Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

A Monte Carlo study of the forecasting performance
of empirical SETAR models

Michael P. Clements and Jeremy Smith*
Department of Economics,
University of Warwick,
Coventry CV4 7AL.
Email: M.P.Clements@Warwick.ac.uk or Jeremy.Smith@Warwick.ac.uk
Tel: 01203 523055
FAX: 01203 523032

December 6, 1997

Abstract

In this paper we investigate the multi-period forecast performance of anumber of empirical self-
exciting threshold autoregressive (SETAR) modelsthat have been proposed in the literature for mod-
elling exchangerates and GNP, amongst other variables. We take each of the empirical SETAR mod-
elsin turn as the DGP to ensure that the ‘non-linearity’ characterises the future, and compare the
forecast performance of SETAR and linear autoregressive models on a number of quantitative and
qualitativecriteria. Our resultsindicatethat non-linear modelshave an edgein certain states of nature
but not in others, and that this can be highlighted by eval uating forecasts conditional upontheregime.
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1 Introduction

In recent years there has been considerable interest in testing for and modelling non-linearities in eco-
nomic time series. Some of this activity has been based on alowing for non-linearities in traditional
econometric equations variously described as * structural’ or ‘behavioural’, but much of it followsin the
time-series tradition of Box and Jenkins (1970). The usefulness of linear time-series models is usually
gauged by their predictive ability, and such models have sometimes been used as a benchmark for eco-
nometric models in forecast comparisons. However, in arecent review of non-linear time series models,
De Gooijer and Kumar (1992) report that there is no clear evidence in favour of non-linear over linear
modelsin terms of forecast performance, notwithstanding the ability of the former to capture asymmet-
ries in important macro-aggregates over the business cycle (see, e.g., Hamilton, 1989, Tiao and Tsay,
1994 and Potter, 1995 for US GNP, Montgomery, Zarnowitz, Tsay and Tiao, 1997 for US unemploy-
ment, and Acemoglu and Scott, 1994 for UK labour market variables).

In this paper we investigate the forecast performance of anon-linear time series model that has been
widely used intheliterature to explain various empirical phenomena—the self-exciting threshold autore-
gressive (SETAR) model. We consider three studies which propose SETAR models of the foreign ex-
change market: Krager and Kugler (1993) who model five currencies against the US dollar on weekly
data over the last ten years, Peel and Speight (1994) who model three weekly sterling spot market rates
over the inter-war period, and Chappell, Padmore, Mistry and Ellis (1996) who model the French franc
to Deutschemark rate in the 1990's on daily data. Rather than analysing all these models, a represent-
ative sample are selected. Krager and Kugler (1993) do not evaluate the forecasting performance of
these models, but, asis common in this literature, carry out in-sample residual-based tests, such as the
Brock-Dechert-Scheinkman (BDS) test of non-linearity, tests of stability, and also comparisons against
GARCH models. Pedl and Speight (1994) report empirical mean-square forecast errors (MSFES) but
only for 1-step ahead forecasts. We also consider the models of US GNP of Tiao and Tsay (1994) and
Potter (1995). These are qudlitatively very similar. Potter (1995) presents non-linear impulse response
functions but does not consider the forecast performance of the model. Tiao and Tsay (1994) calculate
empirical M SFEsand show that the SETAR model performs favourably compared to alinear model par-
ticularly when the forecast origin happens to be in arecession, which is the regime with the minority of
the data points. Other economic time series we include in the study are the UK savings ratio and GDP
growth, analysed using threshold models by Peel and Speight (1995). Finaly, for the purpose of com-
parison we briefly consider the Canadian lynx data and Wolf’s sunspot numbers (see, for example Tong,
19953, chapter 7), which can be successfully forecast using non-linear time series models.

While some of the studies provide information on the forecast performance of the estimated models
others neglect thisaspect. The purpose of this paper istofill out therelatively limited evidence that exists
on the multi-step forecast performance of such models, and to see if we can go beyond the conclusion
in De Gooijer and Kumar, 1992, p.151 that ‘no uniformity seems to exist in the evidence presented on
the forecasting ability of non-linear models' by isolating those features that may contribute to improved
accuracy. What comes out strongly in our resultsis the importance of where the processisat thetimethe
forecast is made, paralleling the importance of the history of the process in impulse response analysis of
non-linear models: see Koop, Pesaran and Potter (1996).

The evidence on the forecast performance of non-linear models in the studies of economic and finan-
cia variables referred to above is based on empirical MSFEs. Without large data samplesit is therefore



difficult to calculate measures of forecast accuracy for multi-period forecasts with long horizons with
much precision. We get around this by using a Monte Carlo study rather than an empirical study, with
the data generating process (DGP) taken to be each of the estimated empirical modelsin turn. In many
ways this casts the non-linear model in its best possible light. For example, the lack of forecast gain of
non-linear models over linear models is often explained in terms of afailure of the ‘ non-linearity’ to per-
sist into the future (e.g., Granger and Terasvirta, 1993, p.164) but by using the estimated SETAR model
to generate data over the ‘future’, the future realizations of the process have the same non-linear imprint
asthe past as manifest in the estimated model. We are also in aposition to better explore other aspects of
forecasting with non-linear models, such as the dependence on the regime at the forecast origin. Finaly,
we can assess the impact on forecast performance of parameter estimation and model uncertainty.

The plan of the paper is as follows. In section 2 we briefly describe the SETAR model and the cal-
culation of multi-period forecasts. Section 3 describes the Monte Carlo that we use to assess the relative
forecast performance of the SETAR modelsand linear aternatives. Section 4 reviews some of the reasons
why it may not be possible to exploit apparent non-linearities in the datato generate more accurate fore-
casts. In section 5 we propose as an indicator of the forecast performance of SETAR models a measure
of ‘regime persistence’. When there is no regime persistence, so that regimes are serialy independently
distributed, alinear model should forecast aswell asthe SETAR. Section 6 discusses ‘ qualitative meas-
ures of forecast accuracy, and it is argued that these may provide additional information to the more
traditional quantitative measures, such as M SFE, when the comparisons include non-linear models.

Section 7 discusses the results of the forecast comparisons of the non-linear to linear models and we
assess the useful ness of the measure of regime persistence. Section 7.1 surveys some recent contributions
to modelling and forecasting exchange rates using non-linear models, before discussing the Monte Carlo
forecast comparison of the SETAR models of Krager and Kugler (1993), Peel and Speight (1994) and
Chappell et al. (1996) to linear models. The results for US GNP are reported in section 7.2, for the UK
savings ratio and GDP in section 7.3, and for the Lynx data and Sunspot numbers in section 7.4. Section
7.5 collects together the results concerning the outcomes of thetests of serialy independently distributed
regimes and the relative forecast performance of the SETAR and linear models. Section 8 concludes.

2 SETAR models and multi-period forecasts

Thethreshold autoregressive (TAR) model first proposed by Tong (1978), Tong and Lim (1980) and Tong
(1983) (see dso Tong, 1995a) assumes that avariable y; is alinear autoregression within a regime but
may move between regimes depending on the value taken by the threshold variable. When the threshold
variable isalag of y;, say, y;_q, SO that d is the length of the delay, then the modéd is * self-exciting’,
giving rise to the acronym SETAR. When there are two regimes, then the processisinregime: = 1 a
period t when y; 4 < r, and otherwise (y;_4 > r) inregimei = 2:

Yr = ({)i} + ¢ii}yt—1 +...+ %i}yt—p + Eii}, 6?} ~ iid (0,02{i}> , 1=1,2 ()

where the parameters super-scripted by {:} may vary across regime. The orders of the autoregressions
may differ across regimes (so that p isthe maximum lag order and some of the ¢jj} may be zero for some
i). Stationarity and ergodicity conditions are discussed in, e.g., Tong (1995a).

