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ABSTRACT 

Companies cannot reliably predict which patents are likely to be 
asserted against them. If they could, they would be better able to quantify 
and mitigate their own patent infringement risk. We used machine learning 
methods, informed by legal scholars’ understanding of relevant patent traits, 
to improve on prior attempts to predict litigation. 

We built primarily on Colleen Chien’s Predicting Patent Litigation. 
Chien used traits from a patent’s legal history and developed a method of 
prediction based on the traits acquired before litigation, but not after. She 
demonstrated that the traits acquired before litigation are useful predictors. 
Evaluating Chien’s approach, we determined that her logistic regression 
model was generalizable—that is, not overfit to her training sample—though 
it does not perform as well on real datasets as her matched-pairs evaluation 
suggested. We found that year-over-year changes in patenting and litigation 
will hinder real-world prediction with this approach, but only modestly. 

Building a much larger dataset of newer patents, and selecting machine 
learning models tailored to the task, we improved on Chien’s results. Our 
random forest model had a 7.8% greater area under the precision-recall 
curve, and it could allow a company to narrow its patent clearance search to 
a set of patents up to 34% smaller, compared to Chien’s logistic regression 
approach. We report our results on a random sample of patents using 
standardized metrics, providing a baseline for future work predicting patent 
litigation. 
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I. INTRODUCTION: THE “WAIT AND SEE” APPROACH TO PATENT
LITIGATION RISK AND ALTERNATIVES 

High-tech companies bear risks and costs because they cannot reliably 
predict which patents will be asserted against them. Big data and machine 
learning can help, though few have used them for this problem. We use 
machine learning to predict which patents will be litigated, building on legal 
scholars’ and economists’ knowledge of the patent traits associated with 
litigation. With simple machine learning models, we made a measurable 
improvement over scholars’ past work. A small company in the high-tech 
sector could use our models to narrow its patent clearance searches to the 
universe of patents most likely to be asserted against it. 

An emerging company in the high-tech sector faces great uncertainty 
around patent infringement liability. Over 300,000 utility patents are issued 
every year,1 and the vast majority are never enforced through litigation.2 
How is a small company to know and mitigate its risk? Reviewing every 
patent related to the company’s technology would be too expensive and time 
consuming. The company could have tens of thousands of patents to review 
and would find it unclear whether each patent reads on the company’s 
product.3 Designing around the thousands of patents4 that may read on the 
company’s technology might be impossible. Even if the company could find 
a design-around, it would have to expend tremendous resources and forego 
promising opportunities just to design around patents that never posed a 
litigation risk. Exhaustive patent clearance searches, or freedom to operate 
analyses, have such severe shortcomings that they have not historically been 
the norm in high-tech as they are in, for example, life sciences.5 Without a 

1. U.S. Patent Statistics Summary Table, Calendar Years 1963 to 2019, USPTO,
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm (last visited Jul. 19, 2020). 

2. Infra, Part III.B; Mark A. Lemley, Rational Ignorance at the Patent Office, 95 NW. U. L. REV.
1495, 1507 (2001) (finding that about 1.5% of all patents are litigated). 

3. See Janet Freilich & Jay P. Kesan, Towards Patent Standardization, 30 HARV. J. L. & TECH.
233, 239–40 (2017) (describing the lack of standardization in patent terminology, particularly in software, 
and its effect on notice and disclosure functions of patent law). 

4. As an extreme example, RPX found in the early 2010s that 250,000 in-force patents related to
smartphones, Daniel O’Connor, One in Six Active U.S. Patents Pertain to the Smartphone, DISRUPTIVE 
COMPETITION PROJECT (Oct. 17, 2012), https://www.project-disco.org/intellectual-property/one-in-six-
active-u-s-patents-pertain-to-the-smartphone/, and the assets of 30,000 patent holders cover Bluetooth 
technology alone, Evan Engstrom, So How Many Patents Are in a Smartphone?, ENGINE, 
https://www.engine.is/news/category/so-how-many-patents-are-in-a-smartphone (last visited Aug. 11, 
2020). 

5. See Kent Richardson & Erik Oliver, When Strategies Collide: Freedom to Operate vs. Freedom
of Action, IP WATCHDOG (Mar. 7, 2019), https://www.ipwatchdog.com/2019/03/07/when-strategies-
collide-freedom-to-operate-vs-freedom-of-action/id=107084/. 
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reliable way to narrow its focus to the patents most likely to be litigated, the 
company is instead likely to advise employees not to read or discuss patents.6 

Some firms could review competitors’ patenting and litigation activity 
to narrow their focus, but not this small tech company. While litigation risk 
in life sciences comes primarily from known competitors, a tech company 
faces risk not just from its competitors but also from nonpracticing entities 
(NPEs) or “patent trolls.”7 And while large companies can look to patent 
assertions by existing NPEs to see what technologies are at risk, a small 
company is more likely to be a new NPE’s first target.8 

The company could try to deter litigation by building a defensive patent 
portfolio. With enough patents of its own, a company could respond to a 
patent infringement suit from a competitor with the credible threat of a 
countersuit. The company could deter litigation from other practicing 
companies. But defensive portfolios are an expensive solution and ultimately 
contribute to the patent troll problem. The company would have to spend 
hundreds of thousands of dollars prosecuting all its patents, and then paying 
maintenance fees. Even the largest portfolio would not deter nonpracticing 
entities, who do not make any product or provide any service that could be 
the subject of an infringement case. And if the company falls on hard times, 
it may have to sell the patent assets to NPEs, fueling the troll problem. 

The company will probably find that the best strategy is a combination 
approach that may include joining a defensive aggregator and one or more 
patent pledges, insuring against its risk, rapidly responding to demand letters, 

6. See Lisa Larrimore Ouellette, Who Reads Patents?, 35 NATURE BIOTECHNOLOGY 421 (2017)
(finding with a survey that 37% of industry researchers in electronics and software had been instructed 
not to read patents). A further reason companies avoid reading patents is that knowing of the patent can 
lead to heightened liability for willful patent infringement. See Christopher B. Seaman, Willful Patent 
Infringement and Enhanced Damages after In Re Seagate: An Empirical Study, 97 IOWA L. REV. 417 
(2012) (describing the willfulness requirement for enhanced damages in patent infringement cases, and 
finding only a small decline in willfulness findings after the Federal Circuit raised the standard for 
willfulness in In re Seagate). 

7. FEDERAL TRADE COMMISSION, PATENT ASSERTION ENTITY ACTIVITY: AN FTC STUDY 128,
134 (Oct. 2016) (confirming earlier reports that the vast majority of patents asserted by PAEs relate to 
computers, communications, and other electronics); James Bessen & Michael J. Meurer, The Direct Costs 
from NPE Disputes, 99 CORNELL L. REV. 387 (2014) (estimating $29 billion of direct costs from NPE 
litigation in 2011, falling mostly on small and medium-sized firms). 

8. NPEs often target smaller companies first, to test their patents and fund future litigation.
Colleen Chien, Startups and Patent Trolls, 17 STAN. TECH. L. REV. 461, 477–78 (2014) (providing survey 
evidence and anecdotes showing how PAEs use assertions against large companies to “legitimize” their 
patents and royalty rates when they go after large companies); Bessen & Meurer, supra note 13 
(quantifying the costs of NPE litigation for small and medium-sized companies); cf. John R. Allison et 
al., Patent Quality and Settlement among Repeat Patent Litigants, 99 GEO. L. J. 677, n.11 (2011) 
(acknowledging this strategy, but finding that many of the most-litigated patents were asserted in parallel 
against multiple defendants, not in series). 
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and challenging patents before the Patent Trial and Appeal Board (PTAB).9 
New aggregators, insurers, pledges, and other organizations have made this 
combination approach a viable way to reduce risk. Still, costs and uncertainty 
remain  as long as neither the company nor the organizations it joins can 
anticipate patent assertions. 

The company’s combination approach may involve defensive 
aggregation. Instead of filing its own patent applications, the company could 
buy patents from other companies before they get into the hands of 
aggressive asserters. This defensive aggregation approach benefits the 
company both by deterring threats from practicing companies and by 
preventing threats from NPEs. The company could act individually or as part 
of a collective. Defensive patent aggregator organizations like RPX and AST 
keep patents out of the hands of nonpracticing entities by purchasing them 
directly.10 Defensive aggregation is an imperfect solution without a reliable 
way to predict the incidence of patent litigation. The company would 
inevitably pay, directly or through an organization, to license and acquire 
patents that would never have been asserted. 

If more patents contribute to the problem, eliminating patents could 
help. Individual companies, along with organizations like Unified Patents 
and RPX, challenge questionably-valid patents in inter partes review (IPR) 
at the PTAB to prevent them from being asserted in more costly district court 
litigation.11 PTAB challenges are likewise an imperfect solution without a 
reliable way to predict the incidence of patent litigation. IPR petitioners have 
two choices: challenge patents preemptively or wait until the patents are 
asserted in demand letters or district court litigation. Taking the first route, 
petitioners waste resources challenging patents that never would have been 
asserted. Taking the second route, alleged infringers incur the costs of 
litigation and settlement, especially if the court refuses to stay litigation.12 

A number of insurers cover patent litigation, with products tailored to 
patent holders or defendants, and some specifically protect against NPE 

9. MARTA BELCHER & JOHN CASEY, HACKING THE PATENT SYSTEM: A GUIDE TO ALTERNATIVE 
PATENT LICENSING FOR INNOVATORS (2016) (summarizing these new approaches as a resource to 
companies in the high-tech sector). 

10. Patent Sales, RPX, https://www.rpxcorp.com/platform/patent-sales/ (last visited Aug. 4, 2020);
Interested in Selling to AST?, ALLIED SECURITY TRUST, https://ast.com/sell-to-ast/ (last visited Aug. 4, 
2020). 
 11.  Success at Challenging Bad Patents, UNIFIED PATENTS, 
https://www.unifiedpatents.com/success (last visited Aug. 4, 2020); Patent Quality Initiative, RPX, 
http://www.rpxcorp.com/platform/patentqualityinitiative/ (last visited Aug. 4, 2020). 

12. Forrest McClellen et al., How Increased Stays Pending IPR May Affect Venue Choice, LAW360
(Oct. 17, 2012), https://www.law360.com/articles/1220066/how-increased-stays-pending-ipr-may-
affect-venue-choice (finding district courts grant about three-quarters of motions for stays pending IPR 
decisions). 
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litigation.13 Insurers that cannot predict which patents create litigation risk 
may only offer protection against certain known patents.14 Insurance is still 
mostly a wait-and-see approach—the firm reacts to demand letters and 
lawsuits, instead of proactively eliminating the chance of litigation.15 IPRs 
and defensive aggregation, along with patent pledges, can all be part of a 
combination approach, but each is effective only for a limited set of patents. 
Overall, even the combination approach cannot be maximally effective 
without a good way to predict litigation. 

