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Abstract: Fast-growing willows (Salix spp.) provide alternative sources of renewable energy genera-
tion, but need an adequate nutrient availability in the soil for high biomass production. In general,
species mixtures can be more nutrient-efficient than pure cultures, but this is scarcely known for
Salix spp. Therefore, this study evaluates the nutrient availability and P mobilization under two
willow species, Salix dasyclados var. ‘Loden’ and S. schwerinii × viminalis var. ‘Tora’, grown as pure
and mixed cultures at non-fertilized former arable sites in Germany (Stagnic Cambisol) and Sweden
(Vertic Cambisol). The plant availability of potassium (K), magnesium (Mg) and phosphorus (P) and
soil phosphatase activities in the topsoil were measured in spring of the year of planting (initial) and
under 4 years-old stocks (one year after the first 3-year cutting cycle). The initial plant availability of
the nutrients significantly differed between the sites and the two sampling dates at both sites. The
plant availability of K and Mg was optimal to high at both sites and sampling dates, but rather low
for P (after 4 years ≤5 mg P 100 g−1 soil). The plant-available P and K content in soil significantly
decreased within the 4 years of willow growth at both sites. The acid and alkaline phosphatase
activity in the soil of the German site (Rostock) was significantly lower after 4 years of willow growth,
but differed not significantly between the two sampling dates at the Swedish site (Uppsala). Higher
activity of acid phosphatase compared to alkaline phosphatase was recorded in the soils at both test
sites based on the site-specific soil pH (<7). The slight decrease of plant availability of P after 4 years
of Salix growth in pure culture differed not significantly between the different species. Mixed growth
did not decrease the plant availability of P within this period, although no significant difference in
the biomass production of pure and mixed growth was observed. This was valid at both sites, and
therefore, seems independent of the site-specific differences in soil and climate conditions. The gen-
eral validity of the assumptions should be tested also for other species mixtures and soil conditions in
the future before site-adapted growth designs can be recommended in biomass production of Salix.

Keywords: short rotation coppice; phosphatase activity; nutrient content; growth stages; biomass;
willow; Salix

1. Introduction

Short rotation coppices (SRCs) with poplar (Populus) and willows (Salix) species can
be established on many types of land, including marginal lands that are unsuitable for
agriculture [1,2]. SRCs offer a promising contribution to fuel wood supply, providing
an alternative to fossil fuels and other nonrenewable resources [3]. The harvest from
SRCs are usually used as feedstock in combined heat and power plants for energy genera-
tion [4,5]. Moreover, SRC plantations have ecological benefits compared to annual crops.
They improve the soil water retention, enhance biodiversity in comparison to agricultural
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monocultures, improve water quality, protect ground water, prevent soil erosion and it is a
low-input agricultural practice, thus implying low greenhouse gas emissions due to limited
applications of chemicals [6–10] SRCs have been investigated intensively for the last 20
years (reviewed by Rödl [11]). SRC are managed using agricultural techniques, including
high-density plantings and a regular cutting every 2 to 6 years without replanting [12]. The
choice of tree species for SRC is generally confined to fast-growing tree species, such as
those from the genera Populus and Salix [13]. In Europe, poplar and willow (Populus and
Salix) belong to the natural vegetation of the softwood floodplain forest [14,15]. Poplar is
typical for Western and Central European floodplains, where willow is more tolerant to
low temperatures and can grow further north and in continental climates in the east of
Europe [16].

Willows are deciduous trees or shrubs and comprise 330–500 species around the
world [17]. They adapt in cool climates and high altitudes or on wet soils [18]. Willows
require sufficient moisture supply during site establishment, while in later plantation
stages, they can adapt to dry environments with heat and drought stress [17]. Studies
have proven that willows have high tolerance to marginal or contaminated soils [6,8,19].
Willow SRCs are gaining increasing interest, because of their efficient and sustainable land
use in combination with a growing demand for biofuel resources [20]. In Sweden, willow
coppices are often used for phytoremediation where wastewaters or sewage sludge is
applied to plantations in order to reduce pollutants or excess nutrients in the water [21].

