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SOMMARIO (ITA) 

Introduzione: L’insulino resistenza si presenta quando la risposta delle cellule 

all’insulina è diminuita causando un drammatico innalzamento dei livelli di 

zucchero nel sangue. I diversi fattori di rischio per l’insulino resistenza includono 

uno stile di vita sedentario, obesità, storia familiare di diabete e invecchiamento. 

Negli ultimi anni, il diabete di tipo 2, l’insulino resistenza e l’obesità sono 

considerevolmente aumentate nella popolazione contribuendo all’incremento in 

morbidità e mortalità nel mondo. I molti meccanismi proposti per spiegare il 

funzionamento dell’insulino resistenza includono varianti genetiche, deregolazioni 

trascrittomiche e modificazioni epigenetiche, come per esempio la metilazione del 

DNA. 

Scopo: L’obiettivo di questa tesi comprende l’utilizzo di metodologie 

bioinformatiche applicate allo studio della metilazione del DNA lungo tutto il 

genoma usando l’Infinium Human Methylation EPIC array (~850k CpGs) per 

studiare la componente epigenetica dell’insulino resistenza in una coorte di 186 

soggetti pediatrici obesi, uniformemente divisi in due gruppi (insulino 

resistenti/insulino sensibili). 

Risultati: L’analisi bioinformatica della metilazione a livello genomico, suggerisce 

una forte modulazione della composizione in termini di tipi cellulari nei soggetti 

insulino resistenti, suggerendo un possibile ruolo dell’infiammazione nella 

malattia. Inoltre, l’analisi della metilazione differenziale su singoli CpG o regioni, 

accompagnata da un’analisi di “gene set enrichment”, mette in evidenza diverse vie 

collegate al metabolismo di carboidrati e grassi. In aggiunta, associando i probes 

differenzialmente metilati con risultati di studi riportati in letteratura, emergono 

ulteriori fattori che si potrebbero considerare durante lo studio di questa condizione. 

Conclusioni: In conclusione, abbiamo utilizzato diversi approcci bioinformatici 

applicandoli ad una numerosa coorte di individui per studiare la metilazione del 

DNA a livello genomico nel contesto dell’insulino resistenza, con risultati che 

supportano l’ipotesi che la metilazione sia più legata a cambiamenti globali 

piuttosto che cambiamenti localizzati in pochi loci. 
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ABSTRACT (ENG) 

Background: Insulin resistance occurs when the response of cells to insulin is 

decreased hence causing blood sugar levels to rise dramatically. Among others, the 

most common risk factors for insulin resistance include sedentary lifestyle, obesity, 

family history of diabetes and advanced age. In the last few decades, type 2 

diabetes, insulin resistance, and obesity have increased dramatically in the general 

population contributing to an increase in morbidity and mortality around the world. 

Among others, the main mechanisms proposed for the action of insulin resistance 

include genetic variants, transcriptomic dysregulations, and epigenetic changes 

such as DNA methylation. 

Aim: The aim of this thesis is to employ bioinformatic methods to genome-wide 

DNA methylation using the Infinium Human Methylation EPIC array (~850k 

CpGs) to study the epigenetic component of insulin resistance in a cohort of 186 

obese pediatric individuals equally divided in two groups (insulin resistant/insulin 

sensitive). 

Results:  Bioinformatic analysis of the genome-wide methylation data, suggests a 

strong modulation of cell type composition in insulin resistant subjects proposing a 

role of inflammation in this disease. Furthermore, differential methylation of single 

CpG or regions, coupled with gene set enrichment analysis highlighted several 

pathways involved with carbohydrates and fat metabolism.  

Additionally, associating differentially methylated probes with previously reported 

studies highlights additional factors that may be useful to consider when studying 

this condition. 

Conclusions: In conclusion, we employed different bioinformatics strategies 

applied to a large cohort of individuals to study genome-wide DNA methylation in 

IR, with results supporting the hypothesis that methylation is more related to 

general methylation landscape changes rather than methylation variations in a few 

loci. 
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INTRODUCTION 

Insulin resistance and type 2 diabetes 

Insulin is a hormone produced by beta cells in the pancreas and, in healthy subjects 

is released in response to rising levels of sugar in the bloodstream due to food 

intake, acting like a key and allowing glucose to enter cells in various tissues such 

as muscles and fat. 

Insulin resistance (IR) occurs when the response of cells to insulin is decreased. 

This has several adverse metabolic consequences, like impaired inhibition of 

gluconeogenesis and impaired glucose uptake by insulin-dependent tissues, leading 

to progressive elevation of fasting and post-load blood glucose up to type 2 diabetes 

(T2D); impaired lipolysis by muscle and adipose tissue, which causes increased 

synthesis of lipoproteins and increased fatty acids deposition in the liver, leading to 

increased VLDL (Very Low Density Lipoprotein) triglycerides and nonalcoholic 

fatty liver disease (NAFLD) respectively, elevation of insulin concentration, which 

causes suppression of nitric oxide synthase (NOS) and hyperactivation of the renin-

angiotensin-aldosterone (RAA) system, leading to hypertension, as well as chronic 

stimulation of the ovary theca cells, leading to the polycystic ovary syndrome 

spectrum. Major risk factors for IR include sedentary lifestyle, family history of 

diabetes and advanced age. It is possible to reverse the effects of insulin resistance 

before it develops into full T2D and other major complications with change in 

lifestyle, diet, and pharmacological treatment. In the last few decades, T2D and 

obesity have increased dramatically in the general population contributing to an 

increase in morbidity and mortality around the world1,2. 

Recent studies have also connected conditions in the intrauterine and postnatal 

environment to deleterious metabolic outcomes in children, these phenomena fall 

into the definition of Developmental Origin of Health and Disease (DOHaD) which 

states that exposure to certain environmental conditions during critical steps of 

development (before and/or after birth) may have significant effects on an 

individual short- and long- term health status. Some of the most studied 
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environmental conditions include poor nutrition (micro- or macro- nutrient 

deficiency), exposure to chemical agents, hormonal and metabolic perturbations1,3. 

Contrarily to T1D which is caused mainly by an autoimmune response of the body 

leading to pancreatic beta cells destruction, T2D is a multigenic complex disease 

with heritability risk from 25% to 80%, involving some known genetic variants 

accounting only for 10% of the total risk. In the recent years, the focus has shifted 

from genome studies to epigenome studies, since epigenetic modifications are now 

considered to be a strong plausible mechanism of action for the disease because, 

they act like a fast environmental adaptation2,4. 

In the past decade, many studies tried to link insulin resistance and type 2 diabetes 

to epigenetic modifications, gene expression dysregulations and single nucleotide 

polymorphisms (SNPs) in the adult, providing a list of potential markers for 

diagnosis and drug testing although not many studies focused on IR among obese 

children. 

Epigenetics  

Diversity is a natural consequence of both evolution and inheritance and, for 

decades, scientists have attempted to understand the underlying mechanisms 

driving life both at macro- and microscopic levels. Darwin’s theory of evolution in 

1859 together with Watson, Crick and Franklin’s discovery of the DNA structure 

in 1953 started a revolution in life sciences leading up to genomics, transcriptomics 

and epigenomics studies as they are known today. At first the variation seen within 

a population was attributed to nucleotide changes in the DNA double helix 

molecule leading to aminoacidic changes in the final protein. Epigenetics added 

another layer of complexity, where previously heritable changes were thought to be 

propagated exclusively through DNA polymorphisms, a set of newly discovered 

mechanisms would ensure fine regulation of gene expression and constitute a 

strategy for a quick but soft adaptation to the environment5. 

The epigenome consists of a set of chemical changes in DNA and supporting 

structures (like histones) acting at the cellular level for the maintenance and 

regulation of DNA-related processes. Therefore, changes to the epigenome usually 

result in modification of the chromatin structure and regulation system of the 
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genome without changes in the nucleotide sequence itself. These changes can be 

passed down to the offspring via transgenerational epigenetic inheritance. Although 

virtually all cells within an organism contain the same genetic information, not all 

cells express the same genes at the same time. In a broad sense epigenetic 

modification mediate the diversified gene expression profiles in a variety of cells 

and tissues in a multicellular organism in fact the roles of the epigenome are to 

regulate gene expression, development, tissue differentiation and suppression of 

transposable elements. Unlike the genome which generally remains unchanged 

within an individual, the epigenome can also be dynamically altered by 

environmental conditions.  

In general Epigenetics is the study of heritable phenotype changes that do not 

involve alterations in the DNA sequence itself. Specific epigenetic processes 

include paramutation, bookmarking, imprinting, gene silencing, X chromosome 

inactivation, position effect, DNA methylation reprogramming and regulation of 

histone modification. In the past decade, epigenetics has become increasingly 

important in life sciences since various epigenetic changes are associated with 

development and disease making them a potential target for new pharmacological 

treatments. Moreover, high-throughput technologies offer an opportunity to study 

epigenetic alterations in an “epigenetic wide” fashion by considering a very high 

number of loci (depending on the specific technology) and trying to associate their 

epigenetic status to phenotypic traits including diseases. With the rise of 

genome/epigenome wide approaches, bioinformatics and biostatistics have become 

key disciplines in order to obtain strong, reproducible and accurate results in every 

phase of an epigenomics project allowing us to better understand complex 

phenomena.  

The epigenetic machinery 

In eukaryotes, the DNA is contained in the nucleus and it’s tightly packed, allowing 

for a better organization/storage of the genetic material. DNA organized in 

chromatin restrict its accessibility to some parts of the genome while giving easier 

access to other specific areas. There are two forms of chromatin, euchromatin which 

is loosely condensed, allowing active transcription, and heterochromatin which is 
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tightly condensed, hence preventing transcription. Chromatin regulation is dynamic 

and can change according to cell cycle stage, cell type, environment, and many 

other factors, actively influencing what can be produced and, at which efficiency 

level. The systematic arrangement of chromatin allows for the creation of a 

structure called nucleosome consisting of DNA packed around octamers, which are 

made of five histone proteins H2A, H2B, H3, H4 and H1 (for an increased stability 

- Figure 1). 

 

Figure 1: Nucleosome and chromatosome formation. Schematic representation of histone proteins 

and how they are assembled to form complete nucleosomes and chromatosome6. 

The combination of histones and nucleosome have an N-terminal tail which is prone 

to modifications such as acetylation and methylation of lysine residues or 

phosphorylation of serine residues. Histones are involved in epigenetic changes 

through the remodeling process which alters the compaction status of the 

chromatin, rendering DNA more, or less accessible to a wide variety of cellular 

processes and components like, small non-coding RNA mediated regulation or 

DNA methylation7.  
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DNA methylation  

DNA methylation (DNAm) occurs when a methyl- group (CH3-) is covalently 

attached to the carbon 5 within a cytosine ring forming 5-methylcytosine (5mC – 

Figure 2) by the action of DNA methyltransferase enzymes (DNMT) and S-

adenosylmethionine (SAM) as a methyl- group donor8. Moreover, is one of the best 

studied and most mechanistically understood epigenetic modifications, it is also 

well conserved among animals, plants, and fungi9,10. DNA methylation is seen as a 

key player in epigenetic silencing of transcription, it may coordinately regulate the 

chromatin status via the interaction of DNMT with other modifications and with 

components of the machinery mediating those marks. DNA methylation status is 

heritable, and it can be found in cytosines both in a CpG dinucleotide context and 

in a CHG or CHH trinucleotide contexts, however the vast majority of methylated 

cytosines in humans is found in a CpG context (around 98%) in adult human 

somatic cells while almost 25% of methylation in embryonic stem cells is found in 

other contexts10. 

 

Figure 2: From cytosine to 5-methylcytosine. Cytosine methylation to form 5-methylcytosine11. 

There are three DNMT enzymes, DNMT3A, DNMT3B and DNMT1 which alter 

the methylation status in different ways, DNMT3A and DNMT3B can transfer a 

methyl group to previously unmodified cytosines hence creating new methylated 

regions or loci. DNMT1 works during DNA replication and can only copy the 

methylation patterns from the template strand to the newly synthetized strand 

(Figure 3). All three DNMT enzymes are heavily involved during embryo 

development but, by the time cells reach a terminal differentiation status, their 

expression is highly reduced5. 