The SETAR model isaspecial case of the ‘ endogenous selection’ Markov Switching (MS) model of
e.g., Durland and McCurdy (1994). In the general model, the thresholds depend on the regime. Potter
(1995) shows that the MS model of Hamilton (1989) and the mixture of distributions model are also
specia cases. theformer ariseswhen the probability of switching regimes doesnot depend ontherealized
values of the process, and the latter when the regimes are serially independently distributed.



One of the reasons for the equivocal conclusion in De Gooijer and Kumar (1992) concerning the use-
fulness of non-linear models for forecasting isthat obtaining multi-period forecasts is more difficult than
for linear models, because exact analytical solutions are generally not available. For example, suppose
vt = g(ye—1) + €, Where g (+) isanon-linear function. For a 2-regime SETAR model, for example, we
might have:

9(ye—1) = [é{l} +1(ye—1 > 1) <¢{2} - ¢>{1})] Yi-1

where 1(-) istheindicator function —equal to unity if the argument istrue and zero if false. ¢, isiid with
mean zero and distribution function D.. The exact 1-step ahead forecast defined by §:1 = E[yi11 | Z4],
where Z; = v, y¢1,... =Y.', isgiven by:

U1 =E(g (ye) +eer1) | Tl = g (ye) -

However, for 2-steps ahead:
Jt2 = E[yeo | Te) = E[(9 (ye41) + €e42) | Te) = E[g (ye41) | T @)

But, Elg(ye+1)] # 9(Elyr+1]) = 9(iir41) when g (-) is non-linear.

Exact numerical solutions require computer-intensive sequences of numerical integrations (see, e.g.,
Tong, 1995a sections 4.2.4 and 6.2) based on the Chapman-Kolmogorov relation. Asan dternative, one
might use a Monte Carlo method (such as that implemented in the STAR3 program of Tong: see Tong,
19954, and used by, e.g., Tiao and Tsay, 1994 and Clements and Smith, 1997)! particularly for high-order
autoregressions. Another possibility isthe Normal Forecast Error (NFE) method proposed by Al-Qassam
and Lane (1989) for the exponential-autoregressive model, and adapted by De Gooijer and De Bruin
(1997) to forecasting SETAR models. Clements and Smith (1997) compare anumber of methods of ob-
taining multi-period forecasts from SETAR models and conclude that the Monte Carlo method performs
reasonably well, and is the method we use in this paper.

3 Design of the Monte Carlo

For each of the empirical models mentioned in section 1 we explore a number of aspects concerning the
forecast performance of a SETAR model versus alinear alternative viaMonte Carlo. Inthefirst instance,
we assumethat the SETAR model isthe SETAR DGP, and compare the forecasts from the SETAR model
calculated by the Monte Carlo method to those of alinear model. Werefer to this asthe ‘ Known Model’
case. The comparison is based on quantitative and qualitative measures of forecast accuracy: see section
6. For each of /V; = 1000 replications asingle realization {y}1T+H isgenerated from the SETAR DGP by
replacing the disturbances by normal random variates. The linear model is estimated on {y}f and used
to forecast the observations {y}ﬁf , and the resulting linear model forecast errors are then stored. The
SETAR model forecasts are obtained by averaging over an additional Ny = 500 realizations of {y} 7.1’
for each of the IV; replications. These realizations are generated from drawings of the errors from the
normal distribution with appropriate regime-specific error variances.

We present results which condition on the regime, whereby for conditioning upon the regimer; we
discard drawings of {y} for which the condition r; 1 < yp11_4 < r; fails. Thusfor adelay parameter

! The dynamic simul ation method used by Pesaran and Potter (1997) to cal cul ate 2-step forecasts from their non-linear * floor
and ceiling’ model is aMonte Carlo method. Gallant, Rossi and Tauchen (1993) and Koop et al. (1996) provide analyses of
the construction of conditiona densities for non-linear time series models, in the context of impulse response anaysis, and
emphasise theimportance of allowing for, and integrating out, non-zero future realizations of the disturbances (.41 in equation
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of d = 1 werequirethat r;, ; < yr < r; S0 that the 1-step ahead forecast is generated from regime
r;. We also present unconditional results, where the number of times yr1_4 falsin regime i will be
approximately equal to the unconditional probability of the processbeing inregimer;. Thisparalelsthe
practice of reporting empirical M SFEsfor specific regimes versusfor al regimestogether, asin Tiap and
Tsay (1994), for example. Tong (1995b) p. 409 — 410 argues strongly that for non-linear models ‘ how
well we can predict depends on wherewe are’ and that there are ‘ windows of opportunity for substantial
reduction in prediction errors’ (p.409). Animportant aspect of our evaluation of the forecasts from the
non-linear SETAR models relative to the linear AR models is to make the comparison in away which
highlights the favourable performance of the former for certain states.

Sofar wehave described asituation in which the SETAR model isassumed to bethe DGP: the number
of regimes and threshold values, the delay lag, the orders of the process in each regime and the model
coefficients, are all assumed known. This abstracts from sources of forecast uncertainty emanating from
parameter estimation and model selection. We continue to condition upon the number of regimes (1V,)
being known. If thethreshold valuesand the delay, d, are known, the sample can simply be splitinto 2 (for
N, = 2) and an OL Sregression run on the observations bel onging to each regime separately, or indicator
functions can be used in asingle regression, constraining the residual error variance to be constant across
regimes (see, for example, Potter, 1995, p.113.) However, we wish to alow for the situation in which r
and d areunknown, so themodel isestimated by searching over all admissable values of these parameters,
where r is allowed to take on each of the sample period values of y;_; inturn?, and d typically takes on
thevalues0, 1, 2, ... up to the maximum lag length alowed. For aknown lag order, the selected model
isthat for which the pair (r, d) minimize the overall residual sum of squares.

We a so alow the lag orders in the regimes to be unknown. Thisrequires asearch over al lag orders
(not constrained to be the same across regimes) less than some maximum, based on minimizing AIC
(see, Akaike, 1973). In section 7 the term *Unknown Model’ is used as a shorthand for the case when
the SETAR model parameters, including » and d, and the lag orders, are unknown and are estimated as
described above.

4 Factorsinhibiting non-linear model first moment prediction

A number of suggestions have been made as to why apparent non-linearities can not be exploited infore-
casting. In this section we review anumber of the arguments, including those put forward in the context
of forecasting exchange rates.

In reviewing Smooth Transition Autoregressive Regression (STAR)? models of USindustrial produc-
tion, Granger and Terasvirta (1993), chapter 9 (see also Terasvirtaand Anderson, 1992) argue that the su-
perior in-sample performance of such modelswill only be matched out-of-sample if that period contains
‘non-linear features' . Asdiscussed in section 1 the approach that we adopt does not allow the non-linear
models to perform poorly for this reason: in the Monte Carlo evauation of the forecast performance of
the SETAR models the future is ssmulated to mimic the past and reproduces the ‘non-linear features
that characterised the past. Thus, even if the non-linear structure captured in the empirical model was
primarily due to ‘outliers and therefore of a variety not conducive to improved empirical forecasts, by
taking the model to be the DGP we ensure it is afeature of the period to be forecast.