Previous studies have reported that the productivity in SRCs is determined mainly
by the soil fertility [22], soil pH (usually 5–7.5, but willow and poplar are tolerant to pH
outside this range) [23], climatic conditions, nutrient and water availability [24], plant
species and plantation density [25]. The need for fertilizers in SRCs is small compared to
conventional agricultural crops [26]. SRC yields can be maximized by establishing them
at fertile soils or by applying organic fertilizers, such as slurry, digested sewage sludge,
manure from biogas plants [27]. However, most of these products contain high levels of
nitrogen and phosphorus (P), which is risky for the leaching of nitrate and phosphate.
Many studies have shown that willows and poplars have high evapotranspiration rates and
are able to uptake large amounts of nutrients present in waste, thus allowing significant
wastewater disposal over the growing season [28]. Furthermore, some microorganisms,
mainly bacteria, are capable of converting phosphates (through solubilization and min-
eralization processes), and in turn supplying P to plants [29]. Soil enzymes such as acid
phosphatases and alkaline phosphatases aid in enzymatically mineralizing P hydrolyt-
ically [29]. These enzymes improve the P supply to plants and strengthen the activity
of many beneficial microorganisms in the adjacent soil [29]. Additionally, studies have
shown that phosphatases are involved in plant growth promotion, activity against plant
pathogens, waste remediation and metal recovery [30–33].

The cultivation area of SRCs is expected to increase in many European countries,
such as Sweden [27], Germany [34], Ireland [35] and England [25]. As the land under
SRC cultivation increases, information on the potential impact of SRC on soil quality and
nutrient use efficiency is needed. Early decreases in the nutrient availability under Salix
purpurea (cv. Hotel) within the first cutting cycle were described from a Canadian site by
Ens et al. [36].

Thus far, pure cultures of one Salix species are the common praxis, but mixed growth
was tested during the last years [37]. Species mixtures can be more efficient in the nutrient
mobilization [38], since they combine e.g., different microbial communities in the rhizo-
sphere [39]. However, the impact of mixed growth on the nutrient availability was scarcely
tested for Salix spp. thus far. We hypothesize that species mixtures of Salix can have a
higher nutrient mobilization and soil nutrient availability than pure stands by their higher
microbial diversity, and thereby, activity in the rhizosphere.

Therefore, the main aims of this study were: (i) to evaluate the impact of growth of
Salix species/varieties in pure and mixed cultures on the nutrient availability in the soil at
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two test sites with different soil and climate conditions; and (ii) to analyze the effects of
mixed vs. pure growth on soil enzymatic P mobilization by phosphatases.

2. Material and Methods
2.1. Study Sites and Soil Sampling

The SRCs selected for this study are among two of the three experimental field sites
of the ECOLINK-Salix project. The goal of this project is to investigate the relationship
between genotype diversity, genotype identity, productivity and ecosystem function [37].
The two SRC sites are located in Uppsala in Central Sweden (59◦49′ N 17◦39′ E) and Rostock
in Northern Germany (54◦02′ N 12◦05′ E). These two field sites with different climatic
and soil conditions were selected to test whether the effects of Salix species and mixture
are common or limited to defined conditions only. The dominating soil type at the site in
Uppsala is a Vertic Cambisol and was previously arable farmland. The area of 4147 m2 is
divided into 45 plots (92.16 m2 in size). In 2014, 6480 trees of four different species/varieties
were planted on this site. The species/variety pool of the trial in Uppsala includes four
different Salix varieties partly belonging to different species [37], of which the pure and
mixed culture for two of them was selected for the present study: Salix dasyclados var.
‘Loden’ (acronym L) and S. schwerinii × viminalis var. ‘Tora’ (T), based on their significant
physiological differences [37]. The mean annual precipitation sum between March and
October of 2014 to 2016 was 374 mm and the mean annual temperature between March and
October of 2014 to 2016 was 11.0 ◦C in Uppsala. Samples from the trial in Uppsala were
collected in an early stage (initial plantation year, 2014) and late plantation stage (after the
first cutting cycle, 2018) of the plantation.

