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Abstract

This paper examines the predictability of exchange rates on a transaction
level basis using both past transaction prices and the structure of the order
book. In contrast to the existing literature we also recognise that the trader
may be subject to (Knightian) uncertainty as opposed to risk regarding the
structure by which exchange rates are determined and hence regarding both the
model he employs to make predictions and the reliability of any conditioning
information. The trader is faced with a two stage decision problem due to this
uncertainty; first he needs to resolve a question of market timing as to when to
enter the market and then secondly how to trade. We provide a formalisation
for this two stage decision problem. Statistical tests indicate the significance of
out of sample ability to predict directional changes and the economic value of
predictability using one week of tick-by-tick data on the USD-DM exchange rate
drawn from Reuters DM2002 electronic trading system. These conclusions rest
critically on the frequency of trading which is controlled by an inertia parameter
reflecting the degree of uncertainty; trading too frequently significantly reduces
profitability taking account of transaction costs.
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1 Introduction

Considerable research has been devoted over a number of years to examining the pre-

dictability of foreign exchange rates following the classic paper by Meese and Rogoff

(1983). One reasonable interpretation of this work is that it has been found to be dif-

ficult to convincingly overturn their result regarding the inability of standard “macro”

based exchange rate models to beat a random walk in out of sample forecasting exer-

cises. Clearly this broad statement could be qualified as research has appeared which

claims to provide evidence of predictability in particular exchange rates and over par-

ticular sample periods (see for instance Abhyankar, Sarno and Valente (2005)) but the

general impression remains that standard fundamentals based models do not consis-

tently dominate a random walk.

At the same time there has been a major development in what has become known

as the New Micro Approach to Exchange Rates (see for instance Lyons (2001)) in

which attention is focussed more on the characteristics and micro structure of the FX

market itself rather than the macro fundamentals that drive the traditional theories of

exchange rate determination. In the light of Messe and Rogoff’s results this distinction

is critical since any statement regarding predictability is necessarily conditional on the

information set employed. A variable may appear to be completely unpredictable if ir-

relevant data is used as the conditioning information and yet may be highly predictable

if the correct conditioning data is used. While both approaches, micro and macro, seek

to explain the same exchange rate which is determined on a tick by tick basis in the

spot market, they obviously differ critically in the information sets they use to explain

exchange rate movements and hence forecast.

In this paper we present what we believe to be the first rigorous tests of pre-

dictability of an exchange rate using irregularly spaced tick by tick FX data where the

information set involves both the past price history and information on the structure

of the order book. Secondly we attempt to formally recognise the uncertainty that

a foreign exchange trader faces given that any model he uses to generate forecasts

and trading decisions will be incorrect in ways that he cannot capture in a unique

probability distribution. We therefore allow our trader’s decisions to reflect Knightian

Uncertainty rather than simply risk. In short we find clear evidence of predictability

both in terms of directional change and economic value after taking account of trans-

actions costs when the frequency of trades is controlled. The predictors are based on

genetic algorithms applied to the tick by tick data and evaluated over a three day

out of sample period. White’s reality check is employed to insulate the results from

any data snooping bias. The prediction rules are also compared with the results from

applying several classic Technical Rules which are shown to indicate substantially less

predictability and profitability than the GA trading rules we employ. A further some-
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what surprising result is that the we find little or no advantage in allowing the predictor

to exploit information in the order book. This result is exactly the opposite of what

we had expected before carrying out the empirical work but would be consistent with

the market price acting as a sufficient statistic and hence that no further information

is useful.

Our objective is not to re-examine the question of the predictability of technical

rules but to mirror the way in which technical rules appear to be used in practice

by currency traders when making their trading decisions. In the first place, there is

considerable evidence (see for instance Taylor and Allen (1992), Lui and Mole (1996))

that traders largely use technical rules only for short run decision making, which jus-

tifies our use of tick by tick data. Traders also do not follow a single rule but form

an impression as to where the market is moving on the basis of a number of technical

indicators, dropping those that appear not to have worked well.1 Secondly we formalise

the sequential decision making seen in financial markets where an initial decision must

be taken as to when to enter the market – the question of market timing – alongside

the decision of how to trade. The market timing decision is intimately related to the

degree of uncertainty the trader faces; when he is confident in the direction the market

is moving he will act quickly and when he is uncertain he will show inertia and be

reluctant to trade.

Our results would seem to justify the investment that has been made by a number

of financial institutions to develop and apply automatic trading systems2. This does

suggest the correct interpretation of the Messe and Rogoff conclusion lies in the fact that

the correct conditioning information set had not been used rather than that exchange

rates are in fact unpredictable. In addition we show that even when you have the correct

information it is critically how and when it is used that determines if profitability will

appear since unless the frequency of trading is controlled, profitability disappears. The

frequency of trading is controlled by means of an “inertia” parameter reflecting the

degree of uncertainty and ensures the system can only trade when the predicted price

change is beyond some threshold level (taking transactions costs into account). Human

traders clearly do not trade in real time as frequently as our unconstrained trading rules

would suggest and so restricting the frequency of trades simple reflects reality.

In the next sections we briefly review the existing literature in this area and then

discuss the derivation and application of the Genetic Algorithm trading rules, the

testing procedures we have employed before turning to report our results.

1We have benefited from detailed discussions with the chief currency trader at the Bank of England
and the Royal Bank of Scotland regarding their use of technical analysis.

2We know, for instance, of one major bank that has an automatic trading system in place that
inspects 1200 currency pairs in real time and we are told delivers profits of the order of 500 million
Euro annually.
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2 Predictability and Market Timing

Most existing statistical analysis suggests at best weak predictability in the FX mar-

ket. At the same time, we can clearly observe trends, ex post, in exchange rates over

particular periods of time which might imply ex ante short term predictability if the

correct conditioning information can be found and potentially short term arbitrage

opportunities. To state the obvious; the issue of market timing is intimately connected

to the degree of predictability in a market. Even if there is no predictability over a

long period or on average, it may be possible to forecast at some point of time over a

short period. It may be more important to identify these moments in time rather than

attempting to find a predictor which has good properties on average as is traditionally

the case.

In the paper we use a two stage combined predictor in which the first step provides a

market timing indicator and the second gives a forecast of the future exchange rate and

a related trade. The market timing indicator effectively serves as a filter, extracting

irrelevant or uncertain information and noise from the time series data and then the

trader uses this filtered information set to take decisions in the market.

The more formal description of the individual’s preferences is given in the following

section.