2In practice the range of values of y;_4 is restricted to those between the 15" and 85" percentile of the empirical distri-
bution, following Andrews (1993) and Hansen (1996).

3The STAR model is a general class of ‘smooth’ regime-switching models. The TAR model is a specia case in which
the movement between regimes is discontinuous. STAR models were first formulated by Chan and Tong (1986) as smooth
‘threshold’ autoregressive models



Secondly, it has been shown that forecast performance may depend on the regime at the forecast
origin. Asexplained in section 3 we assess the connection between forecast performance and the regime
the forecast origin falsin.

With respect to exchange rate prediction, Diebold and Nason (1990) give four reasons why non-linear
models may fail to forecast better than the smplest linear model even when linearity isroutinely rejected
statigtically. Their suggestions may be relevant for variables other than exchange rates. Thefirst is that
thereislinear dependence in exchange rates of the form that large (small) changes tend to be followed by
large (small) changes of either sign. Thusthere are non-linearities in even-ordered conditional moments,
which explains the success of ARCH (Engle, 1982) and GARCH (Bollerdev, 1986) type models of ex-
change rates, but can not be used for improved point (as opposed to interval) prediction. Secondly, the
apparent non-linearities detected by tests for linearity are due to outliers or structural breaks, but these
offer no gaininimproved out-of-sample performance. Third, conditional-mean non-linearities are afea
ture of the DGP, but are not large enough to yield much of an improvement to forecasting, and finaly,
they are present and important but the wrong types of non-linear models have been used to try and cap-
ture them. Our approach of simulating the estimated empirical models suggests that the first, second
and fourth explanations could not account for any inability of the non-linear modelsto outperform linear
models. This leaves the third reason.

In the next section we discuss one approach to assessing when a SETAR model might be expected
to yield useful forecasts.

5 A measure of regime persistence.

Thehalmark of the SETAR model isthat the movement between regimesisinternally generated (subject
to the realization of arandom disturbance term) and hasacyclica structure. Tong (1983) p. 109 givesan
example of aSETAR process for which the cyclical movement between regimesis absolutely regular, in
that the process aternates between the two regimes. He then goes on to show how this characteristic can
be exploited to simplify multi-step ahead forecasting. In Tong's exampl e the movement between regimes
is perfectly predictable. The polar case is that the regimes are serialy independently distributed. This
might occur if the empirical SETAR model is essentially capturing non-linearities of anon-SETAR type.
In that case, we would not expect amarkedly better forecast performance relative to alinear model (see
section 4).

In this section we discuss the cal cul ation of ameasure of regime persistence that can be applied to the
empirical SETAR modelsin aMonte Carlo setting, and in section 7 we consider how useful this measure
isasapredictor of the relative forecast gains of the SETAR model over alinear model.

Theideaisto see whether or not the degree of regime-persistence in the data generated by the SETAR
model is consistent with what would result from using a linear AR model. The approach we adopt is
the following. For each replication ; of the Monte Carlo, we record the proportion of times the process
remained in a particular regime ¢ for R consecutive periods, pf g Thus, if {y7}¥" denotes the artificial
data vector of length T' simulated from the empirical SETAR mode! on the 7 replication, then:

T

; 1 S i .
pfﬁzmg[“yg“) <ol €7)]

fori =1,...,N,, R = 1,2,3,..., and where eg., 1(y] € i) = 1 when ¢ isin regimei. When
R = 1 we simply have the proportion of observations in regime i. We compare these proportions with
what would result from using alinear model, where the linear model is obtained by weighting the linear



autoregressions of the SETAR model by the relevant p{,l. Thus, for illustrative purposes consider the
smple SETAR(2;1,1):
y=0Wy 1 +e&, wheny i <r

3
ye =0y 1 +e, wheny, | > 3

then on iteration j we consider an AR model with slope parameter given by p] | x {1} + (1 — p |) x
#12}. ThisAR model is simulated IV; times. For each of the N; simulated data vectors, we calcul ate the
proportion of times R consecutive observations fall in regime ¢, and denote this by ﬁf”ﬁz. Wethen rank the
I=1,...,N; values j}, by sizein the vector p/ , * and for iteration j we conclude that the degree of
serial dependence inthe {? }7 is not compatible with the data being generated by alinear model if pZy R
is greater than the (0.025 x N;)"" largest element in p? ., or is smaller than the (0.025 x N;)** smallest
element. Thisprocedureisthen repeatedforj =1, ... , N;, and we calculate the proportion of timesthe
serial dependence is not consistent with alinear model for each: and R.

By construction, the ‘test’ is correctly-sized, and will reject 5% of the time subject to sampling vari-
ability. In table 1 we record for illustrative purposes the rejection frequencies for the simple SETAR
model given by (3) for a number of parameter values and two sample sizes, T = 100, 200. Thetestis
applied exactly as described above in a Monte Carlo setting. In an empirical setting where the SETAR
model isunknown thetest isnot directly applicable, but asuitably modified version may be useful, but we
do not pursue that here. Table 1 indicates that for the DGP given by (3) the tests based on the individua
regimes are much more powerful than the test based on how often the process remains in either regime
for two consecutive periods. As expected, when ¢!} = ¢{2}, so that the DGP is linear, the rejection
frequency is (barring sampling uncertainty) 5%.

Tablel Regection frequencies of whether the regime dependence can be explained by alinear model.
o1 412} | Regime Regime Regime | Regime Regime Regime
<0 >0 Either <0 >0 Either
T =100 T =200

0 0.052 0.047 0.043 0.064 0.051 0.056
03 | 0191 0.130 0.053 0.266 0.218 0.051
06 | 0.542 0.441 0.051 0.822 0.756 0.069
09 | 0.925 0.881 0.087 0.998 0.999 0.155
03 03 | 0.058 0.048 0.046 0.048 0.049 0.051
03 06 | 0.229 0.157 0.050 0.331 0.281 0.042
03 09 | 0.667 0.584 0.065 0.954 0.938 0.101
06 0.6 | 0.047 0.057 0.045 0.039 0.041 0.057
06 09 | 0.263 0.216 0.053 0.498 0.470 0.071
09 09 | 0.050 0.049 0.045 0.060 0.060 0.047
Notes on table. The datais generated by (3). The calculations reported are for R = 2 based on N; =
1000 and IN; = 500.

*Rather than calculate ;‘){, r for each j, wein fact calculate this vector once only, where the weights used to form the AR
model arethe average proportion of timesthe simulated dataisin each regime, where the averaging is over the N; replications.
Thelossin precision is small, and we save a great deal of computer time.



6 Forecast accuracy comparison of linear ver sus non-linear models

Most forecasts of macroeconomic variables are quantitative in nature, and quantitative measures of fore-
cast accuracy based on the distance between the forecast and redlization (i.e., the magnitude of the fore-
cast error) have dominated the forecast evaluation literature. However, regime-switching models may be
better suited to predicting movements between regimes rather than small movements within a regime.
An evaluation criterion based on how often the direction of change of avariable is correctly predicted is
one way of capturing this idea.