II. LITERATURE REVIEW: PRIOR ATTEMPTS TO PREDICT LITIGATION

Attempting to confront these limitations, Professor Colleen Chien built
a model in 2011 to predict whether a patent would be litigated.16 Chien’s 
work, which she introduced in Predicting Patent Litigation, has been cited 
as a step toward improving certainty about the value of a given patent.17 
Chien’s work was an important step toward untangling the causal 
relationships between litigation and indicators of patent value,18 the scope of 

 13.  Policies Available, INTELLECTUAL PROPERTY INSURANCE, 
https://patentinsuranceonline.com/policies-available (last visited Aug. 4, 2020); Patent Risk: Now It Can 
Be Insured, RPX INSURANCE SERVICES, http://www.rpxinsurance.com/ (last visited Aug. 4, 2020); The 
ANA to Provide Patent Troll Insurance, ANA, https://www.ana.net/content/show/id/36150 (last visited 
Aug. 4, 2020); Aon Launches Insurance Solution for Intellectual Property Liability, AON, 
https://aon.mediaroom.com/news-releases?item=137726 (last visited Aug. 4, 2020). 

14. See Bernhard Ganglmair et al., The Effect of Patent Litigation Insurance: Theory and Evidence
from NPEs 3–4 (Sep. 2018) (unpublished manuscript), https://www.ssrn.com/abstract=3279130 
(describing IPISC’s NPE defense policy, which covers a closed list of patents). 

15. See Alex Butler, Patent Risk Management and Controlling Patent Litigation Costs, IPVISION,
http://info.ipvisioninc.com/IPVisions/bid/21987/Patent-Risk-Management-and-Controlling-Patent-
Litigation-Costs (last visited Aug. 7, 2020) (data driven IP consulting company advising companies to 
take a “proactive” approach to NPE litigation by strategizing in the first 48-72 hours after receiving a 
demand letter); John A. Amster, 3 Things Every Entrepreneur Should Know About Patent Risk, 
ENTREPRENEUR (Jul. 17, 2014), https://www.entrepreneur.com/article/235689 (advising small 
companies to be proactive about litigation risk by reacting to assertion letters by learning as much as 
possible about the asserter, and to directly limit risk with insurance or by preemptively acquiring or 
licensing patents on the market); but see Ganglmair et al., supra note 20 (finding the existence of patent 
litigation insurance may deter NPE litigation). 

16. Colleen V. Chien, Predicting Patent Litigation, 90 TEX. L. REV. 283, 286–87 (2011).
17. Michael J. Burstein, Patent Markets: A Framework for Evaluation, 47 ARIZ. ST. L.J. 507, 529

(2015) (citing Chien alongside the practices of RPX as evidence of how data analytics are used to forecast 
patent litigation and value); Brian J. Love et al., Determinants of Patent Quality: Evidence from Inter 
Partes Review Proceedings, 90 U. COLO. L. REV. 67, 79 (2019) (citing Chien’s as one method for 
assessing the private value of a patent in the absence of direct evidence). 

18. See Alberto Galasso et al., Trading and Enforcing Patent Rights, 44 RAND J. ECON. 275, 289
(2013) (citing Chien’s finding on the relationship between patent transfer and litigation, and going on to 
study the causal link between patent transfer and litigation). 
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the patent troll problem,19 and the social benefits of the patent system.20 Her 
study was useful as a proof of concept but was limited to fewer than two 
thousand patents, now long expired, and only ten traits.21 We used a larger, 
newer dataset and more advanced methods to further develop what Chien 
had envisioned: a tool to whittle an unwieldy body of patents down to a 
smaller set most relevant to a business. 

A few scholars have attempted to model the incidence of patent 
litigation. Most legal scholars focus on the descriptive, exploring the 
characteristics of highly-litigated patents and moving toward prediction with 
simple logistic regression models.22 With small datasets and no cross-
validation, this group has yet to yield an accurate and generalizable model, 
though Chien comes closest. Machine learning experts have developed 
advanced models to predict patent litigation, including neural network 
models, clustering models, graph models of citations, and hybrid 
approaches.23 These approaches focus heavily on natural language 
processing using the text of patents and citation networks. Their predictive 
power is limited by the authors’ failure to include traits in the patent’s legal 
history that are known by legal scholars to correlate with litigation. 
Economists have employed sophisticated models on larger datasets of 
relevant traits to isolate the effects of each feature on the likelihood of 

19. Brian J. Love, An Empirical Study of Patent Litigation Timing: Could a Patent Term Reduction
Decimate Trolls without Harming Innovators, 161 U. PA. L. REV. 1309, 1315 (2013) (citing Chien as one 
of a handful of studies with divergent findings about the amount of litigation that nonpracticing entities 
are responsible for). 

20. Mark A. Lemley, Faith-Based Intellectual Property, 62 UCLA L. REV. 1328, 1332 (2015)
(citing Chien as part of a body of “sophisticated empirical work” that should inform patent policy). 

21. Chien, supra note 22, at 309, 315. A dataset this size could be adequate for statistical inference,
where larger datasets can lead to statistically significant findings without practical significance. For 
prediction, bigger is generally better and allows us to use more complex models without overfitting. We 
do not make claims about causality based on the statistical significance of our outputs. 

22. John R. Allison et al., Extreme Value or Trolls on Top? The Characteristics of the Most-
Litigated Patents, 158 U. PA. L. REV. 1 (2009) (focusing on descriptive statistics of the most-litigated 
patents; employing a logistic regression on a dataset of 212 patents and only a handful of traits); Chien, 
supra note 22. 

23. Qi Liu et al., Patent Litigation Prediction: A Convolutional Tensor Factorization Approach,
PROC. 27TH INT’L JOINT CONF. ON ARTIFICIAL INTELLIGENCE 5052 (2018) (developing a hybrid neural 
network and network embedding model to predict which patents will be the subject of litigation between 
pairs of firms; using a large dataset including the text of the patents, information on the face of the patent, 
and citations, but not including any traits characterizing the patent owner or the patent’s legal history); P. 
Wongchaisuwat et al., Predicting Litigation Likelihood and Time to Litigation for Patents, PROC. 16TH 
INT’L CONF. ON ARTIFICIAL INTELLIGENCE & L. 257 (2017) (using clustering and ensemble methods to 
predict litigation and time to litigation, using a large dataset including the text of the patent, information 
on the face of the patent, assignee revenue, and citation networks, but not the patent’s legal history); W 
M Campbell et al., Predicting and Analyzing Factors in Patent Litigation, 30TH CONF. ON NEURAL INFO. 
PROCESSING SYS. (2016) (developing a hybrid random forest and logistic regression model to predict 
litigation, leveraging the citation graph to normalize traits, and using a variety of traits found on the face 
of the patent). 
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litigation.24 By including a large set of relevant traits and functions of and 
interactions between traits, these models capture more variability than the 
others. Marco and Miller test models using different matching techniques 
and cross-validate their models using a non-overlapping holdout set.25 A 
number of authors consider how various traits develop over time, modeling 
how value, certainty, and litigation rates change over the lifetime of a 
patent,26 and predicting time to litigation.27 Yet, among all these approaches, 
Chien’s is the only one that focuses on acquired traits as predictors of 
litigation and isolates the acquired traits developed before litigation, to 
account for likely changes to the traits of patents that are invalidated or gain 
notoriety in litigation. No academic work predicting patent litigation both 
looks at traits in the legal history of the patent before litigation and optimizes 
and cross-validates a model for generalizable prediction. No other work 
examines the effects of year-over-year changes in patenting and litigation on 
prediction accuracy. 

A parallel body of literature focuses on predicting patent validity and 
patent litigation outcomes, rather than predicting the incidence of litigation. 
Here, too, legal scholars  have made descriptive advances, with only a few 
moving toward prediction with limited datasets and simple models.28 Of the 
legal scholars who have taken a descriptive approach, most have focused on 
litigation outcomes of nonpracticing entities, comparing litigation outcomes 
between nonpracticing entities and other patent asserters, and studying or 
controlling for other patent characteristics.29 Ultimately, litigation outcome 

24. Alan C. Marco & Richard D. Miller, Patent Examination Quality and Litigation: Is There a
Link?, 26 INT’L J. ECON. BUS. 65 (Jan. 2019) (considering 26 intrinsic and acquired traits for a sample of 
22,470 patents, matching by a handful of relevant traits as well as propensity score, and employing three 
different conditional logit models to isolate the effects of each trait on the likelihood of litigation); Jean O. 
Lanjouw & Mark Schankerman, Protecting Intellectual Property Rights: Are Small Firms Handicapped?, 
47 J.L. & ECON. 45 (Apr. 2004) (considering ten traits of patents and their owners, as well as various 
functions of those traits, for a sample of 17,443 patents, using a probit model). 

25. Marco & Miller, supra note 30, at 85–87.
26. ALAN C. MARCO & RICHARD D. MILLER, PATENT VALUE AND UNCERTAIN PROPERTY RIGHTS:

IMPLICATIONS FROM PATENT LITIGATION (Hoover IP2 Working Paper Series No. 18008, Oct. 2018) 
(contrasting the effect of earlier and later events, such as citations and SEP declarations, on the hazard 
rate of litigation, theorizing that earlier events are associated with lower hazard rates because they tend 
to increase certainty about the value of the patent); Alan C. Marco, The Option Value of Patent Litigation: 
Theory and Evidence, 14 REV. FIN. ECON. 323 (2005) (modeling patent rights as a real option and using 
the model to explore the effects of validity, certainty, and value on the decision whether to litigate and 
when, then validating the model using the distribution of forward citations over time).  

27. Wongchaisuwat et al., supra note 29.
28. Tammy W. Cowart et al., Two Methodologies for Predicting Patent Litigation Outcomes:

Logistic Regression versus Classification Trees, 51 AM. BUS. L.J. 843 (2014) (comparing a logistic 
regression and a decision tree to predict litigation outcomes, using a dataset of only 243 decisions). 