The site in Northern Germany near Rostock was previously used as arable farmland
and is established on a Stagnic Cambisol. The area of 829 m2 is smaller than in Uppsala, due
to space and funding restrictions, which strongly compromised the trial size [37]. However,
the plot size remained the same as in Uppsala, resulting in nine plots in Rostock. As a
consequence of the smaller size of the trial area, the number of trees planted in 2014 was
reduced to 1296, comprising only two species/varieties of Salix [Tora (T) and Loden (L)]
instead of four [39,40]. The mean annual precipitation sum between March and October of
2014 to 2016 was lower in Rostock than Uppsala, with 281 mm, whereas the mean annual
temperature between March and October of 2014 to 2016 was higher at 13.3 ◦C. Samples
from the trial in Rostock were collected in an early stage (initial plantation year, 2014) and
late plantation stage (after the first cutting cycle, 2018) of the plantation.

2.2. Planting Design and Sample Collection

In preparation for the experiment, both sites were treated with Roundup (glyphosate,
4 L ha−1) in order to kill any existing weeds in the trial areas, which were subsequently
cultivated with a rotavator prior to planting [37]. The planting of the 18 cm long stem
cuttings was carried out manually [37]. All the cuttings were obtained from the same stock
and were soaked in water for two days before being planted in such a way that the tips of
the cuttings were flush with the surface [37]. In the beginning, the trial sites were weeded
by hand; later, the weeds were controlled by mowing between the rows of plants when
necessary [37]. No additional nutrient fertilizers were applied [37].

The planting set up on both the sites was a randomized block design with three
replicates (blocks). The blocks in Uppsala have 15 plots each (i.e., four species/varieties
and three replicates), whereas the blocks in Rostock consist of three plots [40]. The four
(Uppsala) or two (Rostock) species/varieties of Salix were planted in every possible combi-
nation. Thus, some plots were planted with only one variety (e.g., L or T) pure cultures,
some with mixtures of two varieties (e.g., LT) and, in Uppsala, even plots with three or
four varieties were planted [37].

The patterns in which the cuttings were planted differed according to the number of
species/varieties in the plots: if there were two species/varieties, they were planted in a
checker board pattern; if there were three or four species/varieties, their planting positions
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were randomized, although with the single restriction that no two individuals of the same
species/variety should be planted directly next to each other in one row [37]. Twelve rows
of twelve plants were fit into the 9.6 m × 9.6 m plots with every other row being set off [37].
This led to a hexagonal planting pattern with 0.8 m between every plant.

The selected two Salix species/varieties display contrasting characteristics (Weih and
Nordh, 2002). For example, S. schwerinii × viminalis var. ‘Tora’ (T) is generally high-
performing but less stress resistant, while S. dasyclados var. ‘Loden’ (L) is sturdier and more
stress-tolerant.

Soil samples were taken with a soil corer (3 cm diameter) down to 10 cm soil depth
with five replicates per plot in spring 2014 and 2018. The early plantation stage was defined
as the year of establishment of the short rotation coppice (initial, 2014). The late plantation
stage was defined as the year after the first cutting cycle (after four years of growth, 2018).

This soil depth was selected, since the highest fine root density of Salix spp. was
revealed in this range [41], and therefore, the highest soil ecological impacts were assumed
at this depth. For the soil chemical analyses, soil was sieved <2 mm. Soil phosphatases
were measured in fresh wet soil. All other soil chemical properties were measured in
air-dried soil.

2.3. Biochemical Analyses of Soil

The activity of acid and alkaline phosphatases in the soil were determined colorimetri-
cally according to [42]. The enzyme activities were expressed as µg p nitrophenol (pNP) g−1

soil h−1 released from the pre-given substrate solution (p-nitrophenyl-phosphate) within
one hour of incubation in modified universal buffer with pH 6.5 (for acid phosphatases)
and pH 11 (for alkaline phosphatases) in April 2014 and April 2018.

2.4. Chemical Analyses of Soil

The total carbon (TC) and total nitrogen (TN) concentrations of soil samples were
determined by dry combustion using a VARIO EL analyzer (Vario EL Fa. Foss Heraeus,
Hanau, Germany). The concentration of SOC was valued by deducting the separately
determined inorganic C (dissolution with HCl and volumetric CO2-determination) from
the concentration of TC.