2.1 Uncertainty Aversion and Inertia

An investor in real life is invariably faced with different types of uncertainty while mak-

ing trading decisions in a market. This uncertainty might be due to changing market

structure, estimation error or model uncertainty, lack of information, imprecision of

information of imperfect trading signals. Risk is defined by the probability of events

described by an assumed model structure and a unique probability distribution. We are

more concerned with capturing the uncertainty in decision making, beyond risk, which

results if there is a lack of knowledge about which model and probability distribution

to use. Risk calculus, as employed for instance in VaR or expected utility calculations,

is relatively straightforward and provides a confidence interval as the basis for action.

However, when we recognise that incorrect decisions can follow from inaccuracy in the

assumed model or probability distribution we need to employ additional tools to decide

whether to trust a predictor or not. Each transaction is costly because of transaction

costs and if future prices do not change as predicted by the model the investor will

inevitably lose money. In order to filter weak trading signals we need some rule that

suggests you only trade if the predicted value exceeds some threshold that reflects the

degree of uncertainty.

Knight’s characterisation (Knight 1921) of uncertainty refers to situations when

there is no unique probability model supporting traders’ decisions. In this case ex-
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pected utility fails to be an appropriate model by which to predict or make trading

decisions. Technical indicators may in fact reflect the Knightian concept of uncertainty

more accurately than expected utility based predictors since they are often viewed as

distribution free methods of predicting future prices. However, even technical rules are

recognised as being imprecise and may deliver incorrect forecasts which is why tech-

nical analysts tend to use several technical indicators simultaneously or interval based

rules like Bollinger Bands or stop-loss strategies.

The use of these strategies brings some inertia to the trading process which makes

trading less frequent. This notion of trading inertia is entirely consistent with the

question of market timing since it implies that the investor does not trade at every

feasible point of time but does so by trying to choose the best moment when to enter

the market.

There are several ways how the theory of decision-making under uncertainty can

be used to model the observed inertia in the market. One of the classic examples

is the no-trade condition introduced by Dow and Werlang (1992). Once the trader

observes this condition in the market, he becomes “uncertain” about a particular asset

and excludes it from his portfolio and doesn’t trade the asset again until the condition

disappears. This phenomenon describes some kind of extreme uncertainty aversion

in the agent who will have different degrees of uncertainty regarding each asset in the

market reflecting the different degree of confidence he has in his information set. It may

also be that the investor is uncertain about the market as a whole in that he does not

see value in any alternative to his current position. This implies that his position will

change only if there is another portfolio which clearly dominates his existing portfolio.

2.1.1 The Market entry/ exit Decision

Theoretical support for preferences with trading inertia has been introduced by Bewley

(1986) (see also Bewley (2002), Ghirardato, Maccheroni and Marinacci (2004)) and we

now provide a short description of the simplified version of the Bewley’s approach that

we will employ.

Uncertainty Averse Preferences. Let S be a set of states (of the market) and

let B be the σ-algebra of its Borel sets. An act is a measurable bounded function

f : S → R and let L ⊂ RS be the set of all acts on S, i.e., a set of random payoffs

available at the moment for decision-making. In our case we consider acts as the return

the agent receives from his trades. Effectively, L represent a set of alternative strategies

in the market to which the trader is restricted.

There is a binary preference relation $ua (stands for ”uncertainty aversion”) defined

on L and let it satisfy the following axioms.

A1. Monotonicity If f(s) > g(s) for all s ∈ S then f $ua g.
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A2. Transitivity If f $ua g and g $ua h then f $ua h.

A3. Openness For all f ∈ L, {g ∈ L : g $ua f} is open L.

A4. Independence For all f, g, h ∈ L and for all α ∈ (0, 1), g $ h if and only if

αf + (1− α)g $ua αf + (1− α)h.

Theorem 2.1. (Bewley, 2002) If $ua satisfies Axioms A1-A4, then there is a closed

convex set P of probability measures on S such that

(i) for all f and g and B ∈ B we have f $ua g if and only if EP (f) > EP (g) for

all P ∈ P;

(ii) for all P ∈ P, P (B) > 0 for each non-empty B ∈ B.

The set of probability measures P reflects the trader’s uncertainty. The key point

in the preceding theorem is that the preference relation $ua is not complete leading to

a set of probability measures P rather than a unique measure as in the expected utility

theory. This means that there may exist two acts which are “incomparable” and the

decision-maker can not distinguish which is better nor in fact whether he is indifferent

as he does not have sufficient information to evaluate the different options. The notion

of incomparability is critically distinct from indifference. The latter means that if the

decision-maker is indifferent between f and g he will definitely prefer f + ε rather than

g if ε > 0. In the case of incomparability the investor needs more information beyond

f in order to compare two alternatives. This may imply that the decision-maker is not

fully rational as discussed in Bewley (2002). If the decision-maker can unambiguously

distinguish between two acts then we say that acts f and g are “comparable” and

denote this by f ≶ua g.

There are different solutions as to how to act when there are incomparable portfolios

in the market. One is to randomly choose one of them, another is to assume that the

investor has a subjective distribution over the set of priors (a probability measure

over probability measures) and carries out some form of averaging with respect to his

beliefs. This approach leads to Bayesian Model Averaging and its generalization as

discussed in Klibanoff, Marinacci and Mukerji (2005). Instead we adopt the inertia

approach proposed in Bewley (2002). This implies that the decision-maker will change

his portfolio only if a new portfolio strictly dominates it. In order to formalize this we

denote by ft the optimal portfolio for the investor at time t.

Inertia Assumption For each t1 < t2, ft1 '= ft2 ⇔ ft2 $ua ft1 .

This means that the next choice of the investor will need to strongly dominate the

preceding position otherwise they coincide (the previous position will not be changed).

He will not update the position in three further cases: if the alternative is worse than

the current one, if he is indifferent between the alternative and the current position

(i.e., their expected values with respect to all priors coincide) and if the alternative is

“incomparable” with the current position. Thus, if the agent does not see any strictly
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better alternative to his current portfolio he will not trade until the situation changes.

If a new alternative arises which is preferable according to every measure in the prior

set, the trader will change his current position. In a real market this inertia is also

justified by the presence of transaction costs since an investor would have to pay to

switch to an incomparable portfolio which would not be rational.

Although this representation of Bewley’s preferences allows us to model trading

inertia, it does not provide guidance as to which alternative to choose when faced

with several “incomparable” positions each of which is strictly better than the current

position. For example, Bewley’s preferences do not provide an answer as to what the

decision-maker holding the portfolio f should do if there exist g and h such that g $ua f

and h $ua f . It may happen that g and h are not comparable. If this is the case, the

decision-maker will get a signal that he needs to change his current portfolio, given

there are better portfolios than f in the market (both g and h in our case) but he does

not know which alternative, g or h to choose.