29. John R. Allison et al., How Often Do Non-Practicing Entities Win Patent Suits, 32 BERKELEY
TECH. L.J. 237 (2017) (comparing litigation success rates between NPEs and practicing companies, as 
well as among technology areas and venues); Jonathan H. Ashtor et al., Patents at Issue: The Data behind 
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modeling is limited by a lack of transparency about settlement outcomes. 
Economists and computer scientists have taken up the question of predicting 
validity, modeling validity outcomes in district courts30 and at the federal 
circuit,31 as well as predicting PTAB petitions32 and institution decisions.33 

In addition to these scholarly works, industry players now have access 
to more and better data on PTAB and district court litigation with which to 
assess their own risks and costs. Unified Patents provides analytics assessing 
patent validity, value, and breadth,34 as well as data on PTAB proceedings.35 
Lex Machina provides a wealth of data on district court and PTAB 
outcomes.36 Outside the patent field, scholars and legal analytics companies 
are developing tools to help companies predict litigation outcomes.37 Others 
have demonstrated the ability to predict the likelihood of litigation for 
property and casualty insurance claims.38 Modeling is difficult in some areas 
of law, due to a lack of large, high-quality datasets.39 But patent litigation is 

the Patent Troll Debate, 21 GEO. MASON L. REV. 957 (2014) (comparing litigation success rates between 
patent assertion entities and other asserters, and examining other characteristics of PAE patents and 
assertions); Sannu K. Shrestha, Trolls or Market-Makers? An Empirical Analysis of Nonpracticing 
Entities, 110 COLUM. L. REV. 114, 142–50 (2010) (comparing litigation outcomes of patent infringement 
cases filed by 51 nonpracticing entities identified in the press with a sample of patents drawn from 500 
randomly selected infringement suits); see also Allison et al., supra note 14, at 681–83 (focusing on 
descriptive statistics of the most-litigated patents and once-litigated patents); Love, supra note 25, at 
1342–45 (comparing litigation outcomes for product companies and nonpracticing entities before and 
after the final three-years from patent expiration). 

30. Shawn P. Miller, Where’s the Innovation: An Analysis of the Quantity and Qualities of
Anticipated and Obvious Patents, 18 VA. L.L. & TECH. 59 (2013). 

31. Viju Raghupathi et al., Legal Decision Support: Exploring Big Data Analytics Approach to
Modeling Pharma Patent Validity Cases, 6 IEEE ACCESS 41518 (2018). 

32. ALAN C. MARCO ET AL., USPTO, PATENT LITIGATION AND USPTO TRIALS: IMPLICATIONS
FOR PATENT EXAMINATION QUALITY (2015). 

33. Yuh-Harn Yang et al., Predicting Institution Decisions in Inter Partes Review Proceedings,
100 J. PAT. & TRADEMARK OFF. SOC’Y 697 (2019); William Ho et al., Predicting Bad Patents (University 
of California, Berkeley May 2017); Raghupathi et al., supra note 37. 

34. What Is the Difference Between APIX, CITX and BRIX?, UNIFIED PATENTS (Jul. 17, 2020),
http://support.unifiedpatents.com/hc/en-us/articles/115001550673. 
 35.  PTAB Case List, UNIFIED PATENTS, 
https://portal.unifiedpatents.com/ptab/caselist?sort=case_number (last visited Aug. 4, 2020). 

36. LEX MACHINA, https://law.lexmachina.com/ (last visited Aug. 4, 2020). 
37. E.g., Daniel Martin Katz et al., A General Approach for Predicting the Behavior of the Supreme

Court of the United States, 12 PLOS ONE e0174698 (2017); Charlotte Alexander et al., Using Text 
Analytics to Predict Litigation Outcomes (2018) (Georgia State University College of Law, Legal Studies 
Research Paper No. 2018-13), https://papers.ssrn.com/abstract=3230224; Itai Gurari, From Judging 
Lawyers to Predicting Outcomes, JUDICATA (Feb. 6, 2018), https://blog.judicata.com/from-judging-
lawyers-to-predicting-outcomes-f46aedeb8684; Legal Analytics, PREMONITION, 
https://premonition.ai/legal_analytics/ (last visited Dec. 3, 2019). 

38. Mei Najim, Claim Analytics: A Litigation Prediction Case Study, 2018 SAS GLOB. F. PROC.
Paper 2504 (2018). 

39. Jason Tashea, Algorithms Fall Short in Predicting Litigation Outcomes, A.B.A. J.,
http://www.abajournal.com/magazine/article/data_predicting_litigation_outcomes (last visited Dec. 3, 
2019). 
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a good target for predictive models because the USPTO provides 
comprehensive patent datasets. Each of the thousands of suits filed each year 
arises from one or more patents, providing a tractable problem to model. In 
addition, patent litigation is relatively uniform because it all occurs in federal 
courts under a single court of appeals, so similar features could predict 
litigation in across states and perhaps over time. 

Here, we used the tools of machine learning to improve on Chien’s 
work. We first reproduced Chien’s dataset and model in its entirety. We 
tested for generalizability and measured the model’s performance on a 
random sample of patents, including later-issued patents. Then, we 
assembled a larger dataset of newer patents, which we used to train different 
supervised learning models. By optimizing and cross-validating the models, 
we found the one that best identified which patents would be litigated in the 
future. Our supervised learning models, which can account for interactions 
between traits, outperformed Chien’s model using standard metrics. The 
metrics we provide can be used as a baseline for further work in this area. 
Our improvement, along with each step toward better prediction of the 
incidence and outcomes of litigation, provides better tools for determining 
and managing patent litigation risk. 

III. METHODS: MACHINE LEARNING WITH RELEVANT TRAITS AND CROSS-
VALIDATION 

We first replicated Chien’s dataset and model, reconstructing her 
matched-pairs set of patents issued in 1990, with intrinsic traits and acquired 
traits developed before litigation. We trained a logistic regression model on 
that data. We then probed the utility of Chien’s model for predicting future 
litigation. We used tailored test datasets to learn (1) whether the model was 
overfit to Chien’s training set and therefore not generalizable, (2) whether 
the matched-pairs sampling scheme inflates the reported accuracy of the 
model, and (3) to what extent year-over-year changes in patenting limit the 
ability of a model trained on one year’s litigation to predict the next year’s 
litigation. 

Next, using a larger, unmatched dataset of patents issued in 2000, we 
trained three standard supervised learning models: A logistic regression, for 
comparison to Chien; a kernelized support vector machine (SVM) model; 
and a random forest model. Each is described in detail below. An advantage 
of the kernelized SVM and random forest models is that they can capture 
nonlinear relationships between the traits and the likelihood of litigation. To 
further optimize performance on this task, we tuned the models’ 
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hyperparameters—the function inputs that dictate properties of the training 
process. 

A. Chien’s “Acquired Traits” Approach

Chien assessed the value of traits found in the patent’s legal history for 
predicting the incidence of litigation. She assembled a dataset that was small 
by machine learning standards today but appropriate for a proof of concept. 
The dataset included 659 litigated patents issued in 1990, and for each 
litigated patent, three non-litigated patents matched by technology class, also 
issued in 1990.40 For each patent, she coded two types of traits: “intrinsic” 
traits determined at the time the patent issued or shortly after, such as the 
number of claims, and “acquired” traits that accumulate over the lifetime of 
the patent, such as the number of times a patent has been assigned.41 Her 
work was the first to focus on the relationship between acquired 
characteristics and the likelihood of litigation.42 

To simulate the task of predicting future litigation, Chien’s model 
looked at each patent’s traits as they existed on the eve of litigation.43 For 
acquired traits, she truncated the data to only include events that occurred 
before each patent was litigated.44 She then modeled the likelihood of 
litigation by fitting a logistic regression model to the matched-pairs dataset.45 
Using the same matched-pairs set, Chien evaluated the model, estimating it 
could predict which patents were litigated with a 25% false negative rate and 
a 20% false positive rate.46 

B. Intrinsic and Acquired Traits in Our Dataset

Each patent in our datasets is characterized by eleven traits. Some traits 
are intrinsic to the patent—they were established by the time the patent 
issued or shortly after—others are acquired over the life of the patent. These 
are the same traits Chien studied. We extracted all traits from the LexisNexis 
TotalPatent One® database,47 except Small Entity, which we obtained from 

40. Chien, supra note 22, at 309.
41. Chien, supra note 22, at 298–300.
42. Chien, supra note 22, at 298–308.
43. Chien refers to this as a “time-series” model. Though some of the raw data is indexed by time,

Chien collapses these time-indexed values to simple counts and indicators, then uses the tools of cross-
sectional rather than time-series modeling. 

44. Chien, supra note 22, at 287.
45. Chien, supra note 22, at 314–315.
46. Chien, supra note 22, at 316, 320–26.
47. LexisNexis TotalPatent OneTM, LEXISNEXIS® IP, https://www.lexisnexisip.com/products/total-

patent-one/ (last visited Jan. 19, 2020). 
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the USPTO PatEx dataset.48 Table 1 describes all eleven traits, and the 
appendix provides more detailed operational definitions. 

Table 1. Patent traits included in our dataset 

Intrinsic Traits 

Trait Description 

Claims Number of claims in the patent 

Small Entity Whether the patent was issued to a small entity applicant 

Family Members Number of foreign and domestic patents linked to one of the same 
priority documents, including continuations, continuations-in-
part, and divisional patents in the patent family 

Foreign Counterparts Number of foreign patents linked directly or indirectly to one of 
the same priority documents 

Acquired Traits 

Trait Description 

Recorded Assignments Number of recorded assignment events, including name changes 
and security agreements 

Recorded Transfer Whether the patent was assigned after it issued 

Owner Size Change Change in owner size from small entity to large entity or vice 
versa 

Maintenance Fees Number of maintenance fees paid 

Ex Parte Reexamined Ex parte reexamination certificate issued 

Collateralized Security interest in the patent recorded 

Forward Citations Number of citations to a patent made by subsequent patents 

Our definitions of the intrinsic traits matched Chien’s, but we modified 
the definitions of a few acquired traits so we could extract them 
automatically and without excessive computation. We modified the 
operational definition of Recorded Transfer to avoid manually researching 
each assignment event. We counted as a Recorded Transfer any assignment 

48.  Patent Examination Research Dataset (Public PAIR), USPTO, 
https://www.uspto.gov/learning-and-resources/electronic-data-products/patent-examination-research-
dataset-public-pair (last visited Jan. 19, 2020). 
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event labeled “assignment of assignor’s interest” (to eliminate events that are 
merely name changes and security agreements) and recorded after the issue 
date (to generally but imperfectly eliminate transfers made under pre-
existing invention assignment agreements). Because assignee entity size was 
not recorded with each assignment, we determined Owner Size Change by 
looking at maintenance fee payments. This was an undercount relative to 
Chien because it included only those size changes followed by a maintenance 
fee payment. We considered a patent to be Collateralized if it had an 
assignment event that contained the text “security”, “release”, or 
“collateral”. Finally, Chien adjusted Forward Citations by removing those 
with common inventorship, an adjustment we omitted because of the much 
greater processing required. Without the adjustment, there was just as large 
of a difference in the number of citations between litigated and unlitigated 
patents; thus, we do not believe the adjustment significantly affected model 
performance. 