During zygote formation, most of DNA methylation is removed, only to be re-

established in the embryo in a short period of time after implantation. DNA 

methylation is essential for normal development since it plays a paramount role in 
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several processes like genomic imprinting, X chromosome inactivation, 

suppression of repetitive elements and many others.   

Human development from zygote into a complex adult organism requires a set of 

highly specific cellular processes. Gene expression regulation is primarily encoded 

in cis elements directed by transcription factors. Moreover, heritability of covalent 

DNA modifications and chromatin rearrangements often contribute to respond to 

developmental pressure. 

 

Figure 3: DNA methyltransferase enzymes in action. Graphical representation of DNMT enzymes 

de novo methylation (a), and methylation copying process during DNA replication (b) 5. 

Genomic elements and DNA methylation 

As previously mentioned, the majority of DNA methylation occurs on cytosines 

that precede a guanine nucleotide also known as CpG sites. Overall, mammalian 

genomes are depleted of CpG sites this may result from the mutagenic potential of 

5mC that can deaminate to thymine. The remaining CpG sites are spread out across 

the genome where they are heavily methylated except for CpG islands. DNA 
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methylation is essential for silencing retroviral elements, regulating tissue-specific 

gene expression, genomic imprinting, and X chromosome inactivation. 

Importantly, DNA methylation in different genomic regions may exert different 

influences on gene activities based on the underlying genetic sequence5. 

CpG islands 

CpG islands (CGIs) are stretches of DNA roughly 1000 base pairs long, with a 

content of CpG dinucleotides around 50%, they’re generally unmethylated and can 

be found in more than half (~70%) of human gene promoters7 or distributed in other 

functionally relevant regions like transcription start sites (TSS). In particular, 

promoters for housekeeping genes are often embedded in CpG islands, and 

generally highly conserved between mice and humans12. Therefore, to maintain a 

hypomethylated status, the activity of DNMT enzymes has to be continuously 

blocked in active promoters to prevent unwanted gene silencing. Moreover, 

promoter methylation (or unmethylation) status is cell type or tissue dependent, and 

it is established during development but even if a large part of the mechanisms 

behind CGI regulated gene expression are known, there are still many molecular 

aspects being uncovered especially during developmental age. It appears that CpG 

islands have been evolutionarily conserved to promote gene expression by 

regulating the chromatin structure and transcription factor binding, but when 

methylated, CGIs can impair these mechanisms by also recruiting repressor (in the 

form of methyl-binding) proteins for a stable silencing of gene expression5. A good 

example highlighting the importance of CGI-related mechanisms can be seen with 

the disruption of  their methylation patterns taking place in neoplastic cells13.  

Furthermore, DNA methylation can be found at enhancers and is also highly 

dynamic varying according to physiological and pathological conditions, especially 

in cancer where enhancer methylation plays an important role as promoter 

methylation does7. 

Many other genomic elements carrying methylation have gained popularity and 

attention over time, like CpG shores which are regions distant at most 2kb from a 

CGI. Shores usually present a lower CpG density compared to CGIs, but their 

methylation status is much more variable, and they are in fact considered among 
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the most variable regions in the genome. Furthermore, methylation in CpG shores 

is also associated to transcriptional inactivation.  

 

Figure 4: DNA methylation schematic landscape. Showing different possible situations: CpG 

islands are unmethylated when allowing transcription, while intergenic transposable elements are 

methylated to prevent their activation. 

Intergenic regions 

In the human genome, intergenic regions often contain endogenous transposable 

elements (nearly 40% of mammalian genomes), they are organized in three classes, 

long interspersed nuclear elements (LINEs), short interspersed nuclear elements 

(SINEs) and long terminal repeats (LTRs). LINEs and LTRs encode for elements 

with strong promoters. Moreover, transposable elements can be potentially harmful 

since their expression would cause them to replicate and insert themselves in 

another genomic region (trough duplication), permanently altering or disrupting the 

functionality of the targeted area (Figure 4). To block these elements and prevent 

their activation, over a long period of time, DNA methylation is used causing 

constitutive hypermethylation9. Moreover, spontaneous mutations induced by 5-

methylcytosine deamination to thymine permanently fix this block5,14. 

Gene body 

As previously mentioned, DNA methylation often affects enhancers, promoters and 

TSS causing gene silencing, but gene bodies can also be methylated especially the 

first exon which also acts as a silencer when methylated. While methylation in other 

exons is associated to a higher gene expression during cell division while in non-

dividing cells like neurons, gene body methylation (beyond the first exon) has not 

been associated with expression alterations or fluctuations5 (Figure 4). 

Furthermore, methylation in intronic or intragenic regions still has unclear 

functions.
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DNA methylation using microarrays 

Fast and accurate methylation analysis methods are a key element for discovering 

the role that methylation plays in several contexts from life sciences to medicine. 

The main principle on which DNA methylation detection is founded, relies on the 

chemical action of sodium bisulfite. When DNA is treated with sodium bisulfite, 

unmethylated cytosines are converted by deamination to uracil, while 5mC remain 

unchanged15. Among other methods to assess DNA methylation there are tiling 

hand-made microarrays and sequencing of bisulfite-treated DNA (whole genome 

or target regions based). Although effective, sequencing methods require a 

moderately high amount of DNA and labor, and they make bioinformatic analysis 

challenging for large-case studies. A very good and cost-effective way to limit the 

resources needed for analysis of a large cohort is to employ microarrays such as the 

Infinium Human Methylation EPIC (EPIC) by Illumina which can measure 

methylation levels of approximately 850000 single CpG dinucleotides using a small 

amount of genomic DNA (~250ng) while analyzing 8 samples per array, with 16 

being the base configuration (2 arrays) reaching up to 96 samples (12 arrays). The 

EPIC array was designed to incorporate ~99% of RefSeq genes, ~95% of known 

CGIs and ~80% of FANTOM5 enhancers also including open chromatin and 

enhancers from ENCODE and genes, promoters, and UTRs from GENCODE, for 

a detailed description of these features16, see the List of Abbreviations section.   

The EPIC array uses beads linked to long target-specific probes designed to query 

single CpGs within a sample, methylation is measured in a quantitative way by 

“genotyping” bisulfite converted DNA. Each array contains two types of assays (or 

chemistries) called Infinium I and Infinium II which complement each other 

strengths benefitting the array overall sample coverage. The Infinium I assay uses 

two types of probes per CpG locus, the first one for methylation and the second for 

unmethylation matching the status of the analyzed site and they are designed under 

the assumption that methylation is regionally correlated within a 50 base pair 

span17,18. The Infinium II assay uses only one probe complementing the base 

immediately upstream the considered nucleotide then, during array preparation a 

single base extension (SBE) allows the addition of a labeled guanine (G) or adenine 

(A) which are complementary to the locus of interest that can contain either a 
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cytosine (methylated locus) or thymine (unmethylated locus). Therefore, the 

Infinium II assay enables methylation status detection regardless of the previously 

mentioned assumptions about neighboring CpGs while maintaining a high 

correlation with Infinium I probes detected methylation16 (>90% - Figure 5). 

 

Figure 5: Graphical representation of Infinium I and Infinium II chemistries. Two probes per 

locus are used to evaluate methylation or unmethylation status at a CpG site assuming correlation 

on a 50bp range (Infinium I) while a single probe allowing for SBE and detection of methylation 

without assuming its genomic distribution (Infinium II). 

Since looking at single probe luminescence would be challenging to analyze, two 

metrics are used to associate each locus to its methylation status, the β-value and 

the M-value which are computed locus-wise using methylation (M) and 

unmethylation (U) values directly derived from the array or the sequencing (after 

some pre-processing steps). 
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𝛽-𝑣𝑎𝑙𝑢𝑒 =
𝑀

(𝑀 + 𝑈)
              𝑤𝑖𝑡ℎ: 0 ≤ 𝛽-𝑣𝑎𝑙𝑢𝑒≤ 1  

𝑀-𝑣𝑎𝑙𝑢𝑒 =  log2 (
𝑀

𝑈
)            𝑤𝑖𝑡ℎ: − 5 ≤ 𝑀-𝑣𝑎𝑙𝑢𝑒 ≤ 5 

Methylation ratios computed using the β-value or the M-value express the same 

concept, while the β-value ranges from 0 to 1, the M-value ranges from -5 to 5. 

Moreover, for both β-value and M-value the lower bound corresponds to full 

unmethylation and the upper bound to full methylation with values in between 

corresponding to hemi-methylation. Furthermore, the use of one value or the other 

doesn’t have a severe impact on any downstream analysis although it has been 

reported that using the M-value for differential analysis may produce slightly more 

statistically significant results while ensuring a better reproducibility19,20. 
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AIM OF THE PROJECT 

The main goal of this project is to investigate the association of genome-wide DNA 

methylation profiles with insulin resistance in pediatric obese subjects. Since 

insulin resistance is often present alongside obesity, a cohort of obese children was 

chosen to remove from the analyses the effect of obesity on insulin levels. A 

secondary aim is to define a reliable bioinformatic workflow to efficiently analyze 

DNA methylation array data, allowing for integration with biological knowledge 

(Figure 6). 

 

Figure 6: Schematic representation of the study design.
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MATERIALS & METHODS 

Dataset composition 

The dataset composed of obese pediatric subjects enrolled by the team of professor 

Miraglia del Giudice (University of Campania Luigi Vanvitelli) was divided in two 

groups, insulin resistant (96 samples; “R” prefix), and insulin sensitive (96 samples; 

“N” prefix). Subjects of the 2 groups were matched for BMI, sex, and age values. 

Furthermore, the insulin resistance status was assessed using the HOMA-IR and 

WBISI indexes as described below. The insulin resistance status (Sample_Group 

feature; IR = insulin resistant, IS = insulin sensitive) investigated in the present 

study was defined according to WBISI values only.  

Clinical information  

For each subject, information regarding several clinical features were collected to 

use as covariates during the bioinformatic analysis (Table 1). 

   Sample_Group 

Feature Name Description Units IR mean (±sd) IS mean (±sd) 

Weight Subject's weight Kg 76.11 (±17.98) 76.12 (±18.94) 

BMI Body Mass Index - 32.43 (±5.1) 32.67 (±5.3) 

Height Subject's height m 1.52 (±0.1) 1.52 (±0.1) 

Waist Waist circumference cm 93.98 (±13.86) 92.96 (±11.72) 

PAD Diastolic arterial pressure mmHg 65.85 (±10.68) 67.38 (±8.21) 

PAS Systolic arterial pressure mmHg 117.1 (±12.27) 110.8 (±11.84) 

Age Subject's age years 11.86 (±1.99) 11.78 (±1.9) 

HOMA-IR 
Homeostatic Model Assessment for 
Insulin Resistance 

- 8.28 (±3.17) 1.77 (±0.68) 

Average Glucose Mean of Gt values mmol/L 111.6 (±12.9) 101.4 (±11.94) 

Average Insulin Mean of It values µU/L 158.21 (±56.6) 38.35 (±14.23) 

WBISI Whole Body Insulin Sensitivity Index - 1.48 (±0.81) 6.58 (±1.55) 

IGI 
Insulinogenic Index (ratio between I0-
I30/G0-G30) 

µU/mmol 3.83 (±2.54) 2.1 (±4.42) 

Sex Subject's sex (M: male; F: female) - M: 52 - F: 44 M: 53 - F: 43 

Gt 
Subject's glycemia at timepoint 0'≤ t 
≤120' 

mmol/L - - 

It 
Subject's insulin level at timepoint 0'≤ 
t ≤120' 

µU/L - - 

Table 1: Main clinical features collected for the cohort. Features descriptions with measurement 

units and average value (± standard deviation, when applicable) for Sample_Group (IR = insulin 

resistant, IS = insulin sensitive). 
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Insulin resistance assessment 

A standardized method to measure glucose and insulin fluctuations is called Oral 

Glucose Tolerance Test (OGTT), which is performed by orally administering a 

standard amount of glucose to a subject, collecting blood samples at regular time 

intervals (usually every 30 minutes for 2 hours) to measure insulin and glucose 

amounts with an additional sample collected before the test to measure fasting 

glucose and insulin levels. The several samples collected are used to determine how 

long it takes for blood glucose to go back to a baseline level. The OGTT is mainly 

used for insulin resistance, diabetes, and beta cell functionality testing, but it is 

sometimes used for reactive hypoglycemia, acromegaly, and disorders in 

carbohydrates metabolism. 