In order to fill this gap we propose two different preference relations in the space of

risky payoffs and construct a composite indicator which the decision-maker uses. The

first indicator is based on Bewley’s preferences $ua as described above which represents

the trader’s perception of uncertainty and serves as a market timing indicator informing

the trader that he should alter his current position. The second indicator, td, (stands

for ”trading”) changes the trading direction and determines the quantity traded. We

denote the corresponding preference relation by )td. We do not provide any specific

axiomatization for the)td preference relation here as it may be any subjective predictor

based on a complete preference relation that the trader is willing to use: either based

on the expected utility model or a technical indicator or simply the trader’s intuition.

The composite preference relation ) is then defined as follows:

g ) f ⇔ (g ≶ua f) ∧ (g )td f).

Effectively decision-making based on the preference relation ) is split into two stages:

market timing and trading. The uncertainty aversion preference relation $ua does not

indicate whether one asset is better than another; rather it provides the degree of

confidence for the trader that the td indicator has predictive power at the particular

point of time. It gives a signal whether it is possible to say that there is an asset

structure which unambiguously dominates the current position. If this is the case then

the td indicator specifies the clear action of the trader. This trading strategy reflects

the “rules-of-thumb” used by technical traders in reality. Indeed, as we have already

mentioned, generally technical traders use several indicators in order to be confident

they correctly predict the future market direction. Such a composite indicator is more

robust since the trading signal is confirmed by both the td and ua rules.

In order to specify the preference relation more precisely we shall make use of a
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simple example. Assume that there are two assets in the market – one risky and one

risk-free. The agent has only three possibilities: invest his wealth in the risk-free asset,

invest everything in risky asset or take a short position in the risky asset which is equal

to his current wealth. The current wealth level is denoted by W0. The current price

of the risky asset is p0 and its future price is a positive random variable p. The gross

return of the risk-free asset is 1+r. In order to define the set of priors for the model we

fix a measure P0 on the probability space (S,B). We assume that all measures in the set

P are absolutely continuous with respect to the measure P0. By the Radon-Nikodym

theorem for every measure Q ∈ P there exists a non-negative random variable ηQ with

EP0(ηQ) = 1, such that dQ = ηQdP0. Therefore, we can identify the set of priors P with

the set of their Radon-Nikodym derivatives with respect to the probability measure P0.

The price expectation under the measure Q can be expressed as EQ(p) = p̃ + kQ,

where p̃ = EP0(p) and kQ = covP0(p, ηQ). Indeed, EQ(p) = EP0(ηQp) = covP0(p, ηQ) +

EP0(p)EP0(ηQ) = kQ + p̃.

Let the set of Radon-Nykodym derivatives of the measures in P satisfy the condition

C = {covP0(p, ηQ) : Q ∈ P} = [−kmin, kmax] with kmin, kmax > 0. This assumption

characterises the set of priors of the decision-maker.

Let the investor initially only hold the risk-free asset. Then, according to Theorem

2.1, under the above preferences he will decide to switch to the risky asset if EQ( p
p0

) >

EQ(1+r) = 1+r for all Q ∈ P , or equivalently p̃+k > p0(1+r) for all k ∈ [−kmin, kmax].

Thus, the agent takes a long position if p̃ > p0(1 + r) + kmin.

If the agent decides to double his holding in the risk-free asset, he borrows W0
p0

,

converts it into cash and invests in the risky asset. At the end of the next period the

investor buys W0
p0

shares of the risky asset and repays his debt. Thus, the final wealth

can be calculated by W1 = 2W0(1 + r) − W0p
p0

and the return of the short position is

2(1 + r)− p
p0

.

The investor will prefer the short position to the risk-free asset if 2(1+ r)− EQ(p)
p0

>

1+r or equivalently p̃ < p0(1+r)−kmax. Combining these two inequalities we conclude

that if p0(1 + r)− kmax ≤ p̃ ≤ p0(1 + r) + kmin the decision-maker decides to keep his

portfolio unchanged according to the inertia assumption.3 In the case k = kmin = kmax

(a symmetric band) the latter inequality is simplified to |p̃− p0(1 + r)| ≤ k.

The main implication of the example is that there exists a no-trade band around

the predicted value of the alternative portfolio which determines the market timing

condition. That is, if the value of the proposed portfolio lies within the band then the

investor does not rebalance his current portfolio and the converse implies the “trade”

signal.

Note that our no-trade band is different from the no-trade condition of Dow and
3We can also obtain the inertia band under more relaxed assumption for the multiple prior set,

e.g., C = {covP0(p, ηQ) : Q ∈ P} ⊂ R is bounded and inf C = −kmin and supC = kmax.
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Werlang (1992). Under Dow and Werlang’s condition the investor exits the market

and does not re-enter until the condition vanishes. In our case the trader does not exit

the market but waits and holds his current portfolio until a better alternative arises.

We consider the simplest case with two assets in the market – long and short

positions in the foreign currency. If denote by f the position held at time t which was

bought at time t0 for price pt0 then we say that there exists a position g such that

f ≶ua g ⇔ |pt0 − pt| > k for some pre-defined positive k, where pt is the current price

of the asset g. This can be interpreted as implying there is no asset structure in the

market which dominates the one held until the transaction price change is predicted

to be large enough. The constant k reflects trader’s subjective attitude to uncertainty

in the market. The larger k, the wider the band of inertia which leads to less frequent

trading. For the sake of simplicity below we use a symmetric interval for the market

timing indicator. Once the price change happens to be big enough the trader uses the

td indicator to determine his action in the market. In our case the td rule is provided

by a genetic algorithm trading rule which is discussed in the following section.

3 Technical Analysis and Predictability

The debate as to whether using Technical Analysis results in significant profitability

has probably been running ever since the Dow Theory came into existence between

1900-1902 when Charles Dow suggested that the direction of prices in “The Industrial

Average”, made up of 12 blue chip stocks and “The Rail Average”, made up of 20

railroad companies appeared to be based on a set of rules.

In an early study Fama and Blume (1966), investigated the importance of Technical

Rules while analyzing foreign exchange markets and Dooley and Shafer (1976) obtained

results in favor of the profitability of similar filter rules. Sweeney (1986) confirmed these

positive results and proved their statistical significance. Carol Osler has demonstrated

in several papers (Osler (2003), Osler (2000), Chang and Osler (1999), Chang and

Osler (1995) and Savin, Weller and Zvingelis (2007))the potential for profitability of

more sophisticated technical rules in FX markets such as head and shoulder patterns.

