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Abstract

Summary: Since its introduction, RNA-Seq technology has been used extensively in studies of pathogenic bacteria
to identify and quantify differences in gene expression across multiple samples from bacteria exposed to different
conditions. With some exceptions, tools for studying gene expression, determination of differential gene expression,
downstream pathway analysis and normalization of data collected in extreme biological conditions is still lacking.
Here, we describe ProkSeq, a user-friendly, fully automated RNA-Seq data analysis pipeline designed for prokar-
yotes. ProkSeq provides a wide variety of options for analysing differential expression, normalizing expression data
and visualizing data and results.

Availability and implementation: ProkSeq is implemented in Python and is published under the MIT source license.
The pipeline is available as a Docker container https://hub.docker.com/repository/docker/snandids/prokseq-v2.0, or
can be used through Anaconda: https://anaconda.org/snandiDS/prokseq. The code is available on Github: https://
github.com/snandiDS/prokseq and a detailed user documentation, including a manual and tutorial can be found at
https://prokseqV20.readthedocs.io.

Contact: snandi@ggn.amity.edu. or maria.fallmamn@umu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Motivation

The advancement of massive parallel sequencing and dramatic re-
duction in sequencing costs have made deep sequencing of RNA
(RNA-Seq) a primary tool for identifying and quantifying RNA
transcripts. Today RNA-Seq is widely used to analyse bacterial gene
expression in studies that aim to identify drug targets, predict novel
gene regulatory mechanisms, etc. Such studies often require pro-
found knowledge of both computational data handling and biology.
There are some stand-alone pipelines and tools that require only
moderate knowledge of bioinformatics (Delhomme et al., 2012;
Prieto and Barrios, 2020), but these are not designed for analyses of
bacterial gene expression.

Prokaryotic RNA-Seq analysis is challenging because most avail-
able RNA-Seq packages assume the input data reflect eukaryotic
gene structures, which in many aspects differ from those of prokar-
yotes (Johnson et al., 2016). Bacterial transcripts do not have
introns and are not alternatively spliced; therefore, using an aligner
developed to consider splice junctions often increases falsely
assigned reads in the genome (Magoc et al., 2013). Moreover, unlike

in eukaryotes, under specific stresses, the expression of almost all
prokaryotic genes can change (Creecy and Conway, 2015).
Furthermore, quality trimming, adapter removal and normalization
of skewed data are often required for prokaryotic data due to varia-
tions in experimental setups, the presence and overexpression of
plasmid genes and differences in RNA-Seq protocols (Magoc et al.,
2013; McClure et al., 2013).

Although there are a few software packages available for prokar-
yotes that can facilitate the analysis of RNA-Seq data, such as
SPARTA (Johnson et al., 2016), EDGE-pro (Magoc et al., 2013)
and RockHopper (McClure et al., 2013), all require substantial
knowledge of data handling. Therefore, to reduce human interven-
tion in conducting RNA-Seq data analysis for prokaryotes, we
developed ProkSeq, a fully automated command-line based work-
flow by integrating various available tools and built-in functions
written in Python. ProkSeq integrates short read aligner bowtie2
(Langmead and Salzberg, 2012) with its default parameter as well as
Salmon (Berghoff et al., 2017) as an option for (pseudo-)alignment.
It provides normalized expression value to compare within and be-
tween samples, options to remove unwanted variation (RUV) (Risso
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et al., 2014) and average nucleotide count normalization for differ-
ential expression (Creecy and Conway, 2015). In addition, ProkSeq
supports downstream Gene Ontology (GO) (Gene Ontology
Consortium, 2008) and KEGG pathway enrichment analyses
(Kanehisa and Goto, 2000). ProkSeq processes RNA-Seq data from
quality control steps to pathway enrichment analysis of differential-
ly expressed genes (Fig. 1). It provides a wide variety of options for
differential expression, normalized expression and visualization,
and produces figures. Reduced human intervention and multithread-
ing feature makes the use of ProkSeq less time consuming than the
sequential application of separate tools, which often requires refor-
matting data.