Direction-of-change tests were originally developed in the context of predicting rates of return on
market investments by Henriksson and Merton (1981). Schnader and Stekler (1990) and Stekler (1994)
applied the approach to macroeconomic prediction, and Pesaran and Timmermann (1992) suggested a
number of refinements and extensions. Such tests are closely related to the standard 2 test of independ-
ence between actual and predicted directions of change based on the 2 x 2 contingency table. Where
applicable, we report the p-value of the Pesaran and Timmermann (1992) test, the null of which is that
the actual and predicted directions of change (in our case, the regimes) are independent. Relatedly, we
aso report a number of measures (rather than tests) of how well the model forecasts the direction of
change/regime. Oneisthe conditional probability of correctly predicting the regime, defined for regime
i and step-ahead h asthe proportion of times the model predicts (h-steps ahead) the processisin regime
¢ conditional on the process being in regime <. Thus, we record the proportion of the V; replications of
the Monte Carlo for which the model correctly predicted the regime and divide this by the proportion of
replications for which the process wasin that regime. These arereferred to as CRPs— conditional regime
predictions. A vaue of unity indicates that the regime is always correctly predicted (but note some cau-
tion is required — such an outcome would arise if the model aways predicted that regime regardless of
which regime the processis actualy in). We report CRPsfor the AR and SETAR models when the pro-
cess is not conditioned upon being in a particular regime. For forecast evaluation conditional upon the
regime, CRPswould appear to be lessinformative — for example, consider calculating the CRPfor being
inregime 1-step ahead conditional on the process being in regime i at the time the forecast is made. A
single summary statistic (for each horizon) is given by the ‘Non-Confusion’ Rate (NCR), which is the
number of times the regimes are correctly predicted divided by the total number of predictions. For the
two regime case the NCR is bounded between plus and minus one.

An obviouslimitation to the use of such criteriaisthat aforecast of very small increase, when asmall
decline occurred, will be counted one-for-one with aforecast of alarge increase when alarge decline oc-
curred. Moreover, as noted by Schnader and Stekler (1990) and Stekler (1994), we may wish to evaluate
forecasts relative to some baseline other than zero growth, e.g., in terms of how well the model predicts
‘high’ growth (say, growth above 2%) relative to low growth and declines (< 2%). In both the ‘ Known
Model’ and ‘Unknown Model’ cases, we report CRPs where the regimes are as given by the empirical
SETAR model DGPs.

We also calculate the more traditional squared error loss measures, such as the mean squared forecast
error (MSFE), for each horizon, using the variability over the replications of the Monte Carlo to obtain
our estimates. We use atest proposed by Diebold and Mariano (1995) to seeif the differencesin MSFEs
between models are statistically significant. Thetest isimplemented using a uniform lag window to es-
timate the variance of the sample mean of the loss differential series and assumesthat the h-step forecasts
exhibit h — 1 dependence (see Diebold and Mariano, 1995 for details). Harvey, Leybourne and Newbold
(1997) propose some modifications to the test statistic that correct for the tendency of the statistic to be
over-sized, but we do not use them here given the large number of forecasts we have.



7 Monte Carlo studies of SETAR versuslinear model prediction

7.1 SETAR forecasts of exchange rates

The literature on conditional mean exchange rate prediction over the post-war period suggests it is dif-
ficult to better arandom walk. Diebold and Nason (1990) estimate non-parametrically the conditional
expectation (or regression function) for non-parametric prediction to guard against the failure to benefit
from non-linearities due to the incorrect choice of functional form. Using anearest-neighbor (NN) tech-
nique of locally-weighted regression (LWR) (see, e.g., Cleveland, Devlin and Grosse, 1988) they find
no improvement over asimple random walk for predicting 10 major dollar exchange rates over the post
1973 period. Meese and Rose (1991) allow for non-linear extensions to anumber of structural exchange
rate model s using parametric and non-parametric models but with no significant improvement in forecast
accuracy.

We apply the NN technique asin Diebold and Nason (1990), using a Euclidean distance measure and
a tricube weighting function. The number of ‘nearest neighbours’ is set equal to the sample size, and
the regression surface is re-estimated for each step ahead we forecast. We do not consider alternative
values for these parameter or ways of implementing the method, since the NN technique is used only as
arough check of whether the empirical SETAR models fashion the data with sufficiently marked non-
linear features that non-parametric forecasts are superior to linear ones. Both for the financial, and the
economic, time series we find the NN forecasts are not significantly better than the ssmple linear AR
model forecasts.

7.1.1 Krager and Kugler (1993)

The exchange rate models estimated by Krager and Kugler (1993) for the French franc, the Italian Lira,
the Japanese Yen and the Swiss franc against the US dollar all follow asimilar pattern. There are 3 re-
gimes (N, = 3), thedelay isone period (d = 1), the middle regime is athird-order AR (p = 3) inthe
difference of the log of the exchange rate, and the first and third set the growth rate equal to a constant
(p = 0). The estimated standard deviations of the first and third regimes exceed that of the middle re-
gime, which isexplained by central bank interventions in response to large appreciations (regime 1) and
depreciations (regime 3). The model for the German mark differsin that the first regime is an AR with
p = 2. Thereader isreferred to Table 2 of Krager and Kugler (1993) for the details. The theoretical ra-
tionale isthat threshold models of this sort approximate the solution to arational expectations monetary
model with stochastic intervention rules (see Hsieh, 1989) that may characterise the managed floating
of the 1980's. The suggestion is that the authorities react to large appreciations and depreciations (rates
of change) whereas for the target zone approach to managed floating the level of the exchange rate (or
rather, its proximity to ceilings or floors) is relevant for signalling interventions.

Table 2 summarises the results of our Monte Carlo evaluation of the multi-step forecast performance
of the SETAR exchange rate models of Krager and Kugler (1993) of the Italian Lira and Japanese Yen.
Thelinear competitor isan AR(0) model for the differences (of thelogs) —i.e., arandom walk (including
aconstant term). Higher-order linear models were generally dominated by the random walk (RW). The
tables all follow asimilar format. Panel [A] reports, for the ‘Known SETAR Model’ case, unconditional
(on the regime) MSFEs for the RW model divided by those for SETAR for 1, 2 and 5-steps ahead. For
longer horizons the ratio is approximately unity. Panel [B] reports the ratio of the M SFEs, again for the
‘Known SETARModel’ case, but thistime conditioning the forecast origin on each of the three regimes:
Lower, Middle and Upper. The p-values are of the Diebold and Mariano (1995) test of equal forecast
accuracy (asmeasured by MSFE), discussed in section 6, and are the probabilities under the null (of equal
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accuracy) of obtaining lower test statistics than we record. The CRPsin panel [A] record the proportion
of times the regimes were correctly predicted when we do not condition on the regime: see section 6.
The NCRsin panel [A] are the non-confusion rates. Finally, panels [C] and [D] repeat the information
in panels [A] and [B] for the case when the SETAR model is not known. The CRPs and NCRs for the
AR model are the same by construction in panels [A] and [C] and hence are reported only once.

Italian Lira. RelativetoaRW thereisagain of just over 3% at 1-step ahead unconditionally when the
SETAR model is known. Conditional on being in the Middle regime, there isal-step gain of 16%, and
a 2-steps ahead the SETAR forecast are also significantly more accurate statistically. The 1-step gain
remains, conditional on being in the Middle regime, when the SETAR model has to be estimated, and is
of the order of 10%. At 2-steps ahead there is a much smaller, though till significant gain. The CRPs
reflect this finding —the AR model never correctly predictsthe Middle or Upper regimes, but the SETAR
model correctly predicts the Middle regime 12% of thetime 1-step ahead (model known, and 10% of the
time when the model is estimated).