Whereas most technical indicators are based simply on historical prices or returns, other

information also can be useful in order to form expectations of future prices. Neely and

Weller (2001) show that including information on US foreign exchange interventions

improves the profitability of their trading rules.

However, the practical relevance of much of this research has equally been called

into question. Neely and Weller (2003) for instance emphasise the critical role of trans-

action costs and inconsistences between the data used by practitioners and in academic

simulations; although most traders transact in real time the majority of the earlier aca-

demic studies (Dooley and Shafer (1983), Sweeney (1986), Levich and Thomas (1993),

9



Neely, Weller and Dittmar (1997)) report the profitability from using technical rules

but use daily or weekly data which is clearly unrealistic and misrepresents the informa-

tion set available to the trader in practice when making a trade using technical analysis.

The literature in which high-frequency trading rules are investigated is limited. Curcio,

Goodhart, Guillaume and Payne (1997) consider intra-day FX data aggregated to one

hour and find little or no evidence of profitability outside of periods when the exchange

rate is trending. Neely and Weller (2003) using half hourly quote data find considerable

out of sample predictability which does not translate into profitability once transaction

costs are taken into account which they claim supports the efficiency of the FX market.

The research most closely related to our own is that of Michael Dempster (Dempster

and Jones (2001)) who applied GP generated rules to FX transaction data with one

minute aggregation for trading but with indicators evaluated at fifteen minutes. To

quote from their conclusions - they find “the return from the 20 strategy portfolio

system trading at fifteen minute entry intervals is small and statistically insignificant

and is in fact less than the interest differential between pounds and dollars over the

same sample period. ... better excess returns would have be available from a static

buy and hold strategy.... When only the best strategy is employed it is modestly and

statistically significantly profitable (returning 7%)”.

We seek to extend this literature by focussing on transaction level data - in other

words irregularly spaced transacted prices as opposed to quotes or temporally aggre-

gated data and by including the structure of the order book in the information set

available to the trader or automatic trading system. Secondly as discussed above we

introduce uncertainty into the trading process. We also focus on rigorous testing of

both directional change and economic value and use White’s reality check to immunise

our results from any Data Snooping bias.

3.1 The Genetic Trading Rule

We want to consider evaluating predictability as generally as possible and so it is

important not to restrict ourselves to examining the performance of a fixed set of pre-

diction and trading rules. The Genetic algorithm (GA) provides an effective method

for searching over a huge space of potential rules, both linear and non-linear, at each

period. A GA is essentially a computer based optimization procedure which uses the

evolutionary principle – the survival of the fittest – to find an optimum. It provides

a systematic search process directed by performance rather than a gradient and in

principle can find a global optimum in otherwise intractable problems if the required

computing resources are available. In practice computational power is limited and so

all GA rules, including those derived below, will not necessarily find the best possi-

ble performance but the best given the computing and time constraints we have been
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forced to impose on the search process. Never the less the rules selected below will have

evolved from searching over millions of competing rules and their performance is there-

fore known to be at least “good” if not achieving the global optimum. This is obviously

sufficient for our purposes since if predictability is found with these “good” rules then

we know we must at least have understated the potential degree of predictability that

might exist. Moreover our results should have much greater applicability than those

who have considered a fixed set of technical rules – however large 4.

3.2 Genetic Algorithm

Genetic algorithms have been successfully applied in a number of financial applications,

most notably for our purposes, Dempster and Jones (2001), Dworman, Kimbrough and

Laing (1996), Chen and Yeh (1997b), Chen and Yeh (1997a), Neely et al. (1997), Allen

and Karjalainen (1999), Neely and Weller (2001), Chen, Duffy and Yeh (1999), Arifovic

(1994), Arifovic (1995), Arifovic (1996), Arifovic (1997).

Starting from an initial set of rules a genetic algorithm evaluates the fitness of

various candidate solutions (trading rules) using the given objective function of the

optimization problem and provides as an output solutions that have higher fitness val-

ues. Two operations of crossover and mutation are applied to create a new generation

of decision rules based on the genetic information of the fittest candidate solutions

Crossover operation: for the crossover operation one randomly selects two parents

from the population based on their fitness, then take a node within each parent as a

crossover point selected randomly and the subtrees at the selected nodes are exchanged

to generate two children. One of the offspring then replaces the less fit parent in the

population. In our implementation we use a crossover rate of 0.4 for all individuals in

the population. This operation combines the features of two parent chromosomes to

form two similar offspring by swapping corresponding segments of the parents. in our

case these segments are represented by sub-nodes of binary tree. The intuition behind

the crossover operator is information exchange between different potential solutions.

Mutation operation: to mutate a rule one selects one of its subtrees at random

and replaces it with the new randomly generated tree. This operation guarantees the

refreshment of the genetic code within the population. The best 25% of rules are not

mutated at all and the remaining are mutated with probability 0.1. The intuition

behind the mutation operator is the introduction of some extra variability into the

population.

The elements of every trading rule are terminals and operations and the rule pro-

4We are also interested in the simplicity of the rules selected by the genetic program and how
these may correspond to robust decision rules that may justified formally in the face of uncertainty
as opposed to risk in financial markets.
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vides a boolean value as the output. If the value of the rule is “true”, it gives the signal

to “buy”USD, or equivalently, it indicates the USD-DM exchange rate is increasing.

If the rule is “false”– the trader “sells”USD. The rules are represented in the form of

randomly created binary trees with terminals and functions in their nodes. We employ

the following choices of operations and terminals;

Operations: the function set used to define the technical rules consists of the binary

algebraic operations {+,−, ∗, /, max, min}, binary order relations {<,>,≤,≥, =}, log-

ical operations {and, or} and unary functions {abs,−} of absolute value and change of

sign.

Terminals: the terminal set contains the variables {pr, ret, lagpr1, lagpr2, lagret1,

lagret2, maxpr5, maxpr10, maxpr20, minpr5, minpr10, minpr20, avgpr5, avgpr10,

avgpr20, avgret5, avgret10, avgret20}, where the first 6 variables indicate currently

observed price and returns of USD in terms of DM and their lag values, maxpr and

minpr as well as maxret and minret denote maximum and minimum price over the

indicated period of the exchange rate and its return respectively, avgpr and avgret

are average value prices and returns over the period. We should make clear that by

“period”we mean the irregular instants of time when the transaction is realized.