As mentioned above the Oral Glucose Tolerance Test is used to quantify glycemic 

fluctuations over time but the OGTT itself cannot discriminate between IR, T2D or 

beta cell disfunctions, therefore two OGTT-derived estimates were used to assess 

fasting and post-load insulin sensitivity, the Homeostatic Model Assessment for 

Insulin Resistance (HOMA-IR) and the Whole-Body Insulin Sensitivity Index 

(WBISI), by using data collected during the test such as fasting glucose (G0 

[mmol/L]), fasting insulin (I0 [µU/L]), mean glucose (Gµ [mmol/L]), mean insulin 

(Iµ [µU/L]) and they are computed as follows21–23:  

𝐻𝑂𝑀𝐴-𝐼𝑅 =
𝐺0  ∙  𝐼0

22.5
 

𝑊𝐵𝐼𝑆𝐼 =  
10000

√(𝐺0𝐼0) ∙ (𝐺𝜇𝐼𝜇)
 

It should be noted that HOMA-IR optimal range is between 0.5 and 1.4, with values 

like 1.9 being a sign of early IR, while values around 2.9 being significant IR, on 

the other hand WBISI optimal value is above 3, lower values progressively tend to 

IR and, in some studies, IR subjects were found with WBISI threshold around 2.524. 
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Sample collection & DNA processing 

DNA processing and genome-wide methylation profiling were conducted by the 

team of Professor Claudio Maffeis (University of Verona), starting from peripheral 

venous blood, genomic DNA for each sample was extracted using DNeasy Blood 

and Tissue kit (Qiagen) according to manufacturer’s protocol then DNA 

concentration was assessed using a Nanodrop spectrophotometer and samples were 

adjusted through serial dilution to 48-52 ng/µL.  

Bisulfite conversion of genomic DNA was performed using EZ DNA methylation 

Kit (Zymo Research), using 600ng of DNA per sample, followed by DNA 

amplification, fragmentation, and precipitation, were performed following 

manufacturer’s protocol. 

Genome-wide methylation profiling 

Genome-wide methylation profiling was carried out on bisulfite-converted DNA 

using the Illumina Human Methylation EPIC array (Illumina Inc.) following 

Illumina standard protocol, using 250 ng of bisulfite converted DNA per sample to 

perform array hybridization. DNA of four samples were split in two forming 

duplicates and randomly placed in the arrays, to serve as a microarray quality 

control during the bioinformatic analysis. Once the arrays were ready, a single base 

extension and staining were performed, and data were collected using an iScan 

(Illumina Inc.) system producing standard “*.idat” files, containing probes 

fluorescence raw per-CpG methylation levels. 
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Bioinformatic analysis  

The bioinformatic workflow employed in this thesis is described as summarized 

in Figure 7. 

 

Figure 7: Summarized steps of the bioinformatic analysis. The image reports the main steps of the 

workflow with a brief description of the analytical strategies employed. 
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Quality Control 

Microarray quality control was performed in three phases: 

• Quality control on samples 

▪ Evaluation of microarray quality through duplicated samples 

▪ Detection and removal of low-quality samples 

• Normalization  

▪ Inter-array normalization using quantiles 

▪ Intra-array normalization filtering outliers  

• Quality control on probes to remove low quality probes and SNPs related 

probes 

Quality control on samples, was performed by computing probe-wise detection p-

value (detP) which is a statistical indicator of probe reliability, it derives from the 

sum of raw methylation and unmethylation signals compared to the background 

signal, estimated using negative control positions, assuming they’re normally 

distributed. Then, a pairwise comparison was performed on duplicated samples to 

assess the signal quality on different arrays and positions, using methylation values 

(β-values), detP and absolute methylation difference (|Δβ|) per CpG. Average per-

sample detection p-value was calculated to get a sample-wise quality estimation 

allowing the removal of duplicated samples by picking, for each couple, the one 

with the lower detP value. Furthermore, all samples with mean detP ≥ 0.05 were 

also removed since their low quality may affect downstream analyses.  

Samples were then normalized to correct for systematic measurement errors in the 

data. Errors may be introduced by several factors such as the data acquisition 

method/platform (i.e., signal noise), differences in probe labeling, subtle variations 

in target DNA concentration, efficiency of hybridization. For the purpose of this 

study, normalization was performed using stratified quantile normalization (SQN) 

approach. This method starts by normalizing the signal of type II probes across 

samples, interpolating a reference distribution used to normalize type I probes. 

Given the different nature of type I and II probes, this process is stratified by 

genomic region before applying the interpolation (inter-array normalization). 

Moreover, sex probes (on chromosomes X and Y) are normalized separately for 
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female and male samples using the sex information provided in the sample sheet. 

This method does not perform background correction, but it filters out methylation 

outliers by thresholding intensities close to zero (similar to intra-array 

normalization). SQN was chosen because it relies on the assumption that samples 

have similar distribution regardless of their class and it is more appropriate where 

the methylation difference (by class) does not involve global changes such as in 

cancer-normal comparison25,26.  

Subsequently, a probe filtering step was done to remove from the dataset probes 

with detP ≥ 0.01 in at least one sample then, probes containing SNPs at the CpG 

site or single base extension site (SBE – type II Infinium probes) were also 

removed. As last step in quality control, probes mapping on X and Y chromosomes 

were removed to minimize the impact of sex that may constitute an unwanted 

source of variation leading to biased results in the following steps of the analysis. 

These steps were performed starting from *.idat files produced by the array scanner, 

as previously mentioned. They were loaded into R using a sample sheet, which is a 

file containing a complete list of samples with array-related information, to which 

clinical features were also added. Another annotation file called microarray 

manifest was loaded since it contains information regarding mappings and 

overlapping genes as well as CpG position within functional elements such as CGIs, 

CpG shores, CpG shelves, open sea, DNAse hypersensitivity sites, TSS, enhancers, 

promoters and more, as reported on the Illumina support page27.  All quality control 

sub-steps described above were performed using the minfi26 package under R.  

Per-sample cell type composition 

Peripheral venous blood, by nature, is a mixture of different cell types that can be 

present in different amounts in each sample. This variability may be due to several 

biologically and clinically important conditions or reflect changes that are a 

consequence of the disease state, potentially causing the analysis to be biased. 

Therefore, it would be useful to estimate the proportion of each blood cell type.  

This can be achieved with a statistical process usually called cell type 

deconvolution or estimation. Among the many ways to perform deconvolution, a 

reference-based approach was chosen since the main constituent cell types within 
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blood are known. With this method, a reference file or database containing 

molecular markers representative of each possible cell type in the tissue of interest, 

is used along with a multivariate regression to estimate individual cell type ratios. 

In this case a specific reference for blood cells built using sorted cells and the EPIC 

array was used to identify CD4+ T lymphocytes, CD8+ T lymphocytes, B cells, 

Natural Killer cells, Monocytes and Neutrophils/Granulocytes according to the low 

methylation of known gene markers such as RPTOR (cg04162316), CD8A 

(cg25939861), BLK (cg03860768), CLASP1 (cg14047092), SLFN5 (cg02647842) 

and NFIA (cg22451300) respectively28,29. A two-sided t-test was performed on cell 

type proportions versus the Sample_Group (disease state) and sex variables, not 

only to see if these factors can influence the sample composition and therefore the 

downstream analysis, but also to see if some cell types tend to be overabundant in 

IR subjects. 

Batch effects correction and exploratory analysis 

Batch effects are defined as a technical source of variation which is not embedded 

in the samples themselves, but it is unwillingly introduced during the several steps 

where the samples are manually handled for example different processing times, 

different operators, different machines or, in this case, even different arrays. 

Applying a batch effect correction method can be useful to clean the data by 

estimating and removing these unwanted sources of variation. To correct for batch 

effect, an empirical Bayes procedure was used to directly remove known technical 

sources of variation, returning corrected methylation data. Sample_Plate was used 

as main technical factor while Sample_Group (disease state), sex, BMI, age, and 

cell type proportions were used as outcome and other covariates. The correction 

was performed by using the ComBat method from the sva R package30,31.  

The correction effect was then assessed by computing Pearson’s correlation 

between a Principal Component Analysis (PCA) performed on M-values and 

clinical variables using the prcomp_irlba method from the irlba package32,33.  
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Differential methylation analysis 

After removing batch effect and reducing the effect of possible covariates, it was 

possible to proceed with probe-wise and region-wise differential methylation 

analysis. It consists in fitting a linear model to represent the phenotypical difference 

of interest, in this case comparing insulin resistant subjects with insulin sensitive 

ones. The fitted model (one per probe set) was then corrected for multiple testing 

and microarray annotation was merged to the result obtaining a comprehensive list 

of differentially methylated probes (DMPs) ranked by Benjamini & Hochberg (BH) 

adjusted p-value. Probe-wise differential analysis was performed using limma 

package in R34,35. 

Sometimes it may be interesting to assess the methylation status of larger genomic 

regions rather than single loci, and how they are modulated in the two groups. This 

step relies on previously discovered DMPs and, for each chromosome computes 

two smoothed estimates: one weighted with CpG-wise t-statistics, and one not (for 

a null comparison). Then, the two estimates are compared using the Satterthwaite36 

approximation which accounts for different sample variances in the two estimates. 

The entire process, detects regions in which methylation between the two groups of 

interest is statistically different, this step was performed using the dmrcate method 

from the homonymous R package37,38. 

Gene set enrichment analysis 

When dealing with high throughput technologies it is very easy to obtain a huge 

amount of result (i.e., many different loci across the genome), so data interpretation 

becomes a key aspect with this type of project which ultimately leads to a better 

understanding of the biological process associated with the phenotype studied. 

Since probe-wise differential methylation analysis produces a list of loci and gives 

a logarithmic methylation fold change (logFC) between the groups compared, it is 

possible to apply a gene set enrichment analysis (GSEA) to highlight which 

metabolic pathways, according to an annotated list of gene-sets, are likely to be 

affected by the variability of the trait examined. This step was performed by 

extracting from the DMP results, gene names (when present) linked to CpGs (with 

adjusted p-value < 0.05 together with their respective logFC values) then, since in 

microarrays multiple probes can map on the same gene, to avoid overrepresentation 
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bias, the mean logFC for each group of redundant genes was used. Therefore, using 

multiple specific gene sets, it was possible to retrieve the category to which each 

gene belongs from a pathway standpoint. Furthermore, GSEA was performed 

limiting the minimum number of genes per category to 50, meaning that only 

pathways containing at least 50 genes from the differential analysis are reported. 

The gene sets used for this analysis are from the Disease Ontologies39 (DO), 

DisGenNet40–42 (DGN), Kyoto encyclopedia of Genes and Genomes43–45 (KEGG), 

Hallmark curated gene signatures46–48, WikiPathways49 (WP) and Reactome 

pathways50–52 (RP) which are all handled by the clusterProfiler53,54 and DOSE55,56 

packages.  

DMP based sample clustering 

Since in literature, the adjusted p-value cut-off for DMPs filtering is often set to 1e-

7, loci meeting this criterion were selected for further analysis, and their associated 

β-values were used to perform a hierarchical complete clustering (based on 

Euclidean distance) on samples to see if they would group into two different clusters 

according to their IR/IS status. The clustering results were then studied to 

understand the underlying factors behind cluster formation, dividing the 

dendrogram to form two and three cluster. Moreover, the impact of this DMP-

driven separation on the insulin resistance status was evaluated by computing (per 

sample) t-tests (Welch’s two sided) and Fisher’s (exact test for count data) tests 

against numerical and categorical clinical features available. Furthermore, these 

“super-significant” loci were cross-referenced with the EWAS catalogue57,58 

database to understand if they were found in other epigenomics studies, which 

phenotype/trait these studies were focusing on.  