The soil pH was measured in a 0.01 M CaCl2 solution using a soil:solution ratio of w/v
1/2.5. Double lactate-extractable P (Pdl), Mg (Mgdl) and K (Kdl) were considered to be the
plant-available P fractions (e.g., [43]) and were determined by extracting P, Mg and K from
12 g soil with 150 mL lactate solution (C6H10CaO6 * H2O + 10 N HCl) according to [44].
Concentrations of P, Mg and K were determined with inductively coupled plasma-optical
emission spectroscopy (ICP-OES, Optima 8300, Perkin Elmer, Waltham, MA, USA) at
wavelengths of 214.914 nm, 285.213 nm and 766.490 nm, respectively.

2.5. Biomass Measurements

During the late winter of 2016/2017, i.e., three growing seasons after planting, here
representing the “late plantation stage”, all individual shoots within a central measurement
area of 8.0 m × 3.2 m of each plot were cut at 0.1 m above ground and weighed in fresh
condition (fresh weight). A stratified sample of 30 shoots per species/variety was done
among the plants situated outside the central measurement area of all pure culture plots
to determine the relationships between fresh and dry weights of shoots separately for
all species/varieties. The dry weights (biomasses) of the stratified sample shoots were
determined after oven-drying at 70 ◦C for 96 h, and the species/variety specific regressions
between the fresh and dry weights of the stratified samples were used to estimate the
biomasses of all individual shoots sampled within the central measurement area of all
plots [37].
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2.6. Statistical Analyses

The effect of the site, the growth design and their interactions on the soil properties
were analyzed by two-way ANOVA using the software PAST [45]. Statistical analysis was
performed using the Statistica software package (version 13.0, StatSoft, Tulsa). Principal
Component Analysis (PCA) was performed using R package. The samples used in the
PCA were attributes (mean values) measured in two test sites (Rostock and Uppsala), two
plantation stages (early and late) and three species identity and culture conditions (‘Loden’
pure culture, ‘Tora’ pure culture and a mixture of ‘Loden’ and ‘Tora’). The attributes
analyzed in the present study were: alkaline phosphatase activity, acidic phosphatase
activity, willow biomass and plant-available K, Mg and P content in the soil.

3. Results
3.1. Plant-Available Nutrient Contents (K, Mg and P) in the Soil

The initial plant-available concentrations of K and Mg in the soil differed significantly
between the two test sites and between the early and late plantation stage per test site
(Table 1). The plant-available concentration of P was low and at the same level at both test
sites (Figure 1). The plant-available concentrations of P and K in soil significantly decreased
with the progressing willow growth (initial vs. 4 years of growth) at the test site Rostock
(Figure 1 and Table 1).

Table 1. Nutrient contents (K, Mg and P) in mg/100 g soil in in sampling sites (a) Rostock and (b) Uppsala initally and
after 4 years for each species identity and cultivation condition (Loden, Tora and their mixture). The biomass of the willow
species was measured after harvest (kg dry matter per plot).

(a) Rostock

Species Initial After 4 Years Biomass (First
Harvest)

K (mg/100 g) Mg (mg/100 g) P (mg/100 g) K (mg/100 g) Mg (mg/100 g) P (mg/100 g) (kg dry
matter/plot)

Loden [L] 13.4 ± 6.1 25.2 ± 9.5 6.8 ± 1.6 A 10 ± 2.2 20.4 ± 3.8 4.4 ± 0.01 B 16.14 ± 4.94
Tora [T] 32.9 ± 10.7 A 27.5 ± 5.9 5.8 ± 0.9 A 10.7 ± 3 B 22.0 ± 0.3 4 ± 0.1 B 30.71 ± 11.94

Loden, Tora [LT] 23.5 ± 14.3 21.4 ± 9.4 5.2 ± 1.9 10.2 ± 3.6 21.1 ± 4.3 4.4 ± 1.1 19.57 ± 5.21

(b) Uppsala

Species Initial After 4 Years Biomass (First
Harvest)

K (mg/100 g) Mg (mg/100 g) P (mg/100 g) K (mg/100 g) Mg (mg/100 g) P (mg/100 g) (kg dry
matter/plot)