Japanese Yen. Thereis a gan of over 40%, conditional on being in the Middle regime, when the
SETAR model isknown, and of 15% when it is estimated. However, even conditionally thereis nothing
to choose between the models at further steps ahead, on the basis of MSFE. The CRPsindicate that the
SETAR is better at predicting the Middle regime even at 5 steps ahead, getting it right nearly 40% of
the time. The NCRs indicate that the SETAR isless confused at 1-step ahead. For the Japanese Yen the
qualitative and quantitative measures tell asimilar story.

7.1.2 Ped and Speight (1994)

The inter-war exchange rate models of Peel and Speight (1994) are for three weekly sterling spot rates.
They estimate the US dollar and French franc models on 217 observations and that for the reichsmark on
139 observations. The estimated models are given in Pedl and Speight (1994), Table 3, p.407. In each
case the data are transformed by taking differences of the logs of the original series. We report results
for the USdollar rate (table 3), which ismodelled asa SETAR(3; 0, 2, 0), with d = 3. Thethresholds are
such that adepreciation of the dollar three weeksago exceeding 0.40% resultsin an expected appreciation
of 0.15%, and at the other extreme an appreciation of over 0.41% gives an appreciation of 0.086%. We
consider both aRW and an AR(3) model, as the latter appears to have some predictive ability. We find
significant gainsup to 3-steps ahead unconditionally, when the SETAR model isknown, mainly dueto the
performance in the Middle Regime, but not when the SETAR is estimated. In tune with the M SFE gains
inthe ‘Known Model’ case, the SETAR model fares better at predicting the Lower and Upper regimes.

7.1.3 Chappell et al. (1996)

Chappell et al. (1996) fitted one and two threshold models to various ERM cross rates for daily data
(15t May 1990 to 20" January 1992 for fitting, 215! January 1992 to 30!* March 1992 for forecasting)
but only found a superior forecast performance for the French franc/Deutschmark rate. They expect the
operation of the ERM to set ceilings and floors on exchange rates, so that while the random walk model
is appropriate within the prescribed bands it may not be as the exchange rate approaches either extreme.
We focus on their preferred two-regime model for the FFr/DM.

By way of contrast to Krager and Kugler (1993) and Peel and Speight (1994), they fit the levels of
the data and compare the ability of the linear and non-linear models to predict levels, whereas the other
two studies fitted models to the first differences and we have compared forecast performance in terms
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of predicting differences. For multi-period forecasts using an M SFE measure of forecast accuracy the
choice of data transformation on which to assess forecast accuracy is not neutral between rival models:
see Clements and Hendry (1993). Evaluation in differences is likely to play down any gains relative
to evaluation in levels. The choice of the transformation on which to evaluate accuracy (e.g., levels or
differences) is distinct from the issue of whether to estimate modelsin levels or differences.

In table 4 we give the results for two linear models: RW and an AR(3), both with constant terms,
against a SETAR(2; 1, 3), with athreshold of 5.831 and adelay of 1. Unconditionally upon the regime,
thereisal-period gain of nearly 10% relative to the RW, which at first declinesin 4 and then risesto 20%
a h = 20, dueto amarkedly superior Upper regime performance. Forecasts from the estimated SETAR
model are not dtatisticaly superior to those from the AR models, unconditionally, and conditional on
being in the Upper regime, there is only an apparent improvement at 1-step ahead. Neither the CRPs or
the NCRs signal the gains apparent in terms of M SFE. By comparison, Chappell et al. (1996) find gains
of 2% and 18% at h = 1, 2 relative to arandom walk, but of nearly 50% and 350% at h = 5 and 10!

7.2 SETAR model forecasts of US GNP

Tiao and Tsay (1994) compare the forecast performance of an AR(2) and a two-regime SETAR model
for real US quarterly GNP growth. They find that the maximum gain to the SETAR is no more than 6%,
and this occurs at 3-steps ahead. However, dividing up the forecast errors into two groups depending
upon the regime at the forecast origin, and then assessing forecast accuracy for each regime separately,
the SETAR records gains of up to 15% in the first regime. The rationale for this effect is that over the
sample period a clear majority of the data points (approximately 78%) fall in the second regime, so that
thelinear AR(2) model, which will largely be determined by these points, will be close to the TAR model
in the second regime. Thusthe forecast performance of the two modelsis broadly similar for data points
in the second regime. However, data points in the first regime are characterised by a different process,
captured by the first regime of the TAR model, so it is here that the TAR model can gain relative to the
linear model.

We analyse a SETAR model similar to that estimated by Potter (1995)°, who estimates a
SETAR(2;5,5) but with the third and fourth lags restricted to zero under both regimes. The delay
lag d = 2, and the model isin the expansionary regime when y;_» > 0 (where y; is the difference of
the log of quarterly US GNP) and otherwise in the contractionary phase. The model we use is the same
except that the zero values of the coefficients on the third and fourth lags are not imposed (so that the
model corresponds to Potter, 1995, Table 2, p.113). A summary of the results is given in table 5.

Comparing the SETAR model to an AR(2), we find again of around 16% at 1-step rising to 21%
a 2-steps with nothing to choose between the two thereafter. Conditional on being in the Lower (reces-
sionary) regime, which occurs only 24% of the time (and again for the Known Model case), the gains at
1 and 2 steps are of the order of 35%. This mirrors the empirical finding of improved forecast accuracy
(relative to the linear model) when the economy happens to be in the lower regime. Conditional on the
upper regime, the gain isonly around 8% at h = 1 relativeto an AR(2), rising to 16% at h = 2.

The CRPs are in tune with the outcome on the M SFE measure of accuracy. For example, at 2-steps
ahead the SETAR correctly predicts the Lower regime around 20% of the time compared to 3% for the
AR(2).

Estimating the SETAR model reverses the situation —the AR(2) isnow clearly preferable on M SFE.
Further investigation suggested that choosing the SETAR lag orders endogenously was particularly harm-

Building on Beaudry and Koop (1993), Pesaran and Potter (1997) propose a threshold model of US GNP with an endo-
genously changing floor and ceiling.
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ful to the SETAR. Interestingly, the CRPsindicate that even in these circumstances the SETAR correctly
predicts the L ower regime 2-periods ahead nearly 25% of thetime, whereas the linear model does so less
than 3% of thetime. Moreover, the Pesaran and Timmermann (1992) test is clearly rejected for the estim-
ated SETAR model at 2-steps ahead, but not for the AR, so that the qualitative and quantitative indicators
are apparently at odds.

7.3 SETAR model forecasts of the UK savingsratio and GDP

Peel and Speight (1995) estimate SETAR variables for a number of variables. We analyse the multi-
period forecast performance of their models of the difference of the UK quarterly personal sector savings
ratio, ASY (1955:1 - 1994:1, withthe 17 latest observations held back for out-of-sampl e forecasting) and
the rate of growth of annual GDP (1855 - 1993, last 8 years retained for forecasting).

The model for ASRisaSETAR(2;1,3), d = 4, and the model for GDP is SETAR(2;0,1), d = 1.
For ASR there are statistically significant gains up to 4-steps ahead (10% at . = 1), unconditionally
when the SETAR model is known. The larger gains are in the Lower regime, and the CRPs indicate the
SETAR is much better at predicting this regime 2 and 3-steps ahead. However, the M SFE-ranking of
the models is reversed when the SETAR model has to be estimated from the data, and there is little to
favour the SETAR on the quantitative measures. The SETAR and the AR both reject on the Pesaran and
Timmermann (1992) test at 1-step.