We also validated our trait definitions by comparing our dataset to 
Chien’s, as shown in Figure 1. The sample in Figure 1 was a matched-pairs 
sample as described below.49 We obtained confidence intervals by 
resampling 659 litigated patents and three matched pairs per litigated patent. 
The differences between the patents in our dataset and Chien’s are almost all 
statistically significant, meaning they do not arise just from sampling 
variability. They may arise from differences in trait definitions and changes 
to the data source.50 Overall, though, the datasets are similar. In particular, 
the degree of difference between litigated and unlitigated patents along each 
trait is similar or larger in our dataset compared to Chien’s, suggesting our 
logistic regression model could classify patents about as well as hers. 

49. Infra Part III.C.
50. For example, forward citations from patents issued in the ‘00s may have been added to the

TotalPatent One database between the time Chien queried the database and when we did. For Forward 
Citations, only the application date for each citing patent was available, so we assumed an 18-month gap 
between the application date and the date the citing patent number would be added to the forward citation 
list of the cited patent. The actual gap would have varied substantially for patents filed before the 1999 
amendments to the Patent Act, which provided for publication after 18 months. American Inventors 
Protection Act, Pub L. No. 106-113, § 4501, 113 Stat. 1501, A-561 (1999). For all other traits, we used 
the event dates in the raw data to separate pre-litigation and post-litigation events, though the event may 
not have been added to the dataset immediately on the event date. These undocumented changes to the 
data source over time make it infeasible to perfectly characterize the patent’s record exactly as it existed 
on the eve of litigation. The better we can separate pre-litigation events from post-litigation events, the 
more our validation metrics will reflect the model’s actual performance on patents yet to be litigated. 
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Figure 1. Traits of patents issued in 1990, acquired over their lifetimes 

Note: Descriptive statistics for acquired characteristics developed over the 
lifetime of the patent (rather than prior to litigation) in our dataset compared to 
Chien’s. Top: Descriptive statistics for our dataset. n=659 litigated; n=1977 
unlitigated, with three unlitigated patents matched to each litigated patent by 
technology class. Error bars are 95% confidence intervals from resampling out 
of the population of litigated and unlitigated patents. Bottom: Descriptive 
statistics for Chien’s dataset. n=659 litigated; n=1977 unlitigated, with three 
unlitigated patents matched to each litigated patent by technology class. 
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Our dataset includes traits—Recorded Assignments, Recorded 
Transfer, and Collateralized—that depend upon recording at the patent 
office. Not all patent owners actually record these transactions,51 so our 
values are an undercount relative to the true number of assignments, 
transfers, and collateralizations. We therefore make no claims about the 
relationship between the actual number of assignments and likelihood of 
litigation, or actual collateralization and the likelihood of litigation. Despite 
spotty recording, these traits can be useful predictors. In fact, it could be that 
patent owners planning to assert valuable patents are more likely to record 
collateralizations and assignments of those patents, making recorded 
transactions an even better predictor of litigation.52 Ultimately, the 
coefficients of the logistic regression model are evidence of how useful the 
traits are for prediction.53 

Figure 2 compares the traits of patents issued in 1990 and 2000, again 
using the matched-pairs sampling scheme. About 60% more patents were 
issued in 2000 than in 1990, and there was an even greater difference in the 
rate of litigation, with around 1.9% of 2000 patents having recorded 
litigation events compared to just 0.82% of 1990 patents. Compared to 
patents issued in 1990, patents issued in 2000 were cited, assigned, 
transferred, and collateralized more. Some of this growth could be 
attributable to improvements in information systems that allowed for more 
efficient prior art searching and more efficient patent markets. In addition, 
many patents issued in 2000 were a product of the dot-com boom of the late 
1990s. This explosion of internet-based companies and coincided with a 
surge in patenting.54 Following the dot-com bust came the rise of the patent 
assertion entity business model, which helps account for the rise in 
assignments litigation.55 Surprisingly, the rate of ex parte reexamination did 
not decline, even as the 2011 America Invents Act introduced inter partes 
review and other alternatives to reexamination. For a majority of traits, the 
difference between litigated and unlitigated patents shrank from 1990 to 
2000, which could hinder prediction with the 2000 patents. 

51. LISA LARRIMORE OUELLETTE & HEIDI WILLIAMS, REFORMING THE PATENT SYSTEM 11 (The
Hamilton Project Policy Proposal No. 2020-12, 2020). 

52. Recording rates may higher for larger patent owners. 
53. Infra Part IV; infra Table A4.
54. Patent Statistics Summary, supra note 7.
55. Shawn P. Miller, Who’s Suing Us: Decoding Patent Plaintiffs since 2000 with the Stanford

NPE Litigation Dataset, 21 STAN. TECH. L. REV. 235, 261 (2018) (showing a gradual rise in litigation by 
patent assertion entities, with a peak in 2011, just after patents issued in 1990 expired). 
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Figure 2. Traits of patents issued in 2000, compared to 1990 

Note: Descriptive statistics for intrinsic and acquired characteristics developed 
over the lifetime of the patent (rather than prior to litigation) for patents issued 
in 1990 compared to patents issued in 2000. Top: Descriptive statistics for 
patents issued in 2000. n=2739 litigated; n=26,948 unlitigated, with eight 
unlitigated patents matched by technology class to each litigated patent. 
Bottom: Descriptive statistics for patents issued in 1990. n=739 litigated; 
n=5912 unlitigated, with eight unlitigated patents matched by technology class 
to each litigated patent. 
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Finally, as Chien did, we looked only at the acquired traits developed 
before the patent’s first litigation event and normalized Forward Citations 
and Assignments by the number of months between issue and litigation. 
Thus, the model attempts to sort litigated from matched, unlitigated patents 
on the eve of litigation. A model that classified patents based on any traits 
developed after litigation would have poor external validity because 
litigation itself could change many of a patent’s features. For example, the 
patent could be invalidated in litigation, or it could gain notoriety, increasing 
the rate of citations. We considered only litigation events before 2011 to 
replicate Chien’s dataset more faithfully. We used the date of each litigated 
patent’s earliest litigation event only and used the same date as a cutoff for 
matched unlitigated patents. For the non-matched datasets, we gave each 
unlitigated patent the earliest litigation date of a randomly-selected litigated 
patent. 

C. Samples for Training and Validation

We sampled the 1990 and 1991 patents in several ways to probe the fit 
and utility of the basic logistic regression model. Replicating Chien’s 
methods, we started by training the model on a matched-pairs set. This 
training set included 593 randomly-selected litigated patents issued in 1990 
and three times as many unlitigated patents matched to the litigated patents 
by first-listed technology class.56 As Chien did, we first tested this trained 
model on the same training set. Second, we tested whether this trained model 
was overfit to the training set by testing the trained model on a separate 
holdout set of the remaining 148 litigated patents and their matched 
unlitigated patents. An overfit model would perform significantly better on 
the training set than on the separate holdout set, while a generalizable model 
would perform about the same. Third, we tested the same trained model on 
a completely random sample of 1990 patents. This unmatched test gives a 
more realistic picture of the model’s utility for patent clearance searches and 
risk analysis because the matched-pairs sets are unrealistic. The matched-
pairs sets have unrealistically low fractions of unlitigated patents. In 
addition, the distribution of unlitigated patents’ technology classes in the 
matched-pairs sets is unrepresentative of the population because it is 
identical to the technology distribution of the litigated patents, even though 

56. We used only utility patents, dropping plant and design patents, statutory invention
registrations, and reexamination certificates. We included continuations, continuations-in-part, 
divisionals, and reissue patents that were issued in 1990, 1991, or 2000. Patents issued to Ronald Katz 
were excluded as likely outliers. The few patents that could not be matched by technology class, either 
because the technology class field was empty or because there were not enough matched pairs available, 
were excluded. 
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the litigation rate is much higher among some technology classes than others. 
Fourth, we tested the trained model on a random sample of patents issued in 
1991. This gives an even more realistic picture of this model’s utility in real 
world application because a model predicting future litigation will have to 
be trained on past litigation. With the 1991 patents, we tested whether year-
over-year changes in patenting and litigation significantly degrade model 
performance. Table 2 summarizes the sampling scheme for the 1990 and 
1991 patents. 

Table 2. Sampling scheme for patents issued in 1990 

Stage Sample 

Train model Training set of 591 litigated patents issued in 1990, 
and for each litigated patent, three randomly-selected 
unlitigated patents in the same technology class57 

Replicate Chien’s testing scheme Training set 

Test for overfitting Holdout set of the remaining 148 litigated patents, and 
for each litigated patent, three randomly-selected 
unlitigated patents in the same technology class, 
excluding any patents in the training set 

Measure the effect of the sampling 
scheme on accuracy 

Random sample of 72,289 patents issued in 199058 

Measure the effect of year-over-
year changes in patenting on 
accuracy 

Random sample of 65,302 patents issued in 1991 

We then trained, developed, and tested machine learning models on a 
set of 145,744 patents issued in 2000. Here, we disposed of the matched-
pairs sampling scheme in favor of a fully random samples. With an 
automated labeling process, the higher volume of unlitigated patents in the 
unmatched sample was not a problem. And while undersampling the 
unlitigated patents could help overcome unbalanced dataset problems, we 
instead adjusted the relative weight of litigated and unlitigated patents in the 
training algorithm, as described below. We expected that training and tuning 

57. This matches Chien’s sampling scheme. Colleen V. Chien, supra note 23, at 309.
58. The 1990 and 1991 random samples had approximately 591 litigated patents, like the matched-

pairs training set, and had more than enough unlitigated patents to detect a significant change in the false 
positive rate. 
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the model on a random sample of patents would be likely to result in the best 
performance on a randomly-sampled test set. Further, performance metrics 
reported on a random sample would be easiest for a user to understand and 
would reflect a more typical use case for the model than performance on a 
matched-pairs set. 