For the cases when the algorithm searches over order book information we also use

the following additional variables: bestbid, bestoffer, bestbidq, bestofferq, quantity,

liqbid, liqoff, dpthbid, dpthoffer, time, which represent best bid, best offer, best bid

quantity, best offer quantity, transaction quantity, liquidity from the bid side, liquid-

ity from the offer side, market bid depth, market offer depth and duration between

transactions in seconds respectively. All their first and second lagged values are also

included in the information set.

The terminal set also includes real numbers in the range from 0 to 10 as terminal

constants.

The following example illustrates the sort of trading rule that can be generated.

Figure 1: An example of a genetic tree for a trading rule

This example corresponds to the following trading rule:
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– switch to USD if the lagged value of the exchange rate is greater than or equal to

the average exchange rate over last 10 periods or the second lag of the return is greater

than zero;

– otherwise hold DM.

The evolutionary algorithm can be summarized as follows:

1). Create randomly the initial population P (0) and initialize the number of itera-

tions i = 0.

2). Set i := i + 1.

3). Evaluate fitness of each tree in the population using the fitness function.

4). Generate a new population (i.e. the set of all genetic trees) using the genetic

operations (crossover and mutation)

5). Repeat 2)–5) while i < N .

In the program we use the population size of 100 individuals and provide 50 itera-

tions of the algorithm (that is, N = 50).

The complexity of trading rules are controlled in a probabilistic manner. In fact,

the probability for a binary node to appear in the tree is smaller than the probability

of a unary one which prevents the tree to become very large.

3.3 Fitness functions

A fitness value also needs to be assigned to each of the generated trees or trading rules in

order to solve the optimization problem. We use three different fitness functions. First

we consider the percentage of correctly predicted change of directions in the exchange

rate by the composite technical rule. Although the trader as described in the previous

section, does not make a transaction until the exchange rate changes sufficiently, the

information received during the period when the trader remains passive is used to

compute the current values. For example, if the exchange rate et−1 = et = e, the

values of variables price and lagpr1 are both set to e. We denote the percentage of

correct directional change predictions by DC.

As a second fitness function we consider the economic value of the trading rule

measured by the cumulative daily returns. We assume that the investor starts with an

initial wealth in DM and considers whether to switch all their wealth into USD or take

a short position in dollars. The investor is allowed to trade only if the exchange rate

level exceeds the k inertia band created by uncertainty as discussed in the previous

section. Let zt denote the state of the investor’s portfolio at time t. That is, zt = 1

if they take a long position and zt = −1 if they are short. We assume zt does not

change while the level of the exchange rate et lies within the k-band. The fitness of
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each trading rule is then calculated as

Rc =
∏

t

(1 + ztrt)− 1,

where rt = et−et−1

et−1
is the one-period return of the exchange rate et For convenience, we

present the results adjusted to the daily basis form, i.e., R = (1+Rc)
1
2 and R = (1+Rc)

1
3

for in-sample (2 days) and out-of-sample (3 days) returns respectively.

A critical issue is how to take account of transaction costs when calculating the

economic value of the trading rules. This provides the third form of the fitness function

we consider. Under proportional transaction costs with rate θ the cumulative return

can be calculated as

RTC
c =

∏

t

1 + ztrt

(1 + 2θ)h(zt)
− 1,

where h(zt) = |zt−zt−1|
2 .5

4 Data

The data we have used was provided by Reuters and represents all transaction and

order book information on USD-DM trades on DM2000-2 electronic dealing system

over the week starting 5th October 1998. This electronic market is open 24 hours each

day of the week and we have not made any adjustments for overnight periods GMT.

The dataset consists of details relating to the 18065 transactions that occured during

the week. It includes the transaction prices, best bid and ask quotes, transaction and

best quote quantities, the duration between transactions, depth and liquidity on each

side of the limit order book. We use the first two days (Monday and Tuesday) as

the in-sample period which is used by the genetic programming in order to find those

trading rules with the best performance. The out-of-sample period consists of the last

three days and is used to examine the significance of the performance of the selected

trading rules.

5 The Formal Testing Framework

Since the ability to predict the market’s direction may not lead to excess profits if

returns are greater in absolute value at times when mistakes on direction are made than

at times when no mistakes on direction are made we need to consider predictability

5We have been provided with the transaction costs in terms of spreads used by a major UK based
hedge fund.

14



M
o
n

T
u
e

W
e
d

T
h
u

F
ri

1
.5
9

1
.6
0

1
.6
1

1
.6
2

1
.6
3

1
.6
4

1
.6
5

Figure 2: Tick-by-tick USD/DM exchange rate time series from 5.10.1998 to 9.10.1998.
The in-sample period Monday – Tuesday, the out-of-sample period Wednesday – Friday.

both in terms of directional accuracy (DA) and economic value or excess predictability

(EP) (see Anatolyev and Gerko (2005)). While a DA test like that proposed by Pesaran

and Timmermann (see Pesaran and Timmermann (1992), Pesaran and Timmermann

(1994)) will be significant in this case an EP statistic will not, hence we need to employ

both. We briefly describe the DA and EP tests we have employed in Appendix.

In addition since our data is irregularly spaced and dependent we need to clarify

exactly how we have implemented White’s Reality Check for Data Snooping. Data

snooping involves the re-use of the same sample data in multiple hypothesis testing

and not recognising the impact that prior decisions in the testing sequence have on

the significance levels to be used at any stage subsequently down the chain. Our GP

approach in fact carries out a simple machine search that involves no explicit inference

and we also employ out of sample data to examine predictability but never the less

the potential for data snooping still exists with the use of genetic algorithms and so

we need to take the issue seriously. The correct statistical approach with sequential

inference with multiple model selection is to employ Bonferroni Bounds but this would

clearly be infeasible in our case with millions of rules to check and so we have no

alternative but to employ simulation methods, in fact subsampling as opposed to the

stationary bootstrap, to compute the Reality Check. Based on the procedure proposed

by White (2000), the Reality Check enables us to calculate true empirical p-values of

the test statistic based on the null of no predictability beyond the benchmark. The

formal framework used for the Reality Check is provided in the Appendix.
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As performance measures for the trading rules we naturally use the fitness functions

defined in Section 3. Since the null hypothesis is formulated in terms of ability to beat a

benchmark, in the case of testing for directional change we take the natural benchmark

as 50%. That is, ϕ1 = DC− 50. For the case of the economic value fitness function we

consider a zero return as the benchmark (due to the symmetry present on the foreign

exchange market). Thus, ϕ2 = log(R) and ϕ3 = log(RTC) for models without and with

transaction costs respectively.