28 

 

RESULTS  

Quality control 

A total of 192 samples were analyzed with clinical data and microarray annotation, 

each sample (corresponding to a single individual) contains 866091 raw CpG-

mapping probes. As previously reported in the Bioinformatic analysis section, 

microarray quality control was performed in three phases: 

• Quality control on samples 

▪ Evaluation of microarray quality through duplicated samples 

▪ Detection and removal of low-quality samples 

• Normalization  

▪ Inter-array normalization using quantiles 

▪ Intra-array normalization filtering outliers  

• Quality control on probes to remove low quality probes and SNPs related 

probes 

As mentioned above, the dataset included four paired-duplicated samples (N10, 

N10_2, N46, N46_2, N80, N80_2, R45, R45_2) that  were used to measure the 

detection reliability of methylation profiles  between different arrays and positions, 

using methylation values (β-values), absolute difference in beta value (|Δβ|) and 

detP as shown in Figure 8. For each duplicate-pair, the sample with the higher mean 

detP was removed (N10_2, N46, N80, R45_2) from the following analyses.  

Moreover, two individual samples (N25 and N44) were then removed because of 

their poor quality (mean detP ≥ 0.05 – Figure 9).  

Stratified quantile normalization (with genomic region stratification, outlier 

filtering) was applied and 865859 were retained.  

Probes were then filtered out according to signal/background-noise ratio (detP ≥ 

0.01 - in at least one sample), the presence of CpG and SBE mapping SNPs (40801 

+ 26638), their localization on sex chromosomes (17587) retaining a total of 

780842. Methylation distribution post normalization can be seen in Figure 10. 
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Figure 8: DNA methylation profiles of a duplicate sample. The figure shows the DNAm value of a 

duplicated sample N10 (x-axis N10; y-axis N10_2). Marginal distributions show the overall methylation 

profiles for the pair. Smaller points represent lower detP; Darker points represent higher mean absolute 

difference between β-values (of the couple).  

 

 

Figure 9: DNA methylation profiles on raw data. Figure shows probe density (y-axis) according 

to their methylation value (x-axis). IR and IS samples are colored in orange and green, respectively. 

Two IS samples (green), clearly show an irregular methylation profile therefore, they were 

discarded.  
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Figure 10: DNA methylation profile at the end of QC. Figure shows probe density (y-axis) 

according to their methylation value (x-axis). IR and IS samples are colored in orange and green, 

respectively. It is possible to appreciate the differences caused by QC when compared with Fig 8. 

 

Cell type composition 

Cell type proportions for each sample were estimated with a reference-based 

approach (6 reference cell types) as previously described. Cell type amounts of each 

sample were tested to evaluate their association with phenotypical status and sex 

(IR/IS – M/F; Welch’s two-sided t-test). Per group (IR/IS) cell type testing revealed 

that B cells, CD8+ T cells, Monocytes and Neutrophils proportions are statistically 

significant between IR and IS samples (p-value<0.05). Furthermore, B cells, 

CD8T+ cells and Monocytes have a higher estimated mean in the IR group. On the 

contrary, Neutrophils have an estimated mean higher for IS samples (Table 2 - 

Figure 11). Per sex composition testing led to a very different situation returning a 

significant result (p-value<0.05) only for NK cells with estimated mean value for 

female subjects being lower than the males as showed in Table 3 and Figure 12.  
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Cell type Proportion in IR Proportion in IS p-value 
 

B cells 0.083 0.064 1.53E-05 * 

CD4+ T cells 0.106 0.111 0.3781   

CD8+ T cells 0.153 0.132 0.0077 * 

Monocytes 0.068 0.057 0.0042 * 

Neutrophils 0.514 0.552 0.0042 * 

NK cells 0.047 0.045 0.6643   

Table 2: T-test results on disease status. Results of statistical testing on insulin resistance/sensitivity 

status using mean cell type proportions. The red “*” symbol marks rows associated with statistically 

significant p-value (<0.05). 

 

Figure 11: Cell type composition. Boxplot showing the amount (y-axis) of cell types (x-axis) for the 

2 groups. Insulin resistant in orange and insulin sensitive in green. The red “*” symbol marks rows 

associated with statistically significant p-value (<0.05). 

Cell type Proportion in F Proportion in M p-value   

B cells 0.07143308 0.075744943 0.345952   

CD4+ T cells 0.11328711 0.10448452 0.095739   

CD8+ T cells 0.14086403 0.144368256 0.658005   

Monocytes 0.05961453 0.064647134 0.204548   

Neutrophils 0.5419071 0.525565823 0.221046   

NK cells 0.04093377 0.050008325 0.03383 * 
Table 3: T-test results on sex. Results of statistical testing on sex (Male/Female) using mean cell 

type proportions. The red “*” symbol marks rows associated with statistically significant p-value 

(<0.05). 
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Figure 12: Cell type composition. Boxplot showing the amount (y-axis) of cell types (x-axis) for the 

2 groups. Males (M) in turquoise and Females (F) in magenta. The red “*” symbol marks rows 

associated with statistically significant p-value (<0.05). 

Batch effect correction and exploratory analysis 

Technical effects were corrected using comBat as previously described. Then, PCA 

was performed to visualize sample data distribution along principal components 1, 

2 and 3 (PC1, PC2, PC3). Coloring the data according to IR/IS status (Figure 13), 

shows no clear separation between IR samples (orange) and IS samples (green) 

although in panel A and C, insulin sensitive samples seem to be more concentrated 

around values lower than 0 for PC1 whether insulin resistant samples appear more 

scattered towards positive values of the principal component. Coloring points 

according to sex (Figure 14) shows an almost complete overlapping of point clouds 

representing males (turquoise) and females (magenta) thus confirming that samples 

variance associated with the first three principal components is not affected by sex. 

To better understand the relationship between clinical data and methylation, PCs 

were used to compute Pearson’s correlation with clinical data, results are shown in 

Figure 15. 
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Figure 13: Principal component analysis colored by disease status. PCA plot of IR samples 

(orange) vs IS samples (green). Visualizations of PC1 vs PC2 (A), PC2 vs PC3 (B), and PC1 vs PC3 

(C). 

 

Figure 14: Principal component analysis of samples grouped by sex. PCA plot of Males (turquoise) 

vs Females (magenta). Visualization of PC1 vs PC2 (A), PC2 vs PC3 (B), PC1 vs PC3 (C). 
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Figure 15: Heatmap of Pearson's correlation between clinical features and Principal 

Components. The heatmap shows Pearson’s correlation computed between clinical features and 

PCs derived from genome-wide methylation profiles in color scale from blue (inverse correlation) 

to red (direct correlation) going through white (no correlation). 

Differential methylation analysis 

Probe-wise differential methylation was performed on 780842 single loci, 

producing a total of 280095 statistically significant sites (BH adjusted p-value < 

0.05; 29946 both protein and non-protein coding) and 500747 non-significant sites 

(Table 4 - Table 5). In this analysis the comparison performed (IR-IS) can be 

divided in 132367 hypermethylated DMPs and 147728 DMPs hypomethylated in 

IR samples.  Table 6  and Figure 16 shows the top 10 DMPs ranked by BH-adjusted 

p-value, a complete list of differentially methylated probes with complete 

annotation can be found in the Supplementary results section. 

Region-wise differential analysis produced 41305 regions of variable length 

ranging from 3 bp to 22659 bp containing a minimum of 2 CpGs and a maximum 

of 193 CpGs per region. The number of statistically significant regions according 

to Fisher’s multiple comparison statistics (which is the default method) is 41246 

(overlapping 20770 genes both protein and non-protein coding). A graphical 

representation of the top four DMRs can be seen in Figure 17, while a 
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comprehensive table of the top 10 DMRs is displayed in Table 7. Some of the genes 

overlapping the top four DMRs are related to small nucleolar RNAs, MHC, 

inhibition of transcriptional activity, repressive histone methylation, RNA 28S sub-

unit methylation and cell defense against toxic, carcinogenic, and 

pharmacologically active electrophilic compounds. 

  IR - IS 

Up 132367 

Non-significant 500747 

Down 147728 
Table 4: Up/Down differential methylation. The table summarizes the outcome of the differential 

statistical testing on probes for the comparison between IR and IS (baseline) samples. Non-

significant refers to the number of probes with p-value≥0.05. Up and Down refer to the number of 

probes Hyper- or Hypo- methylated (p<0.05). 

p-value 
adjusted 
ranking 

Number 
of 
DMPs 

< 1e-7 647 

< 1e-5 17219 

< 1e-3 102197 

< 1e-2  187696 

< 5e-2 280095 
Table 5: Number of differentially methylated proves under a specific p-value threshold. The table 

shows the number of DMPs below the specific p-value thresholds reported in the first column. 

 

Chr Pos Strand CpG name Log-FC AvMeth p-value Adj p-val Gene 

chr19 42133492 - cg19187564 -0.231 -2.675 1.06E-15 8.24E-10 CECAM4 

chr1 158789404 + cg27082765 -0.377 -4.063 2.13E-15 8.31E-10 - 

chr22 31949147 + cg02350510 -0.285 -2.017 6.71E-15 1.75E-09 - 

chr2 218808843 - cg13677779 -0.152 -1.217 2.69E-14 4.21E-09 TNS1 

chr8 128746896 + cg17160660 -0.309 -3.698 2.70E-14 4.21E-09 MYC 

chr1 46268207 - cg04984052 0.207 -1.111 3.25E-14 4.23E-09 MAST2 

chr11 124647347 - cg02682092 -0.370 -3.494 4.05E-14 4.52E-09 MSANTD2 

chr13 52738164 - cg01886593 -0.257 -0.229 5.14E-14 5.02E-09 - 

chr22 16228563 + cg03531177 0.190 0.282 6.71E-14 5.25E-09 
LA16c-
89F12.6 

chr20 62588672 - cg20593868 -0.205 -2.338 7.80E-14 5.25E-09 UCKL1 

Table 6: Top 10 differentially methylated probes ranked by BH adjusted p-value (Adj p-val). Each 

row describes a probe with Chromosome (Chr), mapping position (Pos), mapping strand (Strand), 

probe name (CpG name), logarithmic fold change (Log-FC), average methylation across all 

samples tested (AvMeth), raw p-value (p-value), BH adjusted p-value and gene mapping (“-“ = not 

present). 
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Figure 16: Variability of top 10 DMPs. Differentially methylated probes reported in Table 6 (x-

axis) and their methylation value (β-value; y-axis). Orange boxes represent IR samples while green 

boxes represent IS samples. 

 

Chr start end Width (bp) # CpGs Fisher p-value IS vs IR # Genes 

chr6 32035188 32057846 22659 193 1.24E-127 + 2 

chr6 32153575 32172871 19297 146 3.48E-89 + 4 

chr12 16757954 16764406 6453 53 3.88E-89 - 2 

chr6 31845110 31857100 11991 107 1.36E-77 + 3 

chr6 31623842 31640160 16319 151 7.84E-68 + 8 

chr2 66662218 66668012 5795 35 3.62E-64 - 3 

chr6 30649909 30659692 9784 100 1.33E-62 - 2 

chr6 31743769 31750174 6406 59 1.87E-62 + 3 

chr12 7259717 7263232 3516 27 2.03E-62 - 2 

chr6 33167187 33181870 14684 173 3.14E-61 + 6 

Table 7: Top 10 differentially methylated regions. DMRs grouping together several CpGs; each 

row contains chromosome (Chr), start position (hg19), end position, width of the region (in bp), 

number of CpGs within the region (# CpGs) and Fisher multiple comparison statistics (Fisher p-

value). The column “IS vs IR” marks the result of the comparison between the two sample groups, 

“+” means that the region is Hypermethylated in IS samples while “-“ means that the region is 

Hypermethylated in IR samples. The last column (# Genes) contains the number of genes 

overlapping the region (regardless if they are protein coding or not). 
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Figure 17: Top 4 DMRs. All four panels (A; B; C; D) show the methylation landscape of the top 4 

differentially methylated regions using genomic coordinates (x-axis) and β-values (y-axis). Orange 

dots correspond to single probes in the region, for IR samples while green dots display it for IS 

samples. Dashed lines connect the points for a better understanding of the methylation fluctuations 

within each region. Grey labels are present only for CpGs that present a statistically significant 

difference in methylation between the two groups. 
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Gene set enrichment analysis 

Gene set enrichment analysis was performed on genes covering all statistically 

significant differentially methylated probes (BH adjusted p-value < 0.05). As 

previously mentioned, the gene sets used are the following Disease Ontologies39 

(DO), DisGenNet40–42 (DGN), Kyoto encyclopedia of Genes and Genomes43–45 

(KEGG), Hallmark curated gene signatures46–48, WikiPathways49  and Reactome 

pathways50–52 (RP). Moreover, the minimum number of genes per gene set was 

limited to 50, therefore preventing the analysis from returning pathways with a 

small number of DMP-associated genes.  In this section are highlighted only results 

for the Disease Ontology (Figure 18, Figure 19 and Table 8) set where categories 

were selected among those relevant for the phenotype studied. Furthermore, only 

diseases/pathways sharing at least two genes are displayed to highlight their 

interactive nature. All complete and unfiltered lists of GSEA results (for all gene 

sets), as also all other figures are reported in the Supplementary results section. 