Table 3. Sampling scheme for patents issued in 2000 

Stage Sample 

Train 60% of patents issued in 2000, randomly sampled and non-
overlapping with the development and test sets 

Develop 
(Tune hyperparameters) 

20% of patents issued in 2000, randomly sampled and non-
overlapping with the training and test sets 

Test 20% of patents issued in 2000, randomly sampled and non-
overlapping with the training and development sets 

D. Machine Learning Models

We implemented three different models. Each model attempts to 
classify patents as litigated or unlitigated, essentially drawing a line that best 
separates litigated from unlitigated patents. Fitting or “training” each model 
involves feeding the training dataset into a training algorithm to find the line 
that best separates litigated patents from unlitigated patents. We trained and 
tested multiple times, tuning hyperparameters along the way. 
Hyperparameters are inputs that modify the training process, and we tuned 
them to arrive at the training process that results in the best classification 
metrics, described below.59 The three models differ in the method used to 
find the line between litigated and unlitigated patents and in the shape that 
line can take. We used the scikit learn python package to implement each 
model.60 Hyperparameters and coefficients of the trained model are provided 
in the appendix.61 

For the 1990 patents, we trained a logistic regression model, following 
Chien’s methodology.62 For the patents issued in 2000, we used a machine 
learning approach to find the best model to predict which patents are likely 

59. Infra Part III.E.
60. Supervised Learning, SCIKIT-LEARN 0.22.1 DOCUMENTATION, https://scikit-

learn.org/stable/supervised_learning.html#supervised-learning (last visited Jul. 28, 2020). 
61. Infra, Tables A3–A8.
62. Chien, supra note 22, at 329.
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to be litigated. We trained three types of model: logistic regression (for 
comparison to Chien), kernelized support vector machine (SVM), and 
random forest.63 Each type of model is described in detail below. 

Logistic regression is a basic supervised learning model.64 It finds the 
best-fitting linear combination of traits and maps it to a logistic function that 
outputs a probability of litigation.65 The training process, in effect, finds the 
linear combination of traits that minimizes a function of the aggregate error 
between the actual classifications (0 or 1, unlitigated or litigated) and the 
odds according to the model (between 0 and 1).66 Figure 3 shows a basic 
structure of a logistic regression on a hypothetical dataset. This relatively 
simple and flexible approach to determine the relationship between a set of 
traits and a binary outcome serves as a standard model across disciplines. By 
finding the linear combination of traits, logistic regression provides an easily 
interpretable representation of the relationship between each predictor and 
the outcome. However, it also limits the model to drawing a linear boundary 
between litigated and unlitigated patents.67 Considering Forward Citations, 
for example, if the likelihood of litigation were low for patents never cited, 
high for patents cited a few times, and low for patents cited many times, the 
basic logistic regression would be limited to finding the best-fit linear 
relationship between cites and likelihood of litigation, missing the actual 
nonlinear trend. 

63. Liu et al., supra note 29 (comparing their tailored model to SVM and logistic regression
baselines); Cowart et al., supra note 34 (comparing logistic regression and decision trees—related to 
random forest—for a litigation prediction problem); Campbell et al., supra note 29 (developing a hybrid 
random forest and logistic regression model).  

64. See GIUSEPPE BONACCORSO, MACHINE LEARNING ALGORITHMS 97–103 (2017) (describing
logistic regression in terms of supervised learning); see generally SCOTT W. MENARD, APPLIED LOGISTIC 
REGRESSION ANALYSIS (Sage Publications 2nd ed. 2002) (providing a detailed description of logistic 
regression).  

65. MENARD, supra note 70, ch. 1.3.
66. Id. (explaining the relationship between the actual outcomes and the odds according to the

model, and describing the training process at a high level of generality); BONACCORSO, supra note 70, at 
34–38 (describing the mathematics behind maximum likelihood estimation, showing the relationship 
between likelihood and error). 

67. MENARD, supra note 70, ch. 1.3 (describing the linear relationship); STEPHEN MARSLAND,
MACHINE LEARNING: AN ALGORITHMIC PERSPECTIVE, ch. ch. 3.4 (2d ed. 2014) (describing the 
limitations of linear decision boundaries). To account for nonlinearity, we could use various functions of 
each trait as additional traits. See Lanjouw & Schankerman, supra note 30 (including functions of some 
traits, such as the number of claims squared). It is also possible to implement a kernelized logistic 
regression, but the standard logistic regression is linear. 
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Figure 3. Illustration of a logistic regression model 

Note: Basic structure of a logistic regression on a hypothetical dataset with just 
two traits. The model can be used to output a binary classification (green region 
or white region; litigated or unlitigated) or a score (shades of green; likelihood 
of litigation). 

SVM is another supervised learning algorithm used for classification or 
regression.68 SVM is an optimal margin classifier, meaning the training 
process finds the linear boundary that maximizes the distance to the closest 
examples.69 Figure 4 shows the basic structure of an SVM model on the 
same hypothetical dataset. The most basic SVM model outputs only a binary 
classification, but we used a version adapted to output a score corresponding 
to the likelihood of litigation.70 

68. Support Vector Machines, SCIKIT-LEARN 0.22.1 DOCUMENTATION, https://scikit-
learn.org/stable/modules/svm.html#kernel-functions (last visited Jan. 18, 2020). 

69. MARSLAND, supra note 73, ch. 8.1.
70. Support Vector Machines, supra note 74, pt. 1.4.1.2.
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Figure 4. Illustration of a support vector machine model 

Note: Basic structure of an SVM model on the same hypothetical dataset. Note 
how the position of the decision boundary is different because a different 
method is used to place it.  

As with Logistic Regression, the decision boundary of the most basic 
SVM model is linear.71 To draw a boundary that is a more complex function 
of the traits, we used a kernel. A kernel implicitly transforms data into a 
higher-dimensional space, allowing decision boundaries that are nonlinear.72 
For example, a polynomial kernel of degree 2 maps the traits to every 
possible product of two traits,73 such as the products (Reexamined x 
Collateralized) and (Recorded Assignments)2, which might predict litigation 
better than the raw trait values. The Gaussian radial basis function kernel we 
used maps to infinite-dimensional space and thus allows a greater range of 

71. See MARSLAND, supra note 73, ch. 8.1.3.
72. Id. ch. 8.2.
73. Jean-Philippe Vert et al., A Primer on Kernel Methods, in KERNEL METHODS IN

COMPUTATIONAL BIOLOGY, ch. 2.6 (Bernhard Scholkopf et al. eds., 2004). Alternatively, one could 
include these products as separate traits. However, more complex kernels cannot easily be reproduced 
this way.  
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nonlinear boundaries.74 Kernel functionality is built into the scikit learn 
SVM package.75 Figure 5 shows a kernelized SVM model. 

Figure 5. Illustration of a kernelized SVM model 

Note: Kernelized SVM on the hypothetical dataset. The decision boundary of 
the kernelized SVM is not constrained to a linear shape, so it can be much more 
tailored to the data, even with just two traits.  

Complex decision boundaries like the one shown in Figure 5 may 
reflect sampling noise. If a new sample were drawn from the population, it 
would show the same overall trends, but would not fall exactly along the 
complex decision boundary shown. Our sampling scheme allowed us to 
manage this type of overfitting. With a kernel that allows the decision 
boundary to take a complex shape, overfitting is likely. We identified 
overfitting by comparing the performance of the algorithm on the training 
set to its performance on the development set. If the model did a worse job 
classifying patents in the development set than in the training set, that meant 
it was overfit to the training set. When the model was overfit, we regularized 

74. Id.
75. Support Vector Machines, supra note 76.
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it. Regularization smooths the decision boundary.76 Figure 6 shows the 
effect of regularization on the decision boundary. 

Figure 6. Illustration of a kernelized and regularized SVM model 

Note: Effect of regularization on a kernelized SVM model. Because of the kernel, 
the decision boundary is not limited to a straight line, but because of 
regularization, it has a simple, smooth shape. This means it is more likely to 
capture general trends in the data without becoming overfit by capturing 
sampling noise. 

Along with the SVM model, we developed a random forest model. The 
random forest model is a set of decision trees. An individual decision tree 
classifies patents as litigated or unlitigated by making a series of binary 
decisions. Each individual tree draws a rough decision boundary that may 
not be very accurate. However, random forest is an ensemble learning 
technique: the model’s final prediction is the average of the results of many 
individual decision trees.77 The decisions of individual trees and of the 
ensemble are not limited to linear decision boundaries,78 so a kernel is not 

76. See generally Prashant Gupta, Regularization in Machine Learning, MEDIUM (Nov. 16, 2017),
https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a. 

77. MARSLAND, supra note 73, ch. 13.3.
78. Id. ch. 13.1.1, Figure 13.1 (illustrating decision boundaries of ensemble models that are more

complex than the boundaries of each underlying model). 
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necessary. The training process and overall structure of this decision-tree 
approach are quite different from the logistic regression and SVM 
approaches. The random forest model may therefore perform well on 
datasets that the logistic regression and SVM models perform poorly on. 79 
Figure 7 shows the structure of a decision tree and a random forest model. 

Figure 7. Illustration of a single decision tree and a random forest model 

Note: Basic structure of a random forest model on a hypothetical dataset. Top  
Left: A single decision tree using two traits, with one litigated patent highlighted. 
Top right: Decision boundary equivalent to the single decision tree, with the same 
litigated patent highlighted. Bottom: Ensemble of 3 trees, each attempting to 
classify the same highlighted patent, and the final prediction based on the three 
individual classifications. 

79. See Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised
Learning Algorithms, PROC. 23RD INT’L CONF. ON MACHINE LEARNING 161 (2006) (showing the 
variability in the performance of various supervised learning models having different structures). 
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For the SVM and logistic regression models, we tried weighting 
litigated patents more heavily than unlitigated patents to manage the 
imbalance between the two categories. Where a dataset includes many more 
of one class than the other, the model may have a high accuracy even if it 
only does a good job identifying the larger class. We can ensure the training 
process results in correct classification of the less-numerous litigated patents 
by giving them a heavier weighting in the training process, penalizing 
decision boundaries that only properly classify unlitigated patents. 

We used an iterative development process to find the hyperparameters, 
including kernel shape, degree of regularization, and class weight, that result 
in the best-performing model. We started with default hyperparameters in 
the scikit learn python package. We trained models on the training set, trying 
different parameter combinations. We then checked their performance on the 
development set until we found the hyperparameters that maximized model 
performance on the development set. This approach can lead to a model that 
is slightly overfit to the development dataset.80 To avoid overstating model 
performance, we reported our results on the separate test sample. 

