmethionine (SAM) as a methyl- group donor®. Moreover, is one of the best
studied and most mechanistically understood epigenetic modifications, it is also
well conserved among animals, plants, and fungi®'°. DNA methylation is seen as a
key player in epigenetic silencing of transcription, it may coordinately regulate the
chromatin status via the interaction of DNMT with other modifications and with
components of the machinery mediating those marks. DNA methylation status is
heritable, and it can be found in cytosines both in a CpG dinucleotide context and
in a CHG or CHH trinucleotide contexts, however the vast majority of methylated
cytosines in humans is found in a CpG context (around 98%) in adult human

somatic cells while almost 25% of methylation in embryonic stem cells is found in

NH, NH,
CH,
| SN Methyltransferase N
I /K
N/Ko N
H H @

Figure 2: From cytosine to 5-methylcytosine. Cytosine methylation to form 5-methylcytosine'.

other contexts'?,

There are three DNMT enzymes, DNMT3A, DNMT3B and DNMT1 which alter
the methylation status in different ways, DNMT3A and DNMT3B can transfer a
methyl group to previously unmodified cytosines hence creating new methylated
regions or loci. DNMT1 works during DNA replication and can only copy the
methylation patterns from the template strand to the newly synthetized strand
(Figure 3). All three DNMT enzymes are heavily involved during embryo
development but, by the time cells reach a terminal differentiation status, their

expression is highly reduced’.

During zygote formation, most of DNA methylation is removed, only to be re-
established in the embryo in a short period of time after implantation. DNA

methylation is essential for normal development since it plays a paramount role in
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several processes like genomic imprinting, X chromosome inactivation,

suppression of repetitive elements and many others.

Human development from zygote into a complex adult organism requires a set of
highly specific cellular processes. Gene expression regulation is primarily encoded
in cis elements directed by transcription factors. Moreover, heritability of covalent
DNA modifications and chromatin rearrangements often contribute to respond to

developmental pressure.

da CH,
Dnmt3a
5,TTG..-ﬂ«-:}.wﬂ'.ﬁtt.thT‘.3, Dnmit3b E,TTGACAGGGGTE,
—_—
3 5 3 5
AACTGTCGGCA AACTGTCGGCA
b

Figure 3: DNA methyltransferase enzymes in action. Graphical representation of DNMT enzymes
de novo methylation (a), and methylation copying process during DNA replication (b) °.

Genomic elements and DNA methylation

As previously mentioned, the majority of DNA methylation occurs on cytosines
that precede a guanine nucleotide also known as CpG sites. Overall, mammalian
genomes are depleted of CpG sites this may result from the mutagenic potential of
SmC that can deaminate to thymine. The remaining CpG sites are spread out across

the genome where they are heavily methylated except for CpG islands. DNA
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methylation is essential for silencing retroviral elements, regulating tissue-specific
gene expression, genomic imprinting, and X chromosome inactivation.
Importantly, DNA methylation in different genomic regions may exert different

influences on gene activities based on the underlying genetic sequence’.

CpG islands

CpG islands (CGIs) are stretches of DNA roughly 1000 base pairs long, with a
content of CpG dinucleotides around 50%, they’re generally unmethylated and can
be found in more than half (~70%) of human gene promoters’ or distributed in other
functionally relevant regions like transcription start sites (TSS). In particular,
promoters for housekeeping genes are often embedded in CpG islands, and
generally highly conserved between mice and humans'?. Therefore, to maintain a
hypomethylated status, the activity of DNMT enzymes has to be continuously
blocked in active promoters to prevent unwanted gene silencing. Moreover,
promoter methylation (or unmethylation) status is cell type or tissue dependent, and
it is established during development but even if a large part of the mechanisms
behind CGI regulated gene expression are known, there are still many molecular
aspects being uncovered especially during developmental age. It appears that CpG
islands have been evolutionarily conserved to promote gene expression by
regulating the chromatin structure and transcription factor binding, but when
methylated, CGIs can impair these mechanisms by also recruiting repressor (in the
form of methyl-binding) proteins for a stable silencing of gene expression®. A good
example highlighting the importance of CGI-related mechanisms can be seen with

the disruption of their methylation patterns taking place in neoplastic cells'.

Furthermore, DNA methylation can be found at enhancers and is also highly
dynamic varying according to physiological and pathological conditions, especially
in cancer where enhancer methylation plays an important role as promoter

methylation does’.

Many other genomic elements carrying methylation have gained popularity and
attention over time, like CpG shores which are regions distant at most 2kb from a
CGI. Shores usually present a lower CpG density compared to CGlIs, but their

methylation status is much more variable, and they are in fact considered among

13



the most variable regions in the genome. Furthermore, methylation in CpG shores

is also associated to transcriptional inactivation.

T e e oo ? e
] ]
CpG lsland Transposable CpG lsland Gene
element ? methylated CpG

?  unmethylated CpG

Figure 4: DNA methylation schematic landscape. Showing different possible situations: CpG
islands are unmethylated when allowing transcription, while intergenic transposable elements are
methylated to prevent their activation.

Intergenic regions

In the human genome, intergenic regions often contain endogenous transposable
elements (nearly 40% of mammalian genomes), they are organized in three classes,
long interspersed nuclear elements (LINEs), short interspersed nuclear elements
(SINEs) and long terminal repeats (LTRs). LINEs and LTRs encode for elements
with strong promoters. Moreover, transposable elements can be potentially harmful
since their expression would cause them to replicate and insert themselves in
another genomic region (trough duplication), permanently altering or disrupting the
functionality of the targeted area (Figure 4). To block these elements and prevent
their activation, over a long period of time, DNA methylation is used causing
constitutive hypermethylation’. Moreover, spontaneous mutations induced by 5-

methylcytosine deamination to thymine permanently fix this block™!*.

Gene body

As previously mentioned, DNA methylation often affects enhancers, promoters and
TSS causing gene silencing, but gene bodies can also be methylated especially the
first exon which also acts as a silencer when methylated. While methylation in other
exons is associated to a higher gene expression during cell division while in non-
dividing cells like neurons, gene body methylation (beyond the first exon) has not
been associated with expression alterations or fluctuations’ (Figure 4).
Furthermore, methylation in intronic or intragenic regions still has unclear

functions.
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DNA methylation using microarrays

Fast and accurate methylation analysis methods are a key element for discovering
the role that methylation plays in several contexts from life sciences to medicine.
The main principle on which DNA methylation detection is founded, relies on the
chemical action of sodium bisulfite. When DNA is treated with sodium bisulfite,
unmethylated cytosines are converted by deamination to uracil, while 5SmC remain
unchanged'>. Among other methods to assess DNA methylation there are tiling
hand-made microarrays and sequencing of bisulfite-treated DNA (whole genome
or target regions based). Although effective, sequencing methods require a
moderately high amount of DNA and labor, and they make bioinformatic analysis
challenging for large-case studies. A very good and cost-effective way to limit the
resources needed for analysis of a large cohort is to employ microarrays such as the
Infinium Human Methylation EPIC (EPIC) by Illumina which can measure
methylation levels of approximately 850000 single CpG dinucleotides using a small
amount of genomic DNA (~250ng) while analyzing 8 samples per array, with 16
being the base configuration (2 arrays) reaching up to 96 samples (12 arrays). The
EPIC array was designed to incorporate ~99% of RefSeq genes, ~95% of known
CGIs and ~80% of FANTOMS enhancers also including open chromatin and
enhancers from ENCODE and genes, promoters, and UTRs from GENCODE, for

a detailed description of these features'®, see the List of Abbreviations section.

The EPIC array uses beads linked to long target-specific probes designed to query
single CpGs within a sample, methylation is measured in a quantitative way by
“genotyping” bisulfite converted DNA. Each array contains two types of assays (or
chemistries) called Infinium I and Infinium II which complement each other
strengths benefitting the array overall sample coverage. The Infinium I assay uses
two types of probes per CpG locus, the first one for methylation and the second for
unmethylation matching the status of the analyzed site and they are designed under
the assumption that methylation is regionally correlated within a 50 base pair
span'”!8. The Infinium II assay uses only one probe complementing the base
immediately upstream the considered nucleotide then, during array preparation a
single base extension (SBE) allows the addition of a labeled guanine (G) or adenine

(A) which are complementary to the locus of interest that can contain either a
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cytosine (methylated locus) or thymine (unmethylated locus). Therefore, the
Infinium II assay enables methylation status detection regardless of the previously
mentioned assumptions about neighboring CpGs while maintaining a high

correlation with Infinium I probes detected methylation'® (>90% - Figure 5).

Infinium |
Unmethylated locus Methylated locus
@ TG °
G Cc
_Ly— CA a® 9— [CAX 2
TGC. TG @
A c

| gt

u) Unmethylated bead type M) Methylated bead type D CpGlocus Bisulfite converted DMNA
Infinium I
Unmethylated locus Methylated locus
A-® A—@
G G
C C
T @ T ®

J Single bead type [] CrGlocus Bisulfite corverted OMA

Figure 5: Graphical representation of Infinium I and Infinium II chemistries. Two probes per
locus are used to evaluate methylation or unmethylation status at a CpG site assuming correlation
on a 50bp range (Infinium I) while a single probe allowing for SBE and detection of methylation
without assuming its genomic distribution (Infinium II).

Since looking at single probe luminescence would be challenging to analyze, two
metrics are used to associate each locus to its methylation status, the 3-value and
the M-value which are computed locus-wise using methylation (M) and
unmethylation (U) values directly derived from the array or the sequencing (after

some pre-processing steps).
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B-value = with: 0 < f-value< 1

(M +U)

M
M-value = log, (U) with: —5 < M-value <5

Methylation ratios computed using the B-value or the M-value express the same
concept, while the B-value ranges from 0 to 1, the M-value ranges from -5 to 5.
Moreover, for both B-value and M-value the lower bound corresponds to full
unmethylation and the upper bound to full methylation with values in between
corresponding to hemi-methylation. Furthermore, the use of one value or the other
doesn’t have a severe impact on any downstream analysis although it has been
reported that using the M-value for differential analysis may produce slightly more

statistically significant results while ensuring a better reproducibility!®2°.
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AIM OF THE PROJECT

The main goal of this project is to investigate the association of genome-wide DNA
methylation profiles with insulin resistance in pediatric obese subjects. Since
insulin resistance is often present alongside obesity, a cohort of obese children was
chosen to remove from the analyses the effect of obesity on insulin levels. A
secondary aim is to define a reliable bioinformatic workflow to efficiently analyze
DNA methylation array data, allowing for integration with biological knowledge
(Figure 6).

| Obese Children/Teenagers |

2282 OGTT, physical exam DNA processing and array
and blood collection hybrydization
Q000
Gy &
S
0000 %s)&
Lnee N )
Q9000
. / Genome-wide

Clinical data

methylation

Bioinformatic analysis and data
integration

Figure 6: Schematic representation of the study design.