2 Implementation

ProkSeq runs in a Linux-based command-line environment and
depends on user-defined parameters and sample files. The tools used
in the pipeline are set with their default parameters. However, more
advanced users can adjust the parameters of the tools to control the
functionality. The sample file indicates the names of the fastq files to
be included in the analysis, and also defines the experimental classes,
such as treatment and control samples. ProkSeq first checks the
quality of reads and filters out low-quality reads using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and
afterQC (Chen et al., 2017). It maps the reads to the reference gen-
ome using bowtie2 and its default parameters for both single and
paired-end reads. ProkSeq then generates a report on the alignment
quality for each library, as both figures and text, providing informa-
tion about coverage uniformity, distribution along protein-coding
sequences, and 5’ and 3’ UTR regions, as well as the read duplica-
tion rate and strand specificity generated by RSeQC (Wang et al.,
2012). Total reads per gene are calculated with featureCounts (Liao
et al., 2014), which provides a high efficiency of read assignments
across the genome. ProkSeq also calculates normalized gene expres-
sion values for each gene, in the form of transcripts per million

(TPM) and counts per million (CPM) (Wagner et al., 2012). The for-
mulas by which these are calculated are explained in the
Supplementary Methods (S1).

ProkSeq integrates several tools for differential expression ana-
lysis, such as DESeq2 (Love et al., 2014), edgeR (Robinson et al.,
2010) and NOISeq (Tarazona et al., 2015). For downstream ana-
lysis of differentially expressed genes, ProkSeq uses GO enrichment
and pathway enrichment by integrating clusterProfiler (Yu et al.,
2012). Reports on pre- and post-alignment quality statistics and
graphical visualization are created in pdf and HTML formats. One
important unique feature of ProkSeq is the integration of RUV nor-
malization and average nucleotide count methods for skewed data
(Creecy and Conway, 2015; Zhu et al., 2019). Furthermore, the
package generates a single-nucleotide resolution wiggle file for visu-
alization in any genome browser. ProkSeq generates graphics and
figures at every step of data analysis to give the user more confidence
in and understanding of their data. The methods are described in de-
tail in the Supplementary Methods (S1).

3 Discussion

ProkSeq has been designed to meet researchers with moderate bio-
informatics knowledge for analysing RNA-Seq data in a reliable and
time-efficient way. RNA-Seq data can provide much more informa-
tion than simply the differential expression of known coding sequen-
ces. Exploring RNA-Seq reads to single-nucleotide resolution across
the genome can provide information about biological events other
than gene expression. ProkSeq offers easy access to genome-wide
visualization of RNA-Seq data. Visualization of read mapping will
reveal expression from unannotated genomic regions and intergenic
regions, including 5’ and 3’ UTRs, which is of great interest in rela-
tion to novel transcriptional and translational regulation. Other
tools for revealing this type of information that are available today
(Supplementary Table S1) usually require substantial competence in
bioinformatics and lack some of the options available in ProkSeq.
Furthermore, integration of Salmon in the process gives the user one
of the most up-to-date methods of estimating transcript abundance.
Salmon uses a realistic model of RNA-Seq data that takes into ac-
count not only experimental attributes but also biases commonly
observed in RNA-Seq data (Bergoff et al., 2017). Users can quickly
extract transcript abundance and subsequent differential expression
data by opting to use salmon.

ProkSeq provides an option for batch effect identification and
normalization. An essential difference between eukaryotes and pro-
karyotes that can cause problems when analysing prokaryotic gene
expression using tools optimized for analyses of eukaryotic cells is
the relative number of differentially expressed genes. Most often,
tools such as DESeq2, edgeR and Limma (Dillies et al., 2013) are
designed with the assumption that the number of genes is constant
in eukaryotes. But in prokaryotes, the expression of the majority of
genes can be altered under specific stress conditions (Berghoff et al.,
2017; Creecy and Conway, 2015). To address this bias, ProkSeq
normalizes the data at the level of nucleotide base count making the
data comparable across samples. ProkSeq provides two normaliza-
tion options that can handle differential expression analyses of this
type of data, which are described in detail in the Supplementary
Methods (S1).

The built-in automatic sequential handling of the data from dif-
ferential gene expression analysis to downstream functional analyses
allows researchers to focus on complex biological mechanisms in-
stead of tackling bioinformatics obstacles. The flexibility that comes
with built-in options for certain steps and the visualization of
mapped reads across genomes opens a path to new discoveries in
gene regulation as well as in RNA biology.
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