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Abstract 

 
Disturbance regimes are changing across the subarctic as a result of continued climate change. 

At the northern range edge of the boreal forest, changes to disturbance regimes are predicted to 

result in a shift in successional trajectory of the current plant community, altering the structure 

and function of the current ecosystem. As these boreal tree and shrub species are already 

climatically primed for range expansion, changes to disturbance regimes may facilitate increased 

establishment of boreal tree and shrub species beyond their current range edge. An investigation 

of how different disturbances influence biotic and abiotic conditions for early life-stages of 

boreal tree and shrub species was conducted at the Canadian boreal-tundra treeline ecotone to 

determine whether disturbances disrupt the ecological inertia of the current ecosystem, creating 

suitable conditions for successional change and northward boreal tree range expansion. Impacts 

to microsite conditions by wildfire, insect granivory on spruce cones, and anthropogenic wood 

harvesting were examined. These disturbance regimes were selected because they are anticipated 

to change in frequency and extent across the subarctic with continued climate change. Results 

from each investigation indicated that while disturbances did create conditions that could support 

increased establishment of boreal tree species, disturbance severities were low, often creating 

additional challenges for seed germination and establishment. Thus, disturbance induced changes 

to ecosystem structure and function are not anticipated at these research locations. Future 

research is required to examine disturbances of different severity at the range edge in order to 

determine whether disturbances of higher severity are likely to occur and whether they can break 

the ecological inertia of the current ecosystem. 

Keywords: boreal, climate change, disturbance ecology, ecological inertia, insect granivory, 

Picea mariana, Picea glauca, resilience, subarctic, treeline ecotone, wildfire, wood harvesting 
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Chapter 1: Introduction and thesis overview 

 

1.0 Introduction 

 
Disturbances are a fundamental component of natural ecosystems, shaping plant 

communities across temporal and spatial scales (Cairns & Moen, 2004; Holtmeier & Broll, 2018; 

Johnstone et al., 2016; Vanderwel & Purves, 2014; Weed, Ayres, & Hicke, 2013). A 

disturbance is defined as any discrete event that alters resource availability or the physical 

environment in a population, community, or ecosystem (White & Pickett, 1985). Controls on 

disturbances, either directly or indirectly, are dictated by climate and weather, geographic 

location, and human influence (Dale et al., 2001; White, Wulder, Hermosilla, Coops, & Hobart, 

2017). Any disturbance that continues through time in a cyclical pattern can be described by a 

disturbance regime, which includes information on their frequency (i.e., how often they occur), 

return interval (i.e., time between disturbances), severity (i.e., the effect on the ecosystem), and 

size (Turner, 2010). Disturbances are a key part of biodiversity and while disturbance events are 

often considered a destructive force when they occur in areas of high human value or within the 

built environment (e.g., communities, transportation routes, conservation areas), many are vital 

for maintaining ecosystem structure and function (Dale et al., 2001). For example, localized 

disturbances (e.g., herbivory, windthrow) may occur more frequently within a forest stand, 

allowing shade-intolerant species to rapidly establish within the canopy (Rich, Frelich, & Reich, 

2007).  Conversely, large-scale disturbances that occur less frequently (e.g., wildfire, logging) 

may restructure an ecosystem to an earlier successional state and allow plant species to take 

advantage of new environmental conditions (Flannigan, Stocks, & Weber, 2003; Turner, 

Romme, & Gardner, 1999). In summary, at any given time an ecosystem consists of a mosaic of 

post-disturbance plant communities at different successional stages.  
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Many disturbance regimes exist within the boreal forest. As a result, plant species have 

evolved numerous survival and reproductive strategies to allow individuals the ability to absorb 

and adapt to the negative impacts of a disturbance event (Folke et al., 2004; Walker & Meyers, 

2004). This ability to successfully reorganize and return to a pre-disturbance ecosystem state 

(i.e., similar in structure and function) was first described by Holling (1973) as the resilience of 

an ecosystem. As an umbrella term, resilience includes information on an ecosystems elasticity 

and malleability with disturbances (Westman, 1978); however, for the purpose of my thesis, I 

chose to focus on the ecological inertia, which refers to the conditions and characteristics of the 

ecosystem state that dictates its ability to resist a change in succession (i.e., resistance or change 

in ecosystem structure and function; Orians, 1975). Boreal peatlands are an excellent example of 

an ecosystem with high ecological inertia, as the plant community structure mitigates exposure to 

drought events and successional shifts through fire from the sufficient retention of soil moisture 

(Stralberg et al., 2020). Included within the inertia concept is that of biological legacies, which 

refer to the biologically derived information (i.e., adaptations developed from living within a 

disturbance regime) and materials (i.e., survivors or reproductive potential after a disturbance 

event) that allow a species to succeed post-disturbance (Johnstone et al., 2016); thus, resisting 

successional change. In the boreal forest, black spruce (Picea mariana (Mill) B.S.P.) represents a 

dominant tree species and is often used as an example to describe biological legacies. In response 

to living with wildfire, black spruce has evolved semi-serotinous cones (i.e., information legacy) 

that slowly release seeds post-wildfire (i.e., material legacy) onto the ground where conditions 

are often more ideal for germination (e.g., dark, warm, closer to mineral soils; Alexander et al., 

2018; Greene et al., 2007; Turner et al., 1999).  Ultimately, information regarding species’ 
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biological legacies and ecological inertia supports a better understanding of resilience (Reyer et 

al., 2015; Swanson et al., 2011). 

Climate change is acting as a chronic pressure on the resilience of northern ecosystems 

(Buma, Brown, Donato, Fontaine, & Johnstone, 2013; Stevens-Rumann et al., 2018). This 

pressure is being experienced most dramatically across the subarctic where temperature increases 

are occurring at a rate of three times the global average (Bush & Lemmen, 2019). In the boreal 

forests of north-western North America, increased moisture deficits from longer growing seasons 

have resulted in significant dieback of forest stands (Stevens-Rumann et al., 2018), while 

subarctic tundra ecosystems are experiencing a “greening” trend, largely controlled by increased 

dominance of shrub cover (Martin, Jeffers, Petrokofsky, Myers-Smith, & Macias-Fauria, 2017; 

Myers-Smith et al., 2020). At the northern edge of the boreal forest, a range expansion of tree 

species into the tundra biome has also occurred, as climate has become more suitable for tree 

recruitment (Danby & Hik, 2007; Körner, 1998; Mamet, Brown, Trant, & Laroque, 2019). 

Nevertheless, this rate has been non-uniform across the subarctic and has been slower than 

climate-based model predictions (Feuillet et al., 2020; Harsch, Hulme, McGlone, & Duncan, 

2009). This may suggest that tundra plant communities at the treeline ecotone may exhibit high 

ecological inertia and be resistant to change from the singular impact of warming temperatures 

(Buma, Brown, Donato, Fontaine, & Johnstone, 2013).  

Yet, changes to the frequency, severity, and extent of disturbances across northern 

ecosystems are also occurring from continued climate change (Dale et al., 2001; Buma, Brown, 

Donato, Fontaine, & Johnstone, 2013; Stevens-Rumann et al., 2018). In recent decades, climate 

warming has increased the number of extreme wildfires (Hanes et al., 2019; Soja et al., 2007) 

and insect outbreaks (Navarro, Morin, Bergeron, & Girona, 2018; Pureswaran, Roques, & 
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Battisti, 2018). Under continued pressures from climate change, these novel disturbance regimes 

may act as a tipping point for successional change, as the ecological inertia is supressed, 

resulting in a shift towards a new ecosystem structure and function (Figure 1.1; Bölter & Müller, 

2016; Brown & Johnstone, 2012; Johnstone et al., 2016; Reyer et al., 2015). As humans adapt to 

changing disturbance regimes, so too does their land-use (Gauthier & Vaillancourt, 2009; Seidl 

et al., 2017), further compounding climate change-driven pressures on ecosystem resilience 

(Bölter & Müller, 2016; Leverkus et al., 2018). Ultimately, if resilience is reduced through a loss 

of ecological inertia, changes to the successional trajectory of northern plant communities may 

occur. A shift in these plant communities would have notable consequences for global carbon 

pools (Mack et al., 2011), permafrost dynamics (Jones et al., 2015), and the surface energy 

budget (Chambers, Beringer, Randerson, & Chapin III, 2005), all of which may support positive 

feedback systems for continued warming (Chapin III et al., 2000). 

 Despite the concerted effort to understand how climate change will influence northern 

ecosystems, the effect of changing disturbance regimes on plant communities has generally been 

underrepresented within the literature (Bölter & Müller, 2016; Turner, 2010). Therefore, in this 

thesis I aimed to comtribute to the growing body of literature by reducing the knowledge gap 

related to how disturbances may influence the ecological inertia at the northern range edge of the 

boreal forest. Specifically, I chose to study how the biotic and abiotic conditions change with 

disturbance, and how these changes may influence the establishment of early-life stage boreal 

tree and shrubs species. A better understanding of wildfire, insect granivory, and anthropogenic 

wood harvesting is required, as the frequency, severity, and extent are anticipated to change 

under continued climate warming and will likely have notable impacts on plant communities 

(Lantz, Gergel, & Henry, 2010; Leverkus et al., 2018; Pureswaran et al., 2018). While my 
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research focused on how disturbances change microsite conditions for early-life stages, each 

study was conducted at different spatial scales and took place in different locations across the 

Canadian subarctic. My research is summarized in three separate manuscript chapters that are the 

focus of the next three sections (1.1–1.3). Within these introductory sections, I briefly describe 

each disturbance and its predicted impact on successional dynamics.  

 

 

Figure 1.1 Conceptual ball-and-trough model, simulating a loss of inertia and the subsequent 

shift in successional trajectory. This model is an adapted version of resilience loss presented in 

Folke et al. (2004) and more recently in Johnstone et al. (2016). Scenario A shows climate 

change as a chronic pressure on the resilience of the tundra ecosystem (e.g., longer growing 

season, increased shrub cover). Yet, inertia of the system is high, therefore some changes to the 

ecosystem may occur but the structure and function of the current state remains intact. Scenario 

B shows the chronic pressure of climate change coupled with a novel disturbance (e.g., wildfire 

in tundra). The novel disturbance decreases the inertia of the system through a change in biotic 

or abiotic conditions, facilitating a transition to a different successional state.  A similar scenario 

can be applied to the range edge forest stands of the eastern subarctic. While climate change may 

be acting as a chronic pressure on forest stands, a disturbance is needed to suppress the 

ecological inertia and allow for a shift towards a landscape dominated by shrubs. 

 

1.1 A novel regime change: Wildfires at the boreal-tundra treeline 

 

Wildfires represent the largest natural disturbance governing ecological processes within 

the boreal forest (Johnson, 1992; Soja et al., 2007; Weber & Flannigan, 1997). Wildfires are 

primarily controlled by climate, seasonal weather, and the amount of fuel available for 
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consumption (Hanes et al., 2019; Johnston & Flannigan, 2018; Lecomte, Simard, Fenton, & 

Bergeron, 2006; Seidl et al., 2020). Return intervals in North America range from 50-100 years 

in Alaska (Kasischke et al., 2010) to 400-500 years in northern regions of Quebec (Laberge & 

Payette, 1995). Similarly, latitudinal variation in the wildfire regime exists, with a general 

decreasing frequency as latitude increases (Johnson, 1992). Thus, wildfires have historically 

been an infrequent disturbance at the boreal forest's northern range edge (Soja et al., 2007) and 

have been considered rare within the tundra biome (Hu et al., 2015). In the eastern subarctic of 

northern Labrador, a cold wet climate has also historically reduced the frequency of large-scale 

wildfires (Steijlen, Nilsson, & Zackrisson, 1995).  

Successional dynamics following wildfire have been well documented in the boreal forest 

of North America (e.g., see Hanes et al., 2019; Johnstone et al., 2020; Turner et al., 1999). In a 

mature stand, seedling establishment is often low, as deep organic layers limit seed access to soil 

nutrients and soil moisture (Johnstone & Chapin III, 2006; Shenoy, Kielland, & Johnstone, 

2013). Interspecific light resource competition (Tingstad, Olsen, Klanderud, Vandvik, & Ohlson, 

2015) and herbivory of young seedlings (Munier, Hermanutz, Jacobs, & Lewis, 2010) are some 

challenges, among many, that further limit seedling establishment success. However, a wildfire 

can offer a reprieve from these limitations: aboveground vegetation is removed, and the organic 

layer is combusted, exposing mineral soil that is high in soil moisture and nutrients (Certini, 

2005). As previously described, many plant species have evolved life history strategies in 

response to living with a historical wildfire regime that allows them to take advantage of these 

favourable conditions. Serotinous cones in aerial seed banks (Picea mariana, Pinus spp.), as well 

as light, wind-dispersed seeds (Betula spp. Picea glauca (Moench) Voss, Alnus spp.), and 
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vegetation re-sprouting from roots (Betula spp., Alnus spp., Populus spp.) allow rapid regrowth 

of aboveground vegetation after wildfire events (Gordon & Shugart, 1989).  

As continued climate warming increases growing season length and the moisture deficit for 

plant communities, the frequency and extent of wildfire across the northern boreal range edge 

has changed (Boucher et al., 2020; Coops, Hermosilla, Wulder, White, & Bolton, 2018; 

Holtmeier & Broll, 2018; Wang et al., 2017). In recent decades, there has been an increased 

number wildfire events being recorded within the tundra biome (Higuera, Chipman, Barnes, 

Urban, & Hu, 2011; Hu et al., 2015), as well as the eastern subarctic (Erni, Arseneault, Parisien, 

& Bégin, 2017; Hanes et al., 2019). As a result, changes to plant communities have been 

observed (Lantz et al., 2010; Racine, Jandt, Meyers, & Dennis, 2004). In the western subarctic of 

North America, changes to the successional trajectory of the tundra plant community are 

anticipated to have numerous bioclimatic repercussions (Chapin III et al., 2000); however, the 

response to wildfire has not been consistent across the tundra biome (Zhou, Liu, Jiang, Feng, & 

Samsonov, 2019). This variability in response prompts the question of whether certain tundra 

plant communities exhibit a high inertia that reduces the possibility of successional change post-

wildfire (detailed in Chapter Two).  

 

1.2 Establishing a baseline on a changing disturbance: Insect granivory at treeline 

 

Boreal forest insects have highly specialized life cycles closely linked to climate and their 

vegetative host species (Dixon, 2003; Worrall et al., 2013). Following the definition of 

disturbance by White & Pickett (1985), some native and non-native insect species can be 

classified as biotic disturbances due to their ability to cause landscape-scale damage or mortality 

to vegetation within a brief period (Pureswaran et al., 2018). While chronic pressures limit host 
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trees' growth and reproductive potential, the most pronounced impact on a forest stand are large 

episodic outbreaks (Haynes, Allstadt, & Klimetzek, 2014). Nevertheless, boreal forests have 

historically been resilient to these biotic disturbances and have evolved reproductive adaptations 

to limit insects' adverse effects on individuals for continued boreal tree recruitment. Seed 

masting (i.e., the production of many seeds; Linhart, Moreira, Snyder, & Mooney, 2014) and the 

interannual production of seed crops (Crawley & Long, 1995) are two ways in which trees can 

effectively satiate insect populations or limit reproduction overlap with high insect population 

years. 

The most common insects reported as biotic disturbances within the boreal forest are 

defoliators (e.g., eastern spruce budworm [Choristoneura fumiferana]), and bark beetles and 

wood borers (e.g., mountain pine beetle [Dendroctonus ponderosae]). These insect types 

significantly damage or increase their host tree species' mortality and represent both punctuated 

and chronic biotic disturbances (Shen, Zhang, Liu, & Luo, 2014). Despite cone boring insects 

(e.g., spruce cone fly [Strobilomyia spp. Diptera: Anthomyiidae]) being widespread across the 

boreal forest and causing significant damage to their host trees, they have received comparatively 

much less attention within the biotic disturbance literature (Gärtner, Lleffers, & Macdonald, 

2011; Lewis & Gripenberg, 2008). Cone boring insect granivores represent a unique set of 

insects, as they do not damage the host tree's physical structure but consume the reproductive 

units, significantly reducing the plant's resources for propagation (Hedlin et al., 1981; Prévost, 

2002; Sweeney & Turgeon, 1994). Moreover, all damage to the reproductive units occurs prior 

to seed dispersal (Kolb, Ehrlén, & Eriksson, 2007).  

Under continued climate change, insect populations are predicted to move northward and 

upslope as the climate becomes more suitable for sustaining larger populations (Pureswaran et 
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al., 2018; Robinet & Roques, 2010). Larger and more frequent outbreaks are therefore 

anticipated, which may overcome the resilience of the current plant communities, resulting in a 

successional trajectory shift (Landry et al., 2016). Yet, at the northern boreal range edge, little is 

known on their impact to tree species and the biotic and abiotic conditions that support their 

population (Gärtner et al., 2011; except see Jameson, Trant, & Hermanutz, 2015; Kambo & 

Danby, 2018). A more detailed understanding of granivorous insects at treeline is of particular 

interest, as the availability of viable seed represents one of the most critical components to boreal 

range expansion (Cairns & Moen, 2004; Frei et al., 2018). While treeline is expected to expand 

northward and upslope under continued climate change (Körner, 1998; Kueppers et al., 2017; 

Timoney et al., 2019), insect granivory may represent a biotic disturbance that acts as a negative 

feedback, limiting range expansion by reinforcing the ecological inertia of the system (detailed in 

Chapter Three).  

 

1.3 Compounding disturbances in coastal forests: Wildfire and fuelwood harvesting 

 

Many people live within the boreal forest and contribute to the structure and functioning 

of the ecosystem state. After a large-scale disturbance event within a forest stand, the felling and 

removal of affected trees, known as salvage logging or post-disturbance harvesting, is often used 

to reduce the disturbance's negative economic impacts on a community (Boucher, Gauthier, 

Noël, Greene, & Bergeron, 2014). While insect outbreaks and large windstorms can result in 

rapid wood decay, some post-disturbance wood products are preferred. Wood that is pre-dried by 

the heat of a wildfire for example, can be easily used for home heating (Mansuy et al., 2015). 

The scale and intensity at which post-disturbance harvesting occurs depends on population size, 

accessibility, and geographic location (Leverkus et al., 2018).  
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Post-wildfire harvesting represented a compounding anthropogenic disturbance 

increasing pressure on plant species recovering from an initial natural disturbance (Leverkus et 

al., 2018). While wildfire and logging can separately create suitable microsite conditions that 

promote seedling establishment and tree recruitment (Greene et al., 2007; Macdonald, 2007; 

Turner et al., 1999), wildfire followed by wood harvesting can significantly reduce the ecological 

inertia of the forest stand. For example, the physical removal of the aerial seed bank can decrease 

the amount of viable seed that is available for dispersal (Donato et al., 2006). Additionally, large 

machinery can compress the forest floor, altering soil moisture conditions, and damage newly 

established seedlings (Purdon, Brais, & Bergeron, 2004). A shift in ecosystem structure and 

function can be anticipated when post-disturbance harvesting occurs and is not properly managed 

(Bergeron et al., 2017; Kurulok & Macdonald, 2007). 

While the relationship between boreal forest resilience and post-wildfire wood harvesting 

has been examined extensively, our understanding of this relationship is broadly based on central 

and western boreal forest stands surrounding highly populated areas (see Leverkus et al., 2018). 

In the eastern Canadian subarctic of northern Labrador, wildfire frequency and severity has been 

historically low as a result of a cool, wet, maritime climate (Steijlen, Nilsson, & Zackrisson, 

1995); therefore, post-wildfire wood harvesting by small communities has been limited. Yet, 

changes to the wildfire regime and human land-use of these post-wildfire landscapes are 

anticipated to occur under continued climate change (Erni et al., 2017; Hanes et al., 2019; 

Siegwart Collier & Mallik, 2010). Thus, a concerted effort linking natural and anthropogenic 

disturbances to forest resilience in an understudied region of the Canadian subarctic is required 

to establish a broader understanding of successional dynamics with changing disturbance 

regimes (detailed in Chapter Four).   



 28 

1.4 Thesis Objective 

 

The overall goal of my research is to determine whether disturbances disrupt floral 

composition and reproductive potential of boreal and tundra plant communities across the 

subarctic, and if so, whether these changes prime the landscape for successional change. Results 

from my research will support a broader understanding of disturbance regimes under continued 

climate change, as well as highlight areas where continued disturbance research is required (Lett 

& Dorrepall, 2018). Specifically, my research supports [1] a better understanding of how a novel 

wildfire regime will impact tree germination at their range edge, as well as how wildfires alter 

the treeline tundra plant community structure (detailed in Chapter Two); [2] an increase in the 

baseline understanding of insect granivory at the boreal-tundra treeline ecotone through an 

examination of the environmental characteristics across northern Canada that drive insect 

granivory presence and magnitude (detailed in Chapter Three); and [3] increase forest resilience 

research in an understudied region of the subarctic (i.e., Nunatsiavut), supporting research efforts 

on how compounding natural and anthropogenic disturbances influence range edge forest 

succession (detailed in Chapter Four). Within each Chapter, I asked the following research 

questions: 

 

Chapter Two 

• How does wildfire change the environmental characteristics of hillside boreal forest-

tundra treeline ecotones? 

• Do wildfires disrupt the treeline ecotone’s ecological inertia, thus favouring boreal 

range expansion in Yukon? 
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Chapter Three 

• Are there any general abiotic and biotic conditions associated with the presence of 

insect granivory at the boreal-tundra treeline ecotone? 

• Where evidence of granivory occurs, which conditions are associated with its 

magnitude? 

• Is insect granivory at treeline associated with seed viability, and if so, how? 

Chapter Four 

• What do post-wildfire coastal forest landscapes in the eastern subarctic look like 

using forest age structure and tree species richness? 

• Do the compounding effects of fire and fuelwood harvesting drive boreal seedling 

regeneration in Nunatsiavut’s coastal forests? 

 

1.5 Study Locations 

 

Much like the spatial distribution of disturbances across Canada, my research was 

conducted across the latitudinal and longitudinal distribution of the Canadian subarctic (Figure 

1.2). Permission to conduct research in northern Yukon (described in Chapter Two) was 

provided by the Vuntut Gwitchin First Nations, as this research takes place on their Traditional 

Territories. Specifically, my research was located at treeline ecotones near Eagle Plains (Site 

EPN: 65.78N, -137.76W; Site EPS: 66.46N -136.59W) and Dawson (Site TOW: 64.12N, -

140.96W). Data collection at these sites occurred during the summers of 2017 – 2019. Study 

sites in Yukon was selected because treelines were accessible by vehicle and because 

northwestern Canada is experiencing the highest degree of warming as a result of climate change 

(Bush & Lemmen, 2019). 
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Research locations for Chapter Three were situated at the boreal-tundra treeline ecotone 

across northern Canada. I collaborated with researchers across six Canadian institutions to carry 

out coordinated data collection at treelines in Yukon (n = 4), Northwest Territories (n = 2), 

Manitoba (n = 1), Quebec (n = 1), and Newfoundland and Labrador (n = 2) on the traditional 

lands of the Vuntut Gwitchin, Tr’ondëk Hwëch’in, Inuvialuit, Tłıc̨hǫ, Sayisi Dene, Inuit of 

Nunatsiavut, Mi’kmaq, and Beothuk peoples. All data collection occurred during the summers of 

2018 (n=8) and 2019 (n=2). Research sites were located based on pre-existing data collection 

activities. 

Data collection in Chapter Four was carried out on the land of the Labrador Inuit in the 

land claim settlement region of Nunatsiavut. Based on the knowledge of local community 

members, we selected three separate coastal boreal forests that experienced wildfire in the past 

three decades and had also been used as winter chainsaw harvesting locations by residences of 

Nain and Postville for fuelwood. Two sites were north of the community of Nain (Site 1: 

Tikkoatokak Bay; 56.42N and -62.12W; Site 2: Webb Bay; 56.45N and -61.52W) and one site 

was west of the community of Postville (Site 3: Beaver River; 54.46N -59.48W). Data collection 

occurred during the summer of 2018 and was a part of a POLAR Knowledge interdisciplinary 

research program lead by Dr. Carissa Brown. 
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Figure 1.2 Location of all study sites by data chapter. Chapter Two (blue) occurred in Northern 

Yukon; Chapter Three (orange) occurred at treeline sites from Yukon to Newfoundland and 

Labrador; Chapter Four (green) occurred in Nain and Postville, Nunatsiavut.  