18



MATERIALS & METHODS

Dataset composition

The dataset composed of obese pediatric subjects enrolled by the team of professor

Miraglia del Giudice (University of Campania Luigi Vanvitelli) was divided in two

groups, insulin resistant (96 samples; “R” prefix), and insulin sensitive (96 samples;

“N” prefix). Subjects of the 2 groups were matched for BMI, sex, and age values.

Furthermore, the insulin resistance status was assessed using the HOMA-IR and

WBISI indexes as described below. The insulin resistance status (Sample Group

feature; IR = insulin resistant, IS = insulin sensitive) investigated in the present

study was defined according to WBISI values only.

Clinical information

For each subject, information regarding several clinical features were collected to

use as covariates during the bioinformatic analysis (Table 1).

Feature Name
Weight

BMI

Height

Waist

PAD

PAS

Age

HOMA-IR

Average Glucose
Average Insulin
WBISI

1GI
Sex

Gt

le

Description

Subject's weight

Body Mass Index
Subject's height

Waist circumference
Diastolic arterial pressure
Systolic arterial pressure
Subject's age

Homeostatic Model Assessment for
Insulin Resistance

Mean of G; values
Mean of I; values
Whole Body Insulin Sensitivity Index

Insulinogenic Index (ratio between lo-
130/Go-Gao)

Subject's sex (M: male; F: female)

Subject's glycemia at timepoint 0'< t
<120'

Subject's insulin level at timepoint 0'<
t<120'

Units
Kg

cm
mmHg
mmHg
years

mmol/L
uu/L

puU/mmol

mmol/L

puu/L

Sample_Group

IR mean (sd)
76.11 (+17.98)
32.43 (£5.1)
1.52 (+0.1)
93.98 (+13.86)
65.85 (+10.68)
117.1 (+12.27)
(

+
11.86 (+1.99)
8.28 (+3.17)

111.6 (£12.9)
158.21 (+56.6)
1.48 (+0.81)

3.83 (+2.54)

M:52-F: 44

IS mean (tsd)
76.12 (+18.94)
32.67 (£5.3)
1.52 (+0.1)
92.96 (+11.72)
67.38 (£8.21)
110.8 (+11.84)
11.78 (+1.9)

1.77 (0.68)

101.4 (£11.94)
38.35(+14.23)
6.58 (+1.55)

2.1 (+4.42)

M:53-F: 43

Table 1: Main clinical features collected for the cohort. Features descriptions with measurement
units and average value (* standard deviation, when applicable) for Sample Group (IR = insulin
resistant, IS = insulin sensitive).
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Insulin resistance assessment

A standardized method to measure glucose and insulin fluctuations is called Oral
Glucose Tolerance Test (OGTT), which is performed by orally administering a
standard amount of glucose to a subject, collecting blood samples at regular time
intervals (usually every 30 minutes for 2 hours) to measure insulin and glucose
amounts with an additional sample collected before the test to measure fasting
glucose and insulin levels. The several samples collected are used to determine how
long it takes for blood glucose to go back to a baseline level. The OGTT is mainly
used for insulin resistance, diabetes, and beta cell functionality testing, but it is
sometimes used for reactive hypoglycemia, acromegaly, and disorders in

carbohydrates metabolism.

As mentioned above the Oral Glucose Tolerance Test is used to quantify glycemic
fluctuations over time but the OGTT itself cannot discriminate between IR, T2D or
beta cell disfunctions, therefore two OGTT-derived estimates were used to assess
fasting and post-load insulin sensitivity, the Homeostatic Model Assessment for
Insulin Resistance (HOMA-IR) and the Whole-Body Insulin Sensitivity Index
(WBISI), by using data collected during the test such as fasting glucose (Go
[mmol/L]), fasting insulin (Io [uU/L]), mean glucose (G, [mmol/L]), mean insulin

(I, [wU/L]) and they are computed as follows?'23:

HoMA-IR = &0 o
© 225
10000
WBISI =

\/(GOIO) ) (Gulu)

It should be noted that HOMA-IR optimal range is between 0.5 and 1.4, with values
like 1.9 being a sign of early IR, while values around 2.9 being significant IR, on
the other hand WBISI optimal value is above 3, lower values progressively tend to

IR and, in some studies, IR subjects were found with WBISI threshold around 2.5%.
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Sample collection & DNA processing

DNA processing and genome-wide methylation profiling were conducted by the
team of Professor Claudio Maffeis (University of Verona), starting from peripheral
venous blood, genomic DNA for each sample was extracted using DNeasy Blood
and Tissue kit (Qiagen) according to manufacturer’s protocol then DNA
concentration was assessed using a Nanodrop spectrophotometer and samples were

adjusted through serial dilution to 48-52 ng/uL.

Bisulfite conversion of genomic DNA was performed using EZ DNA methylation
Kit (Zymo Research), using 600ng of DNA per sample, followed by DNA
amplification, fragmentation, and precipitation, were performed following

manufacturer’s protocol.

Genome-wide methylation profiling

Genome-wide methylation profiling was carried out on bisulfite-converted DNA
using the lllumina Human Methylation EPIC array (Illumina Inc.) following
[llumina standard protocol, using 250 ng of bisulfite converted DNA per sample to
perform array hybridization. DNA of four samples were split in two forming
duplicates and randomly placed in the arrays, to serve as a microarray quality
control during the bioinformatic analysis. Once the arrays were ready, a single base
extension and staining were performed, and data were collected using an iScan
(Illumina Inc.) system producing standard “*.idat” files, containing probes

fluorescence raw per-CpG methylation levels.
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Bioinformatic analysis

The bioinformatic workflow employed in this thesis is described as summarized
in Figure 7.

¢Duplicated & low quality samples removal

Normalization oStratified Quantile Normalization

*Remove low-quality probes
*Remove probed with SNPs
*Remove X/Y mapping probes

*Reference-based deconvolution

*Correction of technical effects
*PCA and Pearson's correlation

*Probe-wise
*Region-wise

*Disease Ontology, KEGG and MKEGG
*DisGenNet, MSigDB hallmark
*\WikiPath, Reactome

sSample clustering based on most significant
DMPs

Figure 7: Summarized steps of the bioinformatic analysis. The image reports the main steps of the
workflow with a brief description of the analytical strategies employed.
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Quality Control

Microarray quality control was performed in three phases:

e (Quality control on samples
= Evaluation of microarray quality through duplicated samples
» Detection and removal of low-quality samples
e Normalization
» Inter-array normalization using quantiles
* Intra-array normalization filtering outliers
¢ Quality control on probes to remove low quality probes and SNPs related

probes

Quality control on samples, was performed by computing probe-wise detection p-
value (detP) which is a statistical indicator of probe reliability, it derives from the
sum of raw methylation and unmethylation signals compared to the background
signal, estimated using negative control positions, assuming they’re normally
distributed. Then, a pairwise comparison was performed on duplicated samples to
assess the signal quality on different arrays and positions, using methylation values
(B-values), detP and absolute methylation difference (JAB|) per CpG. Average per-
sample detection p-value was calculated to get a sample-wise quality estimation
allowing the removal of duplicated samples by picking, for each couple, the one
with the lower detP value. Furthermore, all samples with mean detP > 0.05 were

also removed since their low quality may affect downstream analyses.

Samples were then normalized to correct for systematic measurement errors in the
data. Errors may be introduced by several factors such as the data acquisition
method/platform (i.e., signal noise), differences in probe labeling, subtle variations
in target DNA concentration, efficiency of hybridization. For the purpose of this
study, normalization was performed using stratified quantile normalization (SQN)
approach. This method starts by normalizing the signal of type II probes across
samples, interpolating a reference distribution used to normalize type 1 probes.
Given the different nature of type I and II probes, this process is stratified by
genomic region before applying the interpolation (inter-array normalization).

Moreover, sex probes (on chromosomes X and Y) are normalized separately for
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female and male samples using the sex information provided in the sample sheet.
This method does not perform background correction, but it filters out methylation
outliers by thresholding intensities close to zero (similar to intra-array
normalization). SQN was chosen because it relies on the assumption that samples
have similar distribution regardless of their class and it is more appropriate where
the methylation difference (by class) does not involve global changes such as in

cancer-normal comparison®>2%.

Subsequently, a probe filtering step was done to remove from the dataset probes
with detP > 0.01 in at least one sample then, probes containing SNPs at the CpG
site or single base extension site (SBE — type II Infinium probes) were also
removed. As last step in quality control, probes mapping on X and Y chromosomes
were removed to minimize the impact of sex that may constitute an unwanted

source of variation leading to biased results in the following steps of the analysis.

These steps were performed starting from *.idat files produced by the array scanner,
as previously mentioned. They were loaded into R using a sample sheet, which is a
file containing a complete list of samples with array-related information, to which
clinical features were also added. Another annotation file called microarray
manifest was loaded since it contains information regarding mappings and
overlapping genes as well as CpG position within functional elements such as CGls,
CpG shores, CpG shelves, open sea, DNAse hypersensitivity sites, TSS, enhancers,
promoters and more, as reported on the Illumina support page?’. All quality control

sub-steps described above were performed using the minfi*® package under R.

Per-sample cell type composition

Peripheral venous blood, by nature, is a mixture of different cell types that can be
present in different amounts in each sample. This variability may be due to several
biologically and clinically important conditions or reflect changes that are a
consequence of the disease state, potentially causing the analysis to be biased.
Therefore, it would be useful to estimate the proportion of each blood cell type.
This can be achieved with a statistical process usually called cell type
deconvolution or estimation. Among the many ways to perform deconvolution, a

reference-based approach was chosen since the main constituent cell types within
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blood are known. With this method, a reference file or database containing
molecular markers representative of each possible cell type in the tissue of interest,
is used along with a multivariate regression to estimate individual cell type ratios.
In this case a specific reference for blood cells built using sorted cells and the EPIC
array was used to identify CD4+ T lymphocytes, CD8+ T lymphocytes, B cells,
Natural Killer cells, Monocytes and Neutrophils/Granulocytes according to the low
methylation of known gene markers such as RPTOR (cg04162316), CDSA
(cg25939861), BLK (cg03860768), CLASP1 (cgl14047092), SLFNS (cg02647842)
and NFIA (cg22451300) respectively?®?. A two-sided t-test was performed on cell
type proportions versus the Sample Group (disease state) and sex variables, not
only to see if these factors can influence the sample composition and therefore the
downstream analysis, but also to see if some cell types tend to be overabundant in

IR subjects.

Batch effects correction and exploratory analysis

Batch effects are defined as a technical source of variation which is not embedded
in the samples themselves, but it is unwillingly introduced during the several steps
where the samples are manually handled for example different processing times,
different operators, different machines or, in this case, even different arrays.
Applying a batch effect correction method can be useful to clean the data by
estimating and removing these unwanted sources of variation. To correct for batch
effect, an empirical Bayes procedure was used to directly remove known technical
sources of variation, returning corrected methylation data. Sample Plate was used
as main technical factor while Sample Group (disease state), sex, BMI, age, and
cell type proportions were used as outcome and other covariates. The correction

was performed by using the ComBat method from the sva R package’*-!.