Loden [L] 17.6 ± 3.3 25.9 ± 1.6 B 5.1 ± 0.3 A 22.2 ± 2 * 32.1 ± 1.8 A* 4.3 ± 0.2 B 11.19 ± 5.14
Tora [T] 16.6 ± 2 27.7 ± 3.3 4.5 ± 0.6 19.9 ± 3.6 * 28.8 ± 3.3 * 3.6 ± 0.4 13.67 ± 2.89

Loden, Tora [LT] 17.8 ± 4.1 30.8 ± 12.3 6.0 ± 2.4 23.6 ± 4.6 * 27.9 ± 6.9 5.0 ± 1.8 13.76 ± 4.74

Soil properties were compared by site, growth stages (early and late plantation stage) and species (plots: L—Loden, T—Tora and LT—
mixture). Values are means ± SDs (n = 3). The significant differences with p < 0.05 are marked by the following symbols: *—differences
between sites, small letters—differences between species within one site, capital letters—differences between growth stages within one site.

Conversely, the amount of plant-available Mg in Uppsala soils increased from early to
late plantation stages mainly under Loden (Figure 1). The plant-available concentration
of K at the test site Uppsala was significantly higher than at the test site Rostock (see
Tables 1 and 2). Likewise, the plant-available concentration of Mg in soil was higher in
pure culture (Loden and Tora) in Uppsala in comparison to Rostock after 4 years of growth.
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Figure 1. Nutrient levels increase/decrease between the years 2014 and 2018 in the soil at the two
sites (Rostock and Uppsala). Small letters represent significant differences between the Salix species
or the growth design on the same sampling site and capital letters represent the significant difference
between sampling sites.

Table 2. Results of the two-way analysis of variance (ANOVA) on the effect of site, the growth design
(with different host plant diversity; pure vs. mixture) and their interactions (site × growth design)
on soil properties under Salix in spring 2014 (initial) and spring 2018 (after 4 years of growth).

Parameter Site Initial 4 Years Growth Design Initial
4 Years

Site × Growth Design
Initial 4 Years

Plant-available P
content

p 0.304 0.950 0.603 0.249 0.335 0.590
F 1.15 0.004 0.53 1.56 1.20 0.335

Plant-available Mg
content

p 0.092 <0.001 0.612 0.747 0.101 0.495
F 3.36 20.48 0.51 0.29 2.79 0.74

Plant-available K
content

p 0.020 <0.001 0.053 0.702 0.039 0.536
F 7.15 606.01 3.79 3.94 4.28 7.13

Alkaline
phosphatase activity

p 0.378 <0.001 0.928 0.065 0.344 0.184
F 0.84 95.30 0.07 3.45 1.17 1.95

Acid phosphatase
activity

p 0.200 <0.001 0.016 0.513 0.147 0.297
F 1.84 198.20 5.92 0.71 2.26 1.34

3.2. Acid and Alkaline Phosphatase Activity in the Soil

The site and the growth design affected the activities of acid and alkaline phosphatases
significantly (Table 2). The alkaline phosphatase activity in the soil Rostock was signifi-
cantly higher at the early plantation stages, and a significance between species (mainly in
Loden) was observed (Figure 2). In the late plantation stage, the soils showed very low
activity, specifically in the soil under Loden and under the mixture. Initially, under Loden,
significantly higher alkaline phosphatase activity in the soil was revealed at the test site
Rostock (Figure 2), while after 4 years under Tora and Loden, significantly higher activities
were measured than under the mixture at the test site Uppsala.
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The activity of acid phosphatases significantly increased in the early plantation stages
of willow species than in the late plantation stages in Rostock (Figure 2). The highest
activity in soil was observed in plots with the mixed culture plots (LT) in comparison to the
plots with monocultures Tora and Loden. No significant differences were observed among
the monocultures and mixed culture plots in the early nor in the late plantation stages
in Uppsala. Only plots with Loden displayed a statistical significance, with the highest
activity in the late plantation stage. Overall, the acid phosphatase activity was the lowest
at the late plantation stages of species in Rostock. On average, the activity in the early
plantation stage was approximately 320 µg p-nitrophenol g−1 DM h−1, whereas in the late
plantation stage, it lowered to an average of approximately 130 µg p-nitrophenol g−1 DM
h−1. A significantly high phosphatase activity was seen in the late plantation stages of
willow species in Uppsala. Similarly, this activity was the lowest in Rostock.

