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Abstract: We developped an open source library called RcdMathLib for solving multivariate linear
and nonlinear systems. RcdMathLib supports on-the-fly computing on low-cost and resource-
constrained devices, e.g., microcontrollers. The decentralized processing is a step towards ubiquitous
computing enabling the implementation of Internet of Things (IoT) applications. RcdMathLib is
modular- and layer-based, whereby different modules allow for algebraic operations such as vector
and matrix operations or decompositions. RcdMathLib also comprises a utilities-module providing
sorting and filtering algorithms as well as methods generating random variables. It enables solving
linear and nonlinear equations based on efficient decomposition approaches such as the Singular
Value Decomposition (SVD) algorithm. The open source library also provides optimization methods
such as Gauss–Newton and Levenberg–Marquardt algorithms for solving problems of regression
smoothing and curve fitting. Furthermore, a positioning module permits computing positions of
IoT devices using algorithms for instance trilateration. This module also enables the optimization of
the position by performing a method to reduce multipath errors on the mobile device. The library is
implemented and tested on resource-limited IoT as well as on full-fledged operating systems. The
open source software library is hosted on a GitLab repository.

Keywords: singular value decomposition; trilateration; Gauss–Newton; Levenberg–Marquardt;
multipath recognition and mitigation; positioning; RIOT-OS; microcontrollers; embedded systems;
Internet of Things

1. Introduction

Algorithms and scientific computing are workhorses of many numerical libraries that
support users to solve technical and scientific problems. These libraries use mathematics
and numerical algebraic computations, which contribute to a growing body of research
in engineering and computational science. This leads to new disciplines and academic
interests. The use of computers has accelerated the trend as well as enhanced the deploy-
ment of numerical libraries and approaches in scientific and engineering communities.
Originally, computers were built for numerical and scientific applications. Konrad Zuse
built a mechanical computer in 1938 to perform repetitive and cumbersome calculations.
A specific problem, from the area of static engineering, requires performing tedious cal-
culations to design load-bearing structures by solving systems of linear equations [1].
Howard Aiken independently developed an electro-mechanical computing device that can
execute predetermined commands typed on a keyboard in the notation of mathematics
and translated into numerical codes. These are stored on punched cards and perforated
magnetic tapes or drums [2,3].

The first software libraries of numerical algorithms were developed in the program-
ming language ALGOL 60 including procedures for solving linear systems of equations
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or eigenvalue problems [4]. This software was rewritten in FORTRAN and ported to the
LINPACK and EISPACK software packages [5,6]. Cleve Moler implemented a user-friendly
interface to enable his students an easy access to LINPACK and EISPACK without writing
Fortran programs [7]. He called the interface MATLAB (Matrix Laboratory), which was so
successful that he founded a company called MathWorks. MATLAB is now a full-featured
computing platform.

Ubiquitous computing on resource-limited devices has become an important issue
in the Internet of Things (IoT) and the Machine to Machine (M2M) communication tech-
nologies, enabling the implementation of various applications such as health monitoring
or vehicle tracking and detection. IoT is an emerging and challenging technology that
facilitates the realization of computing services in various areas by using advanced com-
munication protocols, technologies, and intelligent data analytical software [8]. The M2M
communication in combination with the Radio-Frequency Identification (RFID), localiza-
tion, observation by sensors, and controlling of actuators provide context-aware intelligent
decisions as well as high-quality services. Computing plays a key role in implementing
such applications, particularly by applying local and decentral processing on mobile and
ubiquitous devices. This affords in-network and local context-aware decisions without the
use of external computing services (e.g., cloud services). Therefore, we provide an open
source software library for numerical linear algebra called RcdMathLib (Mathematical
Library for Resource-constrained devices) [9]. This software library is suitable for devices
with limited resources such as microcontrollers or portable computing devices. These
devices are mostly low-cost, are equipped with low-end processors, and have limited
memory and energy resources. RcdMathLib supports a decentralized and on-the-fly nu-
merical computing locally on a mobile device. The decentralized numerical calculations
allow for pushing the application-level knowledge into the mobile device and avoiding
the communication as well as the calculation on a central unit such as a processing server.
The decentralization allows for the reduction of latency and processing time as well as
enhancing the real-time capability because the length of the path to be traveled from data
are shortened. Furthermore, RcdMathLib provides useful algorithms such as the Singu-
lar Value Decomposition (SVD) which has become an indispensable tool in science and
engineering [10]. SVD is applied for image compression and restoration or biomedical
applications, for example, noise reduction of biomedical signals [11].