The correction effect was then assessed by computing Pearson’s correlation
between a Principal Component Analysis (PCA) performed on M-values and

clinical variables using the prcomp_irlba method from the irlba package®**3,
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Differential methylation analysis

After removing batch effect and reducing the effect of possible covariates, it was
possible to proceed with probe-wise and region-wise differential methylation
analysis. It consists in fitting a linear model to represent the phenotypical difference
of interest, in this case comparing insulin resistant subjects with insulin sensitive
ones. The fitted model (one per probe set) was then corrected for multiple testing
and microarray annotation was merged to the result obtaining a comprehensive list
of differentially methylated probes (DMPs) ranked by Benjamini & Hochberg (BH)
adjusted p-value. Probe-wise differential analysis was performed using limma

package in R**%,

Sometimes it may be interesting to assess the methylation status of larger genomic
regions rather than single loci, and how they are modulated in the two groups. This
step relies on previously discovered DMPs and, for each chromosome computes
two smoothed estimates: one weighted with CpG-wise t-statistics, and one not (for
a null comparison). Then, the two estimates are compared using the Satterthwaite*®
approximation which accounts for different sample variances in the two estimates.
The entire process, detects regions in which methylation between the two groups of
interest is statistically different, this step was performed using the dmrcate method

from the homonymous R package’”-®,

Gene set enrichment analysis

When dealing with high throughput technologies it is very easy to obtain a huge
amount of result (i.e., many different loci across the genome), so data interpretation
becomes a key aspect with this type of project which ultimately leads to a better
understanding of the biological process associated with the phenotype studied.
Since probe-wise differential methylation analysis produces a list of loci and gives
a logarithmic methylation fold change (logFC) between the groups compared, it is
possible to apply a gene set enrichment analysis (GSEA) to highlight which
metabolic pathways, according to an annotated list of gene-sets, are likely to be
affected by the variability of the trait examined. This step was performed by
extracting from the DMP results, gene names (when present) linked to CpGs (with
adjusted p-value < 0.05 together with their respective logFC values) then, since in

microarrays multiple probes can map on the same gene, to avoid overrepresentation
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bias, the mean logFC for each group of redundant genes was used. Therefore, using
multiple specific gene sets, it was possible to retrieve the category to which each
gene belongs from a pathway standpoint. Furthermore, GSEA was performed
limiting the minimum number of genes per category to 50, meaning that only
pathways containing at least 50 genes from the differential analysis are reported.
The gene sets used for this analysis are from the Disease Ontologies®® (DO),
DisGenNet**** (DGN), Kyoto encyclopedia of Genes and Genomes**° (KEGG),
Hallmark curated gene signatures*®™*®, WikiPathways® (WP) and Reactome
pathways®*>? (RP) which are all handled by the clusterProfiler’*>* and DOSE*>~°
packages.

DMP based sample clustering

Since in literature, the adjusted p-value cut-off for DMPs filtering is often set to 1e
7. loci meeting this criterion were selected for further analysis, and their associated
B-values were used to perform a hierarchical complete clustering (based on
Euclidean distance) on samples to see if they would group into two different clusters
according to their IR/IS status. The clustering results were then studied to
understand the underlying factors behind cluster formation, dividing the
dendrogram to form two and three cluster. Moreover, the impact of this DMP-
driven separation on the insulin resistance status was evaluated by computing (per
sample) t-tests (Welch’s two sided) and Fisher’s (exact test for count data) tests
against numerical and categorical clinical features available. Furthermore, these
“super-significant” loci were cross-referenced with the EWAS catalogue®”
database to understand if they were found in other epigenomics studies, which

phenotype/trait these studies were focusing on.
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RESULTS

Quality control

A total of 192 samples were analyzed with clinical data and microarray annotation,
each sample (corresponding to a single individual) contains 866091 raw CpG-
mapping probes. As previously reported in the Bioinformatic analysis section,

microarray quality control was performed in three phases:

e Quality control on samples
= Evaluation of microarray quality through duplicated samples
» Detection and removal of low-quality samples
e Normalization
* Inter-array normalization using quantiles
* Intra-array normalization filtering outliers
e Quality control on probes to remove low quality probes and SNPs related

probes

As mentioned above, the dataset included four paired-duplicated samples (N10,
N10 2, N46, N46_2, N80, N80 2, R45, R45 2) that were used to measure the
detection reliability of methylation profiles between different arrays and positions,
using methylation values (p-values), absolute difference in beta value (|AB|) and
detP as shown in Figure 8. For each duplicate-pair, the sample with the higher mean
detP was removed (N10 2, N46, N80, R45 2) from the following analyses.
Moreover, two individual samples (N25 and N44) were then removed because of

their poor quality (mean detP > 0.05 — Figure 9).

Stratified quantile normalization (with genomic region stratification, outlier

filtering) was applied and 865859 were retained.

Probes were then filtered out according to signal/background-noise ratio (detP >
0.01 - in at least one sample), the presence of CpG and SBE mapping SNPs (40801
+ 26638), their localization on sex chromosomes (17587) retaining a total of

780842. Methylation distribution post normalization can be seen in Figure 10.
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Figure 8: DNA methylation profiles of a duplicate sample. The figure shows the DNAm value of a
duplicated sample N10 (x-axis N10; y-axis N10_2). Marginal distributions show the overall methylation
profiles for the pair. Smaller points represent lower detP; Darker points represent higher mean absolute
difference between [-values (of the couple).

Status
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Beta value

Figure 9: DNA methylation profiles on raw data. Figure shows probe density (v-axis) according
to their methylation value (x-axis). IR and IS samples are colored in orange and green, respectively.
Two IS samples (green), clearly show an irregular methylation profile therefore, they were
discarded.
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Figure 10: DNA methylation profile at the end of QC. Figure shows probe density (y-axis)
according to their methylation value (x-axis). IR and IS samples are colored in orange and green,
respectively. It is possible to appreciate the differences caused by QC when compared with Fig §.

Cell type composition

Cell type proportions for each sample were estimated with a reference-based
approach (6 reference cell types) as previously described. Cell type amounts of each
sample were tested to evaluate their association with phenotypical status and sex
(IR/IS — M/F; Welch’s two-sided t-test). Per group (IR/IS) cell type testing revealed
that B cells, CD8+ T cells, Monocytes and Neutrophils proportions are statistically
significant between IR and IS samples (p-value<0.05). Furthermore, B cells,
CD8T+ cells and Monocytes have a higher estimated mean in the IR group. On the
contrary, Neutrophils have an estimated mean higher for IS samples (Table 2 -
Figure 11). Per sex composition testing led to a very different situation returning a
significant result (p-value<0.05) only for NK cells with estimated mean value for

female subjects being lower than the males as showed in Table 3 and Figure 12.

30



Cell type Proportionin IR ProportioninlIS p-value

B cells 0.083 0.064 1.53E-05 *
CD4+ T cells 0.106 0.111 0.3781
CD8+ T cells 0.153 0.132 0.0077 *
Monocytes 0.068 0.057 0.0042 *
Neutrophils 0.514 0.552 0.0042 *
NK cells 0.047 0.045 0.6643

Table 2: T-test results on disease status. Results of statistical testing on insulin resistance/sensitivity
status using mean cell type proportions. The red “*” symbol marks rows associated with statistically
significant p-value (<0.05).
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Figure 11: Cell type composition. Boxplot showing the amount (y-axis) of cell types (x-axis) for the
2 groups. Insulin resistant in orange and insulin sensitive in green. The red “*” symbol marks rows
associated with statistically significant p-value (<0.05).

Cell type Proportionin F Proportionin M  p-value

B cells 0.07143308 0.075744943 0.345952
CD4+ T cells 0.11328711 0.10448452 0.095739
CD8+ T cells 0.14086403 0.144368256 0.658005
Monocytes 0.05961453 0.064647134 0.204548
Neutrophils 0.5419071 0.525565823 0.221046

NK cells 0.04093377 0.050008325 0.03383 *

Table 3: T-test results on sex. Results of statistical testing on sex (Male/Female) using mean cell

type proportions. The red “*” symbol marks rows associated with statistically significant p-value
(<0.05).
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Figure 12: Cell type composition. Boxplot showing the amount (yv-axis) of cell types (x-axis) for the
2 groups. Males (M) in turquoise and Females (F) in magenta. The red “*” symbol marks rows
associated with statistically significant p-value (<0.05).

Batch effect correction and exploratory analysis

Technical effects were corrected using comBat as previously described. Then, PCA
was performed to visualize sample data distribution along principal components 1,
2 and 3 (PC1, PC2, PC3). Coloring the data according to IR/IS status (Figure 13),
shows no clear separation between IR samples (orange) and IS samples (green)
although in panel A and C, insulin sensitive samples seem to be more concentrated
around values lower than 0 for PC1 whether insulin resistant samples appear more
scattered towards positive values of the principal component. Coloring points
according to sex (Figure 14) shows an almost complete overlapping of point clouds
representing males (turquoise) and females (magenta) thus confirming that samples
variance associated with the first three principal components is not affected by sex.
To better understand the relationship between clinical data and methylation, PCs
were used to compute Pearson’s correlation with clinical data, results are shown in

Figure 15.
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Figure 13: Principal component analysis colored by disease status. PCA plot of IR samples
(orange) vs IS samples (green). Visualizations of PC1 vs PC2 (4), PC2 vs PC3 (B), and PC1 vs PC3
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Figure 14: Principal component analysis of samples grouped by sex. PCA plot of Males (turquoise)
vs Females (magenta). Visualization of PC1 vs PC2 (4), PC2 vs PC3 (B), PC1 vs PC3 (C).

33



v |

Mono
Beell

NK

1GI
WEISI
averageinsulin
averageglucose
HOMAIR Pearson Correlation

120 | ] 04
180

160 00

130 -0.4

10 .
G120
G90
G60
G30
Go
age
height
bmi
welight
Sample_Group
Sample_Plate
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Figure 15: Heatmap of Pearson's correlation between clinical features and Principal
Components. The heatmap shows Pearson’s correlation computed between clinical features and
PCs derived from genome-wide methylation profiles in color scale from blue (inverse correlation)
to red (direct correlation) going through white (no correlation).

Differential methylation analysis

Probe-wise differential methylation was performed on 780842 single loci,
producing a total of 280095 statistically significant sites (BH adjusted p-value <
0.05; 29946 both protein and non-protein coding) and 500747 non-significant sites
(Table 4 - Table 5). In this analysis the comparison performed (IR-IS) can be
divided in 132367 hypermethylated DMPs and 147728 DMPs hypomethylated in
IR samples. Table 6 and Figure 16 shows the top 10 DMPs ranked by BH-adjusted
p-value, a complete list of differentially methylated probes with complete

annotation can be found in the Supplementary results section.