For GDP growth, relative to an AR(1) there isonly asignificant gain at 1-step ahead, and then only
when the SETAR is known. When the SETAR model has to be estimated the results follow the case of
ASR —using alinear model yields more accurate forecasts.

7.4 Non-economic data
7.4.1 Lynx data.

These are the number of lynx trapped in a certain district of Canada each year from 1821 to 1934. If
these are proportional to the population, then athreshold model which captures the underlying population
dynamics (arising number of births below a critical population size, declining above that ‘threshold’,
witha‘'delay’ asthe young mature to reproductive age) may be appropriate.

The model we investigate is taken from Tong (1995a), p.387, equation 7.7, and isa SETAR(2; 7, 2),
with adelay lag d = 2 and athreshold value of 3.116. Since the unconditional results establish the
superiority of the SETAR model, to save space we do not report the conditiona results. When the
SETAR model is known (see table 7) the ratio of the MSFE of an AR(4) model (Tong, 1995a gives
aSETAR(2;2,2) as afirst approximation to the Lynx data) to the SETAR model MSFE is around 1.8
for 1-step ahead (indicating an 80% gain), rising to over 2 for 3-steps ahead, and then declines but is still
around 1.1 at 20-steps ahead. Estimating the SETAR roughly halvesthe gainsat 1, 2 and 5-steps ahead.
The CRPsindicate that the SETAR is better at predicting the Upper regime at 5 and 10 -steps ahead, and
the NCRs indicate that the SETAR model is less confused. Both models have predictive ability judged
by the Pesaran and Timmermann (1992) test.

7.4.2 Wolf’s annual mean sunspot numbers.

The physica process that congtitutes the solar cycle is not well understood, in contrast to the biological
process of the lynx population dynamics, but both have become classic data setsin non-linear modelling.

Here we consider the SETAR(2; 10, 2), with d = 8 and a threshold of 11.93, taken from Tong
(1995a), p.421, equation 7.15. Following Ghaddar and Tong (1981), the SETAR model isfit to the series
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(y;) after applying an instantaneous sguare-root transformation to the original numbers (x;). Hence we
generate realizations of the series {y}i”H using the SETAR model but transform these to the original
units of observation (using theinverse of the square-root transformation) for fitting the linear models and
evaluating the forecasts from both models.

Tong (1995a), p.425-427 reports the results of an empirical forecast comparison between a
SETAR(2;3,11) modd and an AR(9) model fitted to the original sunspot numbers over the period
1700-1920, and used to forecast 1956-1979. Non-linear prediction isfound to do better over the troughs
but worse over the peaks, and overall linear prediction is superior on MSFE at all but the shortest hori-
zons. The 1956 observation is somewhat anomalous, indicating an unusually steep rise, and arguably
affects the SETAR more than the linear model.

Generating data by simulating the SETAR(2; 10, 2) of the transformed series, we find gains of the
known SETAR model relativeto an AR(9) of 40%, 34% and 12% at horizons of 1, 2 and 10, respectively,
and these are reduced to 30%, 24% and 10% when the SETAR mode! is estimated. The CRPs for the
L ower regime at short and medium horizons are higher for the SETAR, matching the empirical finding
reported above. The SETAR model is less confused at short and moderate horizons, and both models
reject on the Pesaran and Timmermann (1992) test.

7.5 Theindicator of the serial dependence of regimes

Table 8 records the proportion of the replications of the Monte Carlo for which the number of times the
simulated data remained in regime 7 (Lower, Middle or Upper) for 2 periods was not consistent with the
data being generated by alinear model. Comparing these rejection frequencies with the relative M SFE
performances discussed above, it is apparent that there is a clear positive association: when linearity is
rejected alarge number of times, thereisusually aclear gain in relative forecast accuracy to the SETAR:
witness the results for the Lynx and Sunspot data sets. Conversely, for both the dollar exchange rates
the null of linearity is rejected less than 5% of the time for one of the three regimes, which matches the
finding that any forecast gains that there might be at 1-step ahead when the SETAR model is known,
disappear when it has to be estimated. However, for the Lirathe linear null is rejected 20% of the time
for the middle regime, while conditional on being in the middle regime there are significant gainsto the
estimated SETAR model over arandom walk.

For the sterling-dollar inter-war exchange rate the linear model is seldom rejected, while the same
finding for the French franc is more surprising, given the MSFE gains.

For US GNP the rejection of around 20% in the lower regime matches the earlier indications (mainly
qualitative) that the SETAR model has some ability to predict this regime. The findings for ASR are
reasonably in tune with those from the qualitative and quantitative measures reported earlier, while the
high rates of rgjection for UK GDP are anomalous.

8 Conclusions

In this paper we have undertaken a comprehensive analysis of the multi-period forecast performance
of a number of empirical self-exciting threshold autoregressive (SETAR) models that have been pro-
posed in the literature, using both quantitative and qualitative measures of forecast accuracy. The Monte
Carlo approach we adopt favours the SETAR model relative to an empirical comparison by ruling out
the possibility that the SETAR forecast model is capturing ‘non-linearities' (outliers, non-SETAR type
non-linearities) which cannot be exploited for forecasting or which do not persist in to the future.
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Our findings indicate that the ability to exploit non-linearities for forecasting may turn on whether
forecasts are evaluated conditional upon the regime, reflecting the ability of non-linear modelsto forecast
well in certain states of nature, but not always sufficiently well to score better than linear models on
average (across all states of nature).

We found that non-linear models appear to be favoured by qualitative measures of forecast perform-
ance, and we considered a number of these.

We also proposed and implemented an indicator of when SETAR models are likely to forecast well
relativeto linear rivals, based on the serial dependence of regimes. For the most part, the SETAR model
forecast gains relative to the linear model are more marked when the indicator of regime dependence
clearly rgjects the linear model. Nevertheless, from our results it is apparent that this is not the whole
story, and factors other than the serial dependence of regimes have arole to play in determining when
the SETAR model will yield an improved forecast performance relative to alinear model.

In summary, our study has shown that it may not always be possible to exploit non-linearities of a
SETARtypetoyield markedly *‘better’ forecasts than alinear model on average, or unconditionally, even
when such non-linearities are a feature of the data (by construction). Model uncertainty and parameter
estimation uncertainty adversely affect the SETAR model forecasts, particularly when the threshold val-
ues and the delay, together with the lag orders and the autoregressive coefficients, all have to be determ-
ined form the data. Nevertheless, conditional on the regime in force at the time the forecast is made,
substantial improvements over linear models are possible.
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Italian Lira