E. False Positives and Precision-Recall Metric

Our datasets are imbalanced—there are many more of the unlitigated 
class than the litigated class. A metric for evaluating performance on an 
imbalanced dataset must not overstate performance of a model that only 
classifies one class correctly. If our models were only evaluated for their 
overall accuracy,81 then a model that classified all patents as unlitigated 
would probably also be the most “accurate.” By classifying all patents as 
unlitigated, the model would get it right 98% of the time or more. But such 
a model would be of no help in patent clearance. A good model should 
identify most of the actually litigated patents (true positives) without 
mistakenly sweeping in too many unlitigated patents (false positives). A 
good metric, therefore, should reward true positives and penalize false 
positives. It should not reward true negatives much or at all because a model 
that classifies every example as negative has a high true negative rate. 

For each of our logistic regression models, we fix the true positive rate 
(true positives / [true positives + false negatives]) to about 75% and report 
the false positive rate (false positives / [false positives + true negatives]) for 
comparison with Chien’s results. Lower false positive rates indicate better 
performance. A model that randomly classified patents would have a false 

80. See MARSLAND, supra note 73, ch. 2.2.1.
81. Accuracy = (true positives + true negatives) / total examples tested
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positive rate around 75%, equal to the true positive rate. We report the 
performance of the multiple logistic regression both on the same matched-
pairs sample we used to train it, as Chien did, and on the other 1990 and 1991 
samples. 

We also calculate the Precision-Recall Curve (PRC) to give a fuller 
picture of model performance.82 The false positive rate at one arbitrary true 
positive rate provides an incomplete picture—at a high true positive rate, a 
model that is good at classifying edge cases will look better than a model 
that is good at classifying easy cases, while at a low true positive rate, the 
reverse may be true. The PRC shows the precision (true positives / [true 
positives + false positives]) across all values of recall, or true positive rate.83 
The area under the curve (AUC) of the PRC is an aggregate measure of how 
our model predicts the litigated class. A model that randomly classified 
patents would have an AUC under 0.02, equal to the litigation rate. 

For all trials, we resampled at least 40 times to obtain confidence 
intervals on the false positive rates and AUCs. Precision-recall curves 
displayed below are from a sample that resulted in approximately median 
AUC across all curves. 

IV. RESULTS: CHIEN’S APPROACH VALIDATED AND IMPROVEMENTS WITH
THE RANDOM FOREST MODEL 

As Figure 8 shows, our logistic regression model performed about as 
well as Chien’s model by the false positive measure. Our model’s median 
false positive rate was 22.7% compared to Chien’s 21%.84 21% is within the 
95% confidence interval for our model, indicating that Chien’s value could 
be lower due to sampling, and the difference is not statistically significant. 
A small discrepancy is also unsurprising given the differences between our 
trait definitions and Chien’s. Our model performed about as well on the 

82. See generally Jesse Davis & Mark Goadrich, The Relationship between Precision-Recall and
ROC Curves, PROC. 23RD INT’L CONF. ON MACHINE LEARNING 233 (2006). 

83. The PRC is a close cousin of the more common Receiver Operator Characteristic (ROC) curve,
but that the PRC is better suited than the ROC curve for imbalanced datasets. Id. The shape of the ROC 
curve depends on the true negative rate, so it paints an overly optimistic picture for imbalanced datasets. 
The ROC curve may look good if the model classifies easy negative cases correctly, even if it does a poor 
job at the margin. The PRC, on the other hand, does not depend on the true negative rate. Another way to 
overcome this problem with the ROC curve is to balance the dataset before calculating the curve. See, 
e.g., Yang et al., supra note 39, at 707–8 (balancing the slightly imbalanced dataset of PTAB institution
decisions before calculating the ROC curve, and achieving a slightly lower AUC when balanced); Marco
& Miller, supra note 30 (calculating the ROC curve on a matched-pairs sample which ensures balance).
Because the dataset is heavily imbalanced, we choose the PRC to avoid throwing out a lot of data in
balancing. Our approach is also simpler and resembles the actual model performance on unbalanced sets
in the real world.

84. Chien, supra note 22, at 322.
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holdout set as on the training set, with a larger confidence interval 
attributable to the smaller sample. The similar false positive rate on the 
separate holdout set shows our logistic regression model was not overfit to 
the training set, and we can infer that Chien’s was probably not overfit either. 

When tested on a completely random sample of 1990 patents, our model 
performed better than on the matched-pairs samples, with a median false 
positive rate of 19.3%. The training set had few patents in less-litigated 
technology areas. Still, the trained model was able to classify patents in the 
test set, which had more patents in those areas. It may be that patents in less-
litigated technology areas have traits similar to unlitigated patents in other 
technology areas (e.g. few citations, few transfers, few reexaminations) and 
so are relatively easy to classify. 

In order to provide a picture of a logistic regression model’s accuracy 
in practice, we tested the model on a random sample of 1991 patents. Since 
a model predicting future litigation would train on past litigation, it was 
important to measure the impact of year-over-year changes in patenting and 
litigation on model performance. Our model’s performance on a random 
sample of 1991 patents was slightly worse than on the random sample of 
1990 patents, with a 21.6% false positive rate. We can infer that the model 
is modestly susceptible to diminished performance by yearly changes in 
patenting and litigation. 

Looking at false positive rates rather than raw numbers reveals a 
shortcoming. The random samples included many unlitigated patents: about 
99% unlitigated compared to 75% in the matched pairs dataset. Therefore, 
the false positive rate of 19.3% on the 1990 sample represents 13,837 false 
positives compared to 402 patents in the matched-pairs training set. Testing 
on the matched-pairs set painted a rosy picture of model performance when 
in fact the number of false positives would be quite high in practice.85 

85. Lee Petherbridge also discusses this issue with Chien’s approach. Lee Petherbridge, On
Predicting Patent Litigation, 90 TEX. L. REV. SEE ALSO 75, 76–80 (2012). 
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Figure 8. Comparison of logistic regression performance on different 
test sets using false positive rates 

Note: Logistic regression model performance on 1990 and 1991 patent datasets 
listed in Table 2, measured by setting the true positive rate and finding the false 
positive rate. Bar heights represent number of patents in the predicted positive 
set if the test set had 659 litigated and 1977 unlitigated patents. Error bars are 
95% confidence intervals obtained by repeatedly resampling both the training 
and test sets. Left to right: Chien’s reported results on her training set; 
performance on our training set; performance on a holdout set to test for 
overfitting; performance on a random sample of patents issued in 1990 to test 
effects of the matched-pairs sampling scheme; performance on a random 
sample of patents issued in 1991 to test effects of year-over-year changes in 
patenting and litigation. 

Figure 9 shows the performance of the trained logistic regression 
model on the same four test sets. Again, the model performed comparably 
on the matched-pairs training set and the matched-pairs holdout set. Both the 
shape of the PRC curves and the area under the curve were similar. Like the 
false positive values above, the AUCs were sensitive to resampling of the 
training and holdout sets. This was especially true for the smaller holdout 
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set. The more jagged appearance of that curve was also due to the smaller 
sample size. There was a dramatic difference between the PRC curve for the 
matched-pairs samples and for the random samples. With many more 
unlitigated patents in the dataset, the measured precision was much lower 
even though the model classified patents in the same way. Again, the random 
samples showed the more realistic performance of the model, and they 
should be considered the true baseline performance against which to measure 
other models. 

Figure 9. Comparison of logistic regression performance on different 
test sets using precision-recall curves 

Note: Model performance on 1990 and 1991 patent datasets listed in Table 2, 
using the precision recall curve. Median area under the curve (AUC) and 95% 
confidence intervals obtained by repeatedly resampling both the training and 
test datasets. Curves depicted are from a single resampling in which all four 
AUCs all fell within 2% of their respective medians. 



2021 NARROWING THE UNIVERSE 211 

Figure 10 shows the performance of the three machine learning models 
on the 2000 dataset. Here, the AUC and shape of the curve were sensitive to 
resampling, but less so because of the larger sample size. All three models 
produced better AUC on the 2000 patents than the logistic regression on the 
random sample of 1990 patents. The SVM and random forest models 
outperformed the basic logistic regression by a modest margin, with the 
random forest model producing a 7.8% higher AUC.86 At a true positive rate 
of 75% (as above), the logistic regression model swept in about 23 
unlitigated patents (false positives) per litigated patent (true positive), while 
the random forest and SVM models swept in about 19 and 22 unlitigated 
patents per litigated patent, respectively. The more notable difference 
between the models was at a true positive rate of 12%. At this threshold, the 
logistic regression model narrowed down the body of relevant patents to 
2047 patents likely to be litigated, 316 of which were actually litigated. The 
random forest model narrowed the body of relevant patents to just 1356 
patents likely to be litigated, 316 of which were actually litigated. Thus, the 
random forest model was about one and a half times as effective at weeding 
out unlitigated patents. 

86. SVM averaged 5.2% better AUC (p=3.5e-5 paired, two-sided t-test). Random forest averaged
7.8% better AUC (p=6.0e-7 paired, two-sided t-test). 
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Figure 10. Performance of different types of models using precision-
recall curves 

Note: Precision-recall curves for test datasets of patents issued in 2000, as 
described in Table 3. Median area under the curve (AUC) and 95% confidence 
intervals obtained by repeatedly resampling both the training and test datasets. 
Curves depicted are from one resampling event in which the AUCs all fell 
within 2% of their medians. 

The improvement with our method is most dramatic at these lower 
recall values. However, all models still fall short of the performance a 
company would need to rely on the model to narrow down the patents they 
review. To eliminate patents from its search, a company would want to be 
reasonably confident it would more likely than not go unlitigated. Therefore, 
future work should aim toward increasing precision at recalls above 0.5. 

The coefficients of the logistic regression models tell us, roughly, which 
traits were most predictive of litigation. Patents with more US family 
members and fewer foreign family members were more likely to be litigated, 
as were patents transferred at least once after being issued, but not assigned 
many times. In Force—whether the patent had expired for failure to pay 
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maintenance fees or because its term ended—was another strong predictor 
of litigation. Ex parte reexamination is a much weaker predictor for 2000 
patents than for 1990 patents, which probably reflects the AIA’s changes to 
the available post-grant proceedings. See Tables A4 and A6 for a full list of 
logistic regression coefficients. 

V. DISCUSSION: FURTHER WORK COMBINING LEGAL KNOWLEDGE AND
MACHINE LEARNING METHODS 

Two elements are essential to effectively predicting patent litigation: 
patent traits that legal experts know to be associated with litigation, and a 
method tailored to the predictive task. We used the “acquired” traits from the 
patent’s legal history that scholars have found to be associated with 
litigation. Our predictive model combined standard machine learning 
techniques with Chien’s unique method of truncating the legal history to 
characterize the patent on the eve of litigation. Truncation improves external 
validity by mitigating the effects of litigation on the traits themselves. We 
tested three different machine learning models and tuned their 
hyperparameters to perform optimally on this task. Our cross-validation, 
using both a development set for tuning the model and a test set for the final 
model, mitigated the effect of overfitting to ensure that we did not overstate 
our models’ performance. While we were not the first to use machine 
learning for this task, ours is the first work to combine the machine learning 
approach with a full set of acquired traits developed before litigation. The 
result: measurable improvement over a prior attempt. 