Region-wise differential analysis produced 41305 regions of variable length
ranging from 3 bp to 22659 bp containing a minimum of 2 CpGs and a maximum
of 193 CpGs per region. The number of statistically significant regions according
to Fisher’s multiple comparison statistics (which is the default method) is 41246
(overlapping 20770 genes both protein and non-protein coding). A graphical

representation of the top four DMRs can be seen in Figure 17, while a
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comprehensive table of the top 10 DMRs is displayed in Table 7. Some of the genes
overlapping the top four DMRs are related to small nucleolar RNAs, MHC,
inhibition of transcriptional activity, repressive histone methylation, RNA 28S sub-
unit methylation and cell defense against toxic, carcinogenic, and

pharmacologically active electrophilic compounds.

IR-1IS
Up 132367
Non-significant 500747
Down 147728

Table 4: Up/Down differential methylation. The table summarizes the outcome of the differential
statistical testing on probes for the comparison between IR and IS (baseline) samples. Non-
significant refers to the number of probes with p-value>0.05. Up and Down refer to the number of
probes Hyper- or Hypo- methylated (p<0.05).

p-value Number
adjusted of
ranking DMPs
<1le”’ 647
<1le? 17219
<1le3 102197
<1le? 187696
<5e? 280095

Table 5: Number of differentially methylated proves under a specific p-value threshold. The table
shows the number of DMPs below the specific p-value thresholds reported in the first column.

Chr Pos Strand CpG name Log-FC  AvMeth p-value Adj p-val Gene
chrl9 42133492 - cg19187564 -0.231 -2.675 1.06E-15 8.24E-10 CECAM4

chrl 158789404 + cg27082765 -0.377 -4.063 2.13E-15 8.31E-10 -
chr22 31949147 + €g02350510 -0.285 -2.017 6.71E-15 1.75E-09 -

chr2 218808843 - cg13677779 -0.152 -1.217 2.69E-14 = 4.21E-09 TNS1
chr8 128746896 + cg17160660 -0.309 -3.698 2.70E-14 4.21E-09 MYC

chrl 46268207 - cg04984052 0.207 -1.111 3.25E-14  4.23E-09 MAST2
chrll 124647347 = ¢g02682092 -0.370 -3.494 4.05E-14  4.52E-09 | MSANTD2
chri3 52738164 - cg01886593 -0.257 -0.229 5.14E-14  5.02E-09 -

chr22 16228563 + cg03531177 0.190 0.282 6.71E-14  5.25E-09 ;’gii;}s
chr20 62588672 - cg20593868 -0.205 -2.338 7.80E-14 = 5.25E-09 @ UCKL1

Table 6: Top 10 differentially methylated probes ranked by BH adjusted p-value (Adj p-val). Each
row describes a probe with Chromosome (Chr), mapping position (Pos), mapping strand (Strand),
probe name (CpG name), logarithmic fold change (Log-FC), average methylation across all
samples tested (AvMeth), raw p-value (p-value), BH adjusted p-value and gene mapping (“-* = not
present).
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Figure 16: Variability of top 10 DMPs. Differentially methylated probes reported in Table 6 (x-
axis) and their methylation value (f-value; y-axis). Orange boxes represent IR samples while green
boxes represent IS samples.
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chr6 32035188 32057846 22659 193 1.24E-127 2
chr6 32153575 32172871 19297 146 3.48E-89 4
chrl2 16757954 16764406 6453 53 3.88E-89 = 2
chr6 31845110 31857100 11991 107 1.36E-77 + 3
chr6 31623842 31640160 16319 151 7.84E-68 + 8
chr2 66662218 66668012 5795 35 3.62E-64 - 3
chr6 30649909 30659692 9784 100 1.33E-62 = 2
chr6 31743769 31750174 6406 59 1.87E-62 + 3
chrl2 7259717 7263232 3516 27 2.03E-62 = 2
chr6 33167187 33181870 14684 173 3.14E-61 + 6

Table 7: Top 10 differentially methylated regions. DMRs grouping together several CpGs; each
row contains chromosome (Chr), start position (hgl9), end position, width of the region (in bp),
number of CpGs within the region (# CpGs) and Fisher multiple comparison statistics (Fisher p-
value). The column “IS vs IR” marks the result of the comparison between the two sample groups,
“+” means that the region is Hypermethylated in IS samples while “-* means that the region is
Hypermethylated in IR samples. The last column (# Genes) contains the number of genes
overlapping the region (regardless if they are protein coding or not).
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Figure 17: Top 4 DMRs. All four panels (A; B; C; D) show the methylation landscape of the top 4
differentially methylated regions using genomic coordinates (x-axis) and p-values (y-axis). Orange
dots correspond to single probes in the region, for IR samples while green dots display it for IS
samples. Dashed lines connect the points for a better understanding of the methylation fluctuations
within each region. Grey labels are present only for CpGs that present a statistically significant

difference in methylation between the two groups.

37



Gene set enrichment analysis

Gene set enrichment analysis was performed on genes covering all statistically
significant differentially methylated probes (BH adjusted p-value < 0.05). As
previously mentioned, the gene sets used are the following Disease Ontologies®®
(DO), DisGenNet**** (DGN), Kyoto encyclopedia of Genes and Genomes**
(KEGG), Hallmark curated gene signatures**™®, WikiPathways** and Reactome
pathways®*>? (RP). Moreover, the minimum number of genes per gene set was
limited to 50, therefore preventing the analysis from returning pathways with a
small number of DMP-associated genes. In this section are highlighted only results
for the Disease Ontology (Figure 18, Figure 19 and Table 8) set where categories
were selected among those relevant for the phenotype studied. Furthermore, only
diseases/pathways sharing at least two genes are displayed to highlight their
interactive nature. All complete and unfiltered lists of GSEA results (for all gene

sets), as also all other figures are reported in the Supplementary results section.
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Figure 18: Network visualization from Disease Ontologies. The graph shows nodes corresponding
to Disease Ontology (DO) categories (Bold; black) and their shared associated genes (grey). Each
edge is colored according to the DO category, while gene nodes are colored according to the
estimated fold change. The size of DO categories dots is proportional to the number of genes within
that category. For visualization purposes only genes shared among at least two categories are
displayed.
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Figure 19: Disease Ontology gene-set enrichment analysis. For each category (v-axis) the relative
number of genes is showed (x-axis; GeneRatio) while the absolute number is encoded in the dot size.
Dots are colored according to the GSEA estimated adjusted p-value. Due to software limitations,
legend scales for Count and adjusted p-value do not reflect the data shown but the total data from
which this graph was derived.
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Ontology ID Description Set size  p-value adj p-value

DOID:5082  liver cirrhosis 208  5.84E-52 6.52E-51
DOID:9352 type 2 diabetes mellitus 198 1.76E-51 1.81E-50
DOID:11612 polycystic ovary syndrome 155 8.27E-43 4.25E-42
DOID:4195 hyperglycemia 132 1.25E-27 3.02E-27
DOID:9452 fatty liver disease 88  1.85E-25 4.13E-25
DOID:3146 lipid metabolism disorder 88  1.02E-17 1.46E-17
DOID:2018  hyperinsulinism 51 7.26E-12 7.71E-12

Table 8: Disease Ontology GSEA results of IR related pathways. Table showing results displayed
in Figure 18 and Figure 19. Each row shows the Ontology ID (DOID), a brief description of the
pathway function, the total number of genes from the analysis within the pathway and, both raw p-
value and adjusted p-value.

DMP based samples clustering

As previously reported in Table 5, filtering DMP results by BH adjusted p-value <
le” returns 647 CpGs. To investigate the association between these loci (“super-
significant”) and the disease status, their methylation values were used to cluster
samples, (hierarchical complete clustering with Euclidean distance) as showed in
Figure 20 and Figure 21. By cutting the tree it was possible to generate two and
three clusters (k=2, k=3). Generating two clusters (Table 9 - Figure 20), eight IR
samples formed a small community (red samples R45, R90, R94, R76, R36, R58,
R41, R34 — Clusterl) while all the other samples formed a bigger one (black —
Cluster2). Generating three clusters, the smaller community of IR samples
(Cluster]) remained unchanged while the bigger cluster divided in two sub-clusters

as shown in Table 10 and Figure 21.

Cluster #IRsamples (R) # IS samples (N)
1 8 0
2 87 91

Table 9: Samples per cluster for k = 2. Summary of clustering results for k=2, with number of IR/IS
samples per cluster Figure 20..

Cluster #IRsamples (R) # IS samples (N)

1 8 0
2A 18 66
2B 69 25

Table 10: Samples per cluster k = 3. Summary of clustering results for k=3, with number of IR/IS
samples per cluster Figure 21.
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Status
B nsuiin resistant
. Insulin sensitive

Clusters

|
H:

Figure 20: Hierarchical clustering on samples. Dendrogram for hierarchical clustering showing
the 2 clusters (red,; black). The dashed line marks the cut performed to obtain 2 clusters (k=2). The
orange/green bar on the right marks the distribution of samples by phenotype (IR in orange, 1S in
green).
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B insuiin sensitive
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B:
N 2A
H 2

k=3

Figure 21: Hierarchical clustering on samples. Dendrogram for hierarchical clustering showing
the 3 clusters (red; blue; black). The dashed line marks the cut performed to obtain the clusters
(k=3). The orange/green bar on the right marks the distribution of samples by phenotype (IR in
orange; IS in green).
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Welch’s t-test and Fisher’s exact test were employed to evaluate which clinical

features are involved in the separation process. All statistical testing p-values were

grouped together to allow for a better exploration of the data for both tests (Table

12 - Table 13). A table including all clustering-based comparisons performed is

shown below (Table 11). An additional comparison between Cluster 1 and all other

IR samples was performed to study their differences.

Clustering Comparisons

k=2
k=3

Cluster 1 vs Cluster 2
Cluster 1 vs Cluster 2A

Cluster 2A vs Cluster 2B

Cluster 1 vs Cluster 2B

Cluster 1 vs all other IR

Table 11: Clustering-derived comparisons performed. Small table summarizing the comparisons
performed starting from the two clustering (k =2; k=3), and a final comparison between Cluster 1
(8 IR samples) and all other IR samples.