 

Figure 18: Network visualization from Disease Ontologies. The graph shows nodes corresponding 

to Disease Ontology (DO) categories (Bold; black) and their shared associated genes (grey). Each 

edge is colored according to the DO category, while gene nodes are colored according to the 

estimated fold change. The size of DO categories dots is proportional to the number of genes within 

that category. For visualization purposes only genes shared among at least two categories are 

displayed.  
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Figure 19: Disease Ontology gene-set enrichment analysis. For each category (y-axis) the relative 

number of genes is showed (x-axis; GeneRatio) while the absolute number is encoded in the dot size. 

Dots are colored according to the GSEA estimated adjusted p-value. Due to software limitations, 

legend scales for Count and adjusted p-value do not reflect the data shown but the total data from 

which this graph was derived. 
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Ontology ID Description Set size p-value adj p-value 

DOID:5082 liver cirrhosis 208 5.84E-52 6.52E-51 

DOID:9352 type 2 diabetes mellitus 198 1.76E-51 1.81E-50 

DOID:11612 polycystic ovary syndrome 155 8.27E-43 4.25E-42 

DOID:4195 hyperglycemia 132 1.25E-27 3.02E-27 

DOID:9452 fatty liver disease 88 1.85E-25 4.13E-25 

DOID:3146 lipid metabolism disorder 88 1.02E-17 1.46E-17 

DOID:2018 hyperinsulinism 51 7.26E-12 7.71E-12 
Table 8: Disease Ontology GSEA results of IR related pathways. Table showing results displayed 

in Figure 18 and Figure 19. Each row shows the Ontology ID (DOID), a brief description of the 

pathway function, the total number of genes from the analysis within the pathway and, both raw p-

value and adjusted p-value. 

DMP based samples clustering 

As previously reported in Table 5, filtering DMP results by BH adjusted p-value < 

1e-7 returns 647 CpGs. To investigate the association between these loci (“super-

significant”) and the disease status, their methylation values were used to cluster 

samples, (hierarchical complete clustering with Euclidean distance) as showed in 

Figure 20 and Figure 21. By cutting the tree it was possible to generate two and 

three clusters (k=2, k=3). Generating two clusters (Table 9 - Figure 20), eight IR 

samples formed a small community (red samples R45, R90, R94, R76, R36, R58, 

R41, R34 – Cluster1) while all the other samples formed a bigger one (black – 

Cluster2). Generating three clusters, the smaller community of IR samples 

(Cluster1) remained unchanged while the bigger cluster divided in two sub-clusters 

as shown in Table 10 and Figure 21. 

Cluster # IR samples (R) # IS samples (N)  

1 8 0 

2 87 91 
Table 9: Samples per cluster for k = 2. Summary of clustering results for k=2, with number of IR/IS 

samples per cluster Figure 20.. 

Cluster # IR samples (R)  # IS samples (N) 

1 8 0 

2A 18 66 

2B 69 25 
Table 10: Samples per cluster k = 3. Summary of clustering results for k=3, with number of IR/IS 

samples per cluster Figure 21. 
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Figure 20: Hierarchical clustering on samples. Dendrogram for hierarchical clustering showing 

the 2 clusters (red; black). The dashed line marks the cut performed to obtain 2 clusters (k=2). The 

orange/green bar on the right marks the distribution of samples by phenotype (IR in orange; IS in 

green). 
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Figure 21: Hierarchical clustering on samples. Dendrogram for hierarchical clustering showing 

the 3 clusters (red; blue; black). The dashed line marks the cut performed to obtain the clusters 

(k=3). The orange/green bar on the right marks the distribution of samples by phenotype (IR in 

orange; IS in green). 
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Welch’s t-test and Fisher’s exact test were employed to evaluate which clinical 

features are involved in the separation process. All statistical testing p-values were 

grouped together to allow for a better exploration of the data for both tests (Table 

12 - Table 13). A table including all clustering-based comparisons performed is 

shown below (Table 11). An additional comparison between Cluster 1 and all other 

IR samples was performed to study their differences. 

Clustering Comparisons 

k =2 Cluster 1 vs Cluster 2 

k = 3 Cluster 1 vs Cluster 2A 

Cluster 2A vs Cluster 2B 

Cluster 1 vs Cluster 2B 

- Cluster 1 vs all other IR 
Table 11: Clustering-derived comparisons performed. Small table summarizing the comparisons 

performed starting from the two clustering (k =2; k=3), and a final comparison between Cluster 1 

(8 IR samples) and all other IR samples. 

 
 

p-value 

 Features tested Cluster1 vs 
Cluster2 

Cluster1 vs 
Cluster2A 

Cluster2A vs 
Cluster2B 

Cluster1 vs 
Cluster2B 

Cluster1 vs  
all other IR 

Weight 0.4872 0.1733 0.6022 0.2309 0.8204 

BMI 0.6006 0.1648 0.7783 0.3957 0.8925 

Height 0.3915 0.2194 0.7116 0.3257 0.9556 

Waist 0.6368 0.0669 0.5964 0.4438 0.5138 

PAD 0.7079 0.5994 0.8373 0.6880 0.2807 

PAS 0.3166 0.3919 0.3585 0.4223 0.5210 

Age 0.9112 0.0681 0.5043 0.9878 0.8710 

G0 0.5708 0.4549 0.1356 0.5664 0.6065 

G30 0.0446 0.3987 0.0433 0.0261 0.1571 

G60 0.4126 0.9293 0.2006 0.1572 0.0317 

G90 0.7083 0.9947 0.0281 0.2599 0.9244 

G120 0.6723 0.6380 0.0407 0.4014 0.9924 

I0 4.58E-05 4.38E-05 8.19E-19 4.76E-05 0.3949 

I30 0.0011 0.0010 1.37E-06 9.94E-04 0.1575 

I60 0.0004 0.0004 3.87E-12 3.71E-04 0.5512 

I90 0.0016 0.0015 9.46E-08 1.49E-03 0.5698 

I120 0.0054 0.0025 0.0015 0.0046 0.6564 

HOMA-IR 0.0002 0.0002 1.35E-19 1.72E-04 0.5839 

Avg Glucose 0.2377 0.9265 0.0394 0.0631 0.2368 

Avg Insulin 0.0003 0.0003 1.17E-10 2.38E-04 0.9346 
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WBISI 1.01E-06 7.10E-10 3.45E-06 7.49E-07 0.5043 

IGI 0.0070 0.0022 0.0002 0.0064 0.0005 

CD8+ T cells 0.0059 0.4527 0.0022 0.0021 0.0533 

CD4+ T cells 0.1849 0.1665 0.8984 0.2522 0.7353 

NK cells 0.0967 0.8409 0.1286 0.2638 0.2932 

B cells 0.0560 0.0729 0.0351 0.0128 0.1333 

Monocytes 0.4821 0.7371 0.0021 0.3972 0.4654 

Neutrophils 0.0786 0.6402 0.0029 0.0256 0.3424 

Table 12: T-test comparing clusters for all clinical features. T-test p-values for each comparison 

are reported with red highlighting for statistically significant results (p-value<0.05). 

  p-value 

  Cluster1 vs 
Cluster2 

Cluster1 vs 
Cluster2A 

Cluster2A vs 
Cluster2B 

Cluster1 vs 
Cluster2B 

Cluster1 vs 
all other IR 

Sample_Group 0.0068 0.1943 2.23E-12 1.68E-05 - 

Gender 0.0238 0.0228 0.8802 0.0257 0.0228 

Table 13: Fisher's test comparing clusters for categorical features. Fisher’s test p-values for each 

comparison are reported with red highlighting for statistically significant results (p-value<0.05). In 

the last column the comparison with Sample_Group was skipped since all samples tested belong to 

the same group (IR). 

 

Cross-referencing the “super-significant” CpGs with EWAS catalogue57,58, 922 

study-CpG association were found, covering only 290 of the 647 loci isolated from 

the differential analysis. Furthermore, the vast majority of these CpG are associated 

with different traits hence different phenotypes. Although the EWAS catalogue does 

not contain information regarding the specific pathways involved in their studies, it 

was still possible to look at the macroscopic function of these CpGs through the 

phenotypic trait reported. Moreover, Table 14 reports phenotypes studied in the 

EWAS catalogue involving the associations found. For a complete list of CpG-study 

associations with phenotypic traits and other information, see the Supplementary 

results section.
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Trait studied # of Matches 

Tissue 255 

Gestational age 156 

Smoking 65 

HIV infection 49 

Rheumatoid arthritis 43 

Fetal vs adult liver 41 

Clear cell renal carcinoma 29 

Sex 29 

Maternal smoking in pregnancy 28 

Age 26 

Primary Sjogrens syndrome 20 

Schizophrenia 19 

Age 4 vs age 0 15 

Pancreatic ductal adenocarcinoma 11 

Frontotemporal dementia 9 

Body mass index 8 

Alcohol consumption per day 7 

Attention deficit hyperactivity 
disorder 

5 

Child abuse 4 

Juice consumption 4 

Progressive supranuclear palsy 4 

Air pollution exposure 3 

Ulcerative colitis 3 

Ageing 2 

Arm fat mass 2 

C-reactive protein 2 

Cholesterol esters in large VLDL 2 

Hypertensive disorders of pregnancy 2 

Inflammatory bowel disease 2 

Lung function decline 2 

Mean diameter for HDL particles 2 

Substance use 2 

Waist circumference 2 
Table 14: Matching traits in the Epigenome-wide association study catalogue57,58. 

Traits/phenotypes studied in the EWAS catalogue matching with most significant differentially 

methylated probes, with number of probes (matches) per trait. 
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DISCUSSIONS 

The main objective of this project is to investigate whether epigenetic 

modifications, and in particular DNA methylation, play a role on insulin resistance 

in clinically obese pediatric individuals.  

It is known that the insulin resistance is associated with several factors including 

BMI, age, sex, obesity, and others.  The subjects studied are children or pre-teenager 

(age range: 8 – 15 years old), with or without insulin resistance (IR vs IS), assessed 

by standard tests (OGTT and blood samples collection).  

Since obesity is one of the main risk factors for insulin resistance in the general 

population, we focused the study on obese individuals to control the influence of 

obesity on IR. Genome-wide DNA methylation profiling was studied because 

epigenetic modifications are supposed to be important players in strict connection 

with individual genomic profiles, transcriptomic regulations, and the environmental 

conditions in many complex phenotypes, including IR. 

The analysis investigated the methylation of 850k CpGs, using the Infinium Human 

Methylation EPIC microarray (by Illumina), in 186 obese children (95 IR and 91 

IS).   

The proportion of cell types in each individual was estimated using reference 

methylation profiles from blood cell types. A clear modulation of different cell 

types was observed between IR and IS. The different abundance of several cell 

types (i.e., B-cells, CD8, monocytes and neutrophils; see Table 2) suggested a 

possible role of general inflammation in insulin resistance. It could be hypothesized 

that common factors affecting IR contribute to cell type dysregulation, or that some 

cell populations contribute to disease or its severity. The present study cannot 

distinguish the true relationship between the two hypotheses. Furthermore, it would 

be interesting to study more in detail the impact of methylation in insulin resistance 

stratifying by sex although in the present study, the methylation component of sex 

was balanced out by design. It is noteworthy to mention, that the estimate of the 

cell type distributions derives from a mathematical model (deconvolution) and not 
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from an analytical molecular assay (e.g., cytofluorimetry) and therefore these 

results should be interpreted carefully. 

Interestingly, the analysis conducted using PCA method, showed a strong 

correlation of PC1 (main source of variability) with several IR-related parameters 

and distributions of 3 cell types (negative correlation: average glucose and insulin, 

CD8+ T lymphocytes, B cells, HOMA-IR; positive correlation: neutrophils, WBISI 

– see Figure 15). This confirms the previously observed association between IR 

and immune cell types and, suggests that the overall genome methylation (i.e., 

many CpG sites across the genomes) is associated with IR or related phenotypes.  