Since our data is irregularly spaced and dependent we need to be careful exactly

how we have carried out the re-sampling in both the pure price and order book cases.

Pure price information

The case, where technical indicators are based purely on the historical values of the

exchange rate is relatively simple regarding the implementation of the bootstrap. To

compute the Reality Check p-values, we generate 1000 independent block bootstrap

re-samples and construct the empirical distribution consisting of 1000 realizations of

V ∗ statistic. In particular, we build a sample of the one-period returns of the exchange

rate from moving blocks of random length. The length of each block is geometri-

cally distributed with probability 0.01 (see Politis and Romano (1994))giving a mean

block length of 100 transactions. Then the time series of the exchange rate levels is

constructed from the sample of bootstrapped returns.

All order book information

When the trading rules are based on all order book information it becomes more

complicated since it is necessary to resample the whole order book. Bootstrapping just

the returns time series does not work in this case because the price levels are directly

connected to their marks such as the best bid and offer levels, liquidity, depth etc

and constructing price levels from bootstrapped returns would break this dependency.

Hence, we resample the whole order book using fix length (for simplicity) blocks of 200

transactions and then construct returns of the exchange rate from its levels. In doing so

we are faced, however, with possible jumps in price levels which would not be present in

the original sample. These jumps would have a considerable impact on the cumulative

returns and the genetic algorithm would concentrate on predicting the jumps and this

fact can cause a bias of the p-values. To avoid this inconvenience we shift blocks of

prices and bid and offer levels (the other order book information remains untouched) in

such a way that the first price value of a new block coincides with the last price value

of the previous block. This implies that since the number of observations is n = 18065

and the selected block length is equal to 200, we have manually set approximately 90

return values to be equal to 0. In the original data among 18065 observations, there
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are about 5000 observations with zero return. As specified in Section 2), the investor

does not trade until the exchange rate level goes out of the k-band. Therefore, we

claim that this procedure will have little impact on our results but does enable us to

bootstrap irregularly spaced dependent data from an order book.

For both pure price information and all order book information cases, the in-sample

period has the same number of observations as the original – 9046.

Comparing our use of the Reality Check to the existing literature examining prof-

itability of technical rules (for instance Sullivan, Timmermann and White (1999), Hsu

and Kuan (2006)) we would claim that the use of the genetic algorithm should provide

a much more reliable procedure than employing a fixed universe of technical rules.

Indeed, the data-snooping analysis strongly depends on the particular set of possible

alternative trading rules which could be used by the investor. Sullivan et al. (1999)

consider 7,846 technical indicators while Hsu and Kuan (2006) expand this set up to

39,832 trading rules. However, the genetic programming technique allows us to con-

sider many more strategies depending on the initial parameters of the algorithm (the

number of repeats, initial population size, rules’ depth, etc). On the one hand, it is

impossible to calculate performance for all possible rules. At the same time, however,

the Reality Check requires only the maximum of the difference in performance of the

real and bootstrapped data. Hence, by setting the maximum of this difference as a

fitness function of the algorithm we can simply generate an empirical distribution for

the evaluating the p-values using the GP procedure. Plots of this distribution are

presented below.

6 Results

Our aim is to find among the set of all trading rules those which have the best per-

formance in the sense of predicting both correct directional change of the exchange

rate and of economic value. We also consider the market with and without transaction

costs. In addition we explore the uncertainty market timing issue by incorporating

5 levels of the inertia parameter k representing the investor’s attitude to the uncer-

tainty. We employ 3 different fitness functions and two different information sets – past

price information and then order book information plus past prices. This immediately

shows we have too many different cases to sensibly consider in detail so we will limit

our discussion to drawing out several particular results.6

Using the genetic algorithm described in Section 3 we search for the best 20 rules in

the sense of the percentage of correct directional predictions. We also report the average

of the best 20 rules since this may provide both a more robust measure of performance

6The full set of results can be obtained from the authors on request.

17



and more closely reflect how traders use technical rules. In order to produce 20 rules

the algorithm needed to be run approximately 25 times in each case since optimal rules

that were found were not included twice in order to provide the 20 presented in the

tables below. This indicates in the same manner the degree to which the algorithm

has actually found the global optimum. Tables 1 – 5 report the performance of the

best trading rules, their in-sample and out-of-sample percentage of correct directional

predictions (columns 1 and 2) as well as their economic value (cumulative returns

adjusted to a daily basis) with and without transaction costs (proportional with the

rate θ = 0.0001) (columns 3 and 4) for the five different values of inertia parameter

k. The heading of each table indicates which fitness function has been used. Columns

5 and 6 report the results of the Pesaran-Timmermann (PT) test, columns 7 and 8

the Anatolyev-Gerko (AG) test and column 9 reports the p value corresponding to

White’s reality check. The fitness function determines the performance criterion for

the RC. A p value below 0.05 indicates rejection of null (at 95% of confidence) that

there is no predictability or profitability in each case. Tables 6 – 10 contain the same

information about the best 20 rules based both on all order book information and past

price information7.

If we analyze the tables we can see taking Table 1 as an example that the fitness

function used to select the optimal rules was directional change. The PT test (columns

5) clearly shows directional predictability as we reject the null of no predictability for

all 20 rules at the 95% of confidence level including the best performing rule shown in

row 1 and the average of all the rules shown in row 21. White’s Reality check confirms

this as shown by the last column. There is no economic profitability under transactions

costs but that is not surprising since the rules were not selected on that basis. As k

increases through the following tables then if we look at table 3 when k = 0.001, this

means that a price change has to move the third decimal point in the exchange rate

to allow the trader to trade. Now we find clear predictability both in terms of sign

and profitability for both the maximum rule and the average again supported by RC

even though the fitness function for selected rules is directional change. The average

returns for the max rule in this case with transaction costs are 7.37% on a daily basis.

As k increases further, the number of transactions that are allowed can become very

small (5239 for k = 0, 1494 for k = 0.0005, 738 for k = 0.001, 116 for k = 0.005 and

46 for k = 0.01 in our case) and the reliability of the inference for all tests becomes

questionable. When k = 0 then the trader is allowed to trade at every instant which is

not sensible and in this case it is not surprising that we can find no profitability from

Table 1 (column 4) under transactions costs.

Tables 6 – 10 show the results from the same design with directional change as the

7As an in-sample period (search period) we use the data for Monday and Tuesday. In order to test
the out-of-sample performances of the rules we consider the period from Wednesday.
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fitness function but including the order book information in that available to the GA.