Features tested

Weight
BMI
Height
Waist
PAD
PAS
Age

lso

l120
HOMA-IR
Avg Glucose
Avg Insulin

Clusterl vs
Cluster2
0.4872

0.6006
0.3915
0.6368
0.7079
0.3166
0.9112
0.5708
0.0446
0.4126
0.7083
0.6723
4.58E-05
0.0011
0.0004
0.0016
0.0054
0.0002
0.2377
0.0003

Clusterl vs
Cluster2A
0.1733

0.1648
0.2194
0.0669
0.5994
0.3919
0.0681
0.4549
0.3987
0.9293
0.9947
0.6380
4.38E-05
0.0010
0.0004
0.0015
0.0025
0.0002
0.9265
0.0003

p-value

Cluster2A vs
Cluster2B
0.6022

0.7783
0.7116
0.5964
0.8373
0.3585
0.5043
0.1356
0.0433
0.2006
0.0281
0.0407
8.19E-19
1.37E-06
3.87E-12
9.46E-08
0.0015
1.35E-19
0.0394
1.17E-10

Clusterl vs
Cluster2B
0.2309

0.3957
0.3257
0.4438
0.6880
0.4223
0.9878
0.5664
0.0261
0.1572
0.2599
0.4014
4.76E-05
9.94E-04
3.71E-04
1.49E-03
0.0046
1.72E-04
0.0631
2.38E-04

Clusterl vs
all other IR
0.8204

0.8925
0.9556
0.5138
0.2807
0.5210
0.8710
0.6065
0.1571
0.0317
0.9244
0.9924
0.3949
0.1575
0.5512
0.5698
0.6564
0.5839
0.2368
0.9346
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WBISI 1.01E-06 7.10E-10 3.45E-06 7.49E-07 0.5043
IGI 0.0070 0.0022 0.0002 0.0064 0.0005
CD8+ T cells 0.0059 0.4527 0.0022 0.0021 0.0533
CD4+ T cells 0.1849 0.1665 0.8984 0.2522 0.7353
NK cells 0.0967 0.8409 0.1286 0.2638 0.2932
B cells 0.0560 0.0729 0.0351 0.0128 0.1333
Monocytes 0.4821 0.7371 0.0021 0.3972 0.4654
Neutrophils 0.0786 0.6402 0.0029 0.0256 0.3424

Table 12: T-test comparing clusters for all clinical features. T-test p-values for each comparison
are reported with red highlighting for statistically significant results (p-value<0.05).

p-value
Clusterl vs Clusterl vs Cluster2Avs Clusterl vs Clusterl vs
Cluster2 Cluster2A Cluster2B Cluster2B all other IR
Sample_Group 0.0068 0.1943 2.23E-12 1.68E-05 -
Gender 0.0238 0.0228 0.8802 0.0257 0.0228

Table 13: Fisher's test comparing clusters for categorical features. Fisher’s test p-values for each
comparison are reported with rved highlighting for statistically significant results (p-value<0.05). In
the last column the comparison with Sample Group was skipped since all samples tested belong to
the same group (IR).

Cross-referencing the “super-significant” CpGs with EWAS catalogue®™3, 922
study-CpG association were found, covering only 290 of the 647 loci isolated from
the differential analysis. Furthermore, the vast majority of these CpG are associated
with different traits hence different phenotypes. Although the EWAS catalogue does
not contain information regarding the specific pathways involved in their studies, it
was still possible to look at the macroscopic function of these CpGs through the
phenotypic trait reported. Moreover, Table 14 reports phenotypes studied in the
EWAS catalogue involving the associations found. For a complete list of CpG-study
associations with phenotypic traits and other information, see the Supplementary

results section.
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Trait studied # of Matches

Tissue 255
Gestational age 156
Smoking 65
HIV infection 49
Rheumatoid arthritis 43
Fetal vs adult liver 41
Clear cell renal carcinoma 29
Sex 29
Maternal smoking in pregnancy 28
Age 26
Primary Sjogrens syndrome 20
Schizophrenia 19
Age 4 vs age 0 15
Pancreatic ductal adenocarcinoma 11
Frontotemporal dementia 9
Body mass index 8
Alcohol consumption per day 7
Attention deficit hyperactivity 5
disorder

Child abuse 4
Juice consumption 4
Progressive supranuclear palsy 4
Air pollution exposure 3
Ulcerative colitis 3
Ageing 2
Arm fat mass 2
C-reactive protein 2
Cholesterol esters in large VLDL 2
Hypertensive disorders of pregnancy 2
Inflammatory bowel disease 2
Lung function decline 2
Mean diameter for HDL particles 2
Substance use 2

Waist circumference 2

Table 14: Matching traits in the Epigenome-wide association study catalogue
Traits/phenotypes studied in the EWAS catalogue matching with most significant differentially
methylated probes, with number of probes (matches) per trait.

57,58
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DISCUSSIONS

The main objective of this project is to investigate whether epigenetic
modifications, and in particular DNA methylation, play a role on insulin resistance

in clinically obese pediatric individuals.

It is known that the insulin resistance is associated with several factors including
BMI, age, sex, obesity, and others. The subjects studied are children or pre-teenager
(age range: 8 — 15 years old), with or without insulin resistance (IR vs IS), assessed

by standard tests (OGTT and blood samples collection).

Since obesity is one of the main risk factors for insulin resistance in the general
population, we focused the study on obese individuals to control the influence of
obesity on IR. Genome-wide DNA methylation profiling was studied because
epigenetic modifications are supposed to be important players in strict connection
with individual genomic profiles, transcriptomic regulations, and the environmental

conditions in many complex phenotypes, including IR.

The analysis investigated the methylation of 850k CpGs, using the Infinium Human
Methylation EPIC microarray (by Illumina), in 186 obese children (95 IR and 91
IS).

The proportion of cell types in each individual was estimated using reference
methylation profiles from blood cell types. A clear modulation of different cell
types was observed between IR and IS. The different abundance of several cell
types (i.e., B-cells, CD8, monocytes and neutrophils; see Table 2) suggested a
possible role of general inflammation in insulin resistance. It could be hypothesized
that common factors affecting IR contribute to cell type dysregulation, or that some
cell populations contribute to disease or its severity. The present study cannot
distinguish the true relationship between the two hypotheses. Furthermore, it would
be interesting to study more in detail the impact of methylation in insulin resistance
stratifying by sex although in the present study, the methylation component of sex
was balanced out by design. It is noteworthy to mention, that the estimate of the

cell type distributions derives from a mathematical model (deconvolution) and not
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from an analytical molecular assay (e.g., cytofluorimetry) and therefore these

results should be interpreted carefully.

Interestingly, the analysis conducted using PCA method, showed a strong
correlation of PC1 (main source of variability) with several IR-related parameters
and distributions of 3 cell types (negative correlation: average glucose and insulin,
CD8+ T lymphocytes, B cells, HOMA-IR; positive correlation: neutrophils, WBISI
— see Figure 15). This confirms the previously observed association between IR
and immune cell types and, suggests that the overall genome methylation (i.e.,

many CpG sites across the genomes) is associated with IR or related phenotypes.

Of note, PC1 and PC2 correlated with cell type amounts, but following an opposite
strength. The contrasting but still present association shows that the 2 main source
of PCA variability (PC1 and PC2) are both linked to cell populations. Specifically,
the correlation involved CD8+ T cell, neutrophil, and NK cells (both PC1 and PC2).
Although the PCA was conducted using autosome probes only, sex showed a
correlation with PC6 and PC9 (opposite strength) suggesting that sex influences

methylation status on many loci at genome level.

Differential methylation analysis was performed both on single probes (DMPs) or
on CpG regions (DMRs), to study the association of IR with methylation of either

single CpGs or chromosomal regions (of variable length).

The strongest 10 associations of IR with methylation of chromosomal regions
(41305 regions in total overlapping 20770 genes both protein and non-protein
coding; see Supplementary results) were observed to mainly map on 3
chromosomes (chromosome 6, 12 and 2; see Table 7). The genes mapping in the
top 10 DMRs (35 genes including TNXB, PBX, NOTCH4, MGST1, EHMT2,
APOM, MEIS1, PPP1R18, VWA, RINGI, etc.), to the author’s knowledge, have
never been reported to be associated with insulin resistance. Additionally, DMR
results are difficult to interpret since methylation affects genes in different locations
(regulatory, coding, and inter-genic regions), making the connection of gene
functions with the herein described methylation difficult. In the future it might be
interesting to apply additional filtering (e.g., absolute Log-FC>0.6) to both DMPs

and DMRs results retaining only probes/regions with higher difference between the
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two groups under the hypothesis that those probes/regions would be biologically

more relevant in IR.

Since methylation is generally thought to play a role when multiple close CpGs are
affected, we arbitrarily decided not to directly investigate the possible role of single
CpGs and therefore we moved to study probe-associated genes under the hypothesis

that they may belong to common functional pathways associated with IR.

Gene set enrichment analysis was performed on statistically significant DMPs
(~280K), employing multiple gene sets (as described above in Gene set
enrichment analysis section), showing a high number of pathways/diseases, with
several of them connected to insulin resistance or related metabolic conditions

(Figure 18, Supplementary figure 4 - Supplementary figure 8).

With the aim to investigate the individual’s methylation profile using the 647 most
important DMPs (adjusted p-value<le-7), we performed a hierarchical clustering
(as described in the DMP based sample clustering section) of the 186 individuals
regardless of IR status. The analysis showed 3 main clusters including 8 (cluster 1),
84 (cluster 2A), and 94 (cluster 2B) individuals, respectively (Figure 21). Cluster
1 was entirely made up of IR subjects, whereas Cluster 2A was mainly composed
by IS individuals (IS frequency: 78.6%; 66 IS and 18 IR) and Cluster 2B by IR
individuals (IR frequency: 73.4%; 25 IS and 69 IR). The 8 samples of cluster 1 may
identify a subgroup of IR individuals presenting shared features associated to a
common condition as disease severity that would justify their separation from the
others, which may also be due to other unknown factors that were not taken into
consideration during the study design such as ethnicity, macro- or micro- nutrient
deficiencies, development related conditions (e.g. polycystic ovary syndrome),

maternal gestational diabetes or others® !

. Epigenetics factors are likely to play
in important role in IR since we observed the over-representation of IS and IR
individuals in cluster 2A and 2B, respectively. Other important factors, such as gene
variants and environmental/lifestyle factors, not investigated in this thesis should
be taken into consideration together with methylation in the future studies. In
addition, the 647 probes used for clustering, were also associated to traits reported

in other studies, taken from the epigenome-wide association catalogue (EWAS
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catalogue®’*®) supporting the hypothesis that other factors may need to be
investigated when studying insulin resistance such as, gestational age, maternal
smoking during pregnancy, and others (Table 14). Intriguingly, preliminary results
not reported in this thesis, show that the overall genome-wide methylation of insulin
resistant subjects is different from the insulin sensitive ones, suggesting the

involvement of DNA methylation in IR individuals at genome level.

Finally, we point out that the approach employed, although accurate and reliable,
can only detect DNA methylation and not all possible epigenetic modifications that

might be involved in insulin resistance, which will be investigated in future studies.