Of note, PC1 and PC2 correlated with cell type amounts, but following an opposite 

strength. The contrasting but still present association shows that the 2 main source 

of PCA variability (PC1 and PC2) are both linked to cell populations. Specifically, 

the correlation involved CD8+ T cell, neutrophil, and NK cells (both PC1 and PC2). 

Although the PCA was conducted using autosome probes only, sex showed a 

correlation with PC6 and PC9 (opposite strength) suggesting that sex influences 

methylation status on many loci at genome level.  

Differential methylation analysis was performed both on single probes (DMPs) or 

on CpG regions (DMRs), to study the association of IR with methylation of either 

single CpGs or chromosomal regions (of variable length).  

The strongest 10 associations of IR with methylation of chromosomal regions 

(41305 regions in total overlapping 20770 genes both protein and non-protein 

coding; see Supplementary results) were observed to mainly map on 3 

chromosomes (chromosome 6, 12 and 2; see Table 7).  The genes mapping in the 

top 10 DMRs (35 genes including TNXB, PBX, NOTCH4, MGST1, EHMT2, 

APOM, MEIS1, PPP1R18, VWA, RING1, etc.), to the author’s knowledge, have 

never been reported to be associated with insulin resistance. Additionally, DMR 

results are difficult to interpret since methylation affects genes in different locations 

(regulatory, coding, and inter-genic regions), making the connection of gene 

functions with the herein described methylation difficult. In the future it might be 

interesting to apply additional filtering (e.g., absolute Log-FC>0.6) to both DMPs 

and DMRs results retaining only probes/regions with higher difference between the 
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two groups under the hypothesis that those probes/regions would be biologically 

more relevant in IR. 

Since methylation is generally thought to play a role when multiple close CpGs are 

affected, we arbitrarily decided not to directly investigate the possible role of single 

CpGs and therefore we moved to study probe-associated genes under the hypothesis 

that they may belong to common functional pathways associated with IR. 

Gene set enrichment analysis was performed on statistically significant DMPs 

(~280K), employing multiple gene sets (as described above in Gene set 

enrichment analysis section), showing a high number of pathways/diseases, with 

several of them connected to insulin resistance or related metabolic conditions 

(Figure 18, Supplementary figure 4 - Supplementary figure 8). 

With the aim to investigate the individual’s methylation profile using the 647 most 

important DMPs (adjusted p-value<1e-7), we performed a hierarchical clustering 

(as described in the DMP based sample clustering section) of the 186 individuals 

regardless of IR status. The analysis showed 3 main clusters including 8 (cluster 1), 

84 (cluster 2A), and 94 (cluster 2B) individuals, respectively (Figure 21).  Cluster 

1 was entirely made up of IR subjects, whereas Cluster 2A was mainly composed 

by IS individuals (IS frequency: 78.6%; 66 IS and 18 IR) and Cluster 2B by IR 

individuals (IR frequency: 73.4%; 25 IS and 69 IR). The 8 samples of cluster 1 may 

identify a subgroup of IR individuals presenting shared features associated to a 

common condition as disease severity that would justify their separation from the 

others, which may also be due to other unknown factors that were not taken into 

consideration during the study design such as ethnicity, macro- or micro- nutrient 

deficiencies, development related conditions (e.g. polycystic ovary syndrome), 

maternal gestational diabetes or others59–61.  Epigenetics factors are likely to play 

in important role in IR since we observed the over-representation of IS and IR 

individuals in cluster 2A and 2B, respectively. Other important factors, such as gene 

variants and environmental/lifestyle factors, not investigated in this thesis should 

be taken into consideration together with methylation in the future studies. In 

addition, the 647 probes used for clustering, were also associated to traits reported 

in other studies, taken from the epigenome-wide association catalogue (EWAS 
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catalogue57,58) supporting the hypothesis that other factors may need to be 

investigated when studying insulin resistance such as, gestational age, maternal 

smoking during pregnancy, and others (Table 14). Intriguingly, preliminary results 

not reported in this thesis, show that the overall genome-wide methylation of insulin 

resistant subjects is different from the insulin sensitive ones, suggesting the 

involvement of DNA methylation in IR individuals at genome level. 

Finally, we point out that the approach employed, although accurate and reliable, 

can only detect DNA methylation and not all possible epigenetic modifications that 

might be involved in insulin resistance, which will be investigated in future studies. 

 

CONCLUSIONS 

In conclusion, we employed different bioinformatics strategies applied to a large 

cohort of individuals to study genome wide DNA methylation in IR. The results 

support the hypothesis that methylation plays a role in IR and that this condition is 

more related to general methylation landscape changes rather than methylation 

variations in a few loci. In the future, it might be interesting to replicate the results 

presented here on a different cohort as well as exploit the connection between 

epigenetics, genomics, transcriptomics, and IR to dissect the underlying 

mechanisms of this condition. 
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Software information 

All the analyses presented in this manuscript were carried out using R-4.0.3 

software for statistical computing. Many different packages were used to handle, 

process, and visualize data. The most important packages include: 

minfi:  

https://bioconductor.org/packages/release/bioc/html/minfi.html  

limma:  

https://bioconductor.org/packages/release/bioc/html/limma.html  

RColorBrewer:  

https://cran.r-project.org/web/packages/RColorBrewer/index.html  

missMethyl:  

http://bioconductor.org/packages/release/bioc/html/missMethyl.html  

DMRcate:  

https://bioconductor.org/packages/release/bioc/html/DMRcate.html  

stringr:  

https://www.rdocumentation.org/packages/stringr/versions/1.4.0  

FlowSorted.BloodEPIC: 

https://bioconductor.org/packages/release/data/experiment/html/FlowSorted.Bloo

d.EPIC.html  

IlluminaHumanMethylationEPICanno.ilm10b4.hg19: 

https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanM

ethylationEPICanno.ilm10b4.hg19.html  

IlluminaHumanMethylationEPICmanifest: 

https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanM

ethylationEPICmanifest.html  

ENmix:  

https://bioconductor.org/packages/release/bioc/html/ENmix.html  

sva:  

https://bioconductor.org/packages/release/bioc/html/sva.html  

ggplot2:  

https://cran.r-project.org/web/packages/ggplot2/index.html  

https://bioconductor.org/packages/release/bioc/html/minfi.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html
http://bioconductor.org/packages/release/bioc/html/missMethyl.html
https://bioconductor.org/packages/release/bioc/html/DMRcate.html
https://www.rdocumentation.org/packages/stringr/versions/1.4.0
https://bioconductor.org/packages/release/data/experiment/html/FlowSorted.Blood.EPIC.html
https://bioconductor.org/packages/release/data/experiment/html/FlowSorted.Blood.EPIC.html
https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylationEPICanno.ilm10b4.hg19.html
https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylationEPICanno.ilm10b4.hg19.html
https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylationEPICmanifest.html
https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylationEPICmanifest.html
https://bioconductor.org/packages/release/bioc/html/ENmix.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://cran.r-project.org/web/packages/ggplot2/index.html
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purrr:  

https://cran.r-project.org/web/packages/purrr/index.html  

broom:  

https://cran.r-project.org/web/packages/broom/index.html  

reshape2:  

https://cran.r-project.org/web/packages/reshape2/index.html  

pheatmap:  

https://www.rdocumentation.org/packages/pheatmap/versions/1.0.12  

dedextend:  

https://cran.r-project.org/web/packages/dendextend/index.html  

irlba:  

https://cran.r-project.org/web/packages/irlba/index.html  

dplyr:  

https://cran.r-project.org/web/packages/dplyr/index.html  

ggpubr:  

https://cran.r-project.org/web/packages/ggpubr/index.html  

enrichplot:  

http://bioconductor.org/packages/release/bioc/html/enrichplot.html  

clusterProfiler: 

https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html  

DOSE:  

https://www.bioconductor.org/packages/release/bioc/html/DOSE.html  

org.Hs.eg.db: 

https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html  

 

https://cran.r-project.org/web/packages/purrr/index.html
https://cran.r-project.org/web/packages/broom/index.html
https://cran.r-project.org/web/packages/reshape2/index.html
https://www.rdocumentation.org/packages/pheatmap/versions/1.0.12
https://cran.r-project.org/web/packages/dendextend/index.html
https://cran.r-project.org/web/packages/irlba/index.html
https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/ggpubr/index.html
http://bioconductor.org/packages/release/bioc/html/enrichplot.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://www.bioconductor.org/packages/release/bioc/html/DOSE.html
https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
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Supplementary results 

NOTE: Results for the following analyses:  

Probe-wide differential methylation analysis, region-wise differential methylation 

analysis, Gene set enrichment analysis for all gene sets previously cited, EWAS 

catalogue cross-referencing (from the DMP based sample clustering section); could 

not be added to this manuscript due to size limits, they will be available at the 

following OneDrive link in pdf format (file size ~114MB): 

https://univr-

my.sharepoint.com/:b:/g/personal/lucas_morondallator_univr_it/EXMB50I-

3ytNgIDbzEROLyYBq8PbConmP3DWgVVt30FB7A?e=HuDP2Y  

A complete list of the supplementary tables present in the external file can be found 

at page 59 of this document, accompanied by a brief description and page number. 

If the link is broken or non-functioning, please contact mdt.lucas@live.it and 

request a new link or a copy of the pdf document. 

 

https://univr-my.sharepoint.com/:b:/g/personal/lucas_morondallator_univr_it/EXMB50I-3ytNgIDbzEROLyYBq8PbConmP3DWgVVt30FB7A?e=HuDP2Y
https://univr-my.sharepoint.com/:b:/g/personal/lucas_morondallator_univr_it/EXMB50I-3ytNgIDbzEROLyYBq8PbConmP3DWgVVt30FB7A?e=HuDP2Y
https://univr-my.sharepoint.com/:b:/g/personal/lucas_morondallator_univr_it/EXMB50I-3ytNgIDbzEROLyYBq8PbConmP3DWgVVt30FB7A?e=HuDP2Y
mailto:mdt.lucas@live.it


67 

 

 

Supplementary table 1: Samples quality. Quality control plot showing the mean detection p-value 

for each sample. The red line marks the threshold above which samples are considered low quality 

(p-value≥0.05). Samples are divided in insulin resistant (orange) and insulin sensitive (green). 
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Supplementary figure 1: DNA methylation profiles of a duplicate sample. The figure shows the 

DNAm value of a duplicated sample N46 (x-axis N46; y-axis N46_2). Marginal distributions show the overall 

methylation profiles for the pair. Smaller points represent lower detP; Darker points represent higher mean 

absolute difference between β-values (of the couple). 

 

Supplementary figure 2: DNA methylation profiles of a duplicate sample. The figure shows the 

DNAm value of a duplicated sample N80 (x-axis N80; y-axis N80_2). Marginal distributions show the overall 

methylation profiles for the pair. Smaller points represent lower detP; Darker points represent higher mean 

absolute difference between β-values (of the couple). 



69 

 

 

Supplementary figure 3: DNA methylation profiles of a duplicate sample. The figure shows the 

DNAm value of a duplicated sample R45(x-axis R45; y-axis R45_2). Marginal distributions show the overall 

methylation profiles for the pair. Smaller points represent lower detP; Darker points represent higher mean 

absolute difference between β-values (of the couple). 

 

Cell type Mean 
IR 

Mean 
IS 

t-
statistics 

p-value degrees 
of 
freedom 

CI - low CI - high 

B cells 0.0832 0.0640 4.4459 1.53E-
05 

178.7916 0.0107 0.0278 

CD4+ T 
cells 

0.1062 0.1108 -0.8836 0.3781 183.6445 -0.0150 0.0057 

CD8+ T 
cells 

0.1531 0.1321 2.6964 0.0077 183.5945 0.0056 0.0363 

Monocytes 0.0678 0.0567 2.8976 0.0042 183.9883 0.0036 0.0187 

Neutrophils 0.5143 0.5524 -2.8967 0.0042 183.5700 -0.0641 -0.0122 

NK cells 0.0468 0.0449 0.4347 0.6643 183.6433 -0.0067 0.0104 

Supplementary table 2: Insulin resistance impact on cell composition. Results of t-test comparing 

insulin resistance status to Cell type proportions estimated during deconvolution. Each row contains 

the cell type tested, mean values for both groups (IR/IS), t-statistics, p-value, degrees of freedom 

and both bounds of the confidence interval (CI). 