RcdMathLib allows for computing on mobile devices as well as embedded systems pro-
viding algorithms for the solution of linear and nonlinear multivariate system of equations.
The solution of these equation systems is achieved by using robust matrix decomposition
algorithms. The software library offers an optimization module for curve fitting or solving
of problems of regression smoothing. Applications can be built and organized as modules
using the RcdMathLib, therefore, we offer a localization module. This is an application
module for distance- and Direct-Current (DC)-pulsed, magnetic-based localization systems.
The localization module allows for a position estimation of a mobile device. Localiza-
tion enables the realization of context-aware computing applications in combination with
mobile devices. In this sense, the software library enables the computation of the local-
ization on mobile systems. RcdMathLib also enables the optimization of the estimated
location by using an adaptive approach based on the SVD, Levenberg–Marquardt (LVM)
algorithms, and the Position Dilution of Precision (PDOP) value [12–14]. In addition, the
localization module provides an algorithm for the multipath detection and mitigation
enables an accurate localization of the mobile device in Non-Line-of-Sight (NLoS) scenarios.
RcdMathLib can be also used on a full-fledged device such as a Personal Computer (PC) or
a computing server.

In this article, we will present the RcdMathLib as well as briefly address the difficulties
by using linear algebra methods and the techniques to overcome the limitation of resource-
constrained devices. Our main contributions are:

• An open source library for numerical computations on resource-limited devices and
embedded systems. The software permits a user or a mobile device to solve multivari-
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ant linear equation systems based on efficient algorithms such as the Householder or
the Moore–Penrose inverse. The Moore–Penrose inverse is implemented by using the
SVD method.

• A module for solving multivariant nonlinear equation systems as well as optimiza-
tion and curve fitting problems on a resource-contained device on the basis of the
SVD algorithm.

• A utilities-module provides various algorithms such as the Shell sort algorithm or the
Box–Muller method to generate normally distributed random variables.

• A localization module for positioning systems that use distance measurements or
DC-pulsed, magnetic signals. This module enables an adaptive, optimized localization
of mobile devices.

• A software routine to locally reduce multipath errors on mobile devices.

Guckenheimer perceived that we are conducting increasingly complex computations
built upon the assumption that the underlying numerical approaches are complete and
reliable. Furthermore, we ignore numerical analysis by using mathematical software
packages [15]. Thus, the user must be aware of the limitations of the algorithms and be
able to choose appropriate numerical methods. The use of inappropriate methods can
lead to incorrect results. Therefore, we briefly address certain difficulties by using linear
algebra algorithms.

The remainder of this article is structured as follows: Firstly, we review related works
in Section 2. We present the architecture as well as describe the modules of the software
library in Section 3. We introduce the implementation issues in Section 4 and the usage of
the RcdMathLib in Section 5. In Section 6, we evaluate the algorithms on a resource-limited
device and on a low-cost, single-board computer. Finally, we conclude our article and give
an outlook on future works in Section 7.

2. Related Work

Computing software especially for linear algebra is indispensable in science and engi-
neering for the implementation of applications like text classification or speech recognition.
To the best of our knowledge, there are few mathematical libraries for resource-limited
devices, and most of them are limited to simple algebraic operations.