[A] Known SETAR Model — Unconditional

Horizon MSFE: AR/SETAR CRPs: AR CRPs: SETAR NCRs
RwW p-value Lower Middle Upper Lower Middle Upper AR SETAR
1 1.033 0.000 1000 0.000 0.000 0954 0.126 0.000 593 .596
2 1.004 0.260 1000 0.000 0.000 0995 0.023 0.000 .589 592
5 0.996 0.864 1000 0.000 0.000 1000 0.000 0.000 571 571
[B] Known SETAR Model — Conditional. MSFE : AR/SETAR
L ower Middle Upper
RwW p-value RW  pvaue RW  p-vaue
1 1.003 0.272 1.160 0.000 0999 0.560
2 1.008 0.086 1015 0.016 0.999 0.574
5 0.997 0.705 1003 0.265 1.002 0.345
[C] Unknown SETAR Model — Unconditional
Horizon MSFE : AR/SETAR CRPs: SETAR NCR
RwW p-vaue Lower Middle Upper SETAR
1 1.007 0.261 0911 0100 0.000 564
2 0.990 0.972 0964 0.051 0.000 581
5 0.995 0.949 0.996 0.000 0.000 .569
[D] Unknown SETAR Model — Conditional. MSFE : AR/SETAR
L ower Middle Upper
RwW p-value RW  pwvaue RW  p-value
1 0.993 0.847 1.097 0.000 0.987 0.893
2 1.002 0.383 1.012 0.037 099  0.689
5 0.995 0.910 1.000 0557 0998 0.725
Japanese Yen
[A] Known SETAR Model — Unconditional
Horizon MSFE: AR/SETAR CRPs: AR CRPs: SETAR NCRs
RwW p-vaue Lower Middle Upper Lower Middle Upper SETAR AR
1 1.046 0.000 0634 0344 0000 0643 0521 0.069 .367 415
2 1.003 0.340 0647 0333 0.000 0611 0455 0.000 372 370
5 0.997 0.774 0643 0318 0.000 0663 0374 0.000 347 .363
[B] Known SETAR Model — Conditional. MSFE : AR/SETAR
L ower Middle Upper
RwW p-value RW  pwvaue RW  p-value
1 1.028 0.000 1411 0.000 1.024 0.010
2 1.006 0.141 1005 0210 1.001 0.438
5 1.011 0.021 1.004 0198 0999 0.605
[C] Unknown SETAR Model — Unconditional
Horizon MSFE : AR/SETAR CRPs: SETAR NCR
RwW p-value Lower Middle Upper SETAR
1 1.011 0.192 0.603 0469 0.072 .390
2 0.993 0.877 0.602 0.402 0.011 .362
5 0.995 0.958 0620 0.393 0.000 344
[D] Unknown SETAR Model — Conditional. MSFE : AR/SETAR
L ower Middle Upper
RwW p-value RW  pvaue RW  p-vaue
1 1.001 0.466 1149 0.000 0994 0.673
2 1.000 0.478 1005 0.204 1003 0.271
5 1.004 0.085 0999 0594 1000 0.557
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USDollar
[A] Known SETAR Model —Unconditional
MSFE MSFE CRPs: AR(3) CRPs: SETAR NCRs
AR/SETAR AR/SETAR AR SETAR
RW  p-vdue AR(3) p-vaue Lower Middle Upper Lower Middle Upper
1 1128 0.000 1103 0.000 0.025 0951 0081 0122 0849 0.170 .382 404
2 1100 0000 1.073 0.000 0.015 0957 0061 0112 0919 0.128 .381 417
3 1030 0.002 1.042 0.000 0.000 0992 0.009 0000 0981  0.009 372 .368
4 1008 0162 1013 0.086 0.000 1.000 0.000 0.000 1.000 0.000 371 371
5 1003 0338 1.005 0.241 0.000 0997 0.000 0.000 1.000 0.000 .363 .364
[B] Known SETAR Model — Conditional. MSFE : AR/SETAR
L ower Middle Upper
RW  p-vdue AR(3) p-value RwW p-vaue AR(3) p-vaue RW  p-vaue AR(3) p-value
1 1004 0293 1.049 0.000 1.690 0.000 1327 0000 1009 0089 1056 0.000
2 1073 0.000 1.076 0.000 1.137 0.000 1115 0000 1065 0000 1.075 0.000
3 1014 0.053 1014 0.123 1.043 0.006 1039 0010 0999 0545 1008 0.185
4 0998 0.621 1005 0.229 1.015 0.051 1018 0060 1010 0114 1.014 0.044
5 1012 0060 1.011 0.082 0.999 0530 1001 0445 1013 0.042 1012 0.050
[C] Unknown SETAR Model — Unconditional
MSFE MSFE CRPs: SETAR NCR
AR/SETAR AR/SETAR SETAR
RW  p-vadue AR(3) p-vdue Lower Middle Upper
1 0997 0565 0.974 0.897 0.061 0.929  0.067 379
2 0987 0818 0963 0.990 0.022 0.946  0.028 .367
3 0983 0979 0994 0.776 0.003 0.968 0.009 .364
4 0997 0.700 1002 0.369 0.000 0.995 0.000 .369
5 0997 0.686 1.000 0.553 0.000 0.997  0.000 .363
[B] Unknown SETAR Model — Conditional. MSFE : AR/SETAR
L ower Middle Upper
RW  p-vdue AR(3) p-value RW p-vadue AR(3) pvadue RW  p-vaue AR(3) p-value
1 0946 1000 0989 0.775 1.140 0.000 0.89% 1.000 0952 0.999 0997 0.604
2 0962 0987 0964 0991 1.016 0179 099% 0605 0989 0.776 0997 0.587
3 0980 0982 0980 0.978 0.998 0587 0994 0733 0989 0833 0998 0.609
4 0991 0805 0999 0.561 0.987 0990 0991 0902 0999 0548 1003 0.342
5 0994 0834 0992 0.905 0.996 0.742 0998 0641 0998 0624 0997 0.734
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[A] Known SETAR Model — Unconditional

Horizon MSFE: AR/SETAR MSFE: AR/SETAR CRPs: AR CRPs: SETAR NCRs
RwW p-value AR(3) p-value Lower Upper Lower Upper AR SETAR
1 1.097 0.000 1.095 0.000 0.947 0.691 0.955 0.701 .897  .906
2 1.065 0.004 1.058 0.003 0.945 0.647 0.958 0636 .889  .898
5 1.078 0.012 1.069 0.023 0.959 0.485 0.974 0423 867  .867
10 1.116 0.026 1.084 0.061 0.965 0.280 0.980 0213 .820 .818
20 1.192 0.052 1.110 0.113 0.976 0.081 0.999 0.028 .787 .794
[B] Known SETAR Model — Conditional. MSFE : AR/SETAR
Lower Upper
RwW p-value AR(3) p-value RW  p-vaue AR(3) p-value
1 1.005 0.201 1.034 0.001 1476  0.000 1.215 0.000
2 1.001 0.479 1.037 0.005 1410 0.000 1.128 0.001
5 1.023 0.160 1.060 0.013 1396  0.000 1.059 0.083
10 1.049 0.157 1.099 0.028 1.610 0.000 1.080 0.059
20 1.089 0.173 1.137 0.067 1786  0.000 1.081 0.118
[C] Unknown SETAR Model — Unconditional
Horizon MSFE: AR/SETAR MSFE: AR/SETAR CRPs: SETAR NCR
RwW p-value AR(3) p-value Lower Upper SETAR
1 1.031 0.085 1.029 0.064 0.944 0.680 .893
2 1.021 0.228 1.015 0.246 0954 0.572 .883
5 0.999 0.509 0.990 0.639 0971 0412 .863
10 1.011 0.439 0.983 0.651 0971 0.218 812
20 1.041 0.371 0.970 0.635 0.976  0.057 782
[D] Unknown SETAR Model — Conditional. MSFE : AR/SETAR
L ower Upper
RwW p-value AR(3) p-value RW  p-value AR(3) p-value
1 0.993 0.820 1.022 0.014 1325 0.000 1.090 0.001
2 0.986 0.833 1.022 0.045 1273  0.000 1.018 0.289
5 0.974 0.788 1.009 0.332 1244  0.004 0.943 0.894
10 0.961 0.737 1.007 0.419 1.446  0.000 0.970 0.707
20 0.940 0.699 0.981 0.595 1499  0.007 0.907 0.811
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Table5 Potter (1995), US GNP