 

1.6. Study Species 

 

Black spruce is the central study species in each research Chapter. I chose this species for 

several reasons: black spruce are ubiquitous across the North American boreal forest and 

represents a dominant tree species in each study region. They are also considered a long-lived 

species, but tree age largely depends on wildfire return intervals (Greene et al., 1999). Black 

spruce is a semi-serotinous species that will disperse seeds from their aerial seed bank under 

extreme heat, after a fire, or with age if fire return intervals are long (Greene et al., 1999). Black 

spruce is also considered a good indicator of environmental change (Johnstone et al., 2020). 
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Recruitment failure after a disturbance will likely indicate successional trajectory change (Jayen, 

Leduc, & Bergeron, 2007; Johnstone, Hollingsworth, & Chapin III, 2008). Finally, spruce is a 

species of economic importance and is considered a suitable softwood species to harvest for 

energy purposes across North America (Greene et al., 1999).  

White spruce (Picea glauca), balsam fir (Abies balsamea (L.) Mill.), and eastern larch 

(Larix laricina (Du Roi) K. Koch) are three additional tree species that are included in my 

research. These species are also long-lived and found throughout the boreal forests of North 

America. Unlike black spruce, these species are not serotinous and release their seeds from 

mature cones each year at the end of the growing season (Zasada & Gregory, 1969). While these 

species often prefer drier conditions, they can be found in mixed-stands with black spruce, 

depending on geographic location and topography (Greene et al., 1999; Purdy, Macdonald, & 

Dale, 2002). White spruce was included in the manipulative seeding experiment in Chapter Two. 

Balsam fir and larch were included in the dendroecological analyses in Chapter Four. 

 I chose to examine the understory vegetation using a fine-scale functional group 

framework based on plant morphological and physiological traits (e.g., shrubs, grasses, forbes). 

While I recognize that having understory vegetation data to the species level would provide a 

more robust understanding of plant community responses to changing disturbance regimes, 

functional group data reduces excessive variability within datasets that are already anticipated to 

have a high degree of variability. Functional group data interpretation is also easier to 

incorporate in future management operations across ecosystems (Laughlin et al., 2017). 

Furthermore, the breadth and intensity of data collection in Chapter Two, the collaborative 

nature of data collection in Chapter Three, and the time limitations discussed in Chapter Four all 

warranted a more general approach to collecting information on understory vegetation. 
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Nevertheless, a few understory species were of particular interest and were recorded in greater 

detail. Specifically, green alder (Alnus viridis (Chaiz) D.C. spp. crispa) was selected as a species 

to be used in the manipulative seeding study, as it represents an early colonizer of post-

disturbance subarctic landscapes (Lantz et al., 2010; Travers-Smith & Lantz, 2020). I also 

collected species composition data on Ceratadon and Polytrichum mosses, as these species often 

represent early post-fire colonizers that compete with black spruce seedlings for resources 

(Charron and Greene, 2002, Tsuyuzaki, Narita, Sawada, & Kushida, 2014). 
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Chapter 2: Wildfires do not ignite boreal forest range expansion into tundra ecosystems in 

Yukon, Canada 

 

Abstract 

 

The resilience of northern ecosystems is being tested as the temporal and spatial 

distribution of wildfires continue to change. Wildfires at treeline may facilitate a northward 

advance of boreal tree species, as the tundra is in close proximity to fire-adapted species 

climatically primed for range expansion. To study the effects of wildfire on the resilience of the 

tundra plant community at treeline, we asked (1) how wildfire changes the environmental 

characteristics of the treeline, and (2) in the absence of viable seed limitation, do wildfires 

increase the likelihood of tree or shrub seedling emergence? To answer these questions, we 

measured a suite of biotic and abiotic factors at three paired burned and unburned treelines in 

Yukon, Canada. Our observational study was paired with a manipulative seeding experiment 

(1000 seeds • m-2) of black spruce (Picea mariana (Mill) B.S.P.), white spruce (Picea glauca 

(Moench) Voss), and green alder (Alnus viridis (Chaiz) D.C. spp. crispa) to determine seedling 

emergence potential. Despite significant changes that we would expect to promote seedling 

emergence (i.e., reduced organic layer depth and vegetation ground cover, increases in growing 

degree days), all species emergence did not increase at burned treelines, but were limited to 

moist substrates that were found at both burned and unburned treelines. We speculate that, from 

the perspective of a seed, wildfire induced changes to the seedbed (forest floor) may have 

benefited seedling emergence, but more extreme surface temperatures made survival more 

challenging. Our study indicated no relationship between wildfire and seedling emergence at 

treeline; however, greater consideration of winter conditions, treeline characteristics (e.g., 

density of trees) and tundra plant community type (e.g., wet versus mesic) should allow us to 

better predict the conditions under which wildfire can facilitate tree or shrub range expansion.  
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2.1 Introduction 

 

 Impacts of continued climate change on natural disturbance events are predicted to affect 

ecosystem resilience and plant successional dynamics (Turner, 2010; Johnstone and others, 

2016). Across the boreal biome, climate change has resulted in longer growing seasons, 

increasing the frequency of soil moisture deficits (Trugman and others, 2018; Hansen and 

Turner, 2019; Pastick and others, 2020). Longer growing seasons and drier conditions indirectly 

affect wildfire occurrence, as ignition events are controlled by climate, seasonal weather, people, 

and the amount of dry fuel available for consumption (Lecomte and others, 2006; Kasischke and 

Turetsky, 2006; Johnston and Flannigan, 2018; Hanes and others, 2019; Seidl and others, 2020). 

While responses to the fire-climate relationship vary with geographic location, models 

consistently predict a change in wildfire regimes across North America (Xi and others, 2019; 

Parisien and others, 2020). Observed increases in the frequency, severity, and extent of wildfires 

in northwestern North America support those model predictions (Johnstone and others, 2004; 

Soja and others, 2007; Hanes and others, 2019). Increased research on ecosystem recovery under 

novel wildfire regimes is therefore warranted (e.g., Turner, 2010; Buma and others, 2013; Zhou 

and others, 2019; Brehaut and Brown, 2020). 

 Adjacent to the boreal forest, the tundra biome has also experienced a change in the 

frequency of wildfires in recent decades (Soja and others, 2007; Higuera and others, 2011; Hu 

and others, 2015). While fires have generated biological legacies within many boreal vegetative 

species (Johnstone and others, 2016), the tundra has historically seen few wildfires due to its 
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extreme cold climate and lack of fine fuels (Hu and others, 2015). Unlike boreal forests then, 

tundra ecosystems may not have adapted to wildfire as a regular disturbance and thus, may result 

in a shift in plant succession (Higuera and others, 2008; Johnstone and others, 2016). North of 

the Arctic Circle, wildfire induced shifts in the tundra plant community have been observed with 

greater graminoid (Barrett and others, 2012) and shrub dominance post-wildfire (Racine and 

others, 2004; Lantz and others, 2010; Rocha and others, 2012). Yet, this change in the 

successional trajectory has not been consistent across the tundra (Bret-Harte and others, 2013; 

Zhou and others, 2019), suggesting there are underlying patterns and processes that may make 

certain pre-disturbance tundra plant communities susceptible to a shift in succession under 

continued climate change.  

 The boreal forest-tundra treeline ecotone represents a unique opportunity to examine the 

effects of wildfire on tundra plant communities. At the treeline ecotone, tundra ecosystems meet 

the leading edge of boreal forest ecosystems, which are fire-adapted and climatically primed for 

northward range expansion (Korner, 1998; Kueppers and others, 2017; Feuillet and others, 

2020). While temperature-based models have predicted an upslope and northward advance of 

boreal tree species into the tundra (Parmesan and Yohe, 2003; Settele and others, 2014), the 

observed response has been variable (Harsch and others, 2009; Rees and others, 2020). The lag 

between the fundamental and realized niche of boreal species suggests that temperature alone 

cannot predict range expansion (Harsch and others, 2009; Brown and others, 2019). While viable 

seed production is low across the ecotone and can successfully limit range expansion (Viglas and 

others, 2013) at the population or hillside-scale (i.e., a treeline ecotone that occurs within a 

relatively short elevational distance; Bader and others, 2020), the ecological inertia, or resistivity, 

of the tundra at treeline may be high, as a result of their biotic and environmental characteristics 
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(e.g., structure of tundra vegetation, limited soil moisture). This high ecological inertia may 

provide a buffer against any shift in plant community composition (Johnstone and others, 2016; 

Stralberg and others, 2016). Nevertheless, the inertia may be broken when continued climate 

warming increases viable seed production and is paired with wildfire, and the tundra vegetation 

community is within the natural dispersal distance of fire-adapted tree and shrub species (Buma 

and others, 2013). Therefore, our research aims to fill the knowledge gap of understanding how 

wildfire affects the structure of the treeline ecotone, as a shift in the successional trajectory may 

have numerous functional and bioclimatic repercussions (Chambers and others, 2005; Mack and 

others, 2011; Jones and others, 2015). 

We set out sampling transects across three wildfires that had burned within the last two 

decades on the boreal-tundra treeline ecotone to explore two objectives, [i] to determine how 

wildfires change environmental characteristics of the treeline ecotone throughout the course of 

the year; and [ii] to examine whether wildfires can disrupt the ecological inertia of the treeline 

ecotone, thus favouring boreal range expansion. For objective one, we hypothesized that the 

presence of wildfire would substantially change biotic and abiotic conditions at each site, 

between burned and unburned treelines. Specifically, we predicted that similar to an interior 

boreal forest experiencing a wildfire, organic layer depth, vegetation cover, and available soil 

moisture at treeline would be reduced, as a result of material combustion (Greene and others, 

2007; Hesketh and others, 2009). In addition, because all study sites had burned in different 

years within the past two decades, we predicted that if a site had experienced a wildfire more 

recently, then environmental conditions would be more uniform (i.e., have low variance). 

Conversely, we predicted that burned treelines that experienced a wildfire more than ten years 

ago would be more similar to the unburned treeline, indicating high ecosystem resilience 
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(Holling, 1973). These predictions were based on our understanding of wildfire impacts to biotic 

and abiotic conditions within boreal forests (Certini, 2005), the short regeneration window that 

occurs in western North America post-wildfire (Johnstone and Kasischke, 2005), and the wildfire 

characteristics common in the study region (Brown and Johnstone, 2012). We tested our 

predictions using an intensive natural field experiment where numerous abiotic and biotic factors 

were measured across three separate pairs of burned and unburned treeline ecotones in Yukon, 

Canada.  

For our second objective, we hypothesized that when the natural seed availability 

constraint is removed, boreal tree and shrub emergence across the treeline ecotone would 

increase as a result of wildfire. We predicted that if a wildfire occurred, post-fire conditions 

would be similar to those created by a wildfire in interior boreal forests (see aforementioned 

changes in the first objection), priming the landscape for seedling establishment. We tested this 

hypothesis at two of the tree study sites using a manipulative seeding experiment for black 

spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), and green 

alder (Alnus viridis (Chaiz) D.C. spp. crispa). In this study, a successful break in the ecological 

inertia across a treeline for early life stages was defined as any significant increase in the 

seedling emergence or interannual survival when compared to the unburned treelines. 

 

2.2 Methods 

2.2.1 Study area 

Research took place in northern Yukon, Canada on traditional territories with permission 

from the Vuntut Gwitchin First Nation. This region is characterized by a cool continental climate 

with an annual mean temperature of -6.2˚C, an average maximum of 14˚C in July and an average 
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minimum of -27˚C in January (Environment and Climate Change Canada, 2020). Mean annual 

precipitation is approximately 400 mm, the majority of which falls as rain during the summer 

months. Black spruce is the dominant tree species in the region; however, white spruce and larch 

(Larix larincina (Du Roi) K. Koch) are found throughout the landscape. While treeline form and 

tundra vegetation at the upper edge of the treeline ecotone is variable across the region, we 

limited our study to diffuse treeline ecotones (i.e., gradual reduction of tree density when moving 

upslope; Bader and others, in review) with mesic tundra that was dominated by low height shrubs 

and lichen vegetation. 

We selected three burned treeline ecotones that experienced wildfire in the past two 

decades for this intensive natural field experiment. Two of the sites were located near Eagle 

Plains and burned in 2017 (Eagle Plains South: EPS; 65.78N, -137.76W) and 2007 (Eagle Plains 

North: EPN; 66.46N -136.59W), with an area burned of approximately 86,127 ha and 6,369 ha, 

respectively. The third site was located west of Dawson and burned in 2005 over approximately 

27,000 ha (Top of the World: TOW; 64.12N, -140.96W). Each wildfire was heterogeneous in its 

consumptive path across the treeline ecotone, facilitating a natural comparison between burned 

and unburned elevational treelines occurring along hillslopes in close proximity (i.e., less than 10 

km apart between treatments). While it is likely that the unburned treatment at each site 

experienced a fire in the past, we selected locations using the Yukon fire history map records that 

indicated no wildfire occurrence since at least 1940, the earliest government records of fires in 

northern Yukon available (Government of Yukon, 2020). In addition, when we arrived on site, 

we ensured no evidence of recent fires was visible (e.g., burn scars, charred material in organic 

layer). 
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 We recognize that drawing conclusions from a limited number of study sites at various 

stages of post-wildfire recovery reduces the predictive power of our analyses and impacts our 

ability to speak to regional patterns. Yet, conditions that facilitate increased germination success 

occur at a microsite scale (Graae and others, 2012); therefore, our approach (fewer sites with 

heavy instrumentation) provides a more detailed understanding of wildfire impact on potential 

germination and establishment of seedlings when compared to a study with more sites examined 

at broader scales.  

2.2.2 Field measurements  

 To determine whether burned treelines would be different in biotic and abiotic conditions 

when compared to unburned treelines (Objective 1), we collected data on stand characteristics, 

soil properties (both environmental and abiotic), as well as ground vegetation percent cover 

(listed in detail in Table 2.1). These data were also used to inform our predictions that conditions 

at the burned treeline would be more suitable for seed germination throughout the year and 

conditions would be less uniform as time-since-wildfire increased. 

At each of our sites we established four 100 m transects that ran parallel with the 

changing stand density of the hillslope treeline ecotone within the burned and unburned treeline 

pair (i.e., transects moved upslope from forested to tundra vegetation). We located the initial 

transect by first positioning ourselves within an area that was visually representative of the larger 

ecotone, then located the highest upslope reproductive (i.e., cone bearing) tree, as a means to 

denote the upper range limit of the local population. This reproductive tree represented the 

middle or “0 m” marker of the transect (Figure 2.1). We established each subsequent transect by 

walking at least 20 m away from the 0 m marker of the previous transect and locating the closest 

upper most reproductive tree. Transects ran + 40 m upslope from the 0 m marker towards the 
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more continuous tundra and – 50 m downslope into the more forested part of the treeline 

ecotone. Despite experiencing a wildfire, we were still able to locate the 0 m marker for each 

transect at each burned treeline due to the post-fire reproductive strategy of black spruce. Burnt 

cones that remained on trees were frequent enough to support transect establishment. 

Table 2.1 Summary table of all biotic and abiotic data recorded at the plot, transect, and 

treatment (i.e., burned and unburned) level of each site. A total of 160 plot level data points were 

recorded at each burned and unburned treeline (total of 40 data points per transect or 320 per 

site); but data points were averaged to 10 datapoints per transect because four points were taken 

every 10 m. This resulted in 10 data points per transect (40 data points per treatment). A total of 

10 data points were collected at the transect level and up to 10 data points were collected at the 

site level. Site level data collection depended on access and availability of nutrient capsules and 

data loggers. 

 

Plot level (40 data points/transect) 

abiotic units  biotic units 

Soil temperature point measure ˚C  Tall multistemmed shrubs (shrubs>0.4 m) % 

Soil moisture point measure 

mm • 10 cm  

soil depth-1  Erect dwarf shrubs (shrubs 0.1 - 0.4 m) % 

Soil pH pH  Prostrate dwarf shrubs (shrubs < 0.1 m) % 

Organic layer depth cm  Vascular non-wood herbaceous plants % 

Rock depth cm  Graminoids % 

   Acrocarpous moss % 

   Pleurocarpous moss % 

   Ceratadon % 

   Politrichum % 

   Fruticose lichen % 

   Foliose lichen % 

   Crustose lichen % 

   Leaf litter % 

Transect level (10 data points/transect) 

abiotic units  biotic units 

Daily soil temperature (ibutton) ˚C  Natural seed rain seeds • m-2 

   Natural seedlings seedings • m-2 

   Stand density stems • m-2 

Treatment level (5 -10 data points/transect) 

abiotic units    
Total nitrogen (2018 growing season) ppm    
NH4

+ (2018 growing season) ppm    
Phosphorus (2018 Growing Season) ppm    
Daily soil temperature (Em50 sensor) ˚C    

Daily soil moisture (Em50 sensor) 

mm • 10 cm  

soil depth-1    
Daily snow depth cm    
Daily surface air temperature ˚C       
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Figure 2.1 Site- and transect-level (cross-sectional and aerial) view of study sites. Four transects 

of 100 m in length were positioned in both burned and unburned treelines. Direction of transects 

is parallel with the decreasing density of trees from forested to tundra vegetation. Aerial view of 

transect shows two snow cameras with at least six snow stakes (black lines), as well as 10 seed 

rain traps every 10 m. Seeded plots for black spruce (Pm – Picea mariana), white spruce (Pg – 

Picea glauca), green alder (Ac – Alnus viridis spp. crispa), and a control (Ctrl) were 50 cm x 50 

cm and were positioned every 10 m along each transect. 
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 We divided each transect into ten 10 m blocks and established four 50 cm x 50 cm plots 

every 10 m for the manipulative seeding experiment described later (i.e., plots < blocks < 

transects; Figure 2.1). We measured a suite of abiotic and biotic characteristics within each block 

that has been found to be important for tree seed germination; however, the number of replicates 

for each factor varied based on feasibility (i.e., accessibility of data loggers, cameras, etc.; Table 

2.1). At the seeding plot level, we collected data on percent cover of functional group ground 

vegetation, but also took note of the percent cover of select moss species (i.e., Polytrichum sp. 

and Ceratadon sp.) that are important indicators of spruce seedling establishment (Charron and 

Greene, 2002). We also recorded organic layer depth and took several point measurements of 

soil temperature (Hanna Instruments HI 98331 Soil Test meter) and volumetric soil moisture 

(Procheck, Decagon Devices, Pullman, WA, USA). These point measurements were collected 

within the same day for each site, and within a week between sites.  

At the block level, we measured stand density within a 10 m x 10 m area for a total area 

of 0.4 ha per treeline. Stand density was quantified as the number of stems • m-2. We collected 

data on natural seed rain using 40 seed traps distributed every 10 m along each transect at sites 

EPS and EPN. Only ten seed traps in the burned and unburned treelines were used at site TOW 

due to resource and time constraints. Seed traps were constructed of 50 cm x 25 cm x 5.7 cm 

deep plastic greenhouse trays lined with artificial grass that protected trap contents from wind 

(following Johnstone and others, 2009). Seed traps were emptied twice during the growing 

season, in June and August, to collect as much natural seed rain as possible, as well as limit any 

early germination occurring in the trays prior to collection. Annual seed trap data were quantified 

as number of seeds • m-2. We also measured natural seedling establishment in each block by 



 59 

quantifying the number of seedlings less than 50 cm in height along a 10 m x 1 m belt transect 

(seedlings • m-2). 

To show how burned and unburned treelines differ throughout the year, volumetric soil 

moisture and soil temperature were monitored continuously at a depth of 5 – 10 cm using five 

5TE probes connected to Em5 dataloggers (Decagon Devices, Inc., Pullman, Washington) across 

the burned and unburned treeline ecotone at each site.  At each burned and unburned treeline, 

probes were located at the -20 m, -10 m, 0 m, +10 m, and +40 m markers along the third 

(middle) transect. For site EPS, five additional loggers were positioned along the first transect to 

derive a better picture of soil moisture and temperature variability one-year post-fire. All 

volumetric water content (m3 • m-3) data were converted to mm of water per 10 cm depth of soil 

for subsequent analyses. We measured inorganic soil nitrogen (total nitrogen and NH4
+) and 

phosphorus availability for the 2018 growing season using 20 ion exchange resin (IER) devices 

along transect one and three (Unibest Company, Bozeman, Mont). IER devices were inserted 

into the soil at a depth of 5-10 cm as early as possible during the 2018 growing season and 

removed the first week of August prior to the first frost event. Note that because we do not have 

specific bulk density measurements to accompany each resin capsule, these nutrient data refer to 

nutrients available to plants within the immediate area rather than a reflection of what quantity is 

specifically in the soil. Finally, snow depth and duration were monitored daily using time lapse 

cameras directed at six to ten 80-cm-tall measuring sticks. These sticks had markers every 10 

cm; thus, data resolution is reduced to 10 cm intervals. 

 All of these field measurements were conducted at each burned and unburned treeline at 

each site; however, due to fieldwork time constraints, data collection at the site TOW was 

reduced. While there were still four 100 m transects in each treatment at TOW, plot level data 
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collection was reduced to one plot per block. In addition, we were unable to collect 2018 

growing season nutrient data.  

2.2.3 Seeding experiment 

To assess whether wildfires at treeline would facilitate the range expansion of boreal tree 

and shrub species in the absence of seed limitation (Objective 2), we added 100 seeds of black 

spruce, white spruce, and green alder in the separate 50 cm x 50 cm plots that had been 

established in 2017 (site EPN) and 2018 (site EPS) along each transect with the burned and 

unburned treelines. We added additional seed (100 seeds per plot) during the summers of 2018 

and 2019 to each plot for each site. Seeded plots were accompanied with a control plot with no 

seed addition to measure natural emergence. Seed addition occurred as early in the field season 

as possible (i.e., early June), as seeds had already been cold stratified in storage. Each plot was 

examined visually for potential seedling emergence in mid-June and early August of each year. 

Seed was not added to site TOW due to limited seed availability.  

The majority of the seed was obtained from the National Tree Seed Centre at the Atlantic 

Forestry Research Centre in Fredericton, NB where they are stored at -20˚C (Table 2.S1). We did 

not want to deplete the few northern seed stocks of the NTSC, so additional white spruce seed 

were ordered from the Forestry Management Branch of Yukon Energy, Mines, and Resources. 

All ordered seed collections are from locations in close proximity to experimental sites (i.e., 

northern Yukon) expect for green alder, which were collected from northern Quebec. While it is 

not in close proximity to the Yukon, this collection represented the most northern collection 

available for green alder.  
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2.2.4 Statistical analyses 

 To answer our first research question of the difference between biotic and abiotic 

conditions between burned and unburned treelines, we averaged plot-level data (i.e., four plots 

per block) at sites EPS and EPN to a single plot level data point for every block within a transect. 

We averaged plot data to match data collection design at TOW where ground cover data were 

only recorded at one plot per block. We also removed any clear outliers from each site-level 

dataset. We defined outliers as data points that did not make biological sense (e.g., soil 

temperatures above 40˚C). Plot-level data of burned and unburned treeline ecotones were 

compared at the site-level using one-way ANOVAs. This analysis allowed us to determine which 

factors at each site exhibited a significant change after wildfire, as well as the directionality of 

the change. We also performed a Bartlett test of homogeneity of variance on each factor within 

each site to determine whether the distribution of the data points changed between burned and 

unburned treelines (Blauw and others, 2015). While the Bartlett test is commonly used to 

indicate whether the variance of two groups is similar, we were more interested in significant 

differences between groups, which would support our hypothesis that environmental conditions 

across a treeline ecotone become more similar post-wildfire. Due to the many number of tests, 

we used a p-value of 0.01 to be conservative with our findings. Model assumptions were checked 

by assessing the level of overdispersion and plotting residuals versus fit. 

 We combined all site data and used nonmetric multidimensional scaling (NMDS) 

ordination to visually assess the difference between burned and unburned treelines and time-

since-wildfire. This analysis was conducted using the ‘metaMDS’ function in the package 

‘vegan’ (Oksanen and others, 2017) in R (R Development Core Team, 2018), with plot-level 

data converted into a Bray-Curtis dissimilarity matrix, three dimensions, and 100 independent 
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runs. While the Bray-Curtis is considered an appropriate distance measure for plant community 

data, we used the ‘rankindex’ function in the ‘vegan’ package prior to multidimensional analyses 

to ensure it represented the best dissimilarity index for our dataset, which included both 

environmental and plant community data. 