70 

 

 

 

 

Supplementary figure 4: Network visualization from DisGenNet Ontologies. The graph shows 

nodes corresponding to DisGenNet Ontology (DGN) categories (Bold; black) and their shared 

associated genes (grey). Each edge is colored according to the DGN category, while gene nodes 

are colored according to the estimated fold change. The size of DGN categories dots is proportional 

to the number of genes within that category. For visualization purposes only genes shared among 

at least two categories are displayed.  

 

Cell type Mean 
F 

Mean 
M 

t-
statistics 

p-
value 

degrees 
of 
freedom 

CI - low CI - high 

B cells 0.0714 0.0757 -0.9449 0.3460 180.3480 -0.0133 0.0047 

CD4+ T 
cells 

0.1133 0.1045 1.6749 0.0957 175.6552 -0.0016 0.0192 

CD8+ T 
cells 

0.1409 0.1444 -0.4434 0.6580 181.5896 -0.0191 0.0121 

Monocytes 0.0596 0.0646 -1.2735 0.2045 174.0514 -0.0128 0.0028 

Neutrophils 0.5419 0.5256 1.2279 0.2210 183.6243 -0.0099 0.0426 

NK cells 0.0409 0.0500 -2.1382 0.0338 183.0779 -0.0174 -0.0007 

Supplementary table 3: Sex impact on cell composition. Results of t-test comparing sex to Cell type 

proportions estimated during deconvolution. Each row contains the cell type tested, mean values 

for both groups (M/F), t-statistics, p-value, degrees of freedom and both bounds of the confidence 

interval (CI). 
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Supplementary figure 5: Network visualization from KEGG. The graph shows nodes 

corresponding to KEGG Ontology categories (Bold; black) and their shared associated genes 

(grey). Each edge is colored according to the KEGG category, while gene nodes are colored 

according to the estimated fold change. The size of KEGG categories dots is proportional to the 

number of genes within that category. For visualization purposes only genes shared among at least 

two categories are displayed.  

 

 

Supplementary figure 6: Network visualization from Hallmark gene Ontologies. The graph shows 

nodes corresponding to mSigDB Hallmark gene Ontology categories (Bold; black) and their shared 

associated genes (grey). Each edge is colored according to the category, while gene nodes are 

colored according to the estimated fold change. The size of categories dots is proportional to the 

number of genes within that category. For visualization purposes only genes shared among at least 

two categories are displayed.  
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Supplementary figure 7: Network visualization from WikiPathways. The graph shows nodes 

corresponding to WikiPathways (WP) categories (Bold; black) and their shared associated genes 

(grey). Each edge is colored according to the WP category, while gene nodes are colored according 

to the estimated fold change. The size of WP categories dots is proportional to the number of genes 

within that category. For visualization purposes only genes shared among at least two categories 

are displayed.  

 

 

Supplementary figure 8: Network visualization from Reactome pathways. The graph shows nodes 

corresponding to Reactome pathways (RP) categories (Bold; black) and their shared associated 

genes (grey). Each edge is colored according to the RP category, while gene nodes are colored 

according to the estimated fold change. The size of RP categories dots is proportional to the number 

of genes within that category. For visualization purposes only genes shared among at least two 

categories are displayed.  
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Supplementary figure 9: DisGenNet gene-set enrichment analysis. For each category (y-axis) the 

relative number of genes is showed (x-axis) while the absolute number is encoded in the dot size. 

Dots are colored according to the GSEA estimated adjusted p-value. Due to software limitations, 

legend scales for Count and adjusted p-value don’t reflect the data shown but the total data from 

which this graph was derived. 
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Supplementary figure 10: KEGG gene-set enrichment analysis. For each category (y-axis) the 

relative number of genes is showed (x-axis) while the absolute number is encoded in the dot size. 

Dots are colored according to the GSEA estimated adjusted p-value. Due to software limitations, 

legend scales for Count and adjusted p-value don’t reflect the data shown but the total data from 

which this graph was derived. 
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Supplementary figure 11: mSigDB Hallmark Ontology gene-set enrichment analysis. For each 

category (y-axis) the relative number of genes is showed (x-axis) while the absolute number is 

encoded in the dot size. Dots are colored according to the GSEA estimated adjusted p-value. Due 

to software limitations, legend scales for Count and adjusted p-value don’t reflect the data shown 

but the total data from which this graph was derived. 
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Supplementary figure 12: WikiPathways gene-set enrichment analysis. For each category (y-axis) 

the relative number of genes is showed (x-axis) while the absolute number is encoded in the dot size. 

Dots are colored according to the GSEA estimated adjusted p-value. Due to software limitations, 

legend scales for Count and adjusted p-value don’t reflect the data shown but the total data from 

which this graph was derived. 

 



77 

 

 

Supplementary figure 13: Reactome Pathways gene-set enrichment analysis. For each category 

(y-axis) the relative number of genes is showed (x-axis) while the absolute number is encoded in the 

dot size. Dots are colored according to the GSEA estimated adjusted p-value. Due to software 

limitations, legend scales for Count and adjusted p-value don’t reflect the data shown but the total 

data from which this graph was derived. 
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Feature tested estimate p-value CI - low CI - high 

Sample_Plate 7.4239 0.0645 0.9232 340.5305 

Sample_Group 0.0000 0.0068 0.0000 0.5829 

Sex 0.1100 0.0238 0.0024 0.8849 
Supplementary table 5: Features impact on clustering. Comparing Cluster 1 and 2 (k=2) with all 

clinical features and cell type proportions using Fisher’s test. Each row contains the feature tested, 

mean value estimated, p-value and both bounds of the confidence interval (CI). 

 

 

Feature 
tested 

Mean 
Cluster1 

Mean 
Cluster2 

t-
statistics 

p-
value 

degrees 
of 
freedom 

CI - low CI - high 

Weight 79.0625 73.6600 0.7144 0.4872 13.4426 -10.8798 21.6848 

BMI 33.3798 32.1330 0.5365 0.6006 13.0865 -3.7706 6.2641 

Height 1.5373 1.5044 0.8814 0.3915 15.5573 -0.0463 0.1120 

Waist 94.0000 91.8333 0.4834 0.6368 13.1108 -7.5087 11.8421 

PAD 70.1250 67.5714 0.3830 0.7079 12.9496 -11.8554 16.9625 

PAS 115.3750 108.7143 1.0496 0.3166 10.8931 -7.3232 20.6446 

Age 12.0595 12.1493 -0.1133 0.9112 15.6643 -1.7724 1.5928 

G0 78.0000 75.0000 0.5790 0.5708 15.6811 -8.0014 14.0014 

G30 137.0000 115.6000 2.1961 0.0446 14.6658 0.5889 42.2111 

G60 122.8750 114.0000 0.8415 0.4126 15.8150 -13.5037 31.2537 

G90 112.6250 108.4000 0.3819 0.7083 14.0058 -19.5028 27.9528 

G120 108.0000 103.5000 0.4337 0.6723 11.7998 -18.1497 27.1497 

I0 43.3625 8.4500 8.2259 4.58E-
05 

7.6629 25.0499 44.7751 

I30 240.0500 64.7000 4.7845 0.0011 8.6805 91.9760 258.7240 

I60 227.9375 43.4400 6.0381 0.0004 7.7576 113.6514 255.3436 

I90 194.9625 46.2600 4.6738 0.0016 7.9137 75.1951 222.2099 

I120 166.1250 57.7800 3.5864 0.0054 9.4859 40.5353 176.1547 

HOMA-IR 8.4142 1.5511 6.9079 0.0002 7.4886 4.5445 9.1816 

Avg glucose 111.7000 103.3000 1.2270 0.2377 15.9232 -6.1190 22.9190 

Avg insulin 174.4875 44.1260 6.2003 0.0003 7.9345 81.8078 178.9152 

WBISI 1.3170 6.4897 -10.7286 1.01E-
06 

9.7741 -6.2503 -4.0950 

IGI 3.3982 1.4582 3.2575 0.0070 11.8033 0.6400 3.2401 

CD8+ T cells 0.1896 0.1286 3.3170 0.0059 12.3436 0.0210 0.1009 

CD4+ T cells 0.0933 0.1165 -1.3866 0.1849 15.7659 -0.0589 0.0124 

NK cells 0.0517 0.0338 1.8214 0.0967 10.6479 -0.0038 0.0395 

B cells 0.1047 0.0703 2.0781 0.0560 14.4641 -0.0010 0.0698 

Monocytes 0.0534 0.0477 0.7196 0.4821 16.0000 -0.0111 0.0226 

Neutrophils 0.4987 0.5671 -1.8842 0.0786 15.3637 -0.1457 0.0088 

Supplementary table 4: Features impact on clustering. Comparing Cluster 1 and 2 (k=2) with all 

clinical features and cell type proportions using t-test. Each row contains the feature tested, mean 

value for Cluster 1 and 2, t-statistics, p-value, degrees of freedom and both bounds of the confidence 

interval (CI). 
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Feature 
tested 

Mean 
Cluster1 

Mean 
Cluster2A 

t-
statistics 

p-value degrees 
of 
freedom 

CI - low CI - high 

Weight 79.0625 68.9600 1.4343 0.1733 14.0902 -4.9958 25.2008 

BMI 33.3798 30.6799 1.4597 0.1648 15.1661 -1.2387 6.6384 

Height 1.5373 1.4868 1.2812 0.2194 15.1086 -0.0334 0.1343 

Waist 94.0000 86.5556 1.9790 0.0669 14.6860 -0.5885 15.4774 

PAD 70.1250 67.0000 0.5400 0.5994 11.6117 -9.5298 15.7798 

PAS 115.3750 110.3333 0.8927 0.3919 10.5837 -7.4493 17.5326 

Age 12.0595 10.6519 1.9567 0.0681 15.9983 -0.1174 2.9326 

G0 78.0000 81.2000 -0.7763 0.4549 10.3743 -12.3405 5.9405 

G30 137.0000 126.9000 0.8671 0.3987 15.9542 -14.5980 34.7980 

G60 122.8750 121.9000 0.0901 0.9293 15.6635 -21.9991 23.9491 

G90 112.6250 112.7000 -0.0068 0.9947 13.9991 -23.7971 23.6471 

G120 108.0000 113.0000 -0.4829 0.6380 11.7322 -27.6147 17.6147 

I0 43.3625 7.9900 8.3591 4.38E-
05 

7.5756 25.5184 45.2266 

I30 240.0500 55.6300 5.2143 0.0010 7.6021 102.1118 266.7282 

I60 227.9375 44.6800 5.9724 0.0004 7.8826 112.3162 254.1988 

I90 194.9625 42.7100 4.8668 0.0015 7.4168 79.1119 225.3931 

I120 166.1250 39.8700 4.4520 0.0025 7.5401 60.1578 192.3522 

HOMA-IR 8.4142 1.5840 6.9060 0.0002 7.3577 4.5144 9.1460 

Avg glucose 111.7000 111.1400 0.0938 0.9265 15.4641 -12.1339 13.2539 

Avg insulin 174.4875 38.1760 6.6661 0.0003 7.1233 88.1275 184.4955 

WBISI 1.3170 6.2966 -18.2423 7.10E-
10 

11.5527 -5.5769 -4.3823 

IGI 3.3982 1.0771 4.3511 0.0022 8.3212 1.0992 3.5430 

CD8+ T 
cells 

0.1896 0.1736 0.7709 0.4527 15.1260 -0.0282 0.0601 

CD4+ T 
cells 

0.0933 0.1193 -1.4528 0.1665 15.2800 -0.0643 0.0121 

NK cells 0.0517 0.0543 -0.2040 0.8409 15.9942 -0.0302 0.0249 

B cells 0.1047 0.0767 2.0188 0.0729 9.4024 -0.0032 0.0592 

Monocytes 0.0534 0.0562 -0.3417 0.7371 15.9103 -0.0204 0.0148 

Neutrophils 0.4987 0.4834 0.4788 0.6402 12.6470 -0.0540 0.0847 

Supplementary table 6: Features impact on clustering. Comparing Cluster 1 and 2A (k=3) with all 

clinical features and cell type proportions using t-test. Each row contains the feature tested, mean 

value for Cluster 1 and 2A, t-statistics, p-value, degrees of freedom and both bounds of the 

confidence interval (CI). 