[A] Known SETAR Model — Unconditional

Horizon MSFE : AR/SETAR CRPs: AR CRPs: SETAR NCRs

AR(2) p-vaue  Lower Upper Lower Upper AR SETAR
1 1.167 0.000 0.167 0.959 0.290 0954 .784  .807
2 1.219 0.000 0.024  0.968 0220 0950 .728  .765
3 1.009 0.399 0.008  0.997 0.081 0966 .742 .738
5 1.033 0.103 0.000 1.000 0.000 1000 .761 .761
10 1.012 0.154 0.000 1.000 0.000 1000 .762 .762

[B] Known SETAR Model — Conditional. MSFE : AR/SETAR
Lower Upper

AR(2) p-vadue  AR(2) p-value
1 1.351 0.000 1.084 0.000
2 1.346 0.000 1.167  0.000
3 1.048 0.181 1.018 0.204
5 1.046 0.121 1.018 0.157
10 1.012 0.124 1.016 0.060

[C] Unknown SETAR Model — Unconditional
Horizon MSFE: AR/SETAR CRPs: SETAR NCR

AR(2) p-vaue  Lower Upper SETAR
1 0.864 1.000 0.258 0.908 764
2 0.985 0.633 0.244  0.908 739
3 0.915 0.951 0.058 0.926 702
5 0.834 0.970 0.042 0.966 745
10 0.825 0.849 0.038 0.972 750

[D] Unknown SETAR Model — Conditional. MSFE : AR/SETAR

L ower Upper

AR(2) p-vadue  AR(2) p-value
1 1.001 0.485 0.769  1.000
2 0.944 0.901 0.846  0.999
3 0.951 0.798 0.833 1.000
5 0.839 0.969 0.880 0.978
10 0.851 0.838 0771 0.824
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Table6 Peel and Speight (1995).

UK ASR
[A] Known SETAR Model — Unconditional
Horizon MSFE - AR/SETAR CRPs: AR CRPs: SETAR NCR

AR(3) p-value Lower Upper Lower Upper AR SETAR
1 1.104 0.000 0415 0.814 0526 0.841 .666 .724
1.073 0.000 0.040 0.963 0230 0892 .613 .641
5 1.005 0.066 0.000 1.000 0.046 0982 .654 .658

N

[B] Known SETAR Model — Conditional. MSFE : AR/SETAR

Lower Upper
AR(3) p-value AR(3) p-vaue
1 1.245 0.000 1.043 0.000
1.147 0.000 1.075 0.000
5 1.016 0.091 1.021  0.033

N

[C] Unknown Model — Unconditional

Horizon MSFE-AR/SETAR CRPs: SETAR NCR
AR(3) p-vaue Lower Upper SETAR

1 0.814 1.000 0.383  0.806 .649

0.908 0.978 0.161  0.857 593

5 0.947 0.977 0.084 0.913 .626

N

[D] Unknown SETAR Model — Conditional. MSFE : AR/SETAR

Lower Upper
AR(3) p-value AR(3) p-vaue
1 0.937 0.999 0.807  1.000
0.901 0.839 0.847  0.999
5 0.961 0.913 0.938 0.998

N

UK GDP growth

[A] Known SETAR Model — Unconditional

Horizon MSFE -AR/SETAR CRPs: AR CRPs: SETAR NCRs
AR(1) p-vaue Lower Upper Lower Upper AR SETAR
1 1.069 0.000 0.000 1.000 0143 0928 .629 .637
1.006 0.555 0.000 1.000 0.000 1000 .613 .613
5 1.010 0.130 0.000 1.000 0.000 1000 .597 .597

N

[B] Known SETAR Model — Conditional. MSFE : AR/SETAR

Lower Upper
AR(1) p-value AR(1) p-vaue
1 1.032 0.089 1.168  0.000
1.017 0.006 1.010 0.199
5 1.005 0.754 1016 0.069

N

[C] Unknown SETAR Model — Unconditional

Horizon MSFE-AR/SETAR CRPs: SETAR NCR
AR(1) p-value Lower Upper SETAR

1 0.903 1.000 0.132 0.844 .580

0.900 1.000 0.158 0.832 571

5 0.889 0.998 0.136 0.849 .567

N

[D] Unknown SETAR Model — Conditional. MSFE : AR/SETAR

Lower Upper
AR(1) p-value AR(1) p-vaue
1 0.947 1.000 0.879  1.000
0.908 1.000 0.916  1.000
5 0.915 1.000 0.903 0.996

N
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Table7 Tong (1995), Non-economics data.
Tong (1995), Lynx data

[A] Known SETAR Model — Unconditional
Horizon MSFE -AR/SETAR CRPs: AR CRPs: SETAR NCRs
AR(4) p-value Lower Upper Lower Upper
1 1777 0.000 0922 0836 0931 0870 .88  .905
2 1.897 0.000 0.814 0629 0.843 0789 .742  .822
5 1.484 0.000 0885 0394 0.833 0683 .693 .744
10 1.120 0.009 0942 0273 0873 0527 .668 .731
20 1.083 0.060 0.990 0021 0900 0259 .612 .650
[C] Unknown SETAR Model — Unconditional
Horizon MSFE-AR/SETAR CRPs: SETAR NCR
AR(4) p-vaue Lower Upper SETAR
1 1.397 0.000 0919 0.867 897
2 1511 0.000 0.838 0.714 790
5 1.218 0.003 0.819 0.624 743
10 0.996 0.543 0.873 0.446 .698
20 0.992 0.578 0933 0.151 .628

Tong (1995), Sunspot numbers

[A] Known SETAR Model — Unconditional
Horizon MSFE -AR/SETAR CRPs: AR CRPs: SETAR NCRs
AR(9) p-vaue Lower Upper Lower Upper AR SETAR
1 1.397 0.000 0923 0841 0936 0873 .892 .913
2 1.338 0.000 0850 0770 0.897 0738 .820 .837
5 1.343 0.002 0.777 0674 0.848 0668 .743 .789
10 1.122 0.153 0812 0650 0790 0686 .753 .725
20 1.106 0.196 0.738 0501 0.778 0501 .654  .680
[C] Unknown SETAR Model — Unconditional
Horizon MSFE-AR/SETAR CRPs: SETAR  NCR
AR(9) p-value Lower Upper SETAR
1 1.309 0.000 0.939 0.873 914
2 1.243 0.003 0.892 0.757 841
5 1.263 0.014 0.850 0.649 .784
10 1.099 0.183 0.811 0.661 .756
20 1.085 0.227 0.806 0.456 .682

Table8 Regection frequencies of the linear null based on the indicator of the serial dependence of re-
gimes. R = 2.

Lower Middle Upper

Krager and Kugler (1993)  Itdlian Lira 0.097 0217 0.029
Japanese Yen 0.113 0030 0.119

Peel and Speight (1994) US Dollar 0.058 0.137 0.022
Chappell et al. (1996) French Franc 0.008 - 0.003
Potter (1995) US GNP 0.206 - 0.161

Tong (1995a) Lynx 0.694 - 0.611
Sunspot 0.726 - 0.324

Peel and Speight (1995) A SR 0.042 - 0.101

UK GDP 0.531 - 0.256