Overall, a significantly higher acid phosphatase production was recorded at both the
investigated sites compared to alkaline phosphatase production (Figure 2).
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Figure 2. The alkaline phosphatase and acid phosphatase activity [µg p-nitrophenol g−1 DM h−1] in soils obtained from
Rostock and Uppsala. The data present comparisons between two sites, Rostock (on the left site) and Uppsala (on the right),
between growth stages (initial and after 4 years) and species (plots: L—Loden, T—Tora and LT—mixture). Values are means
± SDs (n = 3). The significant differences with p < 0.05 are marked by the following symbols: small letters—differences
between species within one site, capital letters—differences between initial and after four years. DM—dry matter.

Regardless of the tested parameters, approximately 55% of the total variance was
explained by the first two components in the PCA analysis (Figure 3). The PCA analysis
revealed that the samples were differentiated mainly based on the test sites, i.e., Rostock
and Uppsala. A positive tendency towards the increase in willow biomass production was
observed for Rostock samples with higher acid and alkaline phosphatase activity.
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4. Discussion

Short rotation coppices (SRCs) generate crops used in renewable energy generation in
Europe. The success of SRC establishment can be assessed by studying the adaptability
of crops by monitoring their growth, climate and site conditions. Factors such as climate,
soil nutrient availability, plant species and growth design may significantly influence plant
nutrient cycling and overall biomass production. This study investigated the Ecolink
SALIX SRC plantations located in Germany (Rostock) and Sweden (Uppsala). Both test
sites were maintained in a similar way and planted with same two Salix species and
their mixture. We analyzed the effect of the growth design on the plant availability and
hydrolytic mobilization of P at the year of planting and after 4 years of growth, including
the first harvest. The test cultivars Loden and Tora were selected for our experiment
because they are both phenotypically and genotypically very distinct Salix species. Loden



Forests 2021, 12, 1226 9 of 13

is rather slow-growing but more stress-tolerant, while Tora is generally high-performing
and less stress-tolerant [37].

The initial concentrations of plant-available nutrients (Mg, K and P) at both test sites
in the present study were high compared to the recommended level for arable crops [44]
for Mg and K, but below the recommended level (10–18 mg P/100 g soil) for an optimal P
supply. The plant-available concentration of Mg in the soils of Rostock and Uppsala was
even higher than the recommended value of >19, i.e., to 32 mg/100 g soil for an optimal
plant supply [44]. Moreover, the soil of the test site Rostock displayed high initial levels of
plant-available K concentrations (see Table 1).

Overall, the biomass production at the test site Rostock was higher than at the test
site Uppsala; however, no significant differences were observed between species and pure
vs. mixed culture plots [37]. The biomass production was not correlated with the plant-
availability of one of the tested nutrients (Mg, K, P); however, a correlation between the
phosphatase activities and the biomass production was indicated (see Figure 3).

In agreement with Ens et al. [36], we measured significantly decreased plant-available
P concentrations in the soil under the pure stands after the first cutting period, and a
significant site effect on the P cycling (phosphatase activities, see Table 2) was observed.
However, significant differences were observed for soil nutrient concentrations (mainly P
and K) between the initial stage early and after four years of growth at both test sites (see
Table 1). The acid and alkaline phosphatase activities decreased strongly from the initial
level to the 4-year growth stage, which might be caused by the former grassland vegetation
with a higher fine root density [46].

A general effect of the species and the growth design on the phosphatase activity
under Salix is in agreement with the results of the mycorrhizosphere observation by Baum
et al. [47]. However, only two Salix species were investigated in the present study due to the
limitation of available plant variants at the test site Rostock in Germany (only Loden and
Tora were present). Increased number of plant species and a higher amount of diversity
in the mixtures (three or more species) might have increased the validity of the present
information. Furthermore, a joint impact of the P and N supply might be assumed [36] and
was not investigated in the present study.