Libraries for numerical computation such as the GNU Scientific Library (GSL) are suit-
able for Digital Signal Processors (DSPs) or Linux-based embedded systems. For example,
the commercially available Arm Performance Libraries (ARMPL) offer basic linear algebra
subprograms, fast Fourier transform routines for real and complex data as well as some
mathematical routines such as exponential, power, and logarithmic routines. Nonetheless,
these routines do not support resource-constrained devices such as microcontrollers [16].

The C standard mathematical library includes mathematical functions defined in
<math.h>. This mathematical library is widely used for microcontrollers, since it is a part
of the C compiler. It provides only basic mathematical functions for instance trigonometric
functions (e.g., sin, cos) or exponentiation and logarithmic functions (e.g., exp, log) [17].

Our research shows that there are very few attempts to build numerical computations
libraries, which can run on microcontrollers: Texas Instruments® (Dallas, Texas, USA)
provides for its MSP430 and MSP432 devices the IQmath and Qmath Libraries, which
contain a collection of mathematical routines for C programmers. However, this collection
is restricted only to basic mathematical functions such as trigonometric and algorithmic
functions [18].

Libfixmatrix is a matrix computation library for microcontrollers. This library includes
basic matrix operations such as multiplication, addition, and transposition. Equation
solving and matrix inversion are implemented by the QR decomposition. Libfixmatrix is
only suitable for tasks involving small matrices [19].

MicroBLAS is a simple, tiny, and efficient library designed for PC and microcontrollers.
It provides basic linear algebra subprograms on vectors and matrices [20].

https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
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Other libraries for microcontrollers are the MatrixMath and BasicLinearAlgebra li-
braries. However, these libraries offer limited functionalities and are restricted to the
Arduino platform [21,22].

The Python programming language is becoming widely used in scientific and numeric
computing. The Python package NumPy (Numeric Python) is used for manipulating
large arrays and matrices of numeric data [23]. The Scientific Python (SciPy) extends the
functionality of NumPy with numerous mathematical algorithms [24]. Python is widely
used for PC and single-board computers such as the Raspberry Pi. A new programming
language largely compatible with Python called MicroPython is optimized to run on
microcontrollers [25]. MicroPython includes the math and cmath libraries, which are
restricted to basic mathematical functions. The mainline kernel of MicroPython supports
only the ARM Cortex-M processor family. CircuitPython is a derivative of the MicroPython
created to support boards like the Gemma M0 [26]. Various mathematical libraries are
outlined in Table 1, which reveals their capabilities, limitations, and supported platforms.

Table 1. Comparison of mathematical libraries. FFT, Fast Fourier Transform.

Library Capabilities Platform

GNU Scientific
Library (GSL)

Basic linear
algebra, FFT, basic

mathematical
routines

No support for
resource-limited

devices

C standard
mathematical library

<math.h>

Basic mathematical
functions

Support for
resource-limited

devices

IQmath and Qmath Basic mathematical
functions

MSP430 and MSP432
microcontrollers

Libfixmatrix
Basic mathematical

functions and
matrix inversion

ARM Cortex-M3
processors

MicroBLAS Basic linear
algebra

PC and
microcontrollers

MatrixMath and
BasicLinearAlgebra

Basic matrix
operations

Restricted to the
Arduino platform

NumPy, SciPy
Linear algebra
computational
mathematics

No support for
resource-limited

devices

math and
cmath

(MicroPython)

Basic mathematical
functions

ARM Cortex-M
processors or

CircuitPython-
powered boards

RcdMathLab

mathematical
functions for

nonlinear,
linear algebra
optimization,

and localization.
Utilities

PCs and
microcontrollers:
Platforms using

C compiler

3. Library Architecture and Description

RcdMathLib has a pyramidal and a modular architecture as illustrated in Figure 1,
whereby each layer rests upon the underlying layers. For example, the linear algebra
module layer rests on the basic algebraic module layer. Each module layer is composed of
several submodules such as the matrix or vector submodules. The submodules can be built
up from the underlying submodules, for example, the pseudo-inverse submodule is based

https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
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on the SVD, the Householder, and the Gevins submodules. For the sake of brevity, Figure 1
presents only the sublayers. The software layers will be briefly addressed in Section 3.1
through Section 3.3.