 Environmental data collected at the treatment level were used to calculate daily mean, 

minimum, and maximum soil temperature, as well as daily mean soil moisture. We then used 

these data to quantify growing degree days (GDD) by using the sum of degree days in each 

month when mean temperature was greater than or equal to 5˚C (Sirois, 2000), and freezing 

degree days (FDD) when temperatures were less than 0˚C (Beer and others, 2007). To determine 

whether burned treeline ecotone experienced a lengthening of the growing season, we quantified 

the number of days and summed temperatures during the fall (Sept 01 – Nov 01) and spring 

(March 15 – June 01) when the maximum temperature was greater than 5˚C. Finally, number of 

extreme freeze-thaw events were calculated for the fall and spring by summing the number of 

days in which soil temperature maximum was greater than 0˚C and the minimum was below 0˚C 

(Guiden and others, 2019). 

 To answer our second research question on seedling emergence across the treeline 

ecotone, we planned to incorporate biotic and abiotic variables that exhibited significant change 

post-wildfire into linear mixed models using annual emergence of tree and shrub species as the 

response variable; however, emergence was extremely low across all sites and treatments (see 

Table 2.S2). Moreover, early green alder seedlings were indistinguishable from other early shrub 

species and were nearly impossible to find in an unburned plot. We could not justify the use of 

linear mixed models with so few occurrences; therefore, we used Pearson’s correlation to make 

bivariate comparisons of seedling emergence and plot-level variables. We considered any 
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correlation greater than 0.3 to be indicative of an important association (Raynolds and others, 

2004).  

2.3 Results 

2.3.1 Plot-level data 

Stand density was similar across burned and unburned treatments for sites EPN and 

TOW, while the unburned treeline ecotone at EPS was denser than the burned treeline (burned in 

2017; F-value = 7.051, p = 0.001; Table 2.2). All sites exhibited low mean natural seed rain, but 

sites did not respond in the same direction. Significantly greater seed rain occurred in 2019 (F-

value = 6.168, p = 0.005) at the burned treeline at site EPS when compared to the unburned 

treeline (Table 2.3). Conversely, significantly lower seed rain occurred in 2018 (F-value = 20.37, 

p = 0.005) at the burned treeline at site EPN (burned in 2007) when compared to the unburned 

treeline. Natural seedling emergence was low across sites (both burned and unburned treelines); 

however, mean seedling density was significantly greater at the burned treeline ecotone at site 

EPN when compared to the unburned treeline (F-value = 12.76, p = 0.005).  

Within each site, most vegetation functional groups showed a reduction in mean percent 

cover after wildfire (Figure 2.2). Soil characteristics for sites EPS and TOW indicated a 

significant decrease in mean organic layer depth at each burned treeline ecotone when compared 

to their unburned pair (Table 2.2; Table 2.3); however, few plots exhibited a complete loss of 

organic layer (see standard deviation of Table 2.3). No significant difference in mean growing 

season nutrient availability was evident, except for phosphorus at site EPS, which showed a 

significant increase at the burned treeline when compared to the unburned pair.
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Table 2.2 Summary data for burned and unburned treelines at each site. All data are reported as 

averages (± standard deviation). For stand density, data are from the forty 10 m2 blocks. For 

natural regeneration, data are from the forty 1 m x 10 m transects. For seed rain, data are from 

the forty 50 cm x 25 cm x 5.7 cm deep seed traps (except for site TOW, which only had ten seed 

traps for each burned and unburned treeline). For organic layer depth, data are from the 160 

measurements taken at each burned and unburned treeline at each site. 

 
  EPS   EPN   TOW 

 unburned burned  unburned burned  unburned burned 

mean stand density  

(stems • m-2) 

0.052  

(± 0.03) 

0.030  

(± 0.04) 
 0.050  

(± 0.08) 

0.073  

(± 0.13) 
 0.024  

(± 0.03) 

0.026  

(± 0.04) 

mean natural 

regeneration 

(seedlings • m-2) 

0.048  

(± 0.08) 

0  

(±0.00) 
 0.045  

(± 0.103) 

0.658  

(± 1.08) 
 0.063  

(±0.11) 

0.050  

(±0.12) 

mean seed rain 2018  

(seeds • m-2) 

0.009  

(±0.02) 

0.021 

(± 0.03) 
 0.570  

(± 0.05) 

0.018  

(± 0.03) 
 NA NA 

mean seed rain 2019  

(seeds • m-2) 

0.014  

(± 0.03) 

0.035  

(± 0.05) 
 0.220  

(± 0.03) 

0.007  

(± 0.02) 
 0.100  

(± 0.12) 

0.05  

(± 0.11) 

mean organic layer 

depth (cm) 

20.68  

(± 5.65) 

8.78  

(± 7.08) 
  

9.68  

(± 9.01) 

6.46 

(± 5.73) 
  

15.73  

(± 6.10) 

5.8  

(± 3.29) 

NA refers to no data collected 

 

When all plot data from each site were visualized within the three-dimensional NMDS 

space, we found a clear divide between burned and unburned ordination scores, except for TOW, 

which exhibited increased overlap between burned (burned in 2005) and unburned treelines 

(Figure 2.3). The largest difference between burned and unburned characteristics was captured 

by Axis 1 and was mostly explained by soil temperature, and percent cover of tall multi-stemmed 

shrubs and Ceratadon moss.  
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Table 2.3 One-way ANOVA and Bartlett’s Test comparing all biotic and abiotic factors of each burned and unburned treeline within 

each site.  Significance of p ≤ 0.01 shown by ‘*’. Direction in ANOVA indicates whether there was a positive (+) or negative (-) 

change in direction of the mean value from the unburned treeline. Direction for the Bartlett’s test indicates whether there was an 

increase (+) or decrease (-) in variance around the mean. Only significant changes are shown.  

 
  EPS (1 year post-burn)  EPN (10-year post-burn)   TOW (13-year post-burn) 

 ANOVA  Bartlett's Test  ANOVA  Bartlett's Test  ANOVA  Bartlett's Test 

Covariate F-value Direction  K2 Direction  F-value Direction  K2 Direction  F-value Direction  K2 Direction 
Stand 

characteristics                                   

natural seed 

rain 2018 5.99   3.54   20.37* ( - )  4.34   na   na  
natural seed 
rain 2019 6.17 ( + )  12.66* ( + )  4.03   9.15* ( - )  

1.00 
  0.38  

natural 

regeneration 

density 

 

 

16.02* ( - )  

 

 

INF* ( - )  12.76* ( + )  128.2* ( + )  0.25   0.29  
Soil 
characteristics                                   

organic layer 

depth 110.2* ( - )  13.95* ( + )  6.62 ( - )  10.926* ( - )  82.07* ( - )  13.8* ( - ) 

Total Nitrogen  0.81   1.76   0.41   0.06   Na   Na  
Inorganic 
NH4  0.63   1.79   0.37   0.05   Na   Na  
Phosphorus 36.54* ( + )  43.95* ( + )  1.87   6.48   Na   Na  
Ground cover                                   

tall multi-

stemmed 
shrubs (TMS) 9.99* ( - )  165.7* ( - )  22.38* ( - )  21.49* ( - )  4.69   52.30* ( + ) 

erect dwarf 

shrubs (EDS) 50.20* ( - )  32.20* ( - )  1.03   3.13   0.37   5.23  
prostrate 
dwarf shrubs 

(PDS) 251.60   8.06* ( - )  100.2* ( - )  19.55* ( - )  1.53   8.44* ( + ) 

vascular non-

woody herbs 40.45* ( - )  12.66* ( + )  4.84   0.27   0.58   15.10* ( + ) 

graminoids 22.70* ( - )  8.70* ( - )  2.31   14.29* ( + )  31.51* ( - )  20.77* ( - ) 
acrocarpous 

moss 4.70   1.92   7.38   291.51* ( - )  12.31* ( - )  INF* ( - ) 

pleurocarpus 

moss 135.1* ( - )  184.3* ( - )  24.35* ( - )  INF* ( - )  76.98* ( - )  40.61* ( - ) 

ceratodon 
purpureus 4.98   58.05* ( + )  47.1* ( + )  87.29* ( + )  3.27   63.14* ( + ) 

politrichum 

moss 5.09   8.12* ( - )  52.39* ( + )  98.60* ( + )  0.24   13.79* ( + ) 

fruticose 

lichen 14.42* ( - )  21.80* ( - )  86.67* ( - )  229.8*   2.37   6.14  
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leaf litter 1.01   23.59   1.07   2.44   1.77   16.90** ( + ) 

Environmental 
characteristics                                   

soil moisture 

(Aug 2018) 28.01* ( + )  10.93* ( + )  0.35   0.09   0.83   2.91  
soil moisture  

(Jun 2019) 13.79* ( + )  6.37* ( + )  3.31   1.07   0.47   2.73  
soil moisture 

(Jul 2019) 5.45   0.72   3.42   2.06   0.74   0.23  
soil moisture  

(Aug 2019) 4.11   60.16* ( - )  0.08   0.21   0.74   0.11  
soil 
temperature  

(Aug 18) 0.04   4.76   49.4* ( + )  6.80   85.89* ( + )  3.55  
soil 

temperature  

(Jun 19) 79.68* ( - )  5.23   421.3* ( + )  42.72* ( + )  9.74* ( + )  6.18  
soil 

temperature 

 (Jul 19) 2.51   14.13* ( + )  81.83* ( + )  26.92* ( + )  62.8* ( + )  0.85  
soil 

temperature  
(Aug 19) 16.24* ( + )   20.13* ( + )   15.91* ( - )   1.27     61.15* ( + )   7.98* ( - ) 

*  p ≤ 0.01                  
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Figure 2.2 Percent cover of the plot-level vegetation for the burned (red) and unburned (blue) treelines for each site. Acronyms for the 

categories are as follows: tall multi-stemmed shrubs (TMS), erect dwarf shrubs (EDS), prostrate dwarf shrubs (PDS), vascular non-

wood herbaceous plants (VNWH), graminoids (Gram), acrocarpous mosses (Acro), Pleurocarpous mosses (Pleuro), Ceratadon spp. 

(Cerat), Polytrichum spp. (Politr), fruiticose lichen (Lichen), and leaf litter (Litter).
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Figure 2.3 Non-metric multidimensional scaling (NMDS) ordination (k=3, stress = 0.152) of 

treeline site plant community functional groups and environmental conditions grouped by burned 

(red) and unburned (blue) locations. Sites are coded by point shape: triangle (EPS), circle (EPN), 

and filled circle (TOW). Each point represents a 50 cm x 50 cm plot. Points closer together are 

more similar than those farther apart.  

2.3.2 Site-level environmental data 

 Daily mean temperatures were consistently greater during the growing season and lower 

during the winter across all burned treeline ecotones of each site (Figure 2.4). At site EPS, daily 

mean soil moisture was also greater at the burned treeline ecotone during the growing season; 
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however, differences in soil moisture between burned and unburned treelines at site EPN and 

TOW were marginal (Figure 2.4). The aforementioned soil moisture and temperature point 

measure data presented in the ANOVA table support these results (Table 2.3). Across all sites, 

the greatest difference in temperature between burned and unburned treelines occurred during the 

growing season; however, temperature differences were often more consistent throughout the 

winter (Figure 2.5). As a result of these annual temperature differences between burned and 

unburned treelines we found that each site had greater GDD at burned treelines (Figure 2.6). 

Similarly, burned treelines experienced greater FDD at each site. Snow depth was also 

consistently lower in the burned treeline ecotone for sites EPS and EPN throughout the winter 

(Figure 2.S2).  
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Figure 2.4 Daily mean soil temperature (solid line) and soil moisture (dashed line) data from the 

Em5 dataloggers (Decagon Devices, Inc., Pullman, Washington). Each site includes data on 

burned (red) and unburned (blue) treelines. Grey filled area surrounding lines represents standard 

error (SE) for daily data points. Multi-year data from site EPN are divided into the top left (2017-

2018) and top right (2018-2019) panels.  
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EPS 2018-2019 TOW 2018-2019
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unburned



 71 

 
Figure 2.5 The difference in daily mean soil temperature (˚C) between the burned and unburned 

treatments for each site (burned subtract unburened data). Data derived from the Em5 

dataloggers (Decagon Devices, Inc., Pullman, Washington). Multi-year data from site EPN are 

divided into the top left (2017-2018) and top right (2018-2019) panels.  

 

Daily environmental data during the fall and spring seasons at each site showed burned 

treelines experienced more days where the maximum soil temperature reaches above 5˚C when 

compared to the unburned treeline (Table 2.4). While this finding was not consistent at site EPN 

(see data of Fall 2018, Spring 2019), the sum of temperatures at the burned treeline ecotone at 

site EPN was approaching those of the unburned pair. While there were more freeze-thaw events 

at site EPS during the spring at the burned treeline ecotone when compared to the unburned 

treeline, we detected no consistent relationship between freeze-thaw events and treatments across 

all sites (Figure 2.S3). 

 

EPN 2018-2019EPN 2017-2018

EPS 2018-2019 TOW 2018-2019
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Figure 2.6 Site level data showing monthly mean soil temperatures (dashed line) and sum of 

degree days (bar graph) for both burned (red) and unburned (blue) treelines. Growing degree 

days (GDD) are indicated by positive (above zero) values, while freezing degree days (FDD) are 

shown to be in the negative. Data derived from the Em5 dataloggers (Decagon Devices, Inc., 

Pullman, Washington). Multi-year data from site EPN are divided into the top left (2017-2018) 

and top right (2018-2019) panels.  

2.3.3 Seeding experiment 

 Despite the relatively high ex-situ germination success of seeds used in the manipulative 

seeding experiment (~60-97%; Table 2.S1), the number of plots with successful emergence from 

seed addition was low across all sites (Table 2.S2). Of the plots where emergence was recorded 

(typically much less than 50% of the forty plots within the burned and unburned treelines), the 

total number was commonly less than 10 seedlings within a plot, even after two years of seed 

addition (total of 300 seeds per plot from 2017-2019). The unburned treatment at site EPS had a 

greater number of plots with black and white spruce emergence (In 2019, Pm: unburned = 12, 

burned = 8; Pg: unburned = 20, burned = 12); conversely, the burned treatment at EPN exhibited 
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greater emergence for both species (in 2019, Pm: unburned = 1, burned = 22; Pg: unburned = 8, 

burned = 23). Therefore, greater seedling emergence was not consistently found in the burned 

treelines. Interannual correlation between 2017-2019 seedling emergence of black and white 

spruce data was high (i.e., r ≥ 0.3); therefore, only correlations between August 2019 seedling 

emergence data and environmental conditions are reported. At site EPN, black and white spruce 

emergence were positively correlated to June 2019 soil temperature (Pm: r = 0.41; Pg: r = 0.34) 

and percent cover of Polytrichum sp. moss (Pm: r = 0.60; Pg: r = 0.43). At site EPS, black spruce 

emergence was positively correlated to June 2019 soil temperature (r = 0.32) and percent cover 

of acrocarpous mosses (r = 0.59), while white spruce emergence was positively correlated to 

organic layer depth (r = 0.34) and percent cover of acrocarpous mosses (r = 0.56). 

Table 2.4 Fall (September 01 – Nov 01) and Spring (March 15 – June 01) soil temperature data 

for each burned and unburned treeline of each site. Data derived from the Em5 dataloggers 

(Decagon Devices, Inc., Pullman, Washington). Max temp ≥ 5˚C refers to the number of days in 

which the maximum soil temperature reached above 5˚C with the sum of temperatures above the 

5˚C threshold for those days in brackets. Freeze-thaw events refer to the number of days during 

the fall and spring in which the difference between the maximum and minimum crossed over 

0˚C. 

 
    EPS   EPN   TOW 

  unburned burned  unburned burned  unburned burned 

F
al

l 
2
0
1
7

 

max temp. ≥ 5˚C 
na na  18 

(133.71) 

20 

(146.83) 
 na na 

freeze-thaw 

events 
na na  2 3  na na 

          

S
p
ri

n
g
 

2
0
1
8
 

max temp. ≥ 5˚C 
na na  10 

(69.21) 

8 

(59.83) 
 na na 

freeze-thaw 

events 
na na  1 1  na na 

          

F
al

l 
2
0
1
8

 

max temp. ≥ 5˚C 

3 

(16.53) 

14 

(87.22) 
 4 

(25.34) 

3 

(21.58) 
 0 

(0) 

19 

(122.2) 

freeze-thaw 

events 
10 7  8 4  11 12 

          

S
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n
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2
0
1
9
 

max temp. ≥ 5˚C 

12 

(90.08) 

15 

(153.26) 
 15 

(119.02) 

14 

(126.56) 
 8 

(46.64) 

16 

(151.7) 

freeze-thaw 

events 
1 13  1 1  1 1 
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2.4 Discussion 

 

Our results highlight the transformative effects wildfire can have across a treeline ecotone 

but indicate they do not promote boreal forest range expansion. For example, vegetative ground 

cover and depth of the organic layer was significantly reduced at each site’s burned treeline 

when compared to their unburned pair. Wildfire also changed environmental conditions 

throughout the year. Soil temperature during the growing season was warmer at each burned 

treeline and was much colder throughout the winter, which we speculate is associated with a 

decrease in snow depth at burned treelines. In summary, while some environmental conditions 

changed to promote the emergence of black and white spruce seedlings, others shifted to make 

interannual survival more challenging. These results are supported by the low level of seedling 

emergence from our manipulative seeding experiment. Moreover, seedlings that were present 

were not correlated with specific post-wildfire site conditions (e.g., reduced organic layer depth 

and vegetation ground cover), but rather warm, moist conditions that occurred at unburned 

treelines and burned treelines that experienced a low-severity wildfire. Here, we connect our 

empirical findings to boreal tree species life history requirements to explain why post-wildfire 

conditions at the treeline ecotone did not align to promote boreal tree range expansion.  

At a microsite-scale, there are several wildfire induced changes to the treeline ecotone 

that are presumed to increase the emergence and establishment success of spruce seedlings. First, 

consistent with our prediction, each burned treeline exhibited a significant reduction in organic 

layer depth when compared to their unburned pair. Experimental evidence suggests the 

combustion of the organic layer is associated with increased seedling establishment within the 

boreal forest, as germinating seeds are closer to mineral soils that have a more stable moisture 

supply (Hesketh and others, 2009; Brown and others, 2015). Organic layer combustion also 
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increases access to essential plant nutrients, such as inorganic phosphorus and nitrogen, within 

the mineral soils (Butler and others, 2017). While we did not find any significant change to 

nitrogen availability, we did find phosphorus to be significantly greater at the burned treeline at 

site EPS, which had burned most recently in 2017, but not at the other two sites that had burned 

in 2005 (TOW) and 2007 (EPN). This seemingly ephemeral increase in phosphorus availability 

shortly after wildfire is consistent with the literature (Certini, 2005) and could provide further 

evidence of an advantageous surface nutrient pulse for seedlings after wildfire.  Second, many 

vegetative functional groups exhibited a significant reduction in percent cover when compared to 

their respective unburned treeline ecotone. Ceratadon sp. and Polytrichum sp. mosses only 

showed a significant increase in percent cover at the burned treeline at site EPN; however, this 

increase was expected, as these moss species are early colonizers post-wildfire (Charron and 

Greene, 2002). This overall decrease in vegetative ground cover reduces interspecies competition 

for light, essential nutrients, and physical space required by germinating spruce seeds, thus 

facilitating a greater probability of seedling establishment during the first two decades after 

wildfire (Johnstone and others, 2004).  

The most notable change between burned and unburned treeline ecotones for emergent 

success within the studied post-wildfire landscapes was an increase in GDD. While climate 

continues to represent a significant limiting factor for spruce recruitment at its northern range 

edge (Hobbie and Chapin III, 1998; Holtmier and Broll, 2005; Messaoud and others, 2019), 

experimental research in boreal forests and treelines across northern Canada suggests a 

significant increase in GDD is associated with greater density and increased biomass of seedlings 

due to greater thermal energy availability (Sirois, 2000; Danby and Hik, 2007; Munier and 

others, 2010; Miller and others, 2017). From our results, we predict that wildfires may further lift 
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this climatic temperature constraint through a reduction in surface albedo, driven by the presence 

of charred organic material (Certini, 2005; Viglas and others, 2013). In addition to the change in 

GDD, our results indicate wildfire can create longer growing seasons, as the number of days 

where the maximum was above 5˚C was comparable to or greater than those in the unburned 

treeline ecotone. The lengthening of the growing season has also been linked to increased 

seedling establishment, as seedlings have a longer period of active photosynthesis, prompting 

greater carbon uptake and increased growth (Kupfer and Cairns, 1996; Holtmeier and Broll, 

2005). Nevertheless, we are hesitant to state whether these changes prime a hillslope for boreal 

tree range expansion, as recent evidence suggests higher GDD and longer growing seasons may 

also subject seedlings to greater moisture stress (Lett and Dorrepaal, 2018; Hansen and Turner, 

2019; Boucher and others, 2020). While our results show daily moisture availability to be lower 

at the burned treeline at sites EPN and TOW, they do not exhibit a significant difference from the 

unburned treelines; therefore, a longer temporal analysis of more sites are needed to support this 

hypothesis.  

Despite there being wildfire induced changes that would promote greater seedling 

emergence at treeline, others shifted to make survival more challenging. While we predicted 

organic layer and vegetation cover would be reduced post-wildfire, based on our understanding 

of previous wildfires within the study region (Brown and Johnstone, 2012; Viglas and others, 

2013), we anticipated these changes to be more extensive and result in a more uniform post-

wildfire treeline ecotone (i.e., more uniform and greater combustion of organic layer). Although 

we did not measure burn severity directly, there is significant evidence to suggest each treeline 

ecotone experienced a low to moderate severity wildfire. For example, mean organic layer depth 

was greater than five cm for each burned treeline, which is consistent with other low-severity 
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wildfires in Alaska (Johnstone and Kasischke, 2005) and Siberia (Alexander and others, 2018). 

Additionally, the persistence of vascular non-woody herbaceous plants at the burned treeline at 

site EPS and the dominance of rhizomatous graminoids and ericaceous shrubs at the burned 

treelines at site EPN and TOW suggest vegetative root structures were not significantly damaged 

leading to rapid above-ground growth post-wildfire (Johnstone and Kasischke, 2005). The 

variability in surface charring and plant cover from these wildfires explains why, contrary to our 

hypotheses, the burned treeline at site EPS did not exhibit the highest convergence in ordination 

space, even though it had burned most recently. In fact, environmental factors at each burned 

treeline had a wide range of variance when compared to their unburned treeline pair (see 

Bartlett’s test results in Table 2.3.). Interestingly, site TOW did show greater overlap in 

environmental conditions within ordination space between the burned and unburned treelines 

when compared to the other two sites. This increased overlap of environmental conditions 

between burned and unburned treelines as time-since-wildfire increased is consistent with our 

prediction. From these results we speculate a return to a pre-fire plant community is likely, as the 

ecological inertia within the tundra plant community was not reduced enough by the low-severity 

wildfires.  

Our study also shows that within a period of ten years after wildfire, seedlings may be 

subjected to more extreme environmental conditions. Specifically, a persistent change in winter 

conditions occurred where mean soil temperature was much lower in the burned treeline, 

resulting in a greater sum of degree days (FDD) below 0˚C. These results are likely associated 

with the reduced snow depth and surface insolation caused by a reduction in vegetative ground 

cover that provides surface complexity to hold snow (Frey, 1983; Domisch and others, 2018). 

While TOW did not exhibit a consistently lower snow depth throughout the winter at the burned 
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treeline ecotone, later inspection of measuring sticks showed they were positioned within a 

hollow that would have locally increased snow depth values. Lower snow depth and increased 

FDD during the winter can expose spruce seedlings to persistent frost and xylem embolism 

(Mayr and others, 2007; Mamet and Kershaw, 2013), which may be a significant reason why 

interannual seedling survival from our manipulative seeding experiment was so low. 

While each burned and unburned treeline showed a large deviation in temperature during 

the winter and growing season, we were surprised to see few differences in the timing of snow-

melt, as well as the number of freeze-thaw days, apart from site EPS, which experienced far 

more freeze-thaw days in the spring of 2019. While our study design does not lend itself to speak 

to the climate-snow relationship, earlier snow melt is predicted as a result of climate change 

(Guiden and others, 2019). This change in date of snowmelt is likely to increase seedling 

exposure to extreme temperature fluctuations (Rixen and others, 2012) and frost damage (Liu 

and others, 2018). Experimental snow removal and temperature manipulations have supported 

these predictions (Shen and others, 2014; Renard and others, 2016; Domisch and others, 2018). 