The initial nutrient surplus at the arable test sites in Sweden and Germany agrees
with results of former investigations of SRC [48] and underlines no need for fertilization
in the first cutting period at such sites. This is because formerly arable farmland was
usually regularly fertilized, which often results in high nutrient contents [49]. The nutrient
concentrations in the soil changed significantly within the first four years (see Table 1).
The cultivar Loden, which was included in the present study, is frequently reported with
great potential in nutrient acquisition from soil, especially nitrogen and increased biomass
production when paired with other Salix species [40]. The analysis of the P content in
soil of both the sampling sites showed a significant decrease from early plantation to
late plantation stage, which might suggest that Loden is efficient in P uptake. Since both
experimental sites were not fertilized after willows were planted, most of the P present is in
organic or low soluble form, which is not easily accessible to plants. P depletion in Uppsala
and Rostock was also paired with a significant increase and decrease of acid phosphatase
activity, respectively (see Figures 1 and 2). This inconsistency might suggest that acid
phosphatase activity is not strongly connected with P supply in soil, but may be connected
with other factors. Study performed by Criquet et al. [50] revealed that increased leaf litter
moisture is positively correlated with acid phosphatase activity. Additionally, experiments
performed in three forest ecosystems in China showed that increased precipitation during
the dry season had a positive effect on enzyme activity [51]. The cultivar Tora showed
slightly fewer prominent differences from the initial nutrient availability to the level after
the first cutting cycle; only in Rostock site it differed in both P and Mg between these two
sampling dates. Although P depletion was not as severe as for Loden, the plant-available
Mg content decreased by almost two-fold compared to the initial content.
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Of note, differences were observed in willow biomass production at the two test
sites, which may be due to the varying nutrient concentrations in soils. Most of the plant-
available nutrient concentrations (Mg and P) were decreased in the soil within the first
cutting period, although the level of K varied at both the test site and growth stages. The
PCA analysis revealed that biomass was positively correlated with P and K during the
early plantation stage and negatively with late plantation stage concentration of P and
K (Figure 3). The correlation was prominent, although we observed K depletion in one
experimental site and an increase in the other site. Willows are known to efficiently uptake
organic P when paired with ectomycorrhizal fungi [52]. This suggests that the presence
of these two compounds during early plantation stages is key to reaching higher biomass
production efficiency in later plantation stages. Additionally, the K content was in direct
correlation with alkaline and acid phosphatase activity in the early and late plantation
stages, respectively, thus indicating that changes in phosphatase activity are not bound
to soil P concentration but to other, more complex sets of factors. High correlation of
plant-available K with phosphatase activity is probably connected with its important
role as a co-factor of many enzymes. Tabaldi et al. [53] investigated the effect of various
metals on Cucumis sativus L., e.g., Zn, K and Na. As a result, they observed increased acid
phosphatase activity in higher presence of K ions.

Acid phosphatase activity was about three-fold higher than alkaline phosphatase.
According to measurements performed in our previous study, pH on both sampling site
is around 6 (measurements done at 2018 and 2019) [39], which promotes the activity of
acid phosphatases. pH in which acid phosphatase is active is between 4.5–6, whereas for
alkaline, this is 8–11 [54]. Additionally, the pH value in SRCs is known to drop slowly
with time, which further promotes the activity of acid over alkaline phosphatase [55].
Another very important factor in acid phosphatase activity is the presence of arbuscular
and ectomycorrhizal fungi. Baum et al. [47] pointed out the impact of both mycorrhiza
types on various factors, including acid phosphatase activity. Loden was mostly colonized
by ectomycorrhizal fungi and showed higher acid phosphatase activity in pure cultures,
while Tora was colonized by arbuscular mycorrhizal fungi with slightly lower activity.
Additionally, they reported that mixed growth of Salix possessed higher phosphatase
activity than monocultures [47]. The abovementioned factors contribute to increased P
mobilization and were in agreement with the insignificant decrease of the plant-available P
concentrations in the soil under mixed growth of Salix species within the first cutting cycle
in the present study.

5. Conclusions

The site impacts are the main controls of the changes in the concentrations of plant-
available nutrients under Salix. The changes of the plant availability of P within one
cutting cycle are generally low, independently of the site and growth design. Mixed
growth of Salix species promotes the activity of alkaline phosphatases in P-deficient soil
conditions. The impact of the growth design on the nutrient cycling differs significantly
and site-specifically in the direction and amplitude. The future challenge will be to select a
site-specific optimized growth design.
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