Table 6 may be compared with Table 1. The results are generally worse and this result

is reflected throughout the remaining exercises. Adding the order book information

seems to create less reliability and stability in the results. We discuss possible reasons

for this below once we have considered all the results.

We also repeat the same analysis with Economic Value as the fitness criterion

for rule selection with and without transaction costs. In this case we can see from

Table 11 (without transaction costs, k = 0.001) that the AG test indicates economic

profitability which is supported by White’s RC and the third column shows the daily

returns that could be achieved by the max rule (4.484 %) and by the average of all

the rules (2.19%). In Table 12 we can see significant profitability with k = 0.005 using

order book information which is supported by all the tests of (4.418%) with the max

rule and (1.299 %) under transactions cost – once again values that are lower than

under the information set that just included prices.

It is in general difficult to beat the zero return benchmark (as well as buy and hold

strategy8) when we select rules on the basis of transactions costs since buy and hold

incurs transactions costs twice. However Table 13 which introduces transaction costs,

with k = 0.005 shows significant profitability which is supported by the AG test for

the max and average rules of roughly 4% a day with the RC significance levels around

7.5% and 8.95%.

Throughout all of these tables it is critical to notice the importance of the inertia

parameter. It seems that either values of k = 0.001 or k = 0.005 deliver the best results

fairly consistently. Table 14 collects this information together and shows the results for

all fitness functions for the average rules at different values of k. This table together

with Table 15 provides the critical summary of our results regarding market timing

and inertia as captured here in the k parameter. Again if we track along the k = 0.005

line we will generally find clear directional predictability and profitability. The same

holds for Table 15 which collects the same information together for the maximum rule.

The same tables showing results for including order book information again indicate

the slight reduction in performance that we find from including the structure of the

order book in the informational set.

Table 16 and the following distributional plots indicate the probability of losing

money, Ω being the ratio of probability above the break even point to that below

it. This measure has been put forward as a general portfolio performance criterion

superceeding the Sharpe Ratio by Keating and Shadwick (2002). This is shown quite

clearly in the figures that then follow for each case.

8We have also computed all the simulations using buy and hold as the benchmark and there is little
difference between these results and the zero benchmark reported in the tables. Again full results can
be provided by the authors on request.
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In Table 17 we provide the results for the out of sample performance of several

standard technical indicators for different values of k and it is clear their performance

is weak in comparison.

Finally maybe one of the most important issues is how to apply the methodology

described in this paper in practice. How to recognise, based on the in-sample per-

formance, which of the 20 selected (best) rules will be profitable out-of-sample? One

possibility is to take the rule with the maximum in-sample return, which however may

not be optimal in many cases, and a more robust and stable choice is the average rule

we have described above. This approach also has the disadvantage that it tries to make

a prediction for the whole out-of-sample period at once. Perhaps more consistent with

reality we have also considered the performance of only one step ahead predictions

using a recursive procedure. Once we have got the in-sample dataset we run the GA to

find the rule with the best in-sample performance and apply this rule to make a deci-

sion for the next period of time. After making the transaction we observe next period’s

price and update our information set using a rolling window procedure. Based on the

updated in-sample dataset we repeat the GA in order to find the trading indicator for

the next period and so on.

As an illustrative example consider the use of this recursive strategy with the eco-

nomic value fitness function without transaction costs. The uncertainty bound is de-

termined by the parameter k = 0.005 (this choice looks reasonable from the results

reported above). The initial in-sample is considered to be Monday-Tuesday and we

roll the in-sample window up to the last observation of Friday.

Since the GA is unable to find the global maximum of the fitness function and only

approximate it to some extent, the results of the recursive procedure imply different

trading rules for every separate recursive run through the data (even for the same

dataset). Thus, the final return of the recursive procedure is a random variable because

of the random mechanism built in the GA. Therefore, in order to get a more realistic

picture of the recursive trading rule we provide 100 independent runs through the

dataset for both pure price and all order book information strategies. The average

daily return for the pure price information model is µ = 6.885% and its standard

deviation is σ = 1.799. The respective average and standard deviation from using the

order book information are µ = 3.813% and σ = 2.131. In the first case the hypothesis

H0 : µ ≤ 0 is rejected with 95% of confidence while for the second case it is rejected

only at 90% confidence level.

This reflects the same surprising result we found above with the static implemen-

tation of the method (that the performance of the strategy which exploits the order

book information performs less well than that with just pure price information). Apart

from the explanation that the market price acts as a sufficient statistic and so there is

no need to use the structure of the order book it may also be that to predict future
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prices the order book contains non-informative or redundant variables which have any

little or no predictive power. We can see from the tables that the in-sample perfor-

mance is usually better for the order book strategies and this seems to suggest that

the GA has more to work on when constructing a “good” trading rule. However, its

ability to forecast in-sample prices refers more to capturing the characteristics of a

particular dataset rather then to its out of sample predictability9. Moreover, even for

the in-sample period this ability does not appear to be very efficient as the implied

trading rules look quite complicated and sophisticated unlike the best pure price rules

which can often be very simple indeed. This may suggest the order book rules would

not be robust. These sophisticated order book rules are in fact less stable during the

genetic selection process because any small mutation can easily “kill” the rule. The

probability that a simple rule will mutate is smaller as it is less sensitive and therefore

they are more stable. The GA can at least keep their performance as a benchmark for

genetic selection for a longer time. Complicated rules are destroyed more frequently

and the GA has to re-start with building well performing trading rules from the very

beginning. Hence, this process takes more time and machine resources and so is less

likely to converge towards the optimum. In order to filter out useless variables by the

GA, we would need to increase number of repetitions of the GA substantially and,

probably, the population size.

Thus, there are two different ways as to how to use the order book information

efficiently. The first is a machine based method – increase computer power, number

of repetitions, computing time and the population size. The second is a human based

method – very carefully select the variables which need to be included in the information

set for the algorithm. Our analysis does show that the order book information does

have some predictive power but it is not very efficient probably because of the unclear

signals regarding predictability. Alternatively economic theory may have been shown

to be correct and the market clearing price is in fact a sufficient statistic.