Figure 1. Architecture of the RcdMathLib. SVD, Singular Value Decomposition. D. Newton-Raphson,
Damped Newton-Raphson. LVM, Levenberg–Marquardt Method. GNM, Gauss–Newton Method.
MDDM, Multipath Distance Detection and Mitigation.

3.1. Linear Algebra Module Layer

The module layer of linear algebra is composed of the following submodules:

• Basic operations submodule: provides algebraic operations such as addition or multi-
plication of vectors or matrices. This submodule distinguishes between vector and
matrix operations.

• Matrix decomposition submodule: allows for the decomposition of matrices by using
algorithms such as Givens, Householder, or the SVD. The SVD method is implemented
using the Golub–Kahan–Reinsch algorithm [27,28].

• Pseudo-inverse submodule: enables the computation of the inverse of quadratic as
well as of rectangular matrices. The matrix inverse can be calculated by using the
Moore–Penrose, Givens, or Householder algorithms [29].

• Linear solve submodule: permits the solution of under-determined and over-determined
linear equation systems. We solve the linear equation systems using two matrix decom-
positions: the SVD and QR factorizations. The first method uses the Moore–Penrose
inverse, while the second approach applies the Householder or the Givens algorithms
with the combination of the back substitution method. We also provide the Gaussian
Elimination (GE) with a pivoting algorithm, which is based on the LU decomposition.
We use the GE-based method only for testing purposes or for devices with very lim-
ited stack memory. We suggest using the SVD- or the QR-based methods due to the
numerical stability and the support of non-quadratic matrices [30].

• Utilities submodule: offers filtering algorithms such as median, average, or moving
average. Furthermore, it provides the Shell algorithm to put elements of a vector in
a certain order as well as the Box–Muller method to generate normally distributed
random variables [31,32].

3.2. Non-Linear Algebra Module Layer

The nonlinear algebra module includes the following submodules:

• Optimization submodule: enables the optimization of an approximate solution by
using Nonlinear Least Squares (NLS) methods such as modified Gauss–Newton (GN)
or the LVM algorithms. These methods are iterative and need a start value as an
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approximate solution. Moreover, the user should give a pointer to an error function
and to a Jacobian matrix. The modified GN and the LVM algorithms will be briefly
described in Sections 3.2.1 and 3.2.2.

• Nonlinear equations submodule: allows for the solution of multivariate nonlinear
equation systems by using Newton–Raphson and damped Newton–Raphson meth-
ods [33]. The user must deliver a start value as well as a pointer to nonlinear equation
systems to solve, and a pointer to the appropriate Jacobian matrix.

3.2.1. Gauss–Newton Algorithm

The Gauss–Newton algorithm works iteratively to find the solution ~x that minimizes
the sum of the square errors. During the iteration process, we cache the value of ~x with the
minimal sum of squares to prevent the divergence of the GN algorithm [34]. The computed
solution by the GN can be used as a start value for the subsequent LVM algorithm if the
start value is unknown or the GN algorithm diverges.

3.2.2. Levenberg–Marquardt Algorithm

The LVM algorithm is also a numerical optimization approach enabling solving NLS
problems [35–37]. The LVM algorithm can be used for optimization or fitting problems.
The LVM method proceeds iteratively as follows:

~x (k+1) = ~x (k) +~s (k), (1)

where ~x (k) is the k-th approximation of the searched solution and ~s (k) is the k-th error
correction vector. The LVM improves the approximate solution ~x0 in each iteration step by
calculating the correction vector~s (i) as follows [38,39]:

(JT
f (~x

(i))J f (~x (i)) + (µ(i))2 I)~s (i) = −JT
f (~x

(i))~f (~x (i)), (2)

where µ is the damping parameter, f is the error function, and J f is the Jacobian matrix.
The LVM algorithm has the advantage over the GN method because the matrix on the left
side of Equation (2) is no longer singular. This is accomplished by the factor µ2 I regulating
the matrix JT

f J f . The LVM method is described in Algorithm 1.