This type of model is useful to predict litigation or inform design-
around decisions, but it is not designed to predict which patents will be 
asserted in demand letters rather than in court.87 Demand-letter patents may 
have some features in common with litigated patents, but there is virtually 
no public data on demand letters with which to test this hypothesis. 
Therefore, we cannot know how well our model would predict demand 
letters. The performance of our model might also suffer if it were used to 
inform design-around decisions on a widespread basis. If, based on prior 
data, a patent appeared likely to be litigated, and then many firms designed 
around the patent, it could quickly become unlikely to be litigated. The 
model would not immediately reflect that change. 

Future work should incorporate more information about each patent. 
Our model’s performance was ultimately limited by the small number of 

87. FEDERAL TRADE COMMISSION, supra note 13, at 5 (finding in a survey of patent assertion
entities that litigation preceded 87% of licenses, but that number was as low as 29% for certain types of 
PAE). 
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patent traits in our dataset. With just these eleven traits, there is simply not 
enough information to achieve very high precision at a high true positive 
rate. Many factors that inform or reflect a patent holder’s decision to litigate 
a particular patent were not represented in our dataset. Fortunately, a wealth 
of additional data is available. Future work should incorporate those patent 
traits other scholars have associated with litigation,88 and that practitioners 
know are relevant to the decision to litigate. For example, Marco and Miller 
identified events in the patent examination process, such as appeals and 
examiner interviews, that predict litigation risk.89 Their results also allow us 
to rule out the importance of other traits, like the number of backward 
references and the presence of a functional claim.90 The fact that In Force 
was such a strong predictor in our model and Chien’s suggests other traits 
that make a patent more difficult or impossible to litigate, such as being 
partially invalidated in a PTAB proceeding, could be useful to eliminate 
more patents from the pool. 

In addition, future work should make greater use of information about 
assignees. Lanjouw and Shankerman found traits like the patent owner’s 
portfolio size and whether the owner is foreign or domestic are significant 
predictors of litigation.91 Technology area and industry also matter a great 
deal.92 And as Figure 11 shows, different types of patents are litigated by 
different types of entity.  Figure 11 compares the traits of patents issued in 
1990 to the traits of patents issued in 2000, distinguishing among practicing 
companies, individuals, and patent-assertion entities.93 While a large part of 
the difference between the top and bottom plots is attributable to differences 
in trait and entity type definitions, the overall picture is clear: the traits of 
litigated patents vary by entity type. Patents litigated by individuals look 
markedly different from patents litigated by practicing companies and 
patent-assertion entities. That difference has persisted, though the size of the 

88. Future work should incorporate the traits found to be the best predictors of litigation in Chien,
supra note 22; Marco & Miller, supra note 30; Lanjouw & Schankerman, supra note 30; Allison et al., 
supra note 28. 

89. Marco & Miller, supra note 30.
90. Id.
91. Lanjouw & Schankerman, supra note 30.
92. See Allison et al., supra note 28, at 16–20 (finding the most-litigated patents are from different

technology and industry areas than once-litigated patents). 
93. Entity types are from the NPE LITIGATION DATABASE, https://npe.law.stanford.edu/ (last

visited Jan. 19, 2020). For a detailed description of the NPE database and initial findings from it, see 
Miller, supra note 61. As Miller et al. did, we considered category 8 to be “Practicing Companies,” 
category 9 to be “Individuals” and categories 1, 4, and 5 to be “Patent Assertion Entities,” Id. at 255, 
discarding litigation by other types of nonpracticing entity. Only 1971 of the 2739 litigated patents issued 
in 2000 were included in the NPE database and coded as one of these categories (n=1449 Practicing 
Company, n=98 Individual; n=424 PAE).  
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differences has shifted in different directions across traits. The distinction 
among entity types remains useful in predicting patent litigation. 

Figure 11. Characteristics of patents litigated by nonpracticing entities 
and individuals. 

Note: Acquired characteristics developed over the lifetime of the patent (rather 
than prior to litigation) for litigated patents, by type of entity that asserted the 
patent. Top: Our dataset of patents issued in 2000. n=1449 practicing company; 
n=98 individual; n=424 patent assertion entity. Bottom: Chien’s dataset of 
patents issued in 1990. n=490 practicing company; n=117 individual; n=59 
patent assertion entity. 
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Future work could incorporate these distinctions between entity types 
simply by including assignees’ entity type as a relevant trait. Assignment to 
a patent-assertion entity could herald imminent litigation. Alternatively, a 
future model could be a multinomial model—a model that predicts litigation 
for each entity type, instead of just predicting litigation. The model might 
then be able to identify connections between particular types of patents and 
the entities most likely to assert them. A model that considers entity type 
might also perform well on what currently look like the hardest cases in our 
predictive model—the patents litigated by individuals, which closely 
resemble unlitigated patents. A model trained to identify all types of 
litigation would tend to misclassify patents litigated by individuals. A model 
trained to detect litigation separately for each entity type, though, could use 
a different linear combination of traits for each type of litigation. For 
example, while Collateralized is one of the strongest predictors of litigation 
for the other entity types, a model should assign it a lower coefficient because 
few patents litigated by individuals are collateralized. 

Machine learning models would be more useful if they could predict 
litigation for newer patents. In our work, the training data was all from 
patents issued in 2000. By using these older patents, we created a model that 
could detect whether an older patent was litigated in its lifetime. It could also 
detect whether a newer patent will be litigated soon, based on whether it 
looks like the 2000 patents looked on the eve of litigation. However, the 
model would not perform as well on much newer patents, in part because of 
changes in patent owners’ behavior over time. To improve performance on 
newer patents, the training data should include newer patents. One 
alternative would be to keep the same basic model structure but add newer 
patents to the training data and include age of the patent as a trait. Another 
alternative would be to develop a model to predict next year’s litigation by 
training it on the past year or years of litigation.94 With this setup, past 
litigation could also be incorporated as a trait, and we would expect it to be 
a strong predictor of future litigation. 

A model like ours could be used in combination with clustering models 
that identify technologically-similar patents through natural language 
processing.95 Such a hybrid model could narrow the universe of relevant 
patents to those that are both likely to be litigated and similar to the user’s 
technology. It could also be combined with models for predicting litigation 

94. For a similar approach in the IPR context, see Yang et al., supra note 39, at 714.
95. E.g., Sandra Nemet et al., Application of Data Mining in Patent Portfolio Technology Analysis,

5 J. MECHATRONICS, AUTOMATION & IDENTIFICATION TECH. 12 (2020). 
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outcomes and costs to provide a prediction of which patents pose the highest 
monetary risk. 

With a move to more complex models, attention must be paid to 
interpretability. Users will be more trusting of a model knowing the factors 
on which the model based its prediction. Users may want to extract rules of 
thumb to estimate the litigation potential of any particular patent. An easy 
solution is to continue to use a linear model, like logistic regression. The 
coefficients for each trait in the dataset roughly correspond to the importance 
of the trait for prediction. But other, post-hoc interpretability methods can do 
a better job of actually capturing and interpreting how the more complex 
model reaches its decision. For example, the Local Interpretable Model-
Agnostic Explanation (LIME) algorithm works by testing the model on both 
the patent of interest and on similar, artificial examples with slight 
adjustments to their traits.96 By looking at the change in the model output 
from each of these small deviations, a picture of the relative salience of each 
trait emerges. LIME finds a simple model—a linear decision boundary or 
single decision tree—that approximates the complex model’s nonlinear 
decision boundary near the patent of interest. 

Our results are baseline performance metrics for all this future work. 
Like our model, future models should be tested on a random sample of 
patents in a holdout set. Compared to tests using matched-pairs samples, our 
approach is simple to replicate. Even models trained on matched-pairs sets 
can be tested on a random sample to get an idea of real-world performance 
and for comparison to our baseline. We evaluated our models using the 
precision-recall curve, which is a standard, comprehensive metric 
appropriate for unbalanced datasets. This will be an appropriate metric for 
much of the other work in this area. 

The metrics we have used can also show whether this type of modeling 
works better for some types of patents than others. For example, the set of 
traits we have investigated may be more predictive of litigation for one 
technology area than another. In pharmaceuticals, where litigation is 
generally between practicing entities, FDA-related events like the owner 
listing a patent in the Orange Book might be strong predictors of litigation, 
though those traits would be irrelevant for high-tech patents. A model trained 
and tested on one technology area, with a tailored set of traits, can still be 

96. Marco Tulio Ribeiro et al., “Why Should I Trust You?”: Explaining the Predictions of Any
Classifier, PROC. 22ND ACM SIGKDD INT’L CONF. ON KNOWLEDGE DISCOVERY & DATA MINING 1135 
(2016). 
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evaluated with the precision-recall curve.97 A higher AUC would show the 
model outperforms ours for the particular subset of patents; a lower AUC 
would show the opposite. 

A measure of calibration would be a helpful complement to the PRC. 
Ultimately, even with more patent traits and a future-focused algorithm, the 
model will not perfectly predict future litigation. It will not account for 
whether an infringing product exists. Nor will it account for the dynamics 
between individual companies that spark litigation and drive decisions about 
which patent to assert. Instead of outputting a bare classification, the model 
could predict the likelihood of litigation, and a measure of calibration would 
indicate to the user whether the likelihoods are correct. 

VI. CONCLUSION: A STEP FORWARD AND A BASELINE

By bringing the basic machine learning approach of model tuning and 
cross-validation into legal scholarship, we have improved on a prior attempt 
to predict patent litigation. Our performance metrics can serve as a baseline 
for future attempts. While additional work is needed to expand the dataset 
and tailor the model to potential users’ needs, we show that our approach of 
bringing together machine learning and legal knowledge is promising. 

Our improvement is a step toward informed patent clearance where it 
has previously been infeasible. By narrowing the universe of patents to those 
most likely to be litigated, a company can complete its review at a lower cost. 
Without good predictions, the company is left to choose between designing 
around a large body of patents or arbitrarily choosing some patents to read 
and design around while accepting litigation risk from others. With good 
predictions, however, the company could reduce its risk by designing around 
a few patents most likely to be litigated. These predictions can also help 
defensive aggregators and IPR petitioners better target their efforts. 
Predicting patent litigation is a critical component of a data-driven approach 
to preventing patent litigation.  