CONCLUSIONS

In conclusion, we employed different bioinformatics strategies applied to a large
cohort of individuals to study genome wide DNA methylation in IR. The results
support the hypothesis that methylation plays a role in IR and that this condition is
more related to general methylation landscape changes rather than methylation
variations in a few loci. In the future, it might be interesting to replicate the results
presented here on a different cohort as well as exploit the connection between
epigenetics, genomics, transcriptomics, and IR to dissect the underlying

mechanisms of this condition.
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List of abbreviations

BH: Benjamini, Hochberg (method for p-value adjustment)
BMI: Body Mass Index

CGI: CpG island

detP: Detection p-value

DGN: DisGenNet (gene set)

DMP: Differentially methylated probe (sometimes L instead of P for Loci)
DMR: Differentially methylated region

DNA: Deoxyribonucleic acid

DNAm: DNA methylation

DNMT: DNA methyltransferase

DO: Disease ontology (gene set)

DOHaD: Developmental origin of health and disease
EPIC: Refers to: [llumina Infintum Methylation array EPIC
EWAS: Epigenome-wide association study

F: (in this work refers to) Female (sex)

FANTOMS: Functional Annotation of the Mammalian Genome (collaborative
project for the identification of functional elements within the genome)

GENCODE: Scientific consortium for the annotation of genomic elements, part
of the ENCODE effort (Encyclopedia of DNA elements).

GSEA: Gene set enrichment analysis

Gt: Glucose at timepoint “t” (during OGTT)

HOMA-IR: Homeostatic model assessment for insulin resistance
IGI: Insulinogenic index

IR: Insulin resistant

IS: Insulin sensitive

It: Insulin at timepoint “t” (during OGTT)

KEGG: Kyoto encyclopedia of genes and genomes

LINE: Long interspersed nuclear element
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LogFC: Logarithmic fold change

LTR: Long terminal repeat

M: (in this work refers to) Male (sex)
NAFLD: Non-alcoholic fatty liver disease
NOS: Nitric oxidase synthase

OGTT: Oral glucose tolerance test

PAD: Diastolic arterial pressure

PAS: Systolic arterial pressure

PC: Principal component

PCA: Principal component analysis

RAA: Renin-angiotensin-aldosterone

RefSeq: Reference sequences database of the National Center for Biotechnology

Information

RNA: Ribonucleic acid

RP: Reactome pathways (gene set)
SAM: S-adenosyl methionine

SBE: Single base extension

SINE: Short interspersed nuclear element
SNP: Single nucleotide polymorphism
SQN: Stratified quantile normalization
T1D: Type 1 diabetes

T2D: Type 2 diabetes

TSS: Transcription start site

VLDL: Very low-density lipoprotein
WBISI: Whole body insulin sensitivity index
WP: WikiPathways (gene set)

UTR: Untranslated region
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Software information

All the analyses presented in this manuscript were carried out using R-4.0.3
software for statistical computing. Many different packages were used to handle,

process, and visualize data. The most important packages include:

minfi:

https://bioconductor.org/packages/release/bioc/html/minfi.html

limma:

https://bioconductor.org/packages/release/bioc/html/limma.html

RColorBrewer:

https://cran.r-project.org/web/packages/RColorBrewer/index.html

missMethyl:
http://bioconductor.org/packages/release/bioc/html/missMethyl.html
DMRecate:

https://bioconductor.org/packages/release/bioc/html/DMR cate.html

stringr:
https://www.rdocumentation.org/packages/stringr/versions/1.4.0

FlowSorted.BloodEPIC:

https://bioconductor.org/packages/release/data/experiment/html/FlowSorted.Bloo
d.EPIC.html
INluminaHumanMethylationEPICanno.ilm10b4.hg19:

https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanM

ethylationEPICanno.ilm10b4.hg19.html

INluminaHumanMethylationEPICmanifest:

https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanM

ethylationEPICmanifest.html
ENmix:

https://bioconductor.org/packages/release/bioc/html/ENmix.html

sva:
https://bioconductor.org/packages/release/bioc/html/sva.html

ggplot2:
https://cran.r-project.org/web/packages/ggplot2/index.html
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https://bioconductor.org/packages/release/bioc/html/ENmix.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://cran.r-project.org/web/packages/ggplot2/index.html

purrr:

https://cran.r-project.org/web/packages/purrr/index.html

broom:

https://cran.r-project.org/web/packages/broom/index.html

reshape2:

https://cran.r-project.org/web/packages/reshape2/index.html

pheatmap:

https://www.rdocumentation.org/packages/pheatmap/versions/1.0.12

dedextend:
https://cran.r-project.org/web/packages/dendextend/index.html

irlba:

https://cran.r-project.org/web/packages/irlba/index.html

dplyr:
https://cran.r-project.org/web/packages/dplyr/index.html

ggpubr:
https://cran.r-project.org/web/packages/gepubr/index.html

enrichplot:

http://bioconductor.org/packages/release/bioc/html/enrichplot.html

clusterProfiler:
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
DOSE:

https://www.bioconductor.org/packages/release/bioc/html/DOSE.html

org.Hs.eg.db:

https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
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Supplementary results

NOTE: Results for the following analyses:

Probe-wide differential methylation analysis, region-wise differential methylation
analysis, Gene set enrichment analysis for all gene sets previously cited, EWAS
catalogue cross-referencing (from the DMP based sample clustering section); could
not be added to this manuscript due to size limits, they will be available at the

following OneDrive link in pdf format (file size ~114MB):

https://univr-

my.sharepoint.com/:b:/g/personal/lucas_morondallator_univr_it/EXMB50I-

3ytNgIlDbzEROLYYBq8PbConmP3DWgVVt30FB7A?e=HuDP2Y

A complete list of the supplementary tables present in the external file can be found

at page 59 of this document, accompanied by a brief description and page number.

If the link is broken or non-functioning, please contact mdt.lucas@live.it and

request a new link or a copy of the pdf document.
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Supplementary table 1: Samples quality. Quality control plot showing the mean detection p-value
for each sample. The red line marks the threshold above which samples are considered low quality
(p-value>0.05). Samples are divided in insulin resistant (orange) and insulin sensitive (green).
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Supplementary figure 1: DNA methylation profiles of a duplicate sample. The figure shows the
DNAm value of a duplicated sample N46 (x-axis N46; y-axis N46_2). Marginal distributions show the overall
methylation profiles for the pair. Smaller points represent lower detP; Darker points represent higher mean

absolute difference between f-values (of the couple).
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Supplementary figure 2: DNA methylation profiles of a duplicate sample. The figure shows the
DNAm value of a duplicated sample N80 (x-axis N80, y-axis N§O_2). Marginal distributions show the overall
methylation profiles for the pair. Smaller points represent lower detP; Darker points represent higher mean

absolute difference between f-values (of the couple).
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Supplementary figure 3: DNA methylation profiles of a duplicate sample. The figure shows the
DNAm value of a duplicated sample R45(x-axis R45; y-axis R45_2). Marginal distributions show the overall
methylation profiles for the pair. Smaller points represent lower detP; Darker points represent higher mean
absolute difference between f-values (of the couple).

Cell type Mean

IR
B cells 0.0832
CD4+T 0.1062
cells
CD8+ T 0.1531
cells

Monocytes = 0.0678
Neutrophils 0.5143
NK cells 0.0468

Mean
IS

0.0640

0.1108

0.1321

0.0567
0.5524
0.0449

t-
statistics

4.4459

-0.8836

2.6964

2.8976
-2.8967
0.4347

p-value

1.53E-
05
0.3781

0.0077

0.0042
0.0042
0.6643

degrees
of
freedom

178.7916
183.6445

183.5945

183.9883
183.5700
183.6433

Cl - low

0.0107

-0.0150

0.0056

0.0036
-0.0641
-0.0067

Cl - high

0.0278
0.0057
0.0363

0.0187
-0.0122
0.0104

Supplementary table 2: Insulin resistance impact on cell composition. Results of t-test comparing
insulin resistance status to Cell type proportions estimated during deconvolution. Each row contains
the cell type tested, mean values for both groups (IR/IS), t-statistics, p-value, degrees of freedom
and both bounds of the confidence interval (CI).
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Cell type Mean | Mean | t-

F M statistics
B cells 0.0714 0.0757 -0.9449
CD4+T 0.1133 | 0.1045 1.6749
cells
CD8+T 0.1409 0.1444 -0.4434
cells
Monocytes | 0.0596 | 0.0646  -1.2735
Neutrophils | 0.5419 | 0.5256 1.2279
NK cells 0.0409 ' 0.0500 | -2.1382

p-
value

0.3460
0.0957

0.6580

0.2045
0.2210
0.0338

degrees
of
freedom

180.3480
175.6552

181.5896

174.0514
183.6243
183.0779

Cl-low | CI - high

-0.0133 0.0047
-0.0016 0.0192
-0.0191 0.0121
-0.0128 0.0028
-0.0099 0.0426
-0.0174 -0.0007

Supplementary table 3: Sex impact on cell composition. Results of t-test comparing sex to Cell type
proportions estimated during deconvolution. Each row contains the cell type tested, mean values
for both groups (M/F), t-statistics, p-value, degrees of freedom and both bounds of the confidence

interval (CI).
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Supplementary figure 4: Network visualization from DisGenNet Ontologies. The graph shows
nodes corresponding to DisGenNet Ontology (DGN) categories (Bold; black) and their shared
associated genes (grey). Each edge is colored according to the DGN category, while gene nodes
are colored according to the estimated fold change. The size of DGN categories dots is proportional
to the number of genes within that category. For visualization purposes only genes shared among

at least two categories are displayed.
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Supplementary figure 5: Network visualization from KEGG. The graph shows nodes
corresponding to KEGG Ontology categories (Bold; black) and their shared associated genes
(grey). Each edge is colored according to the KEGG category, while gene nodes are colored
according to the estimated fold change. The size of KEGG categories dots is proportional to the
number of genes within that category. For visualization purposes only genes shared among at least
two categories are displayed.
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Supplementary figure 6: Network visualization from Hallmark gene Ontologies. The graph shows
nodes corresponding to mSigDB Hallmark gene Ontology categories (Bold; black) and their shared
associated genes (grey). Each edge is colored according to the category, while gene nodes are
colored according to the estimated fold change. The size of categories dots is proportional to the
number of genes within that category. For visualization purposes only genes shared among at least
two categories are displayed.
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within that category. For visualization purposes only genes shared among at least two categories
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Supplementary figure 8: Network visualization from Reactome pathways. The graph shows nodes
corresponding to Reactome pathways (RP) categories (Bold; black) and their shared associated
genes (grey). Each edge is colored according to the RP category, while gene nodes are colored
according to the estimated fold change. The size of RP categories dots is proportional to the number
of genes within that category. For visualization purposes only genes shared among at least two
categories are displayed.
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Supplementary figure 9: DisGenNet gene-set enrichment analysis. For each category (yv-axis) the
relative number of genes is showed (x-axis) while the absolute number is encoded in the dot size.
Dots are colored according to the GSEA estimated adjusted p-value. Due to software limitations,
legend scales for Count and adjusted p-value don’t reflect the data shown but the total data from
which this graph was derived.
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Supplementary figure 10: KEGG gene-set enrichment analysis. For each category (y-axis) the
relative number of genes is showed (x-axis) while the absolute number is encoded in the dot size.
Dots are colored according to the GSEA estimated adjusted p-value. Due to software limitations,
legend scales for Count and adjusted p-value don’t reflect the data shown but the total data from
which this graph was derived.