Feature tested estimate p-value CI - low CI - high 

Sample_Plate 7.1900 0.0613 0.8690 335.3593 

Sample_Group 0.0000 0.1943 0.0000 1.7595 

Sex 0.1078 0.0228 0.0023 0.8929 

Supplementary table 7: Features impact on clustering. Comparing Cluster 1 and 2A (k=3) with all 

clinical features and cell type proportions using Fisher’s test. Each row contains the feature tested, 

mean value estimated, p-value and both bounds of the confidence interval (CI). 
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Feature 
tested 

Mean 
Cluster2A 

Mean 
Cluster2B 

t-
statistic
s 

p-value degrees 
of 
freedom 

CI - low CI - high 

Weight 74.2378 71.3300 0.5356 0.6022 11.7507 -8.9479 14.7634 

BMI 32.1537 31.6436 0.2885 0.7783 10.9139 -3.3848 4.4050 

Height 1.5102 1.4971 0.3792 0.7116 11.1802 -0.0628 0.0890 

Waist 92.8500 91.0000 0.5411 0.5964 14.9880 -5.4372 9.1372 

PAD 66.5571 67.5000 -0.2121 0.8373 8.0492 -11.1844 9.2987 

PAS 115.7429 109.0000 0.9767 0.3585 7.6788 -9.2937 22.7794 

Age 11.6016 12.0720 -0.6903 0.5043 11.0298 -1.9696 1.0289 

G0 80.8936 75.0000 1.6260 0.1356 9.8183 -2.2030 13.9902 

G30 127.2447 113.9000 2.2450 0.0433 12.6583 0.4675 26.2218 

G60 119.0426 107.0000 1.3643 0.2006 10.6637 -7.4609 31.5460 

G90 113.2128 100.9000 2.4736 0.0281 12.8755 1.5484 23.0771 

G120 110.7872 99.2000 2.3189 0.0407 10.9780 0.5865 22.5879 

I0 33.5335 8.3300 10.9446 8.19E-19 100.2953 20.6349 29.7721 

I30 163.6517 62.2500 6.2324 1.37E-06 25.9209 67.9529 134.8505 

I60 162.8007 46.3400 8.5732 3.87E-12 62.3336 89.3089 143.6125 

I90 129.1704 44.5200 6.5521 9.46E-08 38.4551 58.5064 110.7945 

I120 110.7851 54.5400 3.8336 0.0015 16.0342 25.1483 87.3420 

HOMA-IR 6.6984 1.5266 11.3019 1.35E-19 100.3879 4.2640 6.0797 

Avg glucose 110.2362 99.2000 2.3428 0.0394 10.8061 0.6452 21.4271 

Avg insulin 119.9883 43.1960 8.4534 1.17E-10 42.6231 58.4677 95.1169 

WBISI 2.8598 6.7982 -7.2003 3.45E-06 14.6984 -5.1064 -2.7705 

IGI 3.2153 1.4249 4.2210 0.0002 27.9883 0.9215 2.6592 

CD8+ T cells 0.1671 0.1154 3.8133 0.0022 12.8155 0.0224 0.0810 

CD4+ T cells 0.1106 0.1123 -0.1307 0.8984 10.9601 -0.0300 0.0266 

NK cells 0.0516 0.0384 1.6227 0.1286 13.0084 -0.0044 0.0307 

B cells 0.0827 0.0593 2.3998 0.0351 11.0811 0.0020 0.0449 

Monocytes 0.0681 0.0471 3.6447 0.0021 16.2809 0.0088 0.0332 

Neutrophils 0.4901 0.5883 -3.7501 0.0029 11.6164 -0.1554 -0.0409 

Supplementary table 8: Features impact on clustering. Comparing Cluster 2A and 2B (k=3) with 

all clinical features and cell type proportions using t-test. Each row contains the feature tested, 

mean value for Cluster 2A and 2B, t-statistics, p-value, degrees of freedom and both bounds of the 

confidence interval (CI). 

Feature tested estimate p-value CI - low CI - high 

Sample_Plate 1.0538 0.8816 0.5610 1.9818 

Sample_Group 0.1004 2.23E-12 0.0464 0.2081 

Sex 1.0624 0.8802 0.5620 2.0084 
Supplementary table 9: Features impact on clustering. Comparing Cluster 2A and 2B (k=2) with 

all clinical features and cell type proportions using Fisher’s test. Each row contains the feature 

tested, mean value estimated, p-value and both bounds of the confidence interval (CI). 
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Feature 
tested 

Mean 
Cluster1 

Mean 
Cluster2B 

t-
statistics 

p-value digrees 
of 
freedom 

CI - low CI - high 

Weight 79.0625 71.3300 1.2477 0.2309 15.2723 -5.4567 20.9217 

BMI 33.3798 31.6436 0.8752 0.3957 14.5210 -2.5044 5.9767 

Height 1.5373 1.4971 1.0159 0.3257 15.0762 -0.0440 0.1243 

Waist 94.0000 91.0000 0.7855 0.4438 15.8016 -5.1051 11.1051 

PAD 70.1250 67.5000 0.4101 0.6880 13.8597 -11.1180 16.3680 

PAS 115.3750 109.0000 0.8345 0.4223 10.6630 -10.5035 23.2535 

Age 12.0595 12.0720 -0.0155 0.9878 15.5526 -1.7233 1.6983 

G0 78.0000 75.0000 0.5859 0.5664 15.5662 -7.8798 13.8798 

G30 137.0000 113.9000 2.4983 0.0261 13.4779 3.1964 43.0036 

G60 122.8750 107.0000 1.4852 0.1572 15.7396 -6.8147 38.5647 

G90 112.6250 100.9000 1.1896 0.2599 10.6897 -10.0447 33.4947 

G120 108.0000 99.2000 0.8732 0.4014 10.8860 -13.4092 31.0092 

I0 43.3625 8.3300 8.2882 4.76E-
05 

7.5421 25.1815 44.8835 

I30 240.0500 62.2500 4.8364 0.0010 8.7768 94.3138 261.2862 

I60 227.9375 46.3400 5.9108 0.0004 7.9208 110.6262 252.5688 

I90 194.9625 44.5200 4.6966 0.0015 8.1177 76.7623 224.1227 

I120 166.1250 54.5400 3.6496 0.0046 9.8699 43.3382 179.8318 

HOMA-IR 8.4142 1.5266 6.9580 0.0002 7.3826 4.5713 9.2039 

Avg glucose 111.7000 99.2000 1.9982 0.0631 15.8681 -0.7705 25.7705 

Avg insulin 174.4875 43.1960 6.1932 0.0002 8.1835 82.5964 179.9866 

WBISI 1.3170 6.7982 -11.1218 7.49E-
07 

9.7399 -6.5833 -4.3791 

IGI 3.3982 1.4249 3.2936 0.0064 11.9854 0.6677 3.2789 

CD8+ T 
cells 

0.1896 0.1154 3.7441 0.0021 14.2984 0.0318 0.1166 

CD4+ T 
cells 

0.0933 0.1123 -1.1880 0.2522 15.9688 -0.0529 0.0149 

NK cells 0.0517 0.0384 1.1617 0.2638 14.7629 -0.0111 0.0376 

B cells 0.1047 0.0593 2.8716 0.0128 13.3857 0.0113 0.0795 

Monocytes 0.0534 0.0471 0.8707 0.3972 15.4654 -0.0091 0.0216 

Neutrophils 0.4987 0.5883 -2.4727 0.0256 15.3320 -0.1667 -0.0125 

Supplementary table 10: Features impact on clustering. Comparing Cluster 1 and 2B (k=3) with 

all clinical features and cell type proportions using t-test. Each row contains the feature tested, 

mean value for Cluster 1 and 2B, t-statistics, p-value, degrees of freedom and both bounds of the 

confidence interval (CI). 

Feature tested estimate p-value CI - low CI - high 

Sample_Plate 7.5610 0.0590 0.9074 354.1202 

Sample_Group 0.0000 1.68E-05 0.0000 0.1829 

Sex 0.1147 0.0257 0.0024 0.9565 

Supplementary table 11: Features impact on clustering. Comparing Cluster 1 and 2B (k=3) with 

all clinical features and cell type proportions using Fisher’s test. Each row contains the feature 

tested, mean value estimated, p-value and both bounds of the confidence interval (CI). 
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Feature 
tested 

Mean 
Cluster1 

Mean all 
other IR 

t-
statistics 

p-value digrees 
of 
freedom 

CI - low CI - high 

Weight 79.0625 80.8700 -0.2316 0.8204 13.1698 -18.6489 15.0339 

BMI 33.3798 33.7112 -0.1378 0.8925 12.8091 -5.5358 4.8729 

Height 1.5373 1.5392 -0.0566 0.9556 15.9654 -0.0750 0.0711 

Waist 94.0000 96.3500 -0.6678 0.5138 15.9900 -9.8102 5.1102 

PAD 70.1250 63.7500 1.1300 0.2807 11.9256 -5.9256 18.6756 

PAS 115.3750 119.7500 -0.6613 0.5210 11.9627 -18.7955 10.0455 

Age 12.0595 11.9548 0.1652 0.8710 14.9256 -1.2464 1.4558 

G0 78.0000 80.2000 -0.5309 0.6065 10.5411 -11.3693 6.9693 

G30 137.0000 124.0000 1.5158 0.1571 11.2885 -5.8172 31.8172 

G60 122.8750 102.4000 2.3711 0.0317 14.8957 2.0584 38.8916 

G90 112.6250 111.6000 0.0968 0.9244 12.8781 -21.8761 23.9261 

G120 108.0000 108.1000 -0.0097 0.9924 11.4841 -22.5897 22.3897 

I0 43.3625 38.4400 0.8754 0.3949 15.2943 -7.0424 16.8874 

I30 240.0500 318.9860 -1.4831 0.1575 15.9871 -
191.7730 

33.9010 

I60 227.9375 201.4970 0.6088 0.5512 15.9330 -65.6586 118.5396 

I90 194.9625 173.2720 0.5835 0.5698 12.7546 -58.7800 102.1610 

I120 166.1250 150.9500 0.4557 0.6564 12.5341 -57.0403 87.3903 

HOMA-IR 8.4142 7.6791 0.5596 0.5839 15.1803 -2.0619 3.5321 

Avg glucose 111.7000 105.2600 1.2431 0.2368 12.4181 -4.8053 17.6853 

Avg insulin 174.4875 176.6290 -0.0836 0.9346 13.8878 -57.1553 52.8723 

WBISI 1.3170 1.4137 -0.6832 0.5043 15.8667 -0.3967 0.2034 

IGI 3.3982 6.2694 -4.7189 0.0005 12.4462 -4.1916 -1.5508 

CD8+ T 
cells 

0.1896 0.1475 2.1032 0.0533 14.5096 -0.0007 0.0849 

CD4+ T 
cells 

0.0933 0.0992 -0.3442 0.7353 15.6536 -0.0422 0.0304 

NK cells 0.0517 0.0395 1.0913 0.2932 14.2647 -0.0117 0.0360 

B cells 0.1047 0.0788 1.5933 0.1333 14.0560 -0.0089 0.0607 

Monocytes 0.0534 0.0622 -0.7519 0.4654 13.0464 -0.0341 0.0165 

Neutrophils 0.4987 0.5359 -0.9788 0.3424 15.8070 -0.1178 0.0434 

Supplementary table 12: Features impact on clustering. Comparing Cluster 1 and other IR samples 

with all clinical features and cell type proportions using t-test. Each row contains the feature tested, 

mean value for Cluster 1 and remaining IR samples, t-statistics, p-value, degrees of freedom and 

both bounds of the confidence interval (CI). 

  estimate p-value CI - low CI - high 

Sample_Plate 6.7305 0.0647 0.8095 314.8494 

Gender 0.1079 0.0228 0.0023 0.8976 

Supplementary table 13: Features impact on clustering. Comparing Cluster 1 and remaining IR 

with all clinical features and cell type proportions using Fisher’s test. Each row contains the feature 

tested, mean value estimated, p-value and both bounds of the confidence interval (CI). 
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