7 Conclusions

This paper has examined the predictability of exchange rates on a transaction level

basis using both past transaction prices and the structure of the order book. Formal

tests for the ability of genetically derived trading rules, that may be likened to techni-

cal rules, are applied to one week of tick-by-tick data on the USD-DM exchange rate

drawn from Reuters DM2002 electronic trading system. The Pesaran-Timmermann

test shows clear ability to predict directional changes in the exchange rate and the

economic value of predictability taking account of transaction costs is shown to be sig-

9A similar problem affects the naive use of Neural Networks.
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nificant out-of-sample using the Anatolyev-Gerko test. These conclusions rest critically

however on the market timing decisions and the implied frequency of trades which are

controlled by what we refer to as an inertia or uncertainty parameter which follows

from the Bewley’s preferences for decision-making under uncertainty. Some inertia in

trading is critical to recover profitability. If the trading system is allowed to trade

at every instant it clearly fails to show profitability but when trades are made only

when prices changes are of a sufficient magnitude then significant profitability appears

under transaction costs. These conclusions are confirmed using White’s Reality Check.

Somewhat surprisingly we do not find strong evidence that exploiting the order book

structure aids predictability.
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Bootstrap distributions

Figure 3: Bootstrap distribution of maximum of
DC based on pure price information net of 50%.
k = 0.001

Figure 4: Bootstrap distribution of maximum
of DC based on order book information net of
50%. k = 0.001

Figure 5: Bootstrap distribution of maximum
of R based on pure price information net of buy-
and-hold. k = 0.001

Figure 6: Bootstrap distribution of max of R
based on order book information net of buy-and-
hold. k = 0.001

Figure 7: Bootstrap distribution of max of RTC

based on pure price information net of buy-and-
hold, θ = 0.001. k = 0.001

Figure 8: Bootstrap distribution of max of RTC

based on order book information net of buy-and-
hold, θ = 0.0001. k = 0.001
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Appendix

8.1 Pesaran-Timmermann Test

The Pesaran-Timmermann statistic is used to test the null of no market timing or

that the proportion of correct predictions equals the proportion which can be expected

under the null of independence between the realised and predicted values. Let et be

the realised value of the exchange rate and zt – its forecast. Define the probabilities

P11 = P (zt < 0, et < 0), P12 = P (zt < 0, et ≥ 0),

P21 = P (zt ≥ 0, et < 0), P22 = P (zt ≥ 0, et ≥ 0).

The diagonal elements of this contingency table provide the proportion of correct

predictions. Pij denotes the probability of a realisation in the cell of the i′th row

and j′th column of the contingency table. In general, the Pesaran-Timmermann test

considers a number of categories (i, j ∈ {1, ...,m}; we only need to consider m = 2.

Denote by Pi0 =
m∑

j=1
Pij the probability of cells in the i′th row and P0j =

m∑
i=1

Pij the

probability of cells in the j′th column. The null hypothesis is expressed as

H0 :
m∑

i=1

(P̂ii − P̂i0P̂0i) = 0

The test is based on the standardised statistic

sn =
√

nV
− 1

2
n Sn

a∼ N(0, 1),

where n is the number of observations, and

Sn =
m∑

i=1

(P̂ii − P̂i0P̂0i)

Vn = (
∂f(P)

∂P
)′
P=P̂

(Ψ̂− P̂P̂′)(
∂f(P)

∂P
)P=P̂

Ψ̂ is an m2 ×m2 diagonal matrix with P̂ as its diagonal elements,

(
∂f(P)

∂P
)P=P̂ =

{
1− P0i − Pi0 for i = j

−Pj0 − P0i for i '= j

When m = 2 this test is asymptotically equivalent to the Henriksson-Merton test

of market timing (see Henrikson and Merton (1981)).

8.2 Anatolyev-Gerko Test

The Anatolyev and Gerko (Anatolyev and Gerko (2005)) test of mean predictability

is based on both market timing and a trading rule. Essentially this is a Hausman
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test that compares two estimates of mean returns from a simple trading rule, both of

which will be consistent under the null of no predictability but will differ under the

alternative.

Let rt be the observed log-returns of the exchange rate and r̂t be their forecasts for

t = 1, ..., n. The forecasts depend on the past information Ft−1 = {rt−1, rt−2, ...}. Let

the trading rule of the investor be based on the forecast variable r̂t, in particular, the

investor takes a long position in USD if r̂t ≥ 0 and a short position in dollars if r̂t < 0.

Then the one-period return from using the trading strategy is Rt = sign(r̂t)·rt. The null

hypothesis is conditional mean independence so that H0 : E(rt|Ft−1) = const or that

r̂t and rt are independent. The expected one-period return E(Rt) can be consistently

estimated under the null by two estimators:

An =
1

n

∑

t

Rt

and

Bn = (
1

n

∑

t

sign(r̂t))(
1

n

∑

t

rt).

An estimates the average return from using the trading strategy whereas Bn estimates

the average return from using the benchmark strategy that issues buy/sell signals

randomly with probabilities corresponding to the proportion of buys and sells implied

ex post by the trading strategy. When rt is predictable investing in the trading strategy

will generate higher returns than the benchmark and the difference between An and

Bn will be sizable. The variance of the difference An −Bn is

V = V ar(An −Bn) =
4(n− 1)

n2
pr̂(1− pr̂)V ar(rt),

where pr̂ = Pr{sign(r̂t) = 1}. The estimator for the variance is V̂ = 4
n2 p̂r̂(1−p̂r̂)

∑
t

(rt−

r̄)2 with p̂r̂ = 1
2(1 + 1

n

∑
t

sign(r̂t)). The excess profitability statistic is then given by

EP =
An −Bn√

V̂

d→ N(0, 1)

under the null hypothesis.

8.3 White’s Reality Check

The main idea behind the Reality Check is as follows; let ϕk, (k = 1, ...,M) denote the

performance measure of the k-th trading rule relative to some benchmark performance

or rule. The aim is to test whether there is a rule within the population that delivers

superior performance to the benchmark. The null hypothesis is then stated as;

H0 : max
k=1,...,M

ϕk ≤ 0.
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in other words there is no rule that delivers positive returns relative to the benchmark

i.e. beats the benchmark. To test this null, we need the distribution under the null,

White (2000) suggested using the stationary bootstrap method of Politis and Romano

(1994) to estimate the distribution of the test statistic V = max
k=1,...,M

ϕk. If we denote by

ϕ∗
k,j the performance measure of the k-th trading rule calculated using j-th bootstrap

sample. The empirical distribution can be obtained using bootstrap realizations

V ∗
j = max

k=1,...,M
(ϕ∗

k,j − ϕk), j = 1, ..., B.

It shown in White (2000) that the distributions of V and V ∗ are asymptotically equiv-

alent. Comparing the value of the statistic V with the quantiles of the empirical

distribution of V ∗ we obtain the Reality Check p-values which are suitable for testing

the null hypothesis.
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