74



HALLMARK_IL2_STAT5_SIGNALING

HALLMARK_PI3K_AKT_MTOR_SIGNALING

HALLMARK_TNFA_SIGNALING_VIA_NFKB

HALLMARK_INFLAMMATORY_RESPONSE

HALLMARK P53 PATHWAY

HALLMARK_MYOGENESIS

HALLMARK_IL6 JAK STAT3 SIGNALING

HALLMARK_MYC_TARGETS_V2

HALLMARK ADIPOGENESIS

HALLMARK_OXIDATIVE_PHQSPHORYLATION

HALLMARK_GLYCOLYSIS

HALLMARK_FATTY_ACID_METABOLISM

Supplementary figure 11:

. Count

® 200

@ o0

® @ s

p.adjust
7.810235e-64
o 3.800888¢-20
7.6017750-20
1.1402668-19
L] 1.5203556-19

L J
15 20 25 30 as
GeneRatio

mSigDB Hallmark Ontology gene-set enrichment analysis. For each

category (y-axis) the relative number of genes is showed (x-axis) while the absolute number is
encoded in the dot size. Dots are colored according to the GSEA estimated adjusted p-value. Due
to software limitations, legend scales for Count and adjusted p-value don’t reflect the data shown
but the total data from which this graph was derived.
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Supplementary figure 12: WikiPathways gene-set enrichment analysis. For each category (v-axis)
the relative number of genes is showed (x-axis) while the absolute number is encoded in the dot size.
Dots are colored according to the GSEA estimated adjusted p-value. Due to software limitations,
legend scales for Count and adjusted p-value don’t reflect the data shown but the total data from
which this graph was derived.

76



Regulation of insulin secretion - .
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 4 [ ]
p.adjust
1.006494e-10
Glucose metabolism | )
Count
@ 10
@ o
@ =
Insulin receptor signalling cascade - @
Glycolysis1 @
15 2 2’5 a0
GeneRatio

Supplementary figure 13: Reactome Pathways gene-set enrichment analysis. For each category
(v-axis) the relative number of genes is showed (x-axis) while the absolute number is encoded in the
dot size. Dots are colored according to the GSEA estimated adjusted p-value. Due to sofiware
limitations, legend scales for Count and adjusted p-value don’t reflect the data shown but the total
data from which this graph was derived.
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Feature Mean Mean t- p- degrees | CI-low Cl - high

tested Clusterl | Cluster2  statistics value of
freedom
Weight 79.0625 73.6600 0.7144 0.4872 13.4426 -10.8798 21.6848
BMI 33.3798 32.1330 0.5365 0.6006 @ 13.0865 -3.7706 6.2641
Height 1.5373 1.5044 0.8814 0.3915 15.5573 -0.0463 0.1120
Waist 94.0000 91.8333 0.4834 0.6368 13.1108 -7.5087 11.8421
PAD 70.1250 67.5714 0.3830 0.7079 129496 -11.8554 16.9625
PAS 115.3750 @ 108.7143 1.0496 0.3166 10.8931 -7.3232 20.6446
Age 12.0595 12.1493  -0.1133 0.9112 15.6643 -1.7724 1.5928
GO 78.0000 75.0000 0.5790 0.5708 15.6811 -8.0014 14.0014
G30 137.0000 115.6000 2.1961 0.0446 14.6658 0.5889 42.2111
G60 122.8750 = 114.0000 0.8415 0.4126  15.8150 @ -13.5037 31.2537
G90 112.6250 108.4000 0.3819 0.7083 14.0058 -19.5028 27.9528
G120 108.0000 = 103.5000 0.4337 0.6723 11.7998 @ -18.1497 27.1497
10 43.3625 8.4500 8.2259  4.58E- 7.6629 25.0499 44,7751
05

130 240.0500 64.7000 4.7845 0.0011 8.6805 91.9760 258.7240
160 227.9375 43.4400 6.0381 0.0004 7.7576 113.6514 255.3436
190 194.9625 46.2600 4.6738 0.0016 7.9137 75.1951 222.2099
1120 166.1250 57.7800 3.5864 0.0054 9.4859 40.5353 176.1547
HOMA-IR 8.4142 1.5511 6.9079 @ 0.0002 7.4886 4.5445 9.1816

Avg glucose  111.7000 103.3000 1.2270 0.2377 15.9232 -6.1190 22.9190
Avg insulin 174.4875 44.1260 6.2003 0.0003 7.9345 81.8078 178.9152

WBISI 1.3170 6.4897 -10.7286  1.01E- 9.7741 -6.2503 -4.0950
06
IGI 3.3982 1.4582 3.2575 0.0070 11.8033 0.6400 3.2401

CD8+ T cells 0.1896 0.1286 3.3170 0.0059 12.3436 0.0210 0.1009
CD4+ T cells 0.0933 0.1165 -1.3866 0.1849  15.7659 -0.0589 0.0124

NK cells 0.0517 0.0338 1.8214 0.0967 10.6479 -0.0038 0.0395
B cells 0.1047 0.0703 2.0781 0.0560 14.4641 -0.0010 0.0698
Monocytes 0.0534 0.0477 0.7196 0.4821 16.0000 -0.0111 0.0226

Neutrophils 0.4987 0.5671 -1.8842 0.0786 @ 15.3637 -0.1457 0.0088

Supplementary table 4: Features impact on clustering. Comparing Cluster 1 and 2 (k=2) with all
clinical features and cell type proportions using t-test. Each row contains the feature tested, mean
value for Cluster 1 and 2, t-statistics, p-value, degrees of freedom and both bounds of the confidence
interval (CI).

Feature tested estimate p-value Cl - low Cl - high

Sample_Plate 7.4239 0.0645 0.9232 340.5305
Sample_Group 0.0000 0.0068 0.0000 0.5829
Sex 0.1100 0.0238 0.0024 0.8849

Supplementary table 5: Features impact on clustering. Comparing Cluster 1 and 2 (k=2) with all
clinical features and cell type proportions using Fisher’s test. Each row contains the feature tested,
mean value estimated, p-value and both bounds of the confidence interval (CI).
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Feature Mean Mean t- p-value degrees Cl-low Cl - high

tested Clusterl = Cluster2A  statistics of
freedom
Weight 79.0625 68.9600 1.4343 0.1733  14.0902 -4.9958 = 25.2008
BMI 33.3798 30.6799 1.4597 = 0.1648 15.1661 -1.2387 6.6384
Height 1.5373 1.4868 1.2812  0.2194 15.1086 -0.0334 0.1343
Waist 94.0000 86.5556 1.9790 0.0669 14.6860 -0.5885  15.4774
PAD 70.1250 67.0000 0.5400 0.5994 11.6117 -9.5298  15.7798
PAS 115.3750 110.3333 0.8927 0.3919 10.5837 -7.4493  17.5326
Age 12.0595 10.6519 1.9567 0.0681 15.9983 -0.1174 2.9326
GO 78.0000 81.2000  -0.7763 0.4549 10.3743  -12.3405 5.9405
G30 137.0000 126.9000 0.8671  0.3987 15.9542 -14.5980 34.7980
G60 122.8750 121.9000 0.0901  0.9293 15.6635 -21.9991  23.9491
G90 112.6250 112.7000 -0.0068  0.9947 13.9991 -23.7971 23.6471
G120 108.0000 113.0000 -0.4829  0.6380 11.7322 -27.6147 @ 17.6147
10 43.3625 7.9900 8.3591 4.38E- 7.5756  25.5184  45.2266
05

130 240.0500 55.6300 5.2143 0.0010 7.6021 102.1118 @ 266.7282
160 227.9375 44.6800 5.9724  0.0004 7.8826 112.3162 254.1988
190 194.9625 42.7100 4.8668  0.0015 7.4168  79.1119 225.3931
1120 166.1250 39.8700 4.4520  0.0025 7.5401 60.1578 192.3522
HOMA-IR 8.4142 1.5840 6.9060  0.0002 7.3577 4.5144 9.1460

Avg glucose 111.7000 111.1400 0.0938 0.9265 15.4641 -12.1339  13.2539
Avginsulin | 174.4875 38.1760 6.6661 0.0003 7.1233  88.1275 184.4955

WBISI 1.3170 6.2966 -18.2423 7.10E- 11.5527 -5.5769 -4.3823
10

1GI 3.3982 1.0771 43511 0.0022 8.3212 1.0992 3.5430
CD8+ T 0.1896 0.1736 0.7709 0.4527 15.1260 -0.0282 0.0601
cells

CD4+T 0.0933 0.1193 -1.4528 0.1665 @ 15.2800 -0.0643 0.0121
cells

NK cells 0.0517 0.0543 -0.2040 0.8409 15.9942 -0.0302 0.0249
B cells 0.1047 0.0767 2.0188 0.0729 9.4024 -0.0032 0.0592

Monocytes 0.0534 0.0562  -0.3417 0.7371 15.9103 -0.0204 0.0148
Neutrophils 0.4987 0.4834 0.4788 0.6402 12.6470 -0.0540 0.0847

Supplementary table 6: Features impact on clustering. Comparing Cluster 1 and 24 (k=3) with all
clinical features and cell type proportions using t-test. Each row contains the feature tested, mean
value for Cluster 1 and 24, t-statistics, p-value, degrees of freedom and both bounds of the
confidence interval (CI).