Algorithm 1 LVM algorithm

1: function LVM_ALG(εx , β0, β1, τ, imax ,~x (0) , ~f , J f )
2: i = 0; ~x = ~x (0) ; B = JT

f (~x)J f (~x); ~H = JT
f (~x)~f (~x);

3: µ(0) = τ ·maxi {bii(~x)}; µ = µ(0) ;
4: Solve (B + µ2 I)~s = −~H for~s;
5: while ((‖~s‖2 > εx(1 + ‖~x‖2) and (i < imax)) do
6: [~s, µ] = CORRECTION_FUNC(~x, µ, β0, β1);
7: while (true) do
8: if (ρµ ≤ β0) then
9: µ = 2µ

10: [~s, ρµ ] = CORRECTION_FUNC(µ, β0, β1~x, ~f , J f );
11: else if (ρµ ≥ β1) then
12: µ = µ

2
13: break;
14: else
15: break;
16: end if
17: end while
18: ~x = ~x +~s;
19: i = i + 1;
20: end while
21: end function
1: function CORRECTION_FUNC(µ, β0, β1~x, ~f , J f )
2: B = JT

f (~x)J f (~x); ~H = JT
f (~x)~f (~x);

3: Solve (B + µ2 I)~s = −~H for~s;

4: ρµ =
‖~f (~x)‖22−‖~f (~x+~s)‖

2
2

‖~f (~x)‖22−‖~f (~x)+J f (~x)~s)‖22
;

5: end function
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3.3. Localization Module Layer

Localization of users or IoT devices is indispensable for Localization-Based Services
(LBSs) such as tracking in smart buildings, advertising in shopping centers, or routing
and navigation in large public buildings [40]. Indoor Localization Systems (ILSs) are
used to locate IoT or mobile devices inside environments where the Global Positioning
System (GPS) cannot be deployed. Numerous technologies have been evaluated for ILSs,
for example, Ultra-Wideband (UWB) [41], Wireless Local Area Network (WLAN) [42],
ultrasound [43], magnetic signals [44], or Bluetooth [45].

3.3.1. Introduction and Layer Description

The Localization Module (LM) layer provides algorithms to calculate as well as
optimize a position of an ILS. At the current stage of development, we provide two
example applications of the LM as submodules: a distance-based as well as a DC-pulsed,
magnetic-based submodule of ILSs. We also offer a common positioning submodule
comprising shared algorithms like the trilateration algorithm [46].

Figure 2 illustrates the principle of a distance-based ILS composed of four anchors
with known positions and one mobile device. The distances between the anchors and the
mobile device can be measured by using UWB or ultrasound sensors. The mobile device
performs distance measurements to the four anchors. Furthermore, the collected distances
are preprocessed using the median filter from the utilities submodule to remove outliers
(see Section 3.1). Finally, the mobile device locally calculates a three-dimensional position
using the trilateration algorithm provided by the RcdMathLib.

Figure 2. Distance-based Indoor Localization System. MD, Mobile Device.

The trilateration algorithm computes the position of an unknown point with the
coordinates (x, y, z) and distances di to the reference positions (xi, yi, zi) for i = 1, 2, . . . , n.
This problem requires the estimation of a vector ~x = (w, x, y, z) such that:

A~x =~b, (3)

where the matrix A and the vector~b have the following forms [46–48]:

A =




1 −2x1 −2y1 −2z1
1 −2x2 −2y2 −2z2
1 −2x3 −2y3 −2z3
...

...
...