As the burned treeline at site EPS was the only treeline that showed a difference in freeze-thaw 

days, our results allow us to speculate that the effect of wildfire on snowmelt and freeze-thaw 

events is either negligible or only occurs shortly after wildfire. We suspect that recovering 

vegetation within the first few years after wildfire would increase surface complexity and 

therefore increase snow depth to moderate soil temperature (Renard and others, 2016; Maher and 

others, 2019). Nevertheless, our results are limited to few study sites, which warrants further 

investigation of the broader landscape relationship between wildfire, seedling survival and winter 

conditions (Domisch and others, 2018; Maher and others, 2020). 
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From the perspective of a seed, the combined effect of low severity fires (i.e., patchy and 

partial combustion of the vegetation and ground surface), and the change in seasonal 

temperatures and winter conditions leads us to conclude that the post-wildfire microsite does not 

promote greater seedling emergence and survival when compared to the unburned treeline. 

Studies have shown that ideal conditions for successful spruce germination consist of low 

interspecies competition, and substrates that are warm, moist, and high in nutrients (e.g., 

Johnstone and others, 2004; Johnstone and Chapin III, 2006; Shenoy and others, 2011; Brown 

and others, 2015). Our study showed that while wildfire increased GDD and growing season 

length, the low severity of the wildfire resulted in a higher probability of viable seeds landing on 

charred organic matter. Even though soil moisture showed no significant difference between 

burned and unburned treelines at a depth of 5 – 10 cm, the remaining organic material would 

limit access to this moisture, increasing hydric stress of the seed via rapid surface evaporation 

and drainage (Kemball and others, 2006; Johnstone and Chapin III, 2006; Veilleux-Nolin and 

Payette, 2012). We can also predict that if a seed did land on a suitable microsite, (e.g., unburned 

wet moss substrate or completely combusted organic layer), germination may have been 

successful, but the seedling would be subjected to persistent cooler temperatures and lower snow 

depth over the winter, increasing the potential for frost damage and xylem embolism (Mayr and 

others, 2007; Liu and others, 2018). Finally, all of these challenges accumulate on top of the first 

overwhelming hurdle for range expansion of woody boreal forest species: the extremely limited 

natural seed dispersal at all studied treelines, which has been shown to represent a significant 

bottleneck for expansion (Viglas and others, 2013; Anadon-Rosell and others, 2020). 

In conclusion, there are a series of barriers that must be overcome in order for successful 

seedling establishment, a key step in range expansion, to occur. The prediction that wildfire at 
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treeline will create ideal environmental conditions and promote range expansion of fire-adapted 

species may therefore be overly reductive and does not take into account the interaction between 

wildfire and natural site characteristics. Further investigations in a range of tundra plant 

communities (e.g., wet-sedge meadow) and treeline types (e.g., denser treeline may result in a 

more severe wildfire) are warranted. The study design of this research also lends itself to a future 

examination of trends across treeline (i.e., a change in tree density), as transects were positioned 

parallel with stand density (i.e., moving upslope from the more forested to tundra dominated 

parts of the ecotone). We also urge for the inclusion of winter climate and snow dynamics within 

these analyses, as our results show key changes to environmental characteristics during the 

growing season and throughout the remainder of the year, all of which are likely to influence 

seedling survival and thus the potential for boreal forest range expansion into tundra ecosystems. 
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2.7 Supplementary Materials 

 

 
Figure 2.S1 Seedling density (number of seedlings • m-2) along the 100 m transects of each 

burned and unburned treelines for each site. Mean seedling density was calculated by averaging 

the number the seedlings within a 10 m x 10 m block along the four transects within the burned 

or unburned treelines. 
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Figure 2.S2 Mean snow depth for the burned and unburned treelines at each site. Mean snow 

depth data were calculated by averaging the daily snow depth indicated on three (or more) snow 

stakes at each treeline. Multi-year data from site EPN are divided into the top left (2017-2018) 

and top right (2018-2019) panels. Broken segments of the line indicate either no snow or no data, 

due to unclear imagery.  
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Figure 2.S3 Detailed environmental data for each burned and unburned treeline of each site for 

the fall (Sept 01 – Nov 01) and spring (March 15 – June 01). Data derived from the Em5 

dataloggers (Decagon Devices, Inc., Pullman, Washington). Multi-year data from site EPN are 

divided into the top left (2017-2018) and top right (2018-2019) panels. For each site, there are 

four graphics, the top left (fall) and top right (spring) show the daily range in temperature values 

between the minimum and maximum temperature (line graph). Days in which the temperature 

range passes over 0˚C (i.e., day of frost) is indicated by a coloured diamond (positioned at the 

bottom of the graphic). The bottom left (fall) and bottom right graph at each site shows the 

relationship between daily snow depth (bar graph) and soil moisture (line graph). 
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Table 2.S1 Results of germination trials for seeds used in seeding experiment. A total of 400 

seeds for each species were used, divided into 16 separate petri dishes for a total of 16 replicates 

of 25 seeds. Prior to the field season, some seeds were cold stratified for a period of 5 days. A 

two-sample t-test between cold stratified (CS) and no treatment (NT) seeds was performed to 

determine whether there was any significant effect on total seed germination. Results from the t-

test indicated no significant difference between germination means of white spruce from Watson 

Lake, YT (t=1.7779, df=28.684, p=0.08603) and green alder from Manic, QC (t = 0.47844, df = 

29.913, p=0.6358). 

 

Species Treatment Seed Source   Germination Success 

  Location lat long  Mean 

(%) 
sd ste 

P. glauca NT 
Watson Lake, 

YT 
60 

-

128.83 
 82 10.22 2.55 

P. glauca CS 
Watson Lake, 

YT 
60 

-

128.83 
 74.75 12.7 3.18 

P. glauca NT Dawson, YT 64.03 
-

138.58 
 83.75 8.45 2.11 

A. viridis spp. 

crispa 
NT Manic, QC 49.86 -68.73  61.5 10.62 2.65 

A. viridis spp. 

crispa 
CS Manic, QC 49.86 -68.73  59.75 10.06 2.52 

P. mariana NT 
Clear Creek, 

YT 
63.7 

-

137.67 
  96.5 3.54 0.88 

 

 

Table 2.S2 Sum of plot-level seedling emergence data for burned and unburned treelines of each 

site. Green alder was not included as they were indistinguishable from other early shrub species 

and were nearly impossible to find in an unburned plot. Seeding data is not available for TOW as 

seeding did not occur at that site. 

 

 EPS 

 P. mariana P. glauca 

 burn unburned burn unburned 

2017 na na na na 

2018 1 14 1 13 

2019 8 12 12 20 

 EPN 

 P. mariana P. glauca 

 burn unburned burn unburned 

2017 4 0 4 0 

2018 13 4 10 9 

2019 22 1 23 8 
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Abstract 

 

Aim: Across altitudinal and latitudinal treeline ecotones, continued climate warming is predicted 

to facilitate boreal tree range expansion into tundra environments. Yet, where evidence of a 

range shift has been detected, the rate is much slower than temperature-based model projections, 

suggesting that non-climatic mechanisms are also mediating subarctic treeline range dynamics. 

Our research assessed how biotic interactions, specifically insect cone granivory, may govern 

viable seed availability of spruce-dominated treelines across northern Canada. 

Location: Ten boreal-tundra treelines from Yukon to Newfoundland and Labrador, Canada 

Taxon: White spruce (Picea glauca (Moench) Voss), Black spruce (Picea mariana (Mill.) 

B.S.P.), Strobilomyia spp., Megastigmus spp. 

Methods: Treeline sites were assessed for presence and magnitude of pre-seed dispersal 

granivory by insects. We quantified stand density metrics, organic layer depth, and understory 
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vegetation composition at each location. We incorporated those variables into generalized linear 

mixed models to establish predictors of granivory magnitude and viability of available seed.  

Results: Our findings reveal widespread presence of insect granivory and site-specific patterns 

of granivory driven by increased moss cover and decreased shrub cover and stand density. While 

all black spruce dominated sites exhibited ex-situ seed viability rates greater than 50%, the 

number of seeds produced per cone varied, suggesting within site abiotic conditions and biotic 

interaction pressures limit successful colonization of novel environments in advance of seed 

dispersal.  

Main Conclusions: Results from the modelled relationship between cone granivory and seed 

viability represent an essential step toward understanding how biotic interactions across subarctic 

treelines influence boreal tree range dynamics before seed dispersal. Connections between 

granivory magnitude and site-level stand density will help establish how treeline form (i.e., 

discrete or diffuse) may drive patterns of future insect outbreaks under continued climate 

warming.  

 

3.1 Introduction 

 

The geographic distribution of treeline ecotones, where continuous forest transitions to 

treeless plant communities, are closely linked to the climatic tolerance of boreal tree species 

(Körner, 1998; Körner and Paulsen, 2004). Treelines are anticipated to shift poleward and 

upslope under continued climate warming (Feuillet et al., 2019; Körner, 1998; Kueppers et al., 

2017; Timoney et al., 2019), though range expansion of treelines has been non-uniform in speed 

and direction (Harsch, Hulme, McGlone, & Duncan, 2009; Mamet, Brown, Trant, & Laroque, 

2019; Rees et al., 2020). This inconsistent response suggests the importance of other processes 
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driving treeline range dynamics. Recent evidence of non-climatic drivers, such as competition, 

herbivory, and parasitism, provides a better understanding of additional factors (e.g., seed 

availability, dispersal) limiting successful recruitment of boreal tree species beyond their range 

edge (Brown et al., 2019; Holtmeier, 2012; Munier, Hermanutz, Jacobs, & Lewis, 2010; Hewitt 

et al., 2016). 

Viable seed production and subsequent dispersal are required for landscape-scale treeline 

advance (Cairns & Moen, 2004; Johnstone et al., 2016), yet these processes are subject to many 

complex negative biotic disturbances from wildlife and insects (see Brown & Vellend, 2014; 

Holtmeier, 2012; Wisz et al., 2013). For example, granivory by cone fly species such as 

Strobilomyia spp. (Diptera: Anthomyiidae), represents a biotic disturbance that has the potential 

to damage up to 100% of seeds within a cone (Hedlin et al., 1981; Turgeon, Roques, & De 

Groot, 1994). Even when viable seeds are not consumed, the consumption of cone and bract 

tissue can limit the successful dispersal of seeds through reducing cone flexing (Brockerhoff et 

al., 1999). The interaction between seed production and the biotic disturbance of granivory by 

insects has been examined at length within the boreal forest (e.g., Fidgen, Sweeney, & Quiring, 

1999; Prévost, 2002; Simard & Payette, 2005). While climate warming is predicted to increase 

insect populations and their ranges across the boreal forest (Robinet & Roques 2010), granivory 

has received little attention at its edge, across northern treeline (Gärtner, Lleffers, & Macdonald, 

2011; except see Jameson, Trant, & Hermanutz, 2015; Kambo & Danby, 2017). The few studies 

that have examined granivory by insects at treeline have focused on their effects on seed viability 

(Jameson, Trant, & Hermanutz, 2015; Calama, Fortin, Pardos, & Manso, 2017), showing 

widespread insect granivory at each site resulting in a significant loss of reproductive potential. 

These insect granivores have highly specialized life cycles and are distributed broadly across the 
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North American boreal forest, aligning with the distribution of their coniferous hosts (Fidgen, 

Sweeney, & Quiring, 1999; Hedlin et al., 1981; Sweeney & Turgeon, 1994; Turgeon, De Groot, 

& Sweeney, 1992). Together, evidence from existing site-level studies combined with granivore-

host species distribution patterns lead to the prediction that insect granivory is present across all 

boreal treelines and may limit viable seed availability across the northern edge of the boreal 

biome. Nevertheless, testing this prediction requires a broader spatial context of whether there 

are any general site conditions that drive the magnitude of insect granivory and which treelines 

may be more susceptible, as treelines vary in biotic and abiotic characteristics across northern 

environments.  

We conducted a broad spatial assessment of treeline granivory by insects and asked the 

following questions: [1] Are there any general abiotic and biotic conditions that are associated 

with the presence of insect granivory at treeline; [2] where evidence of granivory occurs, which 

conditions are associated with its magnitude; and [3] is insect granivory at treeline associated 

with seed viability, and if so how? We hypothesized that the presence of insect granivory would 

be widespread, but the magnitude would vary based on tree density, as a higher density treeline 

with more cones may support greater insect populations. We also hypothesized this relationship 

between tree density and granivory magnitude would result in a negative relationship with viable 

seed availability, as seeds within cones would be consumed by more insects. To address these 

questions, we conducted an observational study at black spruce (Picea mariana [Mill.] BSP) and 

white spruce (P. glauca [Moench] Voss) dominated hillside treeline ecotones across North 

America (> 49˚ latitude). We selected Picea as the focal tree genus due to its wide geographical 

distribution and dominant structural and functional role in the boreal forest (Viereck & Johnston, 

1990). We focused specifically on cone damage from small, specialized insects rather than other 
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granivores, such as birds and squirrels, which have been previously studied across the boreal 

forest (e.g., Barringer, Tomback, Wunder, & McKinney, 2012; Boutin et al., 2006; Holtmeier, 

2012). We recognize that interannual variability in cone production and insect populations play a 

critical role in disturbance dynamics. While we are providing a snapshot in time of these 

dynamics, our extensive spatial analysis represents the first steps in linking environmental 

conditions to granivory at treeline. Moreover, studies linking environmental condition to 

reproductive potential are rare and needed to explain future range dynamics (Brown et al., 2019). 

Our results will therefore help guide future multi-year comparative analyses of treeline 

disturbances under different biotic and abiotic conditions. 

 

3.2 Materials and Methods 

3.2.1 Study sites 

We assessed insect granivory and seed viability at 10 boreal-tundra hillside treeline 

ecotones dominated by black and white spruce across northern Canada (Figure 3.1). Coordinated 

data collection with a pre-established field protocol occurred at treelines in the Yukon (n = 4), 

Northwest Territories (n = 2), Manitoba (n = 1), Quebec (n = 1), and Newfoundland and 

Labrador (n = 2) on the traditional lands of the Vuntut Gwitchin, Tr’ondëk Hwëch’in, Inuvialuit, 

Tłıc̨hǫ, Sayisi Dene, Nunatsiavut, Mi’kmaq, and Beothuk peoples. We completed most data 

collection during the summer of 2018 (n = 8), with two additional sites sampled in summer 2019 

(Table 3.S1). As this was a collaborative effort by several research teams, fieldwork time 

constraints and remote access limited our ability to collect all necessary data from each site; 

therefore, two sites (DAN and GSP) are not included in our statistical models (see modelling 

procedure below) and discussion of results. We still present summary data of cone damage and 
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seed viability from these sites as the scarcity of data from these remotely accessed sites warrants 

their inclusion and can be used to inform future treeline research. Sites varied in treeline form 

and were characterized following the definitions presented in Bader et al., (in review). We 

classified sites as diffuse (i.e., tree density decreasing with increasing altitude or latitude), 

discrete (i.e., continuous tree canopy with no decline in density until abrupt change when 

reaching tundra vegetation), or tree islands (i.e., groups or linear strips of upright or krummholz 

trees located beyond latitudinal or altitudinal treeline; Figure 3.2; Table 3.1; Harsch and Bader, 

2011; Bader et al., in review). Because treelines were classified visually by multiple 

collaborators, treeline form was not included in subsequent statistical analyses. Instead, we chose 

to focus on the stand density (number of trees per plot), which is a quantitative measurement that 

contributes to our understanding of treeline form. It also ensures measurement would be 

consistent across sites as it was included in the field protocol. 
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Figure 3.1 Location of study sites across Canada, located on the traditional territories of (from 

west to east): Vuntut Gwitchin, Tr’ondëk Hwëch’in, Inuvialuit, Tłıc̨hǫ, Sayisi Dene, 

Nunatsiavut, Mi’kmaq, and Beothuk peoples. Site specific data, including information on which 

collaborators carried out field sampling, are included in Supplementary Table 3.1.  
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Figure 3.2 Infographic of the three treeline forms that were sampled in this study. Diffuse 

treelines have a gradual reduction in stand density when moving toward the tundra (in this case, 

toward the upper edge of the image in A). Discrete exhibits no change in stand density until there 

is an abrupt stop and tree islands are linear strips or dense clusters of trees well beyond 

latitudinal treeline. The diffuse and island photographs are actual study sites (TOW and DAN, 

respectively). The other is an image taken by Lucas Brehaut in northern British Colombia. 
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Table 3.1 Treeline characterization and summary data on sampling for each study site. Treeline form was determined visually by data 

collectors, following protocols and definitions outlined in Bader et al. (in review). Dominant species refers to whether the treeline was 

dominated by black spruce (bs) or white spruce (ws). Total number of cones harvested, proportion cone granivory, and total number of 

seeds extracted from cones are included. Seeds • cone-1 was calculated by taking numbers of seeds extracted per tree • number of 

cones harvested -1. Proportion of viable seed was calculated from germination trials of up to a maximum of 100 seeds • tree -1. Cone 

length, % cone herbivory, seeds•cone -1, seeds with embryo, and % viable seed are presented as averages with some showing standard 

deviation in brackets. 

 

Site Lat Long 
treeline 

form 

dominant 

species 

trees 

sampled 

cones 

harvested 

cone length 

(±SD) 

% cone 

herbivory 

seeds 

extracted 

seeds • cone-1 

(±SD) 

seeds with embryo 

(±SD) 

% viable 
seed 

GSP 49.00 -65.94 island ws 16 299 32.6 (5.6) 16.1 10698 37.3 (8.1) 129 (12.6) 1.3 

ANN 49.59 -56.23 discrete bs 17 141 16.5 (5.2) 35.5 3127 17.0 (9.5)  1676 (146.5) 86.6 

NAI 56.54 -61.72 diffuse ws 16 294 27.9 (4.6) 2.7 19 0.1 (0.1) 1 (0.3) 0.0 

MAM 58.62 -93.81 diffuse bs 22 457 18.6 (3.0) 2.2 17467 38.1 (7.6) 12158 (246.3) 65.6 

DAN 63.77 -111.23 island bs 29 591 17.8 (3.3) 15.2 18377 32.0 (8.5) 8218 (177.1) 81.1 

BRE 64.22 -140.18 diffuse ws 11 197 27.7 (10.0) 20.3 3088 14.5 (9.4) 219 (29.3) 0.0 

TOW 64.11 -140.96 discrete bs 28 576 15.4 (2.7) 3.5 5471 9.2 (5.7) 803 (36.3) 61.4 

EPS 65.83 -137.77 diffuse bs 23 500 19.9 (4.0) 23.8 19656 39.2 (9.7) 9484 (306.6) 82.3 

EPN 66.50 -136.56 discrete bs 30 975 21.9 (7.1) 27.3 28390 29.9 (10.2) 12932 (330.5) 57.5 

ITH 68.70 -133.56 diffuse ws 18 222 27.9 (8.2) 33.3 696 2.9 (2.3) 8 (1.3) 0.5 
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3.2.2 Field measurements 

At each site, a 75 m belt transect was established along the ecotone, perpendicular to the 

tree density gradient in an area that was representative of the larger treeline ecotone. 

Collaborators ensured the transect was representative by provided photographic evidence of both 

the site and the landscape. Belt transects were then subdivided into 15 plots (10 m x 5 m) in 

which sampling occurred (i.e., plot < site). With the exception of two sites (GSP and DAN), all 

sites were included in the statistical models. Treeline form determined the location of the belt 

transect within the ecotone (Figure 3.2). For diffuse treelines, the transect was positioned in an 

area where tree density was visually estimated to be within a range of 10-50 trees • ha-1, while 

remaining within 100 m of the last reproductive tree before continuous tundra (the approximate 

dispersal distance of black spruce seeds; Greene et al., 1999). For discrete treelines, transects 

were established within approximately 100 m of the treeline ecotone edge before continuous 

tundra. Finally, transects located within a tree island ecotone were positioned across the broadest 

part of the island to ensure sufficient cone sampling.  

 Data on abiotic and biotic characteristics were collected based on their biological 

relevance to insect life history and spruce cone development (Table 3.2). Within each plot at 

each site, we first recorded tree density data (i.e., trees • plot -1 and tree height) of trees ≥ 2 m 

tall. Tree height was measured using a measuring tape or a clinometer depending on feasibility. 

Second, ground vegetation was quantified using functional group percent cover in a 1 m x 1 m 

quadrat that was positioned in an area where the ground cover was visually estimated to be 

representative of the plot. Functional group categories examined included: shrub cover, 

herbaceous non-woody plants, graminoids, lichen, moss, leaf litter, and bare organic soil. The 

shrub cover category was subdivided by height (sensu Myers-Smith et al., 2011) into tall multi-
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stemmed shrubs (TMS; ≥ 0.4 m), erect dwarf shrubs (EDS; 0.1 m – 0.4 m), and prostrate dwarf 

shrubs (PDS; < 0.1 m), as these height classes are functionally distinct. Because multiple strata 

were included in the estimate, vegetation percent cover could sum to > 100%. Functional groups 

at the lowest cover value (i.e., estimates less than 5%) were assigned a percent cover of 2% to 

ensure consistency between collaborators collecting data. Functional group percent cover was 

not completed at the site DAN due to time constraints; therefore, this site was not included in the 

statistical models. The depth of the soil organic layer (cm) was also recorded at each quadrat, 

quantified by creating a small vertical incision into the ground and measuring the depth to the 

surface of the mineral soil.   

Table 3.2 List of covariates that we hypothesized based on previous research were significant for 

insect granivory and included in our generalized linear mixed models. 

 
Predictor variables Units Rationale for final model inclusion Reference 

organic layer depth cm 
Deeper organic layer may facilitate increased numbers of predators 

of insect pupae, thus reducing the number of affected cones 
Figden et al., 1999 

tall multi-stemmed 

shrubs (TMS); erect 
dwarf shrubs (EDS); 

prostrate dwarf shrubs 

(PDS) 

% cover 

Proportion of shrub vegetation characterizes the treeline vegetation 

community at a local scale. We hypothesize that increased 

presence of shrubs of all size classes may decrease food and space 

resources for insect populations. 

 

moss % cover 
Increased moss cover indicative of more moist conditions, suitable 

for insect larvae overwintering 
Hedlin et al., 1981 

leaf litter % cover 

An additional proxy of shrub cover related to overwintering 
conditions for insect larvae. We hypothesize that increased leaf 

litter would decrease evidence of cone herbivory as a result of 

fewer larvae making it to adulthood (i.e., drier than moss cover) 

 

seeds per cone seeds • cone-1 Increased food resources for cone insects during oviposition McClure et al. 1996 

cone length cm 
Some insect species (e.g., Strobilomyia spp) prefer to oviposit on 

longer cones  
Fidgen et al., 1998 

tree density  trees • m-2 Increased space resources for cone insects during oviposition McClure et al., 1998 

tree height  cm Higher aerial seedbank may reduce insect extent on cones McClure et al., 1998 

 

 Cones were harvested from a maximum of 30 trees per site (Table 3.1). We aimed to 

harvest cones from two trees within each plot; however, when individual plots had no trees, 

cones were harvested from additional individuals occurring in alternate plots to reach the 30-tree 

sample size per site. We sampled approximately 20 cones per tree; if fewer than 20 cones were 
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available, we sampled all cones present. We preferentially selected cones that were fully sealed 

to ensure minimal seeds had been dispersed. For black spruce, harvested cones were 

approximately 1 – 3 years old, while white spruce cones were sampled at the end of the growing 

season before seed release (Greene et al., 1999). To ensure sampling was representative of the 

tree's reproductive capacity, we distributed sampling throughout the tree’s canopy by collecting 

cones from at least five different branches. Cones from each tree were placed in separate paper 

bags, labelled with tree and plot ID, and stored in a dry location for more than 60 days before 

seed extraction. Due to logistical constraints and opportunistic sampling of these remote 

locations, two of the 10 sites (NAI and ITH) were sampled under less-than-ideal conditions (i.e., 

sampling immature cones or after seed release for white spruce), resulting in less accurate 

estimates of total seed per cone. However, granivory could still be accurately assessed at these 

sites through visual detection of cone damage (described below); hence, they were not removed 

from analyses.  