Feature tested estimate p-value Cl - low Cl - high

Sample_Plate 7.1900 0.0613 0.8690 335.3593
Sample_Group 0.0000 0.1943 0.0000 1.7595
Sex 0.1078 0.0228 0.0023 0.8929

Supplementary table 7: Features impact on clustering. Comparing Cluster 1 and 2A (k=3) with all
clinical features and cell type proportions using Fisher’s test. Each row contains the feature tested,
mean value estimated, p-value and both bounds of the confidence interval (CI).
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Feature Mean Mean t- p-value | degrees | Cl-low Cl - high
tested Cluster2A | Cluster2B | statistic of
s freedom

Weight 74.2378 71.3300 0.5356 0.6022 | 11.7507 -8.9479 14.7634
BMI 32.1537 31.6436 0.2885 0.7783 | 10.9139 -3.3848 4.4050
Height 1.5102 1.4971 0.3792 0.7116 | 11.1802 -0.0628 0.0890
Waist 92.8500 91.0000 0.5411 0.5964 | 14.9880 -5.4372 9.1372
PAD 66.5571 67.5000 | -0.2121 0.8373 8.0492 | -11.1844 9.2987
PAS 115.7429 | 109.0000 0.9767 0.3585 7.6788 -9.2937 22.7794
Age 11.6016 12.0720 | -0.6903 0.5043 | 11.0298 -1.9696 1.0289
GO 80.8936 75.0000 1.6260 0.1356 9.8183 -2.2030 13.9902
G30 127.2447 | 113.9000 2.2450 0.0433 | 12.6583 0.4675 26.2218
G60 119.0426 | 107.0000 1.3643 0.2006 | 10.6637 -7.4609 31.5460
G90 113.2128 | 100.9000 2.4736 0.0281 | 12.8755 1.5484 23.0771
G120 110.7872 99.2000 2.3189 0.0407 | 10.9780 0.5865 22.5879
10 33.5335 8.3300 | 10.9446 | 8.19E-19 | 100.2953 | 20.6349 29.7721
130 163.6517 62.2500 6.2324 | 1.37E-06 25.9209 67.9529 134.8505
160 162.8007 46.3400 8.5732 | 3.87E-12 | 62.3336 | 89.3089 143.6125
190 129.1704 44.5200 6.5521 | 9.46E-08 | 38.4551 | 58.5064 110.7945
1120 110.7851 54.5400 3.8336 0.0015 | 16.0342 | 25.1483 87.3420
HOMA-IR 6.6984 1.5266 | 11.3019 | 1.35E-19 | 100.3879 4.2640 6.0797
Avg glucose 110.2362 99.2000 2.3428 0.0394 | 10.8061 0.6452 21.4271
Avg insulin 119.9883 43.1960 8.4534 | 1.17E-10 | 42.6231 | 58.4677 95.1169
WBISI 2.8598 6.7982 | -7.2003 | 3.45E-06 | 14.6984 -5.1064 -2.7705
IGI 3.2153 1.4249 4.2210 0.0002 | 27.9883 0.9215 2.6592
CD8+ T cells 0.1671 0.1154 3.8133 0.0022 | 12.8155 0.0224 0.0810
CD4+ T cells 0.1106 0.1123 | -0.1307 0.8984 | 10.9601 -0.0300 0.0266
NK cells 0.0516 0.0384 1.6227 0.1286 | 13.0084 -0.0044 0.0307
B cells 0.0827 0.0593 2.3998 0.0351 | 11.0811 0.0020 0.0449
Monocytes 0.0681 0.0471 3.6447 0.0021 | 16.2809 0.0088 0.0332
Neutrophils 0.4901 0.5883 | -3.7501 0.0029 | 11.6164 -0.1554 -0.0409

Supplementary table 8: Features impact on clustering. Comparing Cluster 24 and 2B (k=3) with
all clinical features and cell type proportions using t-test. Each row contains the feature tested,
mean value for Cluster 2A and 2B, t-statistics, p-value, degrees of freedom and both bounds of the
confidence interval (CI).

Feature tested | estimate p-value Cl - low Cl - high

Sample_Plate 1.0538 0.8816 0.5610 1.9818
Sample_Group 0.1004 2.23E-12 0.0464 0.2081
Sex 1.0624 0.8802 0.5620 2.0084

Supplementary table 9: Features impact on clustering. Comparing Cluster 24 and 2B (k=2) with
all clinical features and cell type proportions using Fisher’s test. Each row contains the feature
tested, mean value estimated, p-value and both bounds of the confidence interval (CI).
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Feature Mean Mean t- p-value | digrees | Cl-low Cl - high

tested Clusterl | Cluster2B | statistics of
freedom
Weight 79.0625 71.3300 1.2477 0.2309 15.2723 -5.4567 = 20.9217
BMI 33.3798 31.6436 0.8752 0.3957 | 14.5210 -2.5044 5.9767
Height 1.5373 1.4971 1.0159 0.3257 15.0762 -0.0440 0.1243
Waist 94.0000 91.0000 0.7855 0.4438 = 15.8016 -5.1051 | 11.1051
PAD 70.1250 67.5000 0.4101 0.6880 13.8597 -11.1180 @ 16.3680
PAS 115.3750 | 109.0000 0.8345 0.4223 = 10.6630 @ -10.5035 | 23.2535
Age 12.0595 12.0720 @ -0.0155 0.9878 15.5526 -1.7233 1.6983
GO 78.0000 75.0000 0.5859 0.5664 = 15.5662 -7.8798 | 13.8798
G30 137.0000 113.9000 2.4983 0.0261 13.4779 3.1964  43.0036
G60 122.8750 | 107.0000 1.4852 0.1572 ' 15.7396 -6.8147 38.5647
G90 112.6250 100.9000 1.1896 0.2599 10.6897 -10.0447 @ 33.4947
G120 108.0000 99.2000 0.8732 0.4014 = 10.8860 @ -13.4092 | 31.0092
10 43.3625 8.3300 8.2882 4.76E- 7.5421 25.1815 44.8835
05

130 240.0500 62.2500 4.8364 0.0010 8.7768 | 94.3138  261.2862
160 227.9375 46.3400 5.9108 0.0004 7.9208 110.6262 | 252.5688
190 194.9625 44.5200 4.6966 0.0015 8.1177 76.7623 | 224.1227
1120 166.1250 54.5400 3.6496 0.0046 9.8699  43.3382  179.8318
HOMA-IR 8.4142 1.5266 6.9580 0.0002 7.3826 4,5713 9.2039

Avg glucose | 111.7000 99.2000 1.9982 0.0631 = 15.8681 -0.7705 @ 25.7705
Avginsulin | 174.4875 43.1960 6.1932 0.0002 8.1835 | 82.5964 | 179.9866

WBISI 1.3170 6.7982 | -11.1218 7.49E- 9.7399 -6.5833 -4.3791
07

1GI 3.3982 1.4249 3.2936 0.0064 @ 11.9854 0.6677 3.2789
CD8+ T 0.1896 0.1154 3.7441 0.0021 14.2984 0.0318 0.1166
cells

CD4+T 0.0933 0.1123 -1.1880 0.2522 @ 15.9688 -0.0529 0.0149
cells

NK cells 0.0517 0.0384 1.1617 0.2638 14.7629 -0.0111 0.0376
B cells 0.1047 0.0593 2.8716 0.0128 @ 13.3857 0.0113 0.0795

Monocytes 0.0534 0.0471 0.8707 0.3972  15.4654 -0.0091 0.0216
Neutrophils 0.4987 0.5883 -2.4727 0.0256 | 15.3320 -0.1667 -0.0125

Supplementary table 10: Features impact on clustering. Comparing Cluster 1 and 2B (k=3) with
all clinical features and cell type proportions using t-test. Each row contains the feature tested,
mean value for Cluster 1 and 2B, t-statistics, p-value, degrees of freedom and both bounds of the
confidence interval (CI).

Feature tested | estimate p-value Cl - low Cl - high

Sample_Plate 7.5610 0.0590 0.9074 354.1202
Sample_Group 0.0000 1.68E-05 0.0000 0.1829
Sex 0.1147 0.0257 0.0024 0.9565

Supplementary table 11: Features impact on clustering. Comparing Cluster 1 and 2B (k=3) with
all clinical features and cell type proportions using Fisher’s test. Each row contains the feature
tested, mean value estimated, p-value and both bounds of the confidence interval (CI).
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Feature Mean Meanall t- p-value digrees ClI-low Cl - high

tested Clusterl  otherIR statistics of
freedom
Weight 79.0625  80.8700 -0.2316 0.8204 13.1698 -18.6489  15.0339
BMI 33.3798  33.7112 -0.1378 0.8925 12.8091 -5.5358 4.8729
Height 1.5373 1.5392 -0.0566 0.9556 15.9654 -0.0750 0.0711
Waist 94.0000  96.3500 -0.6678 0.5138  15.9900 -9.8102 5.1102
PAD 70.1250  63.7500 1.1300 0.2807 11.9256 -5.9256  18.6756
PAS 115.3750 119.7500 -0.6613 0.5210 11.9627 -18.7955  10.0455
Age 12.0595  11.9548 0.1652 0.8710 14.9256 -1.2464 1.4558
GO 78.0000  80.2000 -0.5309 0.6065 10.5411 -11.3693 6.9693
G30 137.0000 124.0000 1.5158 0.1571 11.2885 -5.8172  31.8172
G60 122.8750 102.4000 2.3711 0.0317 14.8957 2.0584  38.8916
G90 112.6250 111.6000 0.0968 0.9244 12.8781 -21.8761  23.9261
G120 108.0000 108.1000 -0.0097 0.9924 11.4841 -22.5897 22.3897
10 43.3625 38.4400 0.8754 0.3949 15.2943 -7.0424 16.8874
130 240.0500 318.9860 -1.4831 0.1575 15.9871 - 33.9010
191.7730

160 227.9375 201.4970 0.6088 0.5512 15.9330 -65.6586 118.5396
190 194.9625 173.2720 0.5835 0.5698 12.7546 -58.7800 102.1610
1120 166.1250 150.9500 0.4557 0.6564 12.5341 -57.0403  87.3903
HOMA-IR 8.4142 7.6791 0.5596 0.5839  15.1803 -2.0619 3.5321

Avg glucose 111.7000 105.2600 1.2431 0.2368 12.4181 -4.8053 17.6853
Avginsulin  174.4875 176.6290 -0.0836 0.9346 13.8878 -57.1553  52.8723

WBISI 1.3170 1.4137 -0.6832 0.5043 15.8667 -0.3967 0.2034
1GI 3.3982 6.2694 -4.7189 0.0005 12.4462 -4.1916 -1.5508
CD8+ T 0.1896 0.1475 2.1032 0.0533 14.5096 -0.0007 0.0849
cells

CD4+T 0.0933 0.0992 -0.3442 0.7353 15.6536 -0.0422 0.0304
cells

NK cells 0.0517 0.0395 1.0913 0.2932 14.2647 -0.0117 0.0360
B cells 0.1047 0.0788 1.5933 0.1333  14.0560 -0.0089 0.0607

Monocytes 0.0534 0.0622 -0.7519 0.4654 13.0464 -0.0341 0.0165
Neutrophils 0.4987 0.5359 -0.9788 0.3424 15.8070 -0.1178 0.0434

Supplementary table 12: Features impact on clustering. Comparing Cluster 1 and other IR samples
with all clinical features and cell type proportions using t-test. Each row contains the feature tested,
mean value for Cluster 1 and remaining IR samples, t-statistics, p-value, degrees of freedom and

both bounds of the confidence interval (CI).

estimate p-value Cl - low Cl - high
Sample_Plate 6.7305 0.0647 0.8095 314.8494
Gender 0.1079 0.0228 0.0023 0.8976

Supplementary table 13: Features impact on clustering. Comparing Cluster 1 and remaining IR
with all clinical features and cell type proportions using Fisher’s test. Each row contains the feature
tested, mean value estimated, p-value and both bounds of the confidence interval (CI).
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