...
1 −2xn −2yn −2zn




and (4)

https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
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~b =




d2
1 − x2

1 − y2
1 − z2

1
d2

2 − x2
2 − y2

2 − z2
2

d2
3 − x2

3 − y2
3 − z2

3
...

d2
n − x2

n − y2
n − z2

n




. (5)

The solution ~x is given by:
~x = A+~b, (6)

where A+ is the pseudo-inverse of the matrix A. The pseudo-inverse matrix A+ is com-
puted by using the pseudo-inverse submodule of the RcdMathLib (see Section 3.1). The
quality q of the calculated position ~x is given by:

q = w− (x2 + y2 + z2). (7)

Figure 3 illustrates the principle of a magnetic-based ILS composed of various coils
with known positions and a mobile device. This system enables the calculation of the posi-
tion of the mobile device by measuring magnetic fields to the coils as anchors. The magnetic
signals are artificially generated from the coils using a pulsed direct current. The collected
measurement data are preprocessed from the utilities-submodule for removing outliers
and calibrating magnetic data. Finally, the position is calculated on the mobile device.

Figure 3. Magnetic-based indoor localization system. MD, Mobile Device.

The magnetic field Bi generated from the coil i is equal to [47,49]:

Bi =
K
r3

i

√
1 + 3 sin2(θi) i = 1, 2, . . . , n. (8)

In this setting, K = µ0 Nt IF
4π , where Nt describes the number of turns of the wire, I is the

current running through the coil, F expresses the base area of the coil, µ0 is the permeability
of free space, ri is the distance between the mobile device and coil i, and θi is the mobile
device elevation angle relative to the coil plane. The distance ri and the elevation angle θi
are equal to:

ri =
√
(x− xi)2 + (y− yi)2 + (z− zi)2 (9)

sin θi =
z− zi

ri
. (10)

https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
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Equation (8) is a nonlinear equation system with the unknowns coordinates x, y and z,
which can be solved by applying the LVM algorithm from the optimization-submodule of
the RcdMathLib, whereby, (xi, yi, zi) and (x, y, z) are the coordinates of the i-th coil and the
mobile device.

3.3.2. Multipath Distance Detection and Mitigation and Position Optimization Algorithm

The location module is not restricted to simple position calculations but rather per-
forms complex tasks such as the Multipath Distance Detection and Mitigation (MDDM) by
the usage of other modules of the RcdMathLib. The MDDM algorithm enables to reduce
the effects of multipath fading on digital signals in radio environments of a mobile device
to Reference Stations (RSs) with known locations. The MDDM approach is based on the
Robust Position Estimation in Ultrasound Systems (RoPEUS) algorithm [50]. The MDDM
is adapted for precise distance-based ILSs such as the Ultra-Wideband (UWB)-based local-
ization systems, whereas it is simultaneously optimized for resource-limited devices [12].
The MDDM algorithm is summarized in Algorithm 2.

Algorithm 2 MDDM algorithm
1: function RECOG_MITIGATE_MULTIPATH_ALG(k, n, threshold, d, RS)
2: j = 0; rmin = ∞;
3: distances di , i = 0, . . . , n− 1; . distance measures to n RSs
4: while (j < (n

k)) do
5: comb(k) = RS0 . . . RSk−1; . choose k RSs
6: ~xk ; . Compute a position related to k RSs
7: ri = Ri − di ; . residuals

8: r =
n−1

∑
i=0

ri ;

9: rmin = min(r, rmin);
10: j = j + 1;
11: end while
12: ~x0 = arg min

rmin

. the solution

13: PDOPx . calculate PDOP-value of ~x
14: if (PDOPx > threshold) then
15: LVM_ALG(εx , β0, β1, τ, imax ,~x0, ~f , J f ) . optimize the position
16: end if
17: end function

3.4. Documentation and Examples’ Modules

RcdMathLib includes a module that provides an Application Programming Interface
(API) documentation. The API documentation is in Portable Document Format (PDF)
and in Hypertext Markup Language (HTML) format. It is generated from the C source
code by using the Doxygen tool [51]. The software reference documentation covers the
description of the implemented functions as well as their passing parameters. In addition,
the example module comprises samples of each module to familiarize the users with the
API. The example module has the same structure as the RcdMathLib.