3.2.3 Laboratory methods 

 The length of each cone was measured, and cones were inspected for signs of insect 

granivory, including any evidence of frass (i.e., powdery wood debris generated by wood boring) 

or exit holes that are common from conophages insect types, such as Strobilomyia spp. (Diptera: 

Anthomyiidae), Megastigmus spp., and Dioryctria spp. (Hedlin et al., 1981; Sweeney & 

Turgeon, 1994). Because of the geographic scope of our study, the time at which cones were 

harvested (mid-late growing season), and the age of cones (~1-3 years), it is likely that our cone 

damage estimates encompass multiple species. Nevertheless, all species listed above create 

similar damage to spruce reproductive units (Kegley, 2018; Seifert, Wermelinger, & Schneider, 

2000; Skrzypczyńska & Roques, 1987).  
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To remove seeds from cones, we followed a process outlined in Leadem et al. (1997). 

Briefly, black spruce cones were soaked in distilled water for 24 hours at room temperature, 

strained, and air-dried at 20˚C for 24 hours, followed by oven drying at 60˚C for 16 hours. Once 

completely dry, we shook cones for 10 minutes using an agitation table. We repeated this 

procedure three times, or until the total seed yield from agitation was ≤ 10. Any seeds that 

remained in the cone would be assumed not to be released under natural conditions. White 

spruce cones were simply dried and shaken three times using an agitation table. We counted the 

number of seeds extracted per tree and normalized the data per cone for any tree that had less 

than 20 cones.  

 We inspected a subsample of 100 seeds per tree (or all seeds if <100) for physical 

damage (i.e., cracks) and damage associated with insect granivory (i.e., boreholes) under a 

compound microscope. Both physical and insect-related seed damage was minimal across all 

sites (averaging 0.38  1.19 damaged seeds per 100) and was therefore not included in any 

further statistical modelling. We manually removed seed wings then separated seeds with 

embryos from unfilled seeds using the 95% ethanol float test (Leadem et al., 1997). To ensure 

the test was appropriate, a proportion of seeds that floated (n = 40 maximum) were further 

inspected for fully developed embryos (Jameson et al., 2015; Sirois, 2000). To quantify the 

viability of the available seed, we conducted a germination trial where seeds with full embryos 

(i.e., seeds that sank) were placed on wet filter paper in a 100 x 15 mm Petri dish and allowed to 

germinate for 28 days at room temperature (20˚C) with 18 hours of light per day. For each tree, 

we used a maximum of 100 seeds spread across four Petri dishes (i.e., 25 seeds per 100 x 15 mm 

Petri dish). Seeds were inspected approximately every two days and watered with deionized 

water, as needed. Prior to the germination trial, white spruce seeds were cold wet stratified at 4˚C 
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for 28 days to break seed dormancy (Bonner and Karrfalt, 2008; Leadem et al., 1997). Black 

spruce cones experienced stratification during their maturation on parent trees and required no 

further preparation (Safford, 1974). We considered seeds successfully germinated once the 

radicle had grown four times the seed coat's length (Leadem et al., 1997). We assumed seeds that 

did not germinate under laboratory conditions would not be viable under natural conditions 

(Brown et al., 2019).  

3.2.4 Statistical analyses 

 We modelled the presence and magnitude of insect cone granivory (Q1 and Q2) and 

reproductive potential of available seed (Q3) using the proportion of cones with granivory and 

proportion of available seeds that were viable as response variables, respectively. It is important 

to note that our proportional response data are derived from a subset of cones on trees within 

each site (i.e., only harvested trees) and thus, are a representation of each site. All data collected, 

including our response variables, were pooled to a plot level to avoid pseudo replication in our 

analyses (Table 3.S2).   

To answer each of our research questions, we followed the mixed-effects modelling 

procedure described by Zuur et al. (2009). For each research question, we inspected all predictor 

variable data for any outliers and tested each for between-site collinearity. All variables were 

required to have a Pearson's correlation value ≥ 0.70 with a variance inflation factor less than 3.0 

(Roland, Schmidt, & Nicklen, 2013). All of the variables listed in Table 3.2 were included in 

subsequent models. For all models described below, plot within transect was included as a 

random factor. Marginal and conditional R2 values were calculated using the r.squarredGLMM() 

function to determine the degree of inter-site variability. All statistical analyses were conducted 

in R.3.5.1. (R Core Team ) using the package glmmTMB ver. 1.0.2.1 (Magnusson et al., 2020). 
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We used the hurdle model approach (Zuur, 2009) to assess which variables were 

associated with insect granivory presence at treeline (Q1) and subsequently, where evidence of 

cone granivory had occurred, which variables were responsible for the magnitude of insect 

granivory (Q2). For this modelling approach, we first employed a general linear mixed model 

(GLMM; family = binomial; link = logit) using presence-absence data of cone granivory across 

all plots. We then ran a secondary GLMM (family = Poisson; link = log) examining the 

abundance of cone granivory in plots where granivory was present.  

To determine the effect of insect cone granivory on the availability of viable seeds (Q3), 

we ran a separate GLMM (family = binomial, link = logit) with seed viability as the response 

variable. In this model, the proportion of cone granivory was included as a predictor variable. 

Because of the large variation in cone length, the number of seeds per cone, and the number of 

seeds with embryos between black and white spruce (Table 3.1.), we first ran a model using both 

species (sites = 8), followed by a model using only black spruce data (sites = 7). We checked all 

model assumptions by assessing the level of overdispersion and plotting residuals versus fit.  

 

3.3 Results 

 

Evidence of cone granivory was found at every treeline site. The conditional R2 (Delta R2 

= 0.878) for the cone granivory model was much greater than the marginal R2 (Delta R2 = 0.164), 

suggesting large inter-site variability. High degree of variability between sites is reflected in the 

magnitude of granivory that showed a mean percentage of granivory of 1-36%; however, trees 

within plots had a wide range (i.e., 1-100%) of cones that exhibited granivory (Table 3.1.). 

Results from our presence-absence granivory model (Q1) indicated no association between 

treeline stand metrics (i.e., seeds per cone, cone length, tree density, and tree height) and the 



   
 

   
 

112 

occurrence of granivory (Table 3.3). However, cone granivory presence was negatively 

associated with increased cover of PDS (prostrate dwarf shrubs; estimate = -0.015, p < 0.05), and 

exhibited a positive association with moss cover (estimate = + 0.008, p = 0.055). The proportion 

of moss and PDS cover varied with site (r = -0.15) and showed little evidence of one functional 

group excluding the other (Figure 3.3a). Where granivory was observed, the magnitude (Q2) was 

negatively associated with tree density (estimate = - 4.474, p = 0.015) and cover of PDS 

(estimate = - 0.008, p = 0.08) and positively with moss cover (estimate = + 0.005, p = 0.08).   

 

Figure 3.3 Summary data of (A) percent cover of moss (dark grey) and prostrate dwarf shrub 

(light grey) and (B) stand density (trees • m-2) for each site. Note that DAN and GSP are not 

included in these boxplots, as we were unable to complete all sampling.  

 

Similar to the variation we observed in the number of cones affected by granivory, the 

number of viable seed from our sampled cones varied within plots and between sites (Table 3.1; 

Table 3.S2). The proportion of seeds with embryos to total seeds extracted was less than 50% for 
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all sites except ANN and MAM. Viability of available seed (i.e., germination of sampled seeds 

with a full embryo) was greater than 50% for all sites dominated by black spruce, while those 

dominated by white spruce were at or approaching zero viability.  

Table 3.3 Parameter estimates with standard errors (SE) for generalized linear mixed models of 

cone granivory. Both models treated plot within site as a random effect. Conditional and 

marginal R2 values were calculated for the binomial model (Delta R2
c= 0.278; Delta R2

m=0.029) 

and the Poisson model (Delta R2
c = 0.878; Delta R2

m = 0.164). Significant ( = 0.05) covariate 

estimates are bolded.  

 

  Binomial (link=logit)   Poisson (link = log) 

 Parameter 

Estimate 
SE z-value p value  Parameter 

Estimate 
SE z-value p value 

Intercept - 2.465 1.006 -2.451 0.014  +2.653 0.648 4.096 0.000 

organic layer depth +0.008 0.016 0.477 0.634  +0.009 0.012 0.723 0.469 

TMS - 0.007 0.007 -0.971 0.331  - 0.006 0.005 -1.195 0.232 

EDS  - 0.005 0.006 -0.923 0.356  - 0.002 0.004 -0.466 0.641 

PDS  - 0.015 0.007 -2.081 0.037  - 0.008 0.005 -1.725 0.085 

moss +0.009 0.004 1.917 0.055  +0.005 0.003 1.720 0.085 

leaf litter  - 0.006 0.020 -0.280 0.780  - 0.197 0.012 -1.581 0.114 

Seeds per cone +0.002 0.013 0.169 0.866  + 0.004 0.009 -0.436 0.663 

Mean cone length  +0.032 0.027 1.213 0.225  + 0.019 0.018 1.016 0.309 

Tree density  - 3.133 2.557 -1.226 0.220  - 4.474 1.832 -2.443 0.015 

Tree height +0.001 0.001 0.614 0.539   0.001 0.001 0.832 0.405 

 

Our pooled black and white spruce binomial model of viability of available seed (Q3) 

indicated a positive relationship with seeds per cone (estimate = 0.026, p = 0.045) and a negative 

relationship with cone length (estimate = - 0.163, p = 0.003; Figure 3.4; Table 3.S3). However, 

we attribute these results to our time of sampling and the physiology of white spruce cones and 

will thus not be included in our discussion. Results from our binomial site-level model using 

only black spruce data indicated no significant relationship between cone granivory and 

availability of viable seed or any other predictor variable; however, the parameter estimate for 

the proportion of cone granivory was negative. 
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Figure 3.4 Parameter estimates with standard errors (SE) for general linear mixed model output 

of the availability of viable seed analyses using all sites (A) and sites that were dominated by 

black spruce only (B). Both models treated plot within site as a random effect. Asterix above 

covariates indicate significance to  = 0.05. Covariate names as follows: organic layer (orgL); 

tall multi-stemmed shrubs (tms); erect dwarf shrubs (eds); prostrate dwarf shrubs (pds); leaf litter 

(LL); seeds • cone -1 (S/C); cone length (CL), height of tree (hei); proportion of cone granivory 

(herb). 

 

3.4 Discussion 

 

Insect granivory was present at all treelines, supporting the initial hypothesis that the 

distribution of cone insects is widespread. The mean magnitude of insect granivory at each site 

(1-36% of sampled cones with evidence of granivory) was within the range observed in other 

treeline or high elevation forests studied across the boreal biome (Jameson et al., 2015; Kolb, 

Ehrlén, & Eriksson, 2007; Prévost, 2002; Seifert et al., 2000). Of greater interest was the 

variability we detected in granivory between plots within a site, as the magnitude ranged from 1 

to 100% of all cones sampled. This wide range of granivory pressure within our data indicates 

that within a short linear distance (< 75 m), some trees may experience little to no granivory, 

while others can experience substantial damage to their reproductive units. Therefore, based on 
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our model results, we predict that all treelines would experience insect granivory, while treelines 

with a lower density of trees and a moss understory may increase the potential for greater insect 

granivory under non-masting conditions.   

The observed association between lower tree density and increased magnitude of 

granivory demonstrates a potential density-dependent relationship between insect populations 

and cone production at treeline. Despite the consistent presence of insect granivory at the boreal-

tundra treeline ecotone, cone and viable seed production remains limited due to environmental 

conditions (Viglas, Brown, & Johnstone, 2013; Brown et al., 2019). Our findings suggest that at 

treelines where there are fewer trees with cones (i.e., low density, and under non-masting 

conditions), supporting the insect population which maintain high reproductive potential may be 

difficult. Our findings are supported by a recent study that examined the relationship between 

interannual white spruce cone production and pre-dispersal insect cone damage (Leeper & 

LaMontagne, 2021). Results indicated that insect damage was highest when annual cone 

production was low, suggesting the predator satiation hypothesis is satisfied through masting 

events, where large increases in cone production reduce the overall impact of insect damage on 

reproduction potential. While we were unable to examine interannual variability of cone 

production, the inverse relationship between stand density and cone granivory reflects similar 

conclusions.  

The relationship between lower tree density and increased magnitude of granivory is 

further supported by our model results which indicated no within-conifer granivory relationship 

with cone morphology predictor variables (i.e., cone length and number of seeds per cone). 

Previous studies have shown the relationship between cone morphology and ovipositing to be 

inconsistent within insect species (positive: Fidgen, Quiring, & Sweeney, 1998; Mosseler & 
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Tricco, 1991; Leeper & LaMontagne, 2021; negative: McClure et al., 1998), suggesting the 

relationship may be a product of either resource quality or availability (DeSoto, Tutor, Torices, 

Rodríguez-Echeverría, & Nabais, 2016). We speculate that at low density treelines, insects may 

choose ovipositing on an unoccupied cone rather than searching for a cone of a given size, 

increasing the importance of resource availability. Adult female spruce cone flies oviposit one to 

five eggs per developing cone, depending on annual cone production (McClure, Quiring, & 

Turgeon, 1998). Moreover, these cone flies and other conophyte species tend to avoid 

ovipositing on cones that are already occupied (Fidgen, Sweeney, & Quiring, 1999). Thus, while 

a greater number of trees in close proximity may support an increased success of rapidly 

ovipositing on an unoccupied cone (Fogal & Larocque, 1992; Boivin, Doublet, & Candau, 2019), 

we hypothesize that the effect of granivory is magnified on individual trees when tree density is 

lower.   

Nevertheless, the association we detected between lower tree density and magnitude of 

granivory runs counter to the preference/performance hypothesis (Thompson, 1988), where 

females should favour ovipositing conditions that result in the greatest survival of offspring (i.e., 

denser treelines with greater number of cones). It has also been suggested that emissions (i.e., 

volatiles and pheromones) produced at various phenological phases of cone production can 

initiate a signal for adult cone flies to oviposite (Turgeon, Roques, & De Groot, 1994). We 

expect this to occur at higher levels when tree density is greater. We therefore suggest that our 

findings are context-dependent to treeline populations, where higher density tree populations 

may not be within dispersal distance of granivores. In addition, because all data collection 

occurred within a 75 m transect, further research is required to determine whether the spatial 
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patterning of insect granivory is consistent across landscapes and the larger boreal-tundra treeline 

ecotone. 

The positive association between increasing moss cover and magnitude of granivory is 

likely associated with moisture conditions at treeline, as moss is indicative of microsites that 

hold greater soil moisture and are shaded by trees (Dearborn & Danby, 2017; Fenton & 

Bergeron, 2006; Goodwin & Brown, 2019). Moss can also be associated with a deeper organic 

layer (Fenton & Bergeron, 2006; Turetsky, Wieder, Halsey, & Vitt, 2002); however, there is 

evidence to suggest that a deeper organic layer could expose overwintering larvae to an increased 

number of predators (Fidgen, Sweeney, & Quiring, 1999). Nevertheless, moist surface conditions 

are favourable to cone insects, especially cone flies, as larvae drop from cones mid-summer to 

overwinter in the organic layer (Fidgen, Sweeney, & Quiring, 1999). Field and lab studies have 

shown that if surface conditions are dry, a greater proportion of larvae will desiccate and not 

reach adulthood (Sweeney & Turgeon, 1994). Furthermore, preference towards a substrate with 

increased moisture retention would also explain the negative relationship between shrub cover, 

specifically PDS, and the presence of granivory at treeline, as PDS reflects dry and rocky areas 

with a shallow organic layer (Goodwin & Brown, 2019). 

It is important to reiterate that our methods did not allow us to quantify total seed loss 

from insect granivory, as cone and seed damage by insects had already taken place before 

laboratory seed extraction. We did not compare average seed loss from insect granivory and 

cannot explicitly state whether insect seed loss is greater at high- or low-density treelines. Visual 

estimates of total number of cones showed a greater number of cones at sites with higher tree 

density (see Table 3.S2), which may indicate why the magnitude of seed loss from insect 

granivory is less at more dense treelines, as trees produce enough cones to support the insect 
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population while still maintaining their reproductive fitness (Linhart, Moreira, Snyder, & 

Mooney, 2014). Nevertheless, many studies have shown the significant negative pressure insect 

granivory has on the total number of seed available within a forest stand (DeSoto et al., 2016; 

Kolb et al., 2007; Mosseler & Tricco, 1991; Rosenberg, Nordlander, & Weslien, 2015). While 

we did not quantify the influence of mammalian herbivory on pre-dispersal seed availability, 

despite their known influence (Holtmeier, 2012), our study highlights specific treeline 

characteristics that support greater insect populations, which also reduces available seed before 

seed dispersal.   

 The majority of seeds being produced at each site did not have a fully developed embryo. 

This is typical of cone producing trees at treeline, as environmental conditions at the range edge 

are less-suitable for seed maturation (Anadon‐Rosell, Talavera, Ninot, Carrillo, & Batllori, 2019; 

Mamet et al., 2019; Sirois, 2000; Viglas, Brown, & Johnstone, 2013). As previously stated, 

essential resources for seed development are also limited at treeline, resulting in decreased 

pollination success and increased seed abortion (Brown et al., 2019; Wilcock & Neiland, 2002). 

Nevertheless, we hypothesized that the availability of viable seed would reflect predictor 

variables, which did not occur (Figure 3.4). As previously stated, our pooled black and white 

spruce seed viability model indicated cone size and number of seeds per cone were significant in 

our model, yet we are confident these results are skewed by the white spruce treeline sites. We 

suspect that viability of available seed did not reflect any predictor variable because of low 

sample size in our model. However, we did find evidence of a negative association between cone 

granivory and the viability of available seed, supported by the parameter estimate of cone 

granivory with standard error not overlapping with zero (Figure 3.3). This result is similar to 

findings from lower elevation forest stands (DeSoto et al., 2016; Kolb et al., 2007; Mosseler & 
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Tricco, 1991; Rosenberg, Nordlander, & Weslien, 2015); thus, while we speculate that pre-

dispersal insect granivory has a similar effect on availability of viable seed at treeline 

populations across northern Canada, a greater number of sites should be examined to determine 

whether these model results are robust. 

In conclusion, our study shows that however complex cone development or insect 

population dynamics are, the biotic disturbance of insect granivory at the boreal-tundra treeline is 

present across Canada within a short period of time (i.e., a single growing season). Yet, the 

magnitude of granivory increases when tree density is lower and when understory cover is 

dominated by moss. We acknowledge the low number of sample sites included in our models. A 

low site number does influence our predictive power, but we believe this is an essential step in 

examining an understudied biotic disturbance at treeline. This is especially true under the context 

of climate change, as continued climate warming is predicted to increase and change the 

geographic distribution of many biotic and abiotic disturbances (Robinet & Roques, 2010; 

Turner, 2010; Wolf, Kozlov, & Callaghan, 2008). Moreover, disturbances that influence viable 

seed availability do not happen in a vacuum and are likely to interact with others that affect 

substrate conditions (e.g., wildfire, pathogens), further influencing boreal tree species’ ability to 

carry out seed-mediated reproduction at their range edge. Our identified relationships between 

cone granivory and environmental characteristics provide an important contribution toward 

understanding the abiotic drivers of biotic interactions, thus informing future treeline predictive 

models. Our findings do need to be tested at other geographic locations, which can be done 

quickly, as a data collection protocol has been established that takes into account the time-

sensitive nature of remote access fieldwork. Our spatial analysis should also complement future 



   
 

   
 

120 

studies on the temporal component of insect cone granivory as cone production and insect 

populations vary with year.  
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3.7 Supplementary Material 

 

Table 3.S1 Summary information for sampling sites 

 

Table 3.S2 Plot level summary data for each site.  

site plot 
trees • 

m-2 

tree 

height 
(cm) 

total 

visual 

cone 

est. 

no. cones 

sampled 

cone 

herbivory 
(%) 

seeds • 

cone-1 

total 

seeds 

seeds 

with 
embryo 

seeds 

in 

germ 

trial 

seeds 

germinated 
(%) 

ann 1 0.08 250.75 18 11 18 10.40 103 31 31 77 

ann 2 0.06 266.33 13 11 36 14.36 158 93 93 99 

ann 3 0.06 423.67 140 27 37 22.54 625 198 142 92 

ann 4 0.04 385.00 9 9 33 10.13 101 66 66 97 

ann 5 0.06 239.67 4 1 1.00 12.00 12 1 1 0 

ann 6 0.02 221.00 1 1 1.00 4.00 4 2 2 1.00 

ann 7 NA NA NA NA NA NA NA NA NA NA 

ann 8 0.02 200.00 NA NA NA NA NA NA NA NA 

ann 9 0.04 291.00 NA NA NA NA NA NA NA NA 

ann 10 0.12 327.17 24 16 13 24.63 394 268 100 93 

ann 11 0.06 247.00 NA NA NA NA NA NA NA NA 

ann 12 0.08 260.50 11 11 55 36.82 405 197 100 48 

ann 13 0.12 409.17 72 12 58 11.66 118 55 55 95 

ann 14 0.14 323.71 48 20 45 14.77 263 183 147 97 

ann 15 0.18 295.33 22 22 23 26.71 944 582 103 96 

bre 1 0.06 441.67 981 61 18 16.78 1029 133 0 0 

bre 2 0.04 392.50 155 32 16 3.33 82 0 0 0 

bre 3 0.02 266.00 NA NA NA NA NA NA NA NA 

bre 4 0.02 220.00 NA NA NA NA NA NA NA NA 

bre 5 0.04 474.00 58 20 10 16.50 330 9 9 0 

bre 6 NA NA NA NA NA NA NA NA NA NA 

bre 7 0.04 376.50 40 24 42 9.94 221 10 10 0 

bre 8 NA NA NA NA NA NA NA NA NA NA 

bre 9 0.02 400.00 140 20 35 9.75 195 59 0 0 

bre 10 0.02 317.00 3 NA NA NA NA NA NA NA 

Site 
Traditional 

Territory 
Region Latitude Longitude 

Field Sampling Carried out 

by 
Sampling Period 

GSP Mi’kmaq Quebec 49.00 -65.94 Anna Crofts Fall 2019 

ANN Beothuk Newfoundland 49.59 -56.23 Lucas Brehaut, Anna Crofts Fall 2018 

NAI Nunatsiavut Nunatsiavut 56.54 -61.72 Lucas Brehaut Summer 2018 

MAM Sayisi Dene Manitoba 58.62 -93.81 Steven Mamet Fall 2018 

DAN Tłıc̨hǫ 
Northwest 
Territories 

63.77 -111.23 Ryan Danby Summer 2018 

BRE 
Tr’ondëk 

Hwëch’in 
Yukon 64.22 -140.18 Lucas Brehaut Summer 2018 

TOW 
Tr’ondëk 

Hwëch’in 
Yukon 64.11 -140.96 Lucas Brehaut Summer 2018 

EPS 
Vuntut 

Gwitchin 
Yukon 65.83 -137.77 

Lucas Brehaut, Katie 

Goodwin, Kirsten Reid 
Summer 2018 

EPN 
Vuntut 

Gwitchin 
Yukon 66.50 -136.56 

Lucas Brehaut, Katie 

Goodwin, Kirsten Reid, 

Carissa Brown 

Summer 2018 

ITH Inuvialuit 
Northwest 

Territories 
68.70 -133.56 Lucas Brehaut, Kirsten Reid Summer 2019 
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bre 11 0.04 256.50 60 40 13 30.78 1231 8 0 0 

bre 12 NA NA NA NA NA NA NA NA NA NA 

bre 13 0.02 800.00 1 NA NA NA NA NA NA NA 

bre 14 NA NA NA NA NA NA NA NA NA NA 

bre 15 NA NA NA NA NA NA NA NA NA NA 

dan 1 0.66 282.18 1143 40 13 29.93 1197 342 184 64 

dan 2 0.78 269.82 1539 39 3 36.94 1442 1015 200 77 

dan 3 0.82 278.80 1466 41 15 27.91 1152 475 200 86 

dan 4 0.48 293.17 1887 40 15 41.15 1646 1247 200 88 

dan 5 0.70 345.20 1855 40 13 36.78 1471 397 200 83 

dan 6 0.20 339.40 1645 40 15 24.38 975 395 200 74 

dan 7 0.42 320.10 783 40 23 26.48 1059 574 200 90 

dan 8 0.14 232.86 718 40 5 23.23 929 598 200 85 

dan 9 0.32 321.69 1008 40 20 31.93 1277 435 195 91 

dan 10 0.08 369.25 511 40 20 38.28 1531 71 71 79 

dan 11 0.12 261.50 384 40 8 41.45 1658 489 200 83 

dan 12 0.24 274.33 531 44 16 18.00 838 276 100 75 

dan 13 0.28 339.79 1200 44 20 25.01 1118 749 200 78 

dan 14 0.22 339.18 1122 50 26 28.73 1435 230 177 72 

dan 15 0.02 243.00 45 13 15 49.92 649 312 100 93 

epn 1 0.08 347.85 557 59 31 40.42 2393 977 200 63 

epn 2 0.12 399.77 1591 59 12 25.56 1507 641 200 57 

epn 3 0.04 393.05 142 60 23 22.97 1378 251 141 73 

epn 4 0.10 440.50 1157 61 31 42.63 2583 1832 200 71 

epn 5 0.04 450.30 1088 58 31 39.31 2280 1098 200 73 

epn 6 0.06 376.40 810 60 17 45.63 2738 1282 200 81 

epn 7 0.18 329.63 1969 93 35 25.71 2421 533 272 62 

epn 8 0.04 298.00 392 71 27 27.56 1973 929 200 46 

epn 9 0.18 342.59 2004 115 10 36.29 3926 2146 300 51 

epn 10 0.16 453.20 1634 101 23 32.02 3230 1587 235 41 

epn 11 0.10 423.96 1650 108 44 15.83 1660 772 200 43 

epn 12 0.06 402.80 633 64 48 17.89 1145 447 200 50 

epn 13 NA NA NA NA NA NA NA NA NA NA 

epn 14 0.04 638.99 1023 66 21 17.35 1156 437 300 0 

epn 15 NA NA NA NA NA NA NA NA NA NA 

eps 1 NA NA NA NA NA NA NA NA NA NA 

eps 2 0.06 298.67 420 63 17 32.02 1993 1240 241 84 

eps 3 NA NA NA NA NA NA NA NA NA NA 

eps 4 NA NA NA NA NA NA NA NA NA NA 

eps 5 NA NA NA NA NA NA NA NA NA NA 

eps 6 NA NA NA NA NA NA NA NA NA NA 

eps 7 0.10 269.60 705 87 31 43.01 3709 1843 400 65 

eps 8 0.02 330.00 220 22 9 49.68 1093 843 100 88 

eps 9 0.02 432.90 417 23 57 40.17 924 397 100 91 

eps 10 0.02 290.00 110 21 10 19.00 399 155 100 79 

eps 11 0.08 375.50 789 109 18 37.16 4274 2306 432 85 

eps 12 0.04 293.00 480 23 26 37.70 867 140 100 90 

eps 13 0.08 290.25 420 87 11 40.82 3590 1291 400 82 

eps 14 0.04 301.50 150 45 24 37.19 1708 822 177 93 
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eps 15 0.02 342.00 160 20 85 54.95 1099 447 100 66 

gsp 1 0.06 112.30 350 40 23 55.23 2209 11 11 0 

gsp 2 0.04 106.50 200 20 15 35.45 709 1 1 0 

gsp 3 0.06 152.30 1200 40 5 22.54 881 13 13 0 

gsp 4 0.04 90.00 50 40 30 34.40 1376 6 6 0 

gsp 5 0.04 195.50 450 20 25 28.55 571 6 6 0 

gsp 6 0.04 107.50 26 21 14 43.58 451 4 4 0 

gsp 7 0.02 219.00 75 20 15 41.55 831 9 9 0 

gsp 8 0.02 539.00 1000 19 16 34.95 664 13 13 15 

gsp 9 0.02 467.00 500 19 0 35.89 682 53 53 0 

gsp 10 0.02 328.00 500 20 10 36.10 722 7 7 0 

gsp 11 0.04 152.50 50 20 5 42.15 843 2 2 0 

gsp 12 0.04 147.00 50 20 25 37.95 759 4 4 0 

gsp 13 NA NA NA NA NA NA NA NA NA NA 

gsp 14 NA NA NA NA NA NA NA NA NA NA 

gsp 15 NA NA NA NA NA NA NA NA NA NA 

ith 1 0.06 446.33 40 17 35 6.24 79 0 0 0 

ith 2 0.14 499.14 109 37 59 7.35 285 0 0 0 

ith 3 0.02 686.00 10 6 67 3.67 22 0 0 0 

ith 4 0.04 447.00 15 14 50 1.93 27 0 0 0 

ith 5 0.08 311.75 20 20 20 0.70 14 0 0 0 

ith 6 0.10 450.20 21 20 10 0.87 33 0 0 0 

ith 7 0.08 392.25 33 19 37 3.00 74 0 0 0 

ith 8 0.04 409.00 6 6 0 0.33 2 0 0 0 

ith 9 0.04 566.50 6 3 67 4.33 13 0 0 0 

ith 10 NA NA NA NA NA NA NA NA NA NA 

ith 11 0.04 528.00 21 20 15 1.80 36 0 0 0 

ith 12 NA NA NA NA NA NA NA NA NA NA 

ith 13 NA NA NA NA NA NA NA NA NA NA 

ith 14 0.06 333.33 110 60 28 1.85 111 8 8 50 

ith 15 0.06 383.00 NA NA NA NA NA NA NA NA 

mam 1 0.16 471.25 400 34 9 43.88 1492 986 200 79 

mam 2 0.14 448.57 125 38 5 33.55 1265 559 200 68 

mam 3 0.14 390.00 180 46 4 42.55 1977 1126 200 68 

mam 4 0.24 419.17 210 49 0 37.70 1807 979 200 68 

mam 5 0.12 430.00 195 39 3 39.21 1528 621 200 67 

mam 6 0.10 430.00 40 44 0 36.59 1534 731 200 73 

mam 7 0.12 421.67 5 NA NA NA NA NA NA NA 

mam 8 0.14 481.43 70 29 0 24.70 698 226 132 65 

mam 9 0.22 466.36 232 77 3 29.86 2353 1183 200 58 

mam 10 0.20 457.00 150 16 0 21.25 340 152 100 73 

mam 11 NA NA NA 8 0 33.75 270 131 200 45 

mam 12 0.14 540.00 320 65 0 46.77 3282 1068 200 58 

mam 13 0.14 518.57 10 NA NA NA NA NA NA NA 

mam 14 0.12 483.33 240 28 0 50.59 1261 621 178 69 

mam 15 0.18 516.67 70 NA NA NA NA NA NA NA 

nai 1 0.02 612.00 46 19 0 0.00 0 0 0 0 

nai 2 0.06 329.67 3 2 0 0.00 0 0 0 0 

nai 3 0.04 302.50 97 41 0 0.00 0 0 0 0 
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nai 4 0.02 509.00 84 NA NA NA NA NA NA NA 

nai 5 0.02 285.00 13 9 0 0.00 0 0 0 0 

nai 6 0.02 509.00 42 20 0 0.30 6 1 1 0 

nai 7 0.04 361.00 68 22 5 0.32 7 0 0 0 

nai 8 0.02 298.00 27 24 4 0.00 0 0 0 0 

nai 9 0.04 475.00 24 NA NA NA NA NA NA NA 

nai 10 0.02 537.00 118 25 4 0.16 4 0 0 0 

nai 11 0.08 392.25 54 48 8 0.03 2 0 0 0 

nai 12 0.06 481.00 259 42 0 0.00 0 0 0 0 

nai 13 0.02 413.00 185 21 0 0.00 0 0 0 0 

nai 14 0.02 464.00 NA NA NA NA NA NA NA NA 

nai 15 0.06 555.67 31 20 5 0.00 0 0 0 0 

tow 1 0.14 323.86 1137 110 5 3.40 368 81 81 69 

tow 2 NA NA NA NA NA NA NA NA NA NA 

tow 3 NA NA NA NA NA NA NA NA NA NA 

tow 4 NA NA NA NA NA NA NA NA NA NA 

tow 5 0.06 278.67 319 44 7 9.77 447 90 90 62 

tow 6 0.08 292.75 335 40 5 14.18 567 175 175 85 

tow 7 0.04 307.50 128 20 0 3.35 67 11 11 27 

tow 8 0.10 306.00 439 83 1 15.05 1247 186 155 81 

tow 9 0.04 300.00 250 41 7 3.48 146 8 8 75 

tow 10 0.06 227.33 250 60 3 7.40 444 7 7 29 

tow 11 0.10 263.40 622 78 5 19.00 1496 208 217 81 

tow 12 0.12 348.33 289 100 0 6.89 689 37 37 78 

tow 13 0.02 410.00 320 NA NA NA NA NA NA NA 

tow 14 NA NA NA NA NA NA NA NA NA NA 

tow 15 NA NA NA NA NA NA NA NA NA NA 
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Table 3.S3 Parameter estimates and standard error (SE) of generalized linear mixed models of 

viability of available seed for all species (black and white spruce) and black spruce only.  Both 

models treated plot within site as a random effect. Significant ( = 0.05) covariate estimates are 

bolded.  
 

  All Species (Binomial [link = logit])   Black spruce (Binomial [link = logit]) 

 Parameter 

Estimate 
SE z-value p value  Parameter 

Estimate 
SE z-value p value 

intercept 3.431 1.436 2.389 0.017  2.782 1.398 1.990 0.047 

organic layer -0.007 0.013 -0.509 0.610  -0.006 0.013 -0.446 0.656 

tms 0.003 0.008 0.377 0.706  0.003 0.008 0.328 0.743 

eds -0.010 0.007 -1.580 0.114  -0.007 0.007 -0.987 0.324 

pds -0.005 0.009 -0.530 0.596  -0.006 0.009 -0.620 0.536 

moss 0.006 0.005 1.407 0.160  0.005 0.005 1.200 0.230 

leaf litter  -0.045 0.026 -1.702 0.089  -0.041 0.026 -1.535 0.125 

seeds per cone 0.026 0.013 2.003 0.045  0.017 0.014 1.232 0.218 

cone length -0.163 0.055 -2.966 0.003  -0.095 0.065 -1.464 0.143 

tree density -0.222 2.570 -0.086 0.931  -1.259 2.562 -0.491 0.623 

tree height 0.002 0.002 0.906 0.365  0.001 0.002 0.744 0.457 

cone herbivory -0.012 0.009 -1.351 0.177   -0.013 0.008 -1.546 0.122 
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Chapter 4: Boreal tree regeneration after fire and fuelwood harvesting in coastal 

Nunatsiavut 

 

Abstract  

 

Consecutive landscape-scale disturbances are known to influence boreal forest regeneration, yet 

few published data exist on the compounding effects of natural and anthropogenic disturbance on 

regeneration in subarctic forests. We conducted a dendroecological study of eastern coastal 

boreal forest regeneration two decades after fire at three subarctic forest stands that are important 

sources of fuelwood for the people of Nunatsiavut (Labrador, Canada). We quantified spruce 

(Picea spp.) and balsam fir (Abies balsamea (L.) Mill.) seedling regeneration, standing dead tree 

density, trees harvested within burned forests, and aged proximal unburned stands. Age of 

unburned forest varied with site; however, each exhibited continuous regeneration over several 

decades. Despite low seedling regeneration at each site (stems • m−2; less than 35% of pre-fire 

stem density), model results indicated harvesting post-fire did not impact seedling regeneration. 

Our results indicate that tall mutli-stemmed shrubs may establish a negative pressure on seedling 

abundance, possibly related to resource availability. Nevertheless, because unburned forest 

stands exhibit a range in tree age we argue shrubs may simply be a set of early successional 

species rather than indicate a change in successional trajectory. Examination of a larger 

chronosequence within coastal forest stands of Nunatsiavut is warranted to further understand 

forest regeneration in the eastern subarctic under changing disturbance regimes.  

 

Keywords: Labrador, fire, disturbance, seedlings, salvage logging, subarctic, Picea mariana, 

Picea glauca, Abies balsamea 
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4.1 Introduction  

 

Large-scale natural disturbance and human land use drive boreal forest ecosystem 

structure and function (White and Pickett 1985; Gauthier et al. 2009). Across northern latitudes, 

forest age and regeneration dynamics are closely linked to fire frequency and severity, as boreal 

tree species have evolved regeneration strategies increasing fitness in post-fire conditions 

(Johnson 1992; Weber and Flannigan 1997; Soja et al. 2007). Serotinous cones in aerial seed 

banks (Picea mariana [Mill.] B.S.P., Pinus spp.), and light, wind dispersed seeds (Betula spp., 

Picea glauca [Moench] Voss) allow for quick post-fire germination and establishment on 

combusted organic layers that are warmer and higher in nutrient availability than pre-fire (Certini 

2005; Splawinski et al. 2018). In addition to post-fire seed dispersal strategies, other species 

carry out vegetation resprouting from roots (Betula spp., Populus spp.) for post-fire regeneration 

facilitating rapid colonization post-disturbance.  

While fire continues to be the largest natural disturbance across boreal North America 

(single events of 200 hectares or more; Hanes et al. 2019) forest management practices and 

intensive logging activities also affect forest regeneration dynamics (Boucher et al. 2017; Greene 

et al. 2007; Leverkus et al. 2018). Under the context of continued climate change, having a better 

understanding of how these disturbances affect patterns of forest succession is warranted, as fire 

frequency is likely to increase and land-use requirements are anticipated to change (Gauthier et 

al. 2009; Seidl et al. 2017). Furthermore, natural and anthropogenic disturbances do not occur in 

isolation; therefore, a concerted effort is required to understand the compounding impacts of 

disturbances on forest regeneration (Brown and Johnstone 2012; Buma et al. 2013; Turner 2010). 

Across northern latitudes, changes in the successional trajectory of boreal forests have 

been observed after experiencing a large-scale fire followed by intensive post-fire commercial 
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timber logging (Boucher et al. 2014; Kishchuk et al. 2015). Post-disturbance forests are often 

dominated by shade-intolerant deciduous tree and shrub species rather than a return to the 

expected pre-disturbance coniferous stand (Kurulok and Macdonald 2007). A shift towards an 

increase in ericaceous shrub dominance is also evident with understory vegetation composition 

(Jean et al. 2019). This abrupt shift in forest structure is hypothesized to be a result of a loss in 

resilience (Johnstone et al. 2010). Consecutive disturbances exceed some acceptable threshold of 

the dominant tree species, facilitating the establishment of an alternative species (Boiffin and 

Munson 2013; Buma et al. 2013). Thus, while fire often provides suitable seedbed for black 

spruce (Gordon and Shugart 1989), for example, an intensive logging activity post-fire may 

result in an inhospitable seedbed for spruce, but not for tree species like trembling aspen 

(Populus tremuloides Michx.; Hessl et al. 2002; Boucher et al. 2014). Evidence of boreal forest 

resilience loss has already been established in both central (Boiffin and Munson 2013) and 

western North America (Whitman et al. 2018). 

Yet, similar patterns of forest regeneration or resilience loss following disturbance are not 

uniform across all boreal forests (Greene et al. 2006; Bouchard and Pothier 2011) and should not 

assume to be the case for understudied coastal forests of the eastern subarctic. These forests are 

defined by maritime climates and are heavily influenced by seasonal atmospheric-oceanic 

dynamics (Roberts et al. 2006). A cooler and wetter climate lowers the frequency and severity of 

forest fire events, allowing forests to remain in late successional stages for longer time periods 

(Steijlen et al. 1995). Because of the low fire frequency, few published studies exist on the fire 

return intervals for the eastern subarctic region (Foster 1982). Additionally, published research of 

stand age from dendrochronological studies is limited to interior Labrador (Trindade et al. 2011; 

Nishimura and Laroque 2011), historical settlements (Lemus-Lauzon et al. 2018; Roy et al. 
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2017), or areas in close proximity to present day communities (Lemus-Lauzon et al. 2016), 

further reducing our ability to understand regeneration and disturbance dynamics. 

 While there is a history of wood harvesting across eastern coastal forests of Nunatsiavut 

(Figure 4.1) and in southern interior Labrador (Lemus-Lauzon et al. 2016), harvesting rates are 

less than those of central and western forests of North America. Much of the current literature 

across the boreal forest examines the effects of harvesting when more than 70% of a stand is 

removed (Leverkus et al. 2018). These percentages are comparable to commercial wood 

harvesting rates in southern Labrador (Roberts et al. 2006); however, harvesting pressure 

decreases with increasing latitude and distance from community in Nunatsiavut due to the small 

human population centers. In this region, wood harvested in the winter by chainsaw after a forest 

fire remains an important fuel source for heating, as it is of much higher quality when compared 

to unburned wood; therefore, having a clear understanding of post-fire successional trajectories 

after consecutive disturbances is important in this region, as disturbances are of different severity 

(i.e., lower severity fire, fewer trees harvested) but still may have implications for the 

accessibility of quality fuelwoods. Despite the largely held expectation that consecutive 

disturbances impact boreal forest regeneration (Turner 2010), few published data exist on how 

post-fire fuelwood harvesting affects seedling generation and future forest composition in the 

eastern Canadian subarctic, notwithstanding known differences in the aforementioned 

disturbance regimes. An examination of the burned forests used by the Inuit of Nunatsiavut 

(Nunatsiavummiut) as a fuel source provides a unique opportunity to examine forest dynamics 

not only as consecutive disturbances of lesser intensity (i.e., less severe fire and lower harvesting 

pressure), but also within an understudied region of the North American boreal forest (Leverkus 

et al. 2018). 
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Figure 4.1 Location of our study region and the three sampling sites near Nain and Postville 

(insets). Sites were located within the land claim settlement region of Nunatsiavut in close 

proximity to the coast (< 1km). Sites are identified by shape and colour within the insets (BRB – 

green circle; TBB – blue triangle; WBB – grey square). 

 



   
 

 141 

The objectives of our research were twofold: [i] to describe post-fire coastal forest 

landscapes in the eastern subarctic based on forest age structure and tree species richness; and 

[ii] determine how the compounding effects of fire and fuelwood harvesting drive boreal tree 

seedling regeneration in the coastal forests of Nunatsiavut. We expected that harvesting within 

the two decades after fire would have a negative effect on seedling regeneration due to the 

physical damage of seedlings (i.e., trampling; Royo et al. 2016), potential removal of tree seed 

during harvesting, as well as resource competition with rapidly establishing large shrub species 

(e.g., Betula glandulosa Michx.; Cranston and Hermanutz 2013), even under winter harvesting 

conditions. We tested this prediction using a dendroecological approach at three different 

“burned woods” (local term used to define post-fire stands) in Nunatsiavut, estimating the 

approximate age of each surrounding unburned forest, post-fire harvesting intensity, and total 

natural seedling regeneration (stems • m-2) occurring within the burned forests. Results from this 

study help inform the current Nunatsiavut Energy Security Plan (Nunatsiavut Government 2016), 

add to a limited body of research on the interactive effects of disturbances under continued 

climate change (Turner 2010), and address the spatial knowledge gap of forest regeneration post-

disturbance in coastal boreal forests of the eastern subarctic (Leverkus et al. 2018).  

 

4.2 Materials and Methods 

4.2.1 Study area 

Our study took place in the easternmost part of northern continental Canada, the 

homeland of the Labrador Inuit in the land claim settlement region of Nunatsiavut (Figure 4.1). 

Regional landscapes are characterized by post-glacial features; broad plains pocketed by lakes 

and peatlands cover much of the interior, while bedrock-controlled hills and deep rivers 
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dominate the eastern seaboard (Richerol et al. 2012). Shallow organic layers and sandy till soils 

underlay these coastal boreal forests over bedrock. Black spruce is the dominant tree species, 

although white spruce (Picea glauca [Moench] Voss), eastern larch (Larix laricina [Du Roi] K. 

Koch), and balsam fir (Abies balsamea [L.] Mill.) increase in density in areas of higher elevation 

or where soils are more productive (Engstrom and Hansen 1985). Ground vegetation is 

characterized by continuous hair-cap moss cover (Polytrichum spp.) and the presence of several 

multi-stemmed woody shrub species that vary from 0.1 m to 2 m in height (e.g., Grey-leaf 

willow: Salix glauca L., Labrador tea: Rhododendron groenlandicum [Oeder] Kron and Judd; 

Engstrom and Hansen 1985). 

Nunatsiavut experiences a subarctic climate and local temperatures and precipitation 

patterns are strongly influenced by their proximity to the Labrador Current (Hare and Hay 1974). 

Recorded climate normal data from Nain, Nunatsiavut indicate a mean annual temperature of -

2.5˚C, with a mean monthly temperature of +11˚C in August and -18˚C in January (Environment 

and Climate Change Canada 2018). Mean annual precipitation of 925 mm is divided equally 

between winter snow and summer rain (Environment and Climate Change Canada 2018).  

We selected three burned forest stands for analysis in the region. Each site has been, and 

continues to be, chainsaw harvested by Nunatsiavummiut (people of Nunatsiavut) for fuelwood. 

Two sites were located approximately 20 km north from the community of Nain and burned in 

2001 (Tikkoatokak Bay Burn-TBB; Burn size approximately 279 ha; N 56˚ 42.275’ W 062˚ 

12.555’) and 2004 (Webb Bay Burn-WBB; Burn size approximately 67 ha; N 56˚ 45.379’ W 

061˚ 52.178’), respectively (Figure 4.1). The third site is located 20 km west of the community 

of Postville (Beaver River Burn – BRB; Burn size greater than 10,000 ha; N 54˚ 46.828’ W 59˚ 

48.489’) and burned in 1996. Based on the number of standing dead trees, remaining cone 
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structures, and depth of organic layer two decades after fire, we can assume that all sites 

experienced a low intensity fire or light surface burn (as defined by Turner et al. 1994) and 

varied only slightly in total area harvested (see Results).  

4.2.2 Data collection 

During the summer of 2018, we established five belt transects (5 m x 50 m) at each of the 

three burned stands. We positioned four transects within each burn, at least 20 m apart from each 

other. The fifth transect was located in the proximal unburned forest at each site. The unburned 

transect was located at least 100 m from the closest transect in the burn and at least 50 m into the 

continuous forest. All transects ran parallel with site slope; thus, covering a gradient of edaphic 

conditions. Although transects in the burn were close to the unburned forest edge, we attempted 

to place transects within an area representative of the larger burn complex at a broader 

landscape-scale by visually inspecting drone imagery. All transects were divided into five plots 

for data collection that each measured 5 m x 10 m. It is important to note that we assumed the 

unburned forest to be representative of the entire landscape pre-fire due to their locale 

immediately adjacent to burned stands and their similar topography and forest structure. We 

realize that there may be an unknown ecological reason as to why the forest did not burn, which 

would make it an unsuitable comparison for our study. However, the density of trees in burned 

(i.e., standing dead • m-2) and unburned forests were similar (see Results), further suggesting the 

stands were comparable. 

To describe species richness and age structure of each unburned forest, we first counted 

individual trees greater than two metres tall by species within the belt transect to estimate stand 

density. We then selected 10 - 12 trees per site representative of the surrounding forest (i.e., 

similar in species, dbh, and height) for dendrochronological analysis (following Speer 2010). We 
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collected two perpendicular cores from as close to the base of the tree as possible to retrieve the 

approximate age of the individual. For each cored tree we recorded basal diameter, diameter at 

breast height (DBH; diameter at height of 1.37 m), and height at which the core was taken. These 

data also allowed us to determine whether a strong positive relationship existed between older 

trees and larger growth measurements, which has been found across northern latitudes (Fritts 

1976). At the BRB site, we sampled five black spruce and five eastern larch trees, as they are 

dominant overstory tree species in the forest. Upon returning to the lab, cores were mounted and 

sanded to a high polish. Tree rings were counted using a Velmex sliding stage micrometer with 

digital encoder (Velmex Inc., Bloomfield, NY).  

 In each burn, we collected data on seven variables that, based on previous research, we 

hypothesized would explain natural seedling regeneration density at each site (Table 4.1). We 

define seedling as all individuals recruiting post-fire (i.e., less than 30 years old, shorter than 2 m 

in height). We performed a species count to quantify seedling regeneration per square metre for 

all individuals taller than 50 cm along each transect. We did not record data on seedlings shorter 

than 50 cm because few were identified across all sampling areas. Additionally, there was an 

extremely low probability of finding all seedling of that size class within the complex shrub and 

graminoid understory. Data on seedling species richness was compared to species richness 

within the adjacent unburned forest. We recognize that the unburned forest may not be 

representative of the burned forest; however, we were unable to confidently identify standing 

dead to a species level due to the weathering of definable features and the age of the burn. 

Within each plot, we quantified pre-fire stand density by counting stems (stems • m-2), and plot-

level basal area (m2 • ha-1), which was calculated from basal diameter of each standing dead and 

felled tree. Only felled trees visibly connected to a root system were included in the basal area 
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calculation. Note that while basal area is typically determined using DBH (Speer 2010), we 

opted to use basal diameter as our measure of stand density so that we could get a more accurate 

depiction of total number of trees within a plot, as well as have a consistent measurement 

between non-harvested and harvested trees that were cut below DBH height (or 1.37 m).  

Table 4.1 List of covariates based on previous research that we hypothesized would have an 

effect on seedling regeneration numbers (response variable). 

 

Covariate Abbreviation Units Rationale Reference 

Basal area of 

harvested trees 
HA m2 • ha -1 

The more trees that are harvested the fewer 

tree regeneration occurs due to seedling 
trampling and seedbed damage. 

Morissette et al. 2002 

Kishchuk et al. 2015 

Pre-fire stand 

density 
PreFSD m2  • ha -1 

A more dense forest would have increased 

reproductive structures, which would allow 
for higher probability.  

Rossi et al. 2012 

Organic layer depth OL cm 

Residual organic layer from a low-severity 

burn may become compacted, limiting 

successful seedling establishment. 

Purdon et al. 2004 
Brown and Johnstone 2012 

Shrub cover 
TMS, EDS, 

PDS 
% cover 

Rapidly establishing large shrub species 

will out-compete low growing boreal tree 

seedlings for space and resources. 

Cranston and Hermanutz 2013 

Jäderlund et al. 1998 

DeLuca et al. 2002 

Haircap moss 

(Polytrichum spp.) 
Polytrichum % cover 

Presence of haircap moss has been 

established to be a good indicator of 

regeneration success for both black spruce 

and jack pine seedlings 

Greene et al. 2004 

Jayen et al. 2006 

 

 In order to better understand the growing conditions for natural seedling regeneration, we 

measured organic layer by creating a small vertical incision into the ground and measuring the 

depth (cm) and estimated percent cover of hair-cap moss using a 0.5 m x 0.5 m quadrat in the 

centre of each plot. Hair-cap moss was selected for analysis as it is a preferred germination bed 

for black spruce (Greene et al. 2004; Jayen et al. 2007). We also estimated percent cover 

(rounded to the nearest 5%) of shrubs at the center of each plot using a 1 m x 1 m quadrat within 

each plot, as shrubs have been found to both facilitate (Perkins 2015) and compete with 

(Cranston and Hermanutz 2013) tree seedling establishment. Because shrubs have an important 

height component and overlapping species should be considered within the estimate (i.e., 

volume), total percent cover could sum to above 100% per quadrat. We used the following shrub 
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categories, previously defined by Myers-Smith et al. (2011), in which the same species can be 

found in multiple categories based on their height structure: (1) Tall multi-stemmed shrubs 

(TMS; height 0.4 – 4.0 m); (2) Erect dwarf shrubs (EDS; height 0.1 - 0.4 m); and (3) Prostrate 

dwarf shrubs (PDS; height < 0.1 m; often forming in mats).  

  The above measurements on growing conditions were not completed in the unburned 

forest due to weather-induced time constraints during our boat-access data collection. While we 

are aware that not having data in the unburned forest limits our ability to provide a direct 

comparison to the burned forest stand, this question was not within the scope of our research, 

which was focused specifically on the compounding effects of consecutive disturbances. We 

argue the measurements that were collected in each burned forest were suitable for answering the 

question of stand density regeneration.   

4.2.3 Statistical analyses 

Our first means of describing the unburned forest stands was to determine whether these 

mature coastal boreal forest stands were initiated via episodic (i.e., occurring within a small time 

frame post-disturbance sensu Johnstone et al. [2010]) or continuous regeneration (i.e., gradual 

establishment over decades post disturbance [Steijlen et al. 1995]). We developed chronologies 

within each unburned forest site that were cross-dated to an interseries correlation value of r > 

0.20. While a correlation value of 0.2 is not necessarily strong, high correlation values do not 

ensure that samples were cross-dated accurately (Douglass 1941); therefore, we inspected each 

sample multiple times under the microscope to ensure that all tree rings were accounted for. 

After cross-dating, and when possible, an adjustment was performed to reach a more accurate 

tree age approximation when coring missed the sample pith (following Conway and Danby 

2014).  The number of missing rings was estimated by dividing the mean ring-width of the 10 
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innermost rings by the radius of a concentric circle generated from the final tree ring visible on 

the core (Hessl and Graumlich 2002). We plotted DBH of each tree against the newly 

approximated age of cored trees to assess whether the relationship between forest age and tree 

size of coastal populations matched allometric relationships observed in continental forest stands 

(i.e., were bigger trees older?). 

Our approach to modeling seedling regeneration density post-fire and fuelwood harvest 

followed the mixed effects modeling procedure outlined by Zuur (2009) as follows.  We first 

tested for collinearity at the plot level to ensure each predictor variable had a variance inflation 

factor < 3.0 and correlations between each had r ≤ 0.70 (Roland et al. 2013; See Table 4.1. for 

complete list of predictor variables used in each model). We then applied a hurdle model, which 

is a two-part model that allowed us to account for zero-inflation in the response variable. The 

first model was a general linear mixed model (GLMM; family = binomial; link=logit) of 

presence/absence data of seedlings in transects within site (Zuur 2009). We followed this model 

by running an additional GLMM (family = negative binomial; link=logit), looking only at data in 

plots where seedlings were present. In each model, number of seedlings were used as the 

response variable, and transects within sites were included as random effects. An interaction 

term between pre-fire stand density and all shrub cover categories (i.e., TMS, EDS, and PDS) 

was also included to determine whether any resource and space competition was evident. Model 

assumptions were tested by viewing level of over dispersion and plotting residuals versus fit. All 

statistical analyses were conducted in R.3.5.1. (R Core Team) using the package ‘dplR’ (Bunn 

2010) and the package ‘lme4’ ver. 1.1-19 (Bates et al. 2015).   
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4.3 Results 

4.3.1 Mature subarctic forests 

Forest density along the unburned transect differed between sites; within the 200 m2 area 

surveyed within each site, BRB had the greatest number of individuals (2.48 stems • m-2) and 

WBB had the fewest trees (0.86 stems • m-2; Table 4.2). When examining tree species richness, 

black spruce was the dominant tree species across all sites; however, balsam fir and eastern larch 

were subdominant species at all sites, contributing between 16 and 34% of the forest 

composition. 

Table 4.2 Characterization of the unburned forest composition across a belt transect (5 m x 50 

m) for each site, including relevant information for the cored trees. Mean DBH and Basal values 

are listed, as well as the average height at which the core was taken (HOC) and series 

intercorrelation derived from ‘dplR’ (Bunn 2010). Species acronyms are as follows: Pm (Picea 

mariana), Ab (Abies balsamea), Ll (Larix laricina). 

 

Site 
Species  

(count) 

Species (sample no.) 

for Dendrochronology 
DBH  SD 

(cm)  

Basal diameter 

 SD (cm) 

Average 

HOC (cm) 
Series intercorrelation 

BRB 
Pm (217) 

Ab (75) 
Pm (10) 20.17  3.25 25.46  4.59 45.5 0.398 

TBB 

Pm (85) 

Ab (22) 

Ll (21) 

Pm (5) 

Ll (5) 

11.80  2.32 

11.92  1.54 

15.78  3.85 

16.46  2.10 

40.0 

46.8 

0.215 

0.278 

WBB 
Pm (28) 

Ll (15) 
Pm (12) 33.93  7.00 40.00  7.62 40.08 0.582 

  

Dendroecological data from the unburned forests indicate a large range in ages within 

sites (TBB – 112 year range; BRB – 91 year range; WBB – 186 year range). Despite these large 

range values, tree ages within sites were more similar than among sites. TBB was the youngest 

forest (mean age of 112 years ± 27 standard deviation [SD]), followed by BRB (170 years ± 43 

SD), and WBB (227 years ± 53 SD). We found a positive association between tree size and age 

across sites (linear regression estimate = 4.7309, SE = 0.6991, t-value = 6.767, p < 0.05), but not 

within site (BRB p = 0.07; TBB p = 0.62; WBB p = 0.29; Figure 4.2).  
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Figure 4.2 Relationship between year of establishment (oldest on the left, youngest to the right) 

and DBH of all sampled trees. Sites are identified by shape and colour (BRB – green circle; TBB 

– blue triangle; WBB – grey square). 

4.3.2 Post-fire and harvest stand characteristics 

Within the burned woods, the number of standing dead trees (including felled trees) was 

similar to that of the adjacent unburned forest, except for at BRB, which had less than half as 

many burned stems as the unburned forest. Limited harvesting occurred at each site within the 

sampling area (Table 4.3). Proportional to the number of standing dead trees within all transects, 

WBB experienced the highest proportion of wood harvested (34%) followed by TBB (14%) and 

BRB (8%). Trees at both TBB and WBB were harvested at a similar height (65 cm), which was 

half the mean harvesting height at BRB (102 cm). Despite differences in harvesting height, mean 

comparison of harvested tree DBH was not significantly different (p = 0.498).  
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Table 4.3 Site level information for each burned forest, including mean data on harvesting and 

seedling regeneration. Organic layer (OL) measured in centimetres. Species acronyms are as 

follows: Pm (Picea mariana), Pg (Picea glauca), Ab (Abies balsamea), Ll (Larix laricina), Bp 

(Betula papyrifera). 

 
  Burned Forest and Harvest  Forest Regeneration 

Site 

OL 

depth 

(cm) 

stems • 

m-2 

harvested 

trees • m-2 

harvesting 

height (cm) 

harvested tree 

diameter  SD  

(cm) 

 

site 

regen • 

m-2 

prop. 

regen  

species 

(count) 

regenerati

on height 

(cm) 

BRB 15.80 2.48 0.21 102 12.15  5.37  0.28 0.11 
Pm (55) 

Ab (1) 
86.65 

TBB 16.75 2.38 0.34 65 11.41  4.44  0.64 0.27 

Pm (62) 

Pg (41) 

Ll (13) 

Ab (10) 

Bp (1) 

128.78 

WBB 16.50 0.86 0.30 65 12.87  19.68  0.09 0.10 
Pg (16) 

Ll (1) 
82.18 

 

Natural seedling regeneration greater than 50 cm height per square metre was low at each 

site (Table 4.3). Seedling density was less than 30% of the pre-fire stand density (number of 

stems) across all sites (BRB: 11%, TBB: 27%, WBB: 10%). While we cannot be certain that the 

unburned species composition was directly comparable to that of the standing dead, tree species 

richness, as indicated by seedling regeneration (i.e., stems • m-2), did not change at BRB, but 

increased at TBB when compared to the unburned forest (see number of species in Table 4.2 and 

3). In addition, despite the uneven sampling design between burned and unburned forests, no 

black spruce seedlings were found at WBB post-fire and a greater number of white spruce 

seedlings were found at TBB and WBB than were present in the unburned forest stand. Fewer 

larch seedlings had established across all sties when compared to the count data of the unburned 

forest.  

4.3.3 Regeneration  

Our binomial GLMM indicated that neither harvesting, stand density, organic layer 

depth, shrub cover, or moss cover were associated with seedling occurrence (i.e., 
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presence/absence). While our sampling design prevents us from assessing the stand-alone effects 

of harvesting without fire, our model indicated that the compounding effects of post-fire 

harvesting does not have a significant effect on the occurrence (presence or absence) of boreal 

tree species seedlings > 50 cm across all sites, despite regeneration rates being low (Table 4.4, 

Figure 4.3). Our negative binomial model, which predicted seedling abundance in plots where 

seedlings were present, indicated that the number of seedlings was positively associated with the 

percent cover of tall multi-stemmed shrubs (TMS), except in plots with high pre-fire basal area 

(Table 4.4; Figure 4.4). The interactive effects of TMS and pre-fire basal area had a negative 

relationship with seedling regeneration density (p = 0.053). While this relationship does not fall 

below an alpha-value of 0.05, it is worth noting, especially since other interaction terms 

explained very little variation with regards to seedling per square metre.  

 

4.4 Discussion 

 

 Here, we describe the structure and disturbance dynamics of coastal boreal subarctic 

forests, an understudied region of the North American boreal forest ecosystem. Prior to the most 

recent fires (i.e., unburned forest stands), initial establishment of the coastal boreal forest stands 

varied by site, with an estimate of stand establishment beginning around 1700 for WBB, post-

1750 for BRB, and after 1850 for TBB. Initial forest stand establishment may have been a result 

of a novel disturbance (e.g., newly harvested; Roy et al. 2017; Lemus-Lauzon et al. 2018) or a 

change in climate and microsite conditions (Trant and Hermanutz 2014). While our study 

approach does not lend itself to answering the question of how these forest stands established, 

our data suggest that continuous, rather than episodic regeneration, occurred across all unburned 

sites after the year 1700. These findings are comparable to previous dendroecological studies 
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completed in coastal Nunatsiavut (Payette 2007; Roy et al. 2017) and Nunavik (northern Quebec; 

Payette and Gagnon 1985).  

 

Figure 4.3 No clear relationship indicated between harvested basal area (m2 • ha-1) and number 

of seedlings. Site is indicated by shape and colour (BRB – green circle; TBB – blue triangle; 

WBB – grey square). 

 

Table 4.4 Parameter estimates with standard errors (SE) for generalized linear mixed models of 

seedlings (number of seedlings per transect; Negative Binomial distribution). Both models 

treated transect within site as a random effect. Significant ( = 0.05) covariate estimates are 

bolded.  

 
 Binomial  Negative Binomial 

Model Term 
Parameter 

Estimate 
SE z-value p value  

Parameter 

Estimate 
SE z-value p value 

Intercept 32.66 79.23 0.412 0.680  0.43 1.16 0.374 0.709 

Harvest area -33.39 125.61 -0.266 0.790  4.19 4.54 0.922 0.357 

Organic layer depth 1.79 1.38 1.296 0.195  -0.02 0.02 -1.137 0.256 

pre-fire basal area 206.04 585.09 -0.352 0.725  4.75 7.53 0.630 0.529 

TMS -0.20 0.51 -0.39 0.697  0.04 0.02 2.316 0.021 

EDS -0.15 0.20 -0.766 0.444  0.01 0.02 0.380 0.704 

PDS -1.09 1.72 -0.635 0.525  0.02 0.03 0.624 0.532 

Polytricum 1.51 1.76 0.859 0.390  -0.03 0.02 -1.497 0.134 

PreFSD • TMS -1.69 2.97 -0.569 0.569  -0.19 0.10 -1.929 0.054 

PreFSD • EDS 4.90 4.06 1.207 0.228  -0.04 0.09 -0.407 0.684 

PreFSD • PDS 5.16 11.92 0.433 0.665  -0.07 0.16 -0.415 0.678 

PreFSD• Polytrichum -5.32 8.14 -0.654 0.513  0.22 0.14 1.550 0.121 
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Figure 4.4 Generalized linear mixed model predicted values of seedlings as a function of the 

interaction between pre-fire basal area (m2 • ha-1) and percent cover of tall multi-stemmed shrub 

species. All lines represent the model fit to the covariates, with shading representing the 95% 

confidence intervals. Narrow shaded areas indicate higher model confidence. Percent shrub 

cover categories were selected based on the mean, as well as the first and third quartile of shrub 

cover values.  

 

 

Continuous regeneration was expected, as boreal tree reproductive capacity (i.e., fewer 

filled seeds and lower germination rates) decreases with latitude (Sirois, 2000). The cold and wet 

climate of northern coastal Nunatsiavut favour slow cone production by virtue of longer periods 

of time required to produce heavy cone bearing crowns (Vincent 1965; Steijlen et al. 1995). 

Specific to black spruce, we would expect low levels of seed dispersal, as there are few hot and 

dry weather events that would break cone serotiny. Additionally, fire in Nunatsiavut still remains 

an infrequent large-scale disturbance on the landscape and would therefore have limited 

influence on seed dispersal (Roy et al. 2017). Similar trends in boreal tree regeneration and seed 
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dispersal have been observed in northern Sweden (Steijlen et al. 1995) and at range-edge, or 

treeline locations in central Labrador (Trant and Hermanutz 2014). The weak relationship 

between site level tree size and stand age also points towards continuous rather than episodic 

regeneration, as continued stand development increases the effect of size hierarchy between 

seedlings (Mast and Veblen 1999). Yet, this weak age-size relationship may simply be a product 

of low sampling size and should be investigated further to determine whether our above 

hypothesis is supported.  

Contrary to previous studies, our findings indicate no significant relationship between 

post-fire harvesting and seedling regeneration (Leverkus et al. 2018). While our study design did 

not allow us to explicitly test the effects of each disturbance separately on forest regeneration, 

fires are infrequent and harvesting post-fire is observable and a preferred practice in the region. 

There are several possible explanations for this result. First, post-fire harvesting was low across 

all sites (<35%) when compared to other commercial timber logging activities across boreal 

North America. For example, in Quebec (Boucher et al. 2014), Alberta (Kishchuk et al. 2015), 

and Saskatchewan (Morissette et al. 2002) over 90% of trees were harvested shortly after the fire 

to minimize loss of available cuts. Low harvesting rates in Nunatsiavut are likely a product of 

site accessibility and community size, which has a combined population of less than 2,000 

people for Nain and Postville. Wood is harvested for immediate community needs and while 

boat access to these coastal burns is possible in the summer, chainsaw harvesting during the 

winter is only feasible when deep snowpack covers the understory shrub vegetation and frozen 

sea ice, which is defined as critical infrastructure for the Nunatsiavummiut (Bell et al. 2014), 

allows for wood hauling via snowmachine. In more southern continental study locations, year-
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round road access allows large machinery to access recently burned forests and remove as much 

harvest wood as is needed (Greene et al. 2006).  

 Second, chainsaw harvesting in deep snowpack conditions would limit disturbance to the 

natural seedbed (Jean et al. 2019). When a site is harvested by large machinery, seedlings are 

more likely to be damaged through trampling (Donato et al. 2006; Royo et al. 2016). Site 

conditions may also become drier through soil compression and a reduction in available shade, 

thus exceeding the resilience capacity of the dominant tree species and favouring the 

establishment of drought tolerant grass and shrub species (Purdon et al. 2004; Greene et al. 

2006). In northern Alberta for example, approximately half of the mid-successional aspen-

dominated boreal forest stands that had experienced logging were associated with a greater 

presence of large shrub species when compared to mid-successional burned stands (Kurulok and 

Macdonald 2008). In Nunatsiavut, seedlings would not be damaged, as snowpack remains 

consistent across the site late into the spring and the remaining unharvested trees would ensure 

ample shade for growing seedlings. While these sites have undergone successive disturbances, 

compounding effects between fire and harvesting on boreal regeneration may be muted due to 

the conditions in which harvesting occurs. In the time frame of our study, we may assume that 

despite burned forest stands in Nunatsiavut being used as a fuel source for the communities, 

regeneration within the stand is more strongly controlled by a singular disturbance (i.e., fire) 

rather than the interaction between consecutive disturbances (i.e., fire and harvest). However, 

even less is known about the role of other ecological disturbances across the eastern subarctic 

(e.g., insect outbreaks, moose herbivory). It is important to reiterate that our study is limited to 

an analysis of winter wood harvesting, as it is the only practiced method in the region. While 

harvesting during other seasons may produce different results, we argue that any future research 
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on the effects on a changing climate in northeastern coastal boreal forests may be interested in 

focusing research efforts on the effects of a changing fire regime rather than the interactive 

effects of fire and harvest when winter harvesting rates are low (i.e., < 35%).  

Natural seedling regeneration two decades after fire and harvesting was less than 30% of 

the pre-fire stand density across all sites. While our results might be interpreted as a loss of 

ecosystem resilience and subsequent regeneration failure, based on previous work in Alaska 

(Johnstone et al. 2004) and southern Québec (Perrault-Hébert et al. 2017), we argue instead that 

our sampling occurred too early within a longer continuous regeneration window based on our 

age-reconstruction of the unburned stands. In western North America, stands that experience 

frequent fires (every 80-120 years) undergo pulse recruitment and have the majority of trees 

establish within the first decade after fire (Johnstone et al. 2004; Brown and Johnstone 2012). 

These trees rapidly grow to reproductive maturity and establish a large seedbank in advance of 

the next fire. Alternatively, in Scots pine (Pinus sylvestris L.) stands of northern Sweden, 

regeneration continues over several decades after fire, which is speculated to be a result of low 

fire frequency, where fires occur every 160-400 years (Steijlen et al. 1995). Multi-decadal 

regeneration has also been found to occur at treeline locations in northern Quebec (Sirois and 

Payette 1991), and western Labrador (Simon and Schwab 2005).  

In addition to different fire frequencies, many of the fires that have been studied in 

western North America are also higher in severity, consuming much more of the organic layer 

that limits access to ideal substrate (Johnstone et al. 2004). Germination and successful seedling 

establishment is often reduced when fire severity is low, as is evident in our study system as well 

others (Jayen et al. 2007; Crotteau et al. 2013). Drawing parallels between climatic conditions 

(Hofgaard et al. 1991), fire frequency, and severity data presented in our study provide some 
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evidence that these coastal boreal forests in Nunatsiavut may be more similar to coastal-

influenced forests of northern Sweden and Nunavik (northern Quebec) rather than those of 

western and central North America. While we did not explicitly compare Eurasian and North 

American boreal forest, our findings may highlight essential differences between forests within 

boreal North America and illustrate our need to carry out research in under-studied coastal 

subarctic boreal ecosystems. 

Despite seedling regeneration being low, changes in species richness was evident at two 

out of three sites. We attribute this increase in species richness to a fire induced change in 

microsite conditions (Kurulok and Macdonald 2008). Although we do not have comprehensive 

data comparing abiotic and biotic covariates between burned and unburned forests, which we 

acknowledge in our methods, we can rely on the literature to infer some fire-induced site-level 

changes in seedbed quality (Certini 2005). For example, soil conditions post-fire are drier as a 

result of increased runoff (Lukenbach et al. 2016) and evaporation from the black (low albedo) 

surface (Thompson et al. 2015). White spruce and balsam fir generally prefer drier soil 

conditions when compared to black spruce, and much like our study, have been found to increase 

in numbers after a fire (Kurulok and Macdonald 2008).  In northern Quebec, low severity fires 

(mortality < 25%) were also found to have the highest tree species richness when compared to 

forest stands that experienced more severe fires (Purdon et al. 2004). From our organic layer data 

and the more northern geographic position of TBB and WBB, when compared to BRB, we could 

assume that these forests experienced even lower severity fires, which would provide further 

evidence for a change in tree species richness (Purdon et al. 2004), as well as the slow generation 

rate for all seedlings (Foster 1985). The spatial extent of both TBB and WBB fires were also 

much smaller than BRB. While pulses of tree species richness have been linked to anthropogenic 
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and non-anthropogenic disturbance events in Nunatsiavut (Roy et al. 2017), the question of 

species richness and post-fire succession in Nunatsiavut needs to be explicitly addressed to reach 

a more definitive conclusion on changes in species richness post-disturbance.   

Contrary to our hypothesis, the abundance of tall multi-stemmed shrubs (TMS) had 

differential effects on seedling abundance, depending on the pre-fire structural characteristics of 

the forest stand. When TMS were low to mid abundance (TMS < 30%), there was a positive 

association with seedlings. This association may indicate interspecies facilitation, whereby 

shrubs provide more suitable microclimates for seedlings through increased shade availability 

and soil moisture retention (Perkins 2015). These findings are similar to experimental seeded 

plots in southern Spain, where emergence and survival of Scots pine seedlings were highest 

under shrub canopy (Castro et al. 2004). In Labrador, interspecific facilitation of black spruce 

has also been found to occur with the presence of feathermoss (Pleurozium sp.; Wheeler et al. 

2011). The relationship between TMS and seedling density becomes negative when high percent 

cover of TMS (TMS > 30%) interacts with dense pre-fire basal area. The interaction term may 

signify a switch from interspecies facilitation to competition, where higher-density stands would 

have fewer suitable spots for both shrub and boreal tree seedling regeneration, facilitating a 

transition towards a landscape dominated by rapidly establishing shrub species (Cranston and 

Hermanutz 2013). Manipulative shrub field studies in northern Swedish boreal forests have 

found that increased bilberry (Vaccinium myrtillus L.) is associated with lower densities of 

Norway spruce (Picea abies L.), as a result of below-ground resource competition (Jäderlund et 

al. 1997). Because shrub species are typically rapid colonizers after a disturbance due to their 

nitrogen fixing and vegetative resprouting structures (Simon and Schwab 2005; Lantz et al. 

2010) we can assume that if space (both below and aboveground) and resources, including light, 
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are limited, shrub species would likely outcompete tree seedlings, which may result in a 

successional trajectory change in the post-fire landscape.  

Yet, if we ascribe to our sampling occurring too early in the continuous regeneration 

window, the relationship between TMS and seedling abundance may not be evidence of 

interspecies competition, but rather represent a successional stage in eastern subarctic boreal 

development. In western boreal forests, burned substrate is rapidly colonized by nitrogen fixing 

alder species (Lantz et al. 2010) and deciduous tree species, such as aspen and birch 

(Landhausser and Wein 1993). These shade-intolerant species are succeeded by coniferous 

species once they grow above the shrubs and begin to shade them out. While there is no evidence 

to suggest an increase in deciduous tree species two decades after fire in Nunatsiavut, TMS 

shrubs may represent the early successional species. Once again, if we draw comparisons to 

Swedish boreal forests, we find that dwarf ericaceous shrub cover (including Empetrum 

hermaophroditum Hagerup. and Calluna vulgaris L.) represent dominant successional species 

(cover ≥ 50%) a few decades after fire, followed by slow increase in Scots pine density (DeLuca 

et al. 2002). In our case, TMS shrub cover (including Vaccinium and Salix spp.) may represent 

early successional species followed by a slow increase in black spruce.  

In conclusion, our study provides evidence to suggest that despite the low number of 

natural seedlings two decades after fire, current chainsaw harvesting rates by Nunatsiavummiut 

after fire do not represent a significant effect on boreal tree regeneration. We acknowledge our 

sampling scheme is small as a result of weather-related time constraints and boat-only access. 

The size of our study should be considered when interpreting our results, especially when 

comparing species richness of burned and unburned forests, as some unknown ecological factor 

may make the locations incomparable. Nevertheless, our results represent an important first step 
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in providing context to forest regeneration in eastern coastal boreal forests that are commonly 

used by the Nunatsiavummiut.  

While there is an indication that forest resilience has been lost and tall multi-stemmed 

shrub species are out-competing boreal tree seedlings for space and resources, the question of 

whether this is in fact the case, needs to be explicitly addressed. Determining whether these 

forest stands are undergoing a successional trajectory change after fire can be determined in 

several ways. First, a larger chronosequence of fires that occurred in coastal Nunatsiavut 50-200 

years ago could be established to determine whether large shrubs still represent a dominant 

species in the post-fire landscape. Second, we need to investigate the reproductive potential at 

these sites. A multi-year latitudinal transect examining inter-annual cone production and seed 

viability would provide us with a better understanding of the capacity in which these coastal 

forests are able to regenerate after a large-scale disturbance. And finally, albeit challenging, these 

sites could be monitored over the next several decades to review decadal seedling growth and 

presence. If seedling density remains low, perhaps conditions have changed, and these forests 

may be experiencing a successional change.  
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Chapter 5: Conclusion 

 

5.1 Summary 

 
Northern plant communities are experiencing more extreme environmental conditions 

with continued climate change (Dale et al., 2001; Martin, Jeffers, Petrokofsky, Myers-Smith, & 

MacIas-Fauria, 2017; Myers-Smith et al., 2020). Longer growing seasons have increased plant 

moisture stress (Stevens-Rumann et al., 2018), while changes to winter snow cover have exposed 

plants to more intense weather conditions (Mamet & Kershaw, 2013; Mayr, Cochard, Améglio, 

& Kikuta, 2007). These changes are more pronounced across the subarctic, where increases to 

surface air temperatures are occurring at a rate three times the global average (Bush & Lemmen, 

2019). Simultaneously, climate change has altered the frequency, severity, and extent of natural 

and anthropogenic disturbances (Hanes et al., 2019; Navarro, Morin, Bergeron, & Girona, 2018; 

Seidl et al., 2020). Despite disturbances being an integral part of biodiversity, changes to 

disturbance regimes have applied further pressure to the resilience of plant communities within 

subarctic ecosystems (Johnstone et al., 2016). As a result, a warming climate coupled with a 

change in disturbance regimes have been predicted to result in a rapid successional shift in 

northern ecosystem structure and function (Bölter & Müller, 2016; Buma, Brown, Donato, 

Fontaine, & Johnstone, 2013; Reyer et al., 2015).  

In some regions of the subarctic, observational and experimental evidence has supported 

the prediction that changing disturbance regimes driven by climate change are altering the 

successional trajectory of terrestrial ecosystems (Johnstone et al., 2020; Travers-Smith & Lantz, 

2020). A change in wildfire frequency has shifted black spruce forest stands to shrub and grass 

dominated landscapes in both Alaska (Johnstone et al., 2020) and Yukon (Brown & Johnstone, 

2012). Similarly, in northern Quebec, increased post-wildfire wood harvesting has shifted 
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recruitment towards a greater density of deciduous tree species (Bouchard & Pothier, 2011). 

These shifts in ecosystem states can be attributed to a loss of ecological inertia, either through a 

change in reproductive potential (i.e., loss of available seed) or microsite conditions for seedling 

germination and establishment (Buma et al., 2013).  

Yet, successional changes to northern plant communities have been non-uniform across 

the subarctic (Bret-Harte et al., 2013; Zhou, Liu, Jiang, Feng, & Samsonov, 2019). This variable 

response in succession from climate warming is best illustrated at the boreal-tundra treeline 

ecotone, where range expansion of boreal tree and shrub species have not matched climate-based 

model predictions (Harsh et al., 2009). Therefore, it has been speculated that some current plant 

communities within the subarctic are resistant to change (i.e., high ecological inertia) even when 

exposed to new or changing disturbance regimes (Folke et al., 2004; Johnstone et al., 2016; 

Stralberg et al., 2020). However, a recent meta-analysis performed by Lett & Dorrepaal (2018) 

on the current understanding of global drivers of seedling establishment at alpine treelines 

indicated that research on the effects of disturbance (e.g., herbivory, fire, wind, and freezing) on 

seedling establishment is extremely limited (i.e., less than ten out of 366 experimental and 

observational papers). Thus, the aim of my thesis was to reduce the knowledge gap of how 

disturbances influence boreal tree succession at their northern range edge of the Canadian 

subarctic. Specifically, my thesis examined how wildfires (Chapter Two), insect granivory 

(Chapter Three), and anthropogenic wood harvesting (Chapter Four) influence biotic and abiotic 

conditions and whether they promote or inhibit seed germination and seedling establishment. At 

the northern boreal range edge, these disturbance regimes are considered novel or anticipated to 

change under continued climate warming (Lantz, Gergel, & Henry, 2010; Leverkus et al., 2018; 

Pureswaran, Roques, & Battisti, 2018). While research discussed in Chapter Four is framed as 
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being conducted within the eastern subarctic coastal boreal forest, study sites were still 

considered range edge populations as they were located in close proximity (< 2 km) to 

elevational treeline.  

My research helps to fill the significant knowledge gap of how disturbances at the boreal-

tundra treeline ecotone influence early-life stage tree recruitment. Specifically, I provide a broad 

spatial understanding of the many microsite conditions that seeds and seedlings are exposed to at 

treeline post-disturbance, as my research was conducted in remote and understudied regions 

across the Canadian subarctic. Although I examined three different disturbances, all data 

collection followed similar protocols to establish a large database of post-disturbance microsite 

conditions for subarctic ecosystems. In each study, understory vegetation was recorded to 

functional group, ensuring that data can be easily incorporated into global models of vegetation 

change (Neilson et al., 2005; Vanneste et al., 2017). Furthermore, data collection for insect 

granivory provided a broad spatial understanding of spruce tree fecundity at treeline, which has 

recently been highlighted as an essential predictor variable when modeling future boreal tree 

range expansion (Brown et al., 2019; Wang, He, Thompson, Spetich, & Fraser, 2018).  

 

5.2 Key findings and future research directions 

 
Successful tree recruitment consists of several steps, each accompanied by a number of 

hurdles that need to be overcome in order to advance to the next life stage (Holtmeier, 2009, 

Evans & Brown, 2017, Crofts & Brown, 2020). At earlier life stages of boreal tree species, 

resource availability and interspecies competition represent examples of significant hurdles for 

the production and dispersal of viable seed, as well as the germination and establishment of 

seedlings (Munier, Hermanutz, Jacobs, & Lewis, 2010; Tingstad, Olsen, Klanderud, Vandvik, & 
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Ohlson, 2015). Under the context of range expansion, these early-life stages may also experience 

additional hurdles for potential recruitment, as they are required to overcome the ecological 

inertia of the uncolonized ecosystem state (Holtmeier, 2009; Buma et al., 2013; Crofts & Brown, 

2020). Despite a reduced climatic hurdle from continued climate warming, results from my 

thesis suggest that within the study years, wildfire, insect granivory, and wood harvesting at the 

northern boreal range edge are not severe enough disturbances to reduce the ecological inertia of 

the current plant communities. Thus, I speculate that disturbances of lower severity do not prime 

the landscape for range expansion of boreal tree species at my study locations.  

Within the boreal forest, moderate to high severity wildfires are required to create 

microsite conditions that are suitable for increased seedling establishment (Turner, Romme, & 

Gardner, 1999). High severity wildfires increase the combustion of the organic layer, facilitating 

greater seed access to mineral soils that are high in nutrients and soil moisture (Shenoy, Kielland, 

& Johnstone, 2013). Suitable microsite conditions for seed germination also need to occur at the 

treeline ecotone to facilitate range expansion; yet, observational evidence from my research in 

Yukon and the coastal boreal forest stands of Nunatsiavut show these conditions did not occur, 

as all wildfires were of low severity. As a result, low seed germination and seedling 

establishment were observed. This low level of germination and establishment suggests that 

wildfires did not disrupt the ecological inertia of the current ecosystems enough to support 

increased boreal tree recruitment. While predictive models have shown how wildfire distribution 

will change across the subarctic under climate change (Hanes et al., 2019; Soja et al., 2007), 

much of the literature predicting changes to wildfire severity has occurred in western USA 

forests (Doerr & Santín, 2016, except see Guindon et al., 2020). Therefore, an important future 

research direction is to examine changes in wildfire severity across the subarctic. This more 
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robust understanding of wildfire severity would support better predictions of successional 

dynamics at the northern boreal range edge. Specifically, predicting changes to wildfire severity 

would support boreal treeline range expansion models by determining where range expansion 

may occur if subjected to higher severity wildfires. A better understanding of wildfire severity 

will also help determine whether wildfires in coastal Nunatsiavut will increase in severity and act 

as a negative feedback for boreal tree regeneration, as tree seed access to suitable microsite 

conditions may increase.  

Despite the known negative impacts on individual trees within a forest stand by insects 

(Pureswaran et al., 2018) and post-disturbance wood harvesting (Bouchard & Pothier, 2011), 

model results of both insect granivory and post-wildfire wood harvesting showed no significant 

relationship with availability of viable seed and seedling establishment, respectively. Similar to 

my wildfire research findings, I speculate the impact of these disturbances were not severe 

enough to reduce the ecological inertia of the present ecosystem. Post-wildfire harvesting in 

more populated areas of the boreal forest has been associated with a shift in successional 

trajectory, as harvesting efforts remove upwards of 90% of the standing dead trees (Boucher, 

Gauthier, Noël, Greene, & Bergeron, 2014; Kishchuk et al., 2015). In Nunatsiavut, the process of 

chainsaw harvesting by snowmobile limits the number of trees that can be removed from a site. 

Furthermore, winter harvesting reduces microsite damage, as heavy snowpack protects the 

ground surface during wood harvesting. Similarly, as severe insect outbreaks are often associated 

with successional change (Landry, Parrott, Price, Ramankutty, & Damon, 2016), chronic 

pressures at the boreal range edge may not represent a biotic disturbance that significantly 

reduces the availability of viable seed, even at the treeline ecotone where seed production is 

limited. Nevertheless, seed viability research conducted within my thesis was carried out on a 
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subset of seeds; therefore, future research is required to determine whether these viability rates 

are consistent across a much larger area. The effects of both wood harvesting and insect 

granivory during my years of study were muted and therefore may not play a significant role in 

changing the resilience of the current ecosystem. A longer temporal analysis of these 

disturbances is required to determine if their severity changes through time.  

In addition to the low-severity of all disturbance regimes, a common thread between 

wildfires at treeline, insect granivory at treeline, and wood harvesting in Nunatsiavut was the 

presence and influence of shrub cover on boreal tree recruitment. I speculate that low severity 

wildfires in forest stands coupled with a shrub dominated understory may lead to a post-

disturbance increase in shrub cover, representing either a shift in successional trajectory 

(discussed in Chapter Two) or a natural early successional stage (discussed in Chapter Four). 

Shrub cover was also associated with the reduced presence of insect granivory, which could 

provide spatial information on where this biotic disturbance may be greater in magnitude across 

the boreal-tundra treeline ecotone. As changes in shrub cover are anticipated across the subarctic 

(Myers-Smith et al., 2020), their role in ecosystem resilience post-disturbance needs to be further 

examined (Travers-Smith & Lantz, 2020). Evidence in both boreal and tundra plant communities 

have already shown a shift towards a shrub dominated landscape post-wildfire (Brown & 

Johnstone, 2012; Lantz et al., 2010); therefore, it is extremely likely that shrubs will play a 

dominant role in shaping subarctic landscapes under continued climate change (Myers-Smith et 

al., 2020). An important future research direction on subarctic ecosystem resilience is an 

examination of alternate pathways of successional trajectory change. Specifically, resilience 

research needs to examine whether post-disturbance landscapes will shift towards a shrub 

dominated landscape rather than return to the previous forested ecosystem structure and function.  
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My results also revealed how variable microsite conditions can be, as well as highlight 

their importance for the establishment of early-life stage boreal tree species. While site-level data 

collection in Chapter Two occurred within an approximate 0.8 ha area (0.4 ha at burned and 

unburned treelines), observational evidence of biotic and abiotic conditions exhibited a high 

degree of variability. These results further support the idea that while climate may be suitable for 

range expansion of boreal tree species, site conditions that increase the success of recruitment are 

limited even after experiencing a disturbance (Johnstone et al., 2016). Similarly, in Chapter 

Three, data collection at each site occurred within a short 75 m x 10 m belt transect, but model 

results indicated stand density and moss cover were positively associated with magnitude of 

insect granivory. As stand density and moss cover varied greatly within each site, a better spatial 

knowledge of these site characteristics may broaden our understanding of this biotic disturbance, 

which could increase our predictive capabilities in locating future insect outbreaks. Ultimately, 

an increased understanding of microsite conditions across the subarctic will improve our 

predictive modeling capabilities of ecosystem resilience, especially when incorporated into 

climate change models (Neilson et al., 2005).  

While my research does not include the impacts of herbivory from birds and other 

mammals on boreal range expansion at the treeline ecotone, these biotic disturbances occur both 

prior to and after seed dispersal, and are known to play a critical role in boreal tree recruitment 

(e.g., see Brown & Vellend, 2014; Davis & Gedalof, 2018; Hargreaves et al., 2019; Hulme, 

1996; Kolstad, Austrheim, Solberg, Vriendt, & Speed, 2018). Across mountainous areas of 

Europe and North America, browsing by large ungulates has a strong negative influence on tree 

growth, which can slow cone production and limit available seed (Angell & Kielland, 2009; 

Kolstad, Austrheim, Solberg, Vriendt, & Speed, 2018; Speed, Austrheim, Hester, & Mysterud, 
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2010). Additionally, bird species can further limit seed availability prior to seed dispersal by 

feeding on seeds of existing cones or hoarding them in seed caches (Tomback, 2005). Across the 

boreal forest, seedling browsing and post-dispersal seed herbivory is heavily controlled by hares 

(Lepus timidus, Lepus, americanus), squirrels (Sciurus spp., Tamasciurus spp.), and other small 

rodents (Holtmeier, 2012). In non-masting years, these species have the ability to remove most 

viable seed from a forest stand (Boutin et al., 2006; Brown & Vellend, 2014; Frei et al., 2018). 

All of these biotic disturbances are anticipated to change under continued climate warming 

(Holtmeier, 2012); yet research on how biotic disturbances like herbivory influence early life-

stage development of boreal tree species at treeline remains limited (Lett and Dorrepaal, 2018). 

Incorporating the effects of bird and mammalian herbivory on tree recruitment therefore 

represents the next logical step in understanding how disturbances influence the boreal tundra 

treeline ecotone.  

Ultimately, my research findings support initiatives by local and territorial government 

agencies, as well as conservation groups, to better understand the impacts of climate change on 

disturbance regimes and subarctic ecosystems. The baseline knowledge I provide on how 

disturbances impact successional dynamics of the northern boreal range edge will directly 

support current and future conservation efforts aimed at identifying essential habitat for barren-

ground caribou (Rangifer tarandus). Caribou represents a species that holds significant 

ecological and socioeconomic importance within the subarctic (Joly, Duffy, & Rupp, 2012; 

Mallory & Boyce, 2018). At the boreal-tundra treeline ecotone, large herds exert significant 

grazing pressures on plant communities and provide a substantial food source for large predators. 

They also play an important role in Northern recreation (e.g., tourism, hunting) and subsistence 

harvesting. While wildfire is predicted to influence the short-term seasonal migratory routes of 
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caribou populations (Mallory & Boyce, 2018), results from Chapter Two indicate the ecological 

inertia of the tundra plant community may be maintained by low-severity fires, limiting the long-

term impact on essential caribou habitat. Nevertheless, increased productivity of shrubs (Chapter 

Four) may improve habitat quality for moose, which may increase resource competition among 

large ungulate herbivores (Sharma, Couturier, & Côté, 2009) 

  

5.3 Research limitations 

 

While there are several temporal and spatial limitations to my research, most of them 

were sufficiently addressed. While I was successful in completing an extensive spatial analysis 

of the many biotic and abiotic mechanisms that can influence early-life stage boreal tree and 

shrub establishment success post-disturbance, climate at the northern range edge of the boreal 

forest remains a fundamental control on viable seed production, seedling establishment, and tree 

growth (Holtmeier, 2009). As a result, any assessment of recruitment potential conducted within 

a short time period does not sufficiently capture interannual climate variability. The frequency, 

extent, and severity of natural and anthropogenic disturbances also changes with interannual 

climate variability (Dale et al., 2001; Stevens-Rumann et al., 2018). Thus, early-life stages will 

be exposed to different degrees of disturbance pressures and severities over time. Despite not 

collecting interannual data, my research represents a “snapshot in time” and provides an essential 

spatial analysis required to further understand the relationship between changing disturbance 

regimes and subarctic ecosystem resilience. Long-term monitoring is essential to disentangle the 

effects of interannual climate variability from site conditions on boreal tree and shrub 

establishment at their range edge (Brown, Liu, Yan, & Johnstone, 2015).   
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 Like most northern ecology field research, my analyses were limited by the remote nature 

and geographic location of each study. Conducting field-based research in Yukon and 

Nunatsiavut during a three-year period posed some logistical challenges, yet all established 

research sites, especially those described in Chapter Two, can be used as long-term monitoring 

sites and will provide baseline data for future ecological studies. Furthermore, research 

conducted in Nunatsiavut supported interdisciplinary research on permafrost dynamics (Wang, 

2020), and subsistence food resource availability (Dwyer-Samuel, Hermanutz, & Cuerrier, 

unpublished data), which provided a more robust analysis of environmental change in the 

understudied coastal forests of eastern subarctic. For Chapter Three, I wanted to reach as many 

treeline ecotones as possible, which required me to establish a collaborative project. As this 

research was considered an additional component to my collaborator’s field research programs, I 

reduced the amount of time that was required for data collection, thereby decreasing data 

resolution. Nevertheless, successful data collection to support model development was 

completed. I am hopeful that, as a result of a well-defined data collection protocol for Chapter 

Three, this research will continue into the future and provide a better spatial and temporal 

understanding of insect cone granivory.  

 

5.4 Conclusion 

 
The effects of climate change-driven disturbance regimes are anticipated to impact the 

resilience of subarctic ecosystems. My research conducted across the Canadian subarctic, 

however, indicated that the severity of disturbances at the treeline ecotone was muted, suggesting 

the ecological inertia of the current plant community is maintained. I therefore speculate that 

while climate may create conditions suitable for boreal tree range expansion, a disturbance 
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induced shift in the successional trajectory is unlikely to occur at these research locations. My 

research increased our spatial understanding of the impacts that disturbances can have on life-

stage boreal tree regeneration through standardized data collection protocol. Nevertheless, as a 

result of my research questions and study designs, my ability to address regional patterns is 

somewhat limited; thus, increased efforts to further understand disturbances of different 

severities across the subarctic are warranted. Future research should also include the possibility 

of alternate successional trajectories rather than assume a return to the previous ecosystem state 

is more probable, as increased in shrub cover will likely play an important role in future post-

disturbance landscapes.  
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	Figure 3.2 Infographic of the three treeline forms that were sampled in this study. Diffuse treelines have a gradual reduction in stand density when moving toward the tundra (in this case, toward the upper edge of the image in A). Discrete exhibits no...
	Table 3.1 Treeline characterization and summary data on sampling for each study site. Treeline form was determined visually by data collectors, following protocols and definitions outlined in Bader et al. (in review). Dominant species refers to whethe...


	3.2.2 Field measurements
	Table 3.2 List of covariates that we hypothesized based on previous research were significant for insect granivory and included in our generalized linear mixed models.

	3.2.3 Laboratory methods
	3.2.4 Statistical analyses

	3.3 Results
	Figure 3.3 Summary data of (A) percent cover of moss (dark grey) and prostrate dwarf shrub (light grey) and (B) stand density (trees • m-2) for each site. Note that DAN and GSP are not included in these boxplots, as we were unable to complete all samp...
	Table 3.3 Parameter estimates with standard errors (SE) for generalized linear mixed models of cone granivory. Both models treated plot within site as a random effect. Conditional and marginal R2 values were calculated for the binomial model (Delta R2...

	Figure 3.4 Parameter estimates with standard errors (SE) for general linear mixed model output of the availability of viable seed analyses using all sites (A) and sites that were dominated by black spruce only (B). Both models treated plot within site...

	3.4 Discussion
	3.5 Acknowledgements
	3.6 References
	3.7 Supplementary Material
	Table 3.S1 Summary information for sampling sites
	Table 3.S2 Plot level summary data for each site.
	Table 3.S3 Parameter estimates and standard error (SE) of generalized linear mixed models of viability of available seed for all species (black and white spruce) and black spruce only.  Both models treated plot within site as a random effect. Signific...


	Chapter 4: Boreal tree regeneration after fire and fuelwood harvesting in coastal Nunatsiavut
	Abstract
	4.1 Introduction
	Figure 4.1 Location of our study region and the three sampling sites near Nain and Postville (insets). Sites were located within the land claim settlement region of Nunatsiavut in close proximity to the coast (< 1km). Sites are identified by shape and...

	4.2 Materials and Methods
	4.2.1 Study area
	4.2.2 Data collection
	Table 4.1 List of covariates based on previous research that we hypothesized would have an effect on seedling regeneration numbers (response variable).

	4.2.3 Statistical analyses

	4.3 Results
	4.3.1 Mature subarctic forests
	Table 4.2 Characterization of the unburned forest composition across a belt transect (5 m x 50 m) for each site, including relevant information for the cored trees. Mean DBH and Basal values are listed, as well as the average height at which the core ...
	Figure 4.2 Relationship between year of establishment (oldest on the left, youngest to the right) and DBH of all sampled trees. Sites are identified by shape and colour (BRB – green circle; TBB – blue triangle; WBB – grey square).

	4.3.2 Post-fire and harvest stand characteristics
	Table 4.3 Site level information for each burned forest, including mean data on harvesting and seedling regeneration. Organic layer (OL) measured in centimetres. Species acronyms are as follows: Pm (Picea mariana), Pg (Picea glauca), Ab (Abies balsame...

	4.3.3 Regeneration

	4.4 Discussion
	Figure 4.3 No clear relationship indicated between harvested basal area (m2 • ha-1) and number of seedlings. Site is indicated by shape and colour (BRB – green circle; TBB – blue triangle; WBB – grey square).
	Table 4.4 Parameter estimates with standard errors (SE) for generalized linear mixed models of seedlings (number of seedlings per transect; Negative Binomial distribution). Both models treated transect within site as a random effect. Significant ( = ...

	Figure 4.4 Generalized linear mixed model predicted values of seedlings as a function of the interaction between pre-fire basal area (m2 • ha-1) and percent cover of tall multi-stemmed shrub species. All lines represent the model fit to the covariates...

	4.5 Acknowledgements
	4.6 References

	Chapter 5: Conclusion
	5.1 Summary
	5.2 Key findings and future research directions
	5.3 Research limitations
	5.4 Conclusion
	5.5 References