97. A smaller sample size would not affect the expected value of the AUC, so the AUC could be
directly compared to ours. The AUC would be more sensitive to sampling effects. See supra Figure 9 and 
text accompanying Figure 9. 
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APPENDIX 

Table A1. Detailed Operational Definitions of Patent Traits 

Trait Data Source Column Logic 

Litigated Lexis TotalPatent 
One 

Legal Status 
(Standardized) 

Whether an entry contains 
“NoticeOfLitigation” 

Litigation Date Lexis TotalPatent 
One 

Legal Status 
(Standardized) 

Date of first entry containing 
“NoticeOfLitigation” For unlitigated patents 
in matched samples, the Litigation Date of 
the matched litigated patent For unlitigated 
patents in random samples, the Litigation 
Date of a randomly-selected litigated patent 

Granted Date (to 
normalize Recorded 
Assignments & Forward 
Citations) 

Lexis TotalPatent 
One 

Legal Status 
(Standardized) 

Date of first entry containing “Granted” 

Technology Class (for 
matching) 

Lexis TotalPatent 
One 

US Class Part of first entry before “/” character 

Intrinsic Traits 

Trait Data Source Column Logic Logic (Prep 
for Model)* 

Claims Lexis TotalPatent 
One 

Claims Count of entries Natural log 

Small Entity USPTO PatEx 
application_data 

small_entity_indicator Entry 

Foreign Counterparts Lexis TotalPatent 
One 

Complete Family 
Members 

Count of entries not containing 
“US” 

Natural log 

Family Members Lexis TotalPatent 
One 

Complete Family 
Members 

Count of entries Natural log 
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Acquired Traits 
Trait Data 

Source 
Column Logic Logic (Only Events 

Before Litigation) 
Logic (Prep 
for Model)* 

Recorded 
Assignments 

Lexis 
TotalPatent 
One 

Legal Status 
(INPADOC) 

Count of entries containing “, 
AS,” 

With dates before 
Litigation Date, divided 
by months between 
Granted Date and 
Litigation Date; 

Remove 
negative 
values; 
natural log 

Recorded 
Transfer 

Lexis 
TotalPatent 
One 

Legal Status 
(INPADOC) 

Whether there is an entry 
containing “ASSIGNMENT OF 
ASSIGNORS INTEREST” with 
date after Granted Date 

With date before 
Litigation Date 

Owner Size 
Change 

Lexis 
TotalPatent 
One 

Legal Status 
(Standardized) 

If Small Entity, whether there is an 
entry containing “Fee Paid” and 
“M1.” If not Small Entity, whether 
there is an entry containing “Fee 
Paid” and “M2.”  

With date before 
Litigation Date 

Maintenance 
Fees 

Lexis 
TotalPatent 
One 

Legal Status 
(Standardized) 

Count of entries containing “Fee 
Paid” and not containing “EXPX” 

With date before 
Litigation Date 

In Force Lexis 
TotalPatent 
One 

Legal Status 
(Standardized) 

Whether there is an entry 
containing “Patent Expired” 

With date before 
Litigation Date 

Ex Parte 
Reexamined 

Lexis 
TotalPatent 
One 

Legal Status 
(INPADOC) 

Whether there is an entry 
containing “, B1,” “, B2,” or 
“, B3,” 

With date before 
Litigation Date 

Collateral-
ized 

Lexis 
TotalPatent 
One 

Legal Status 
(INPADOC) 

Whether there is an entry 
containing both “, AS,” and 
“SECUR”, “RELEASE”, or 
“COLLATERAL” in description 
of assignment type (not just in the 
name of assignor or assignee) 

With date before 
Litigation Date 

Forward 
Citations 

Lexis 
TotalPatent 
One 

Forward 
Patent 
Citations 

Count of entries With dates at least 18 
months before Litigation 
Date, divided by months 
between Granted Date 
and Litigation Date 

Remove 
negative 
values; 
natural log 

*All traits of patents issued in 2000 were normalized to a mean of 0 and standard deviation of 1 prior to training.  When
replicating Chien’s model with 1990 patents, we did not normalize the inputs. Normalization should not affect
performance of a logistic regression model, though it does affect the interpretation of logistic regression coefficients.
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Table A2. Descriptive Statistics of 1990 and 2000 Patent Datasets 

1990 2000 
Litigated Unlitigated Litigated Unlitigated 
n=739 n=5912 n=2739 n=26948 

Intrinsic traits 
Claims 18.0365 12.4849 37.7331 30.9479 
Small Entity 0.3599 0.3408 0.35853 0.3101 
Family Members 13.3342 8.4076 8.9763 6.2417 
Foreign Counterparts 11.1894 6.9503 7.2782 4.9578 
Acquired Traits, Developed Prior to Litigation 

Recorded Assignments (per month) 0.0159 0.0103 1.6523 0.1885 
Recorded Transfer 0.3735 0.1609 0.3118 0.1388 
Owner Size Change 0.1827 0.0350 0.0891 0.0260 
Maintenance Fees 2.3694 1.5536 1.1661 0.9128 
In Force at Time of Litigation 0.9405 0.5179 0.9792 0.8389 
Ex Parte Reexamined 0.0325 0.0022 0.0095 0.0007 
Collateralized 0.2003 0.0609 0.1446 0.0806 
Forward Citations (per month) 0.3954 0.1455 18.8684 1.2104 
Acquired Traits, Developed over Patent’s Lifetime 
Recorded Assignments 3.5859 1.8440 5.2709 2.8570 
Recorded Transfer 0.4790 0.1940 0.5469 0.2797 
Owner Size Change 0.1894 0.0355 0.1347 0.0439 
Maintenance Fees 2.8051 1.7706 2.7192 2.0554 
Ex Parte Reexamined 0.0744 0.0027 0.0876 0.0015 
Collateralized 0.2869 0.0836 0.3081 0.1503 
Forward Citations 107.1367 38.2140 137.7006 70.9933 
Note: Descriptive statistics of datasets created using matched pairs sampling, with eight 
unlitigated patents matched to each litigated patent by technology class. Mean values 
shown. 
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Table A3. Logistic Regression Hyperparameters for Patents 
Issued in 1990 
Parameter Value Reasoning 
C 1 Default 
class_weight None Default 
dual FALSE Default 
fit_intercept TRUE Default 
intercept_scaling 1 Default 
l1_ratio None Default 
max_iter 100 Default 
multi_class ‘auto’ Default 
n_jobs None Default 
penalty None Approximate default behavior in R 
random_state 0 Replicability 
solver ‘newton-cg’ Approximate default behavior in R 
tol 0.0001 Default 
verbose 0 Default 
warm-start FALSE Default 
Note: Hyperparameters for model sklearn.linear_model.LogisticRegression(), 
trained on patents issued in 1990. 

Table A4. Logistic Regression 
Coefficients for Patents Issued in 1990 
Trait Coefficient 
Intercept -4.8475
Claims 0.2673 
Family members 0.8602 
Foreign counterpart -0.7708
Owner size change 0.8616 
Maintenance fees 0.2524 
Recorded assignments -7.6827
Recorded transfer 0.3889 
Collateralized 0.5928 
Ex parte reexamined 13.8993 
Forward citations 2.6264 
In force at time of litigation 1.9090 
Small entity 0.6967 
Note: Coefficients of trained model 
sklearn.linear_model.LogisticRegression(), using 
hyperparameters in Table A3, trained on patents 
issued in 1990. 
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Table A5. Logistic Regression Hyperparameters for Patents 
Issued in 2000 
Parameter Value Reasoning 
C 1 Default 
class_weight {0: 1, 1 : 1} Default 
dual FALSE Default 
fit_intercept TRUE Default 
intercept_scaling 1 Default 
l1_ratio None Default 
max_iter 100 Default 
multi_class ‘auto’ Default 
n_jobs None Default 
penalty none Approximate default behavior in R 
random_state 0 Replicability 
solver ‘newton-cg’ Approximate default behavior in R 
tol 0.0001 Default 
verbose 0 Default 
warm-start FALSE Default 
Note: Hyperparameters for model sklearn.linear_model.LogisticRegression(), trained on 
patents issued in 2000. 

Table A6. Logistic Regression 
Coefficients for Patents Issued in 2000 
Trait Coefficient 
Intercept -4.5197
Claims 0.2350 
Family members 0.7378 
Foreign counterpart -0.7740
Owner size change 0.1147 
Maintenance fees 0.1665 
Recorded assignments -0.1782
Recorded transfer 0.3283 
Collateralized 0.0682 
Ex parte reexamined 0.0683 
Forward citations 0.5031 
In force at time of litigation 0.6516 
Small entity 0.3778 
Note: Coefficients of trained model 
sklearn.linear_model.LogisticRegression(), using 
hyperparameters in Table A5, trained on patents issued 
in 2000. Use caution when comparing to Table A4 
because data was normalized for this model but was not 
for the 1990 model. 
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Table A7. Support Vector Machine Hyperparameters 
Parameter Value Reasoning 
C 0.78 Regularization, optimized experimentally 
break_ties FALSE Default 
cache_size 1500 Speed up training 
class_weight {0: 0.0588, 1: 1} Class imbalance 
coef0 0.0 Default, ignored because kernel=rbf 
decision_function_shape ‘ovr’ Default, ignored for binary classification 
degree 3 Default, ignored because kernel=rbf 

gamma 0.028 
Kernel parameter, optimized 
experimentally 

kernel ‘rbf’ Flexible, general-purpose kernel 
max_iter -1 Default 
probability TRUE Enable precision-recall curve calculation 
random_state 0 Replicability 
shrinking TRUE Default 
tol 0.001 Default 
verbose FALSE Default 
Note: Hyperparameters for model sklearn.svm.SVC(), trained on patents issued in 2000. 

Table A8. Random Forest Model Hyperparameters 
Parameter Value Reasoning 
bootstrap TRUE Default 
ccp_alpha 0.0 Default 
class_weight {0: 1, 1: 1} Default, optimized experimentally 
criterion ‘entropy’ Optimized experimentally 
max_depth None Default 
max_features ‘auto’ Default, optimized experimentally 
max_leaf_nodes None Default 
max_samples None Default 
min_impurity_decrease 0.0 Default 
min_impurity_split None Default 
min_samples_leaf 42 Regularization, optimized experimentally 
min_samples_split 2 Default, optimized experimentally 
min_weight_fraction_leaf 0.0 Default 
n_estimators 5000 Replicability 
n_jobs None Default 
Note: Hyperparameters for model sklearn.ensemble.RandomForestClassifier(), trained on 
patents issued in 2000. 
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