4. Implementation Issues

Given a (m× n) non-singular matrix A and an n-vector~b, the fundamental problem
of linear algebra is to find an n-vector ~x such that A~x = ~b. This fundamental problem
emerges in various areas of science and engineering such as applied mathematics, physics,
or electrical engineering [52]. Associated problems are finding the inverse, the rank, or
projections of a matrix A. Attempting to solve the linear algebra problem using common
theoretical approaches would face computational difficulties. For example, solving a (20, 20)
linear system with the Cramer’s Rule, which is a significant theoretical algorithm, might
take more than a million years even by using fast computers [52].

We use the Givens, the Householder, and the SVD matrix decomposition algorithms.
These decomposition methods enable the solution of various problems such as the com-
putation of the inverse matrix, the linear equations, or the rank of a matrix. We do not
use the Cholesky decomposition (AAT), since it can become unstable due to the rounding
errors that are equal to

[
κ(A)

]2 instead of κ(A). Although the Gaussian Elimination (GE)

https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
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is an efficient algorithm to implement the LU factorization, we do not used it, since GE
generally requires pivoting and is limited to square matrices. Furthermore, GE can be un-
stable in certain contrived cases; nonetheless, it performs well for the majority of practical
problems [53,54].

We do not use the Classical Gram–Schmidt (CGS) and the Modified Gram–Schmidt
(MGS) to implement the QR decomposition due to the numerical instability. Instead, we
use the Householder and the Givens algorithms. Even though the Householder is more
efficient than the Givens algorithm, the Givens method is easy to parallelize. The Givens
and the Householder methods have a guaranteed stability but fail if the matrix is nearly
rank-deficient or singular. The SVD algorithm can be used to avoid the rank deficiency
problem. This algorithm is not be explicitly computable by determining the eigenvalues of
the symmetric matrix AT A due to the round-off errors in the calculation of the matrix AT A.
Therefore, we implement the SVD by using the Golub–Kahah–Reinsch (GKR) algorithm,
which will be described in Section 4.1.

We calculate the pseudo-inverse matrix by using the Moore–Penrose method based on
the SVD or the QR decomposition using the Householder or the Givens algorithms. The
QR-based pseudo-inverse A+ is computed as follows:

A = QR, (11)

A+ = A−1 = (QR)−1 = R−1Q−1, (12)

A+ = R−1QT , (13)

where R−1 is the inverse of an upper triangular matrix, and QT is the transpose of an
orthogonal matrix. We calculate the R−1 matrix by using Algorithm 3 [55].

Algorithm 3 Inverse of an upper triangular matrix
1: function INV_UPPER_TRIANG_MATRIX_ALG(n, U)
2: Uinv ; . holds the calculated inverse of the matrix U
3: for i = 0 to n− 1 do
4: Uinv [i, i] = 1/U[i, i];
5: for j = 0 to i− 2 do
6: Uinv [j, i] = −U[i, i]

(
U[j, j : i− 2]U[j : i− 2, i]

)
;

7: end for
8: end for
9: end function

In general, we avoid the explicit calculation of matrix multiplications such as the
construction of Householder matrices (Hi A) or of Givens matrices (Ji A). The calculated
triangular matrix R is stored over the matrix A. We also provide functions to avoid the
explicit computation and storage of the transpose matrix such as the function that implicitly
calculates the matrix–transpose–vector multiplication (AT~x). We use the SVD algorithm
to overcome the rank deficiency problem, for example, by the modified GN, the Newton–
Raphson, and damped Newton–Raphson methods. We used the Householder instead of
the SVD method by the LVM algorithm to save computing time and memory stack. This
optimization is possible because of the robustness of the LVM algorithm (see Section 3.2.2).
We provide the iterative Shell sort algorithm that is suitable for resource-limited devices
with a limited stack size. We use the Shell sort algorithm to implement the median filter.

4.1. Singular Value Decomposition

The SVD method has become a powerful tool for solving a wide range of problems in
different application domains such as biomedical engineering, control systems, or signal
processing [52]. We implemented the SVD approach based on the Golub–Kahan–Reinsch
algorithm that works in two phases: a bidiagonalization of the matrix A and the reduction
of the calculated bidiagonal matrix to a diagonal form.

First phase (bidiagonalization)
A (m× n) matrix A is transformed to an upper bidiagonal matrix B ∈ Rmxn by using
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the Householder bidiagonalization, where m ≥ n. The matrix A is transformed
as follows:

UT
0 AVT

0 =

[
B
0

]
, (14)

where B is an n× n bidiagonal matrix equal to



b11 b12 . . . 0

0
. . . . . .

...
... . . .

. . . bn−1,n
0 0 0 bn,n




. (15)

Second phase (reduction to the diagonal form)
The bidiagonal matrix B is further reduced to a diagonal matrix Σ by using orthogonal
equivalence transformations as follows:

UT
1 BVT

1 = Σ = diag(σ1, σ2, · · · , σn), (16)

where Σ is the matrix of the singular values σi and the matrices U1 and V1 are
orthogonal. The singular vector matrices can be computed as follows:

U = U0U1, (17)

V = V0V1. (18)

We implemented the first and second phases by the Golub–Kahan bidiagonal procedure
and the Golub–Reinsch algorithm. Both algorithms will be described in detail in
Sections 4.1.1 and 4.1.2. In this description, we will mention some implementation issues.

4.1.1. Golub–Kahan Bi-Diagonal Procedure

The reduction of matrix A to the upper bi-diagonal matrix B is accomplished by using
a sequence of Householder reflections, where the matrix B has the same set of singular
values as the matrix A [56]. First, a Householder transformation U01 is applied to zero
out the sub-diagonal elements of the first column of the matrix A. Next, a Householder
transformation V01 is used to zero out the last (n− 2) elements of the first row by post-
multiplying the matrix U01 A: U01 AV01. Repeating these steps a total of n times, the
matrix A will be transformed to:

B = (UnUn−1 . . . U1U0)A(VnVn−1 . . . V1V0). (19)

4.1.2. Golub–Reinsch Algorithm

The Golub–Reinsch algorithm is a variant of the QR iteration [28]. At each iteration i,
the implicit symmetric QR algorithm is applied with the Wilkinson shift without forming
the product BT

i Bi. The algorithm has guaranteed convergence with a quite fast rate [52].
Starting from the bi-diagonalization of the matrix A obtained from the previous Golub–
Kahan bi-diagonal procedure, the algorithm creates a sequence of bi-diagonal matrices {Bi}
with possibly smaller off-diagonals than the previous one. For simplicity, we write:

B =




α1 β2
. . . . . .

. . . βn
αn




(20)
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We calculate the Wilkinson shift σ that is equal to the eigenvalue λ of the right-hand
corner sub-matrix of the matrix C = BT

i Bi:

[
cn−1,n−1 cn−1,n

cn−1,n cn,n

]
=

[
α2

n−1 + β2
n−1 αn−1βn

αn−1βn α2
n + β2

n

]
, (21)

which is closer to α2
n + β2

n. G. H. Golub and C. F. Van Loan suggest to calculate the Wilkinson
shift as follows [28]:

δ =
cn−1,n−1 − cn,n

2
, (22)

σ = cn,n −
sign(δ)c2

n−1,n

|δ|+
√

δ2 + c2
n−1,n

. (23)

We calculate c1 and s1 such that:

[
c1 s1
−s1 c1

]T[
α2

1 − σ
α1β2

]
=

[
∗
0

]
, (24)

and form the Givens rotation V1.
We apply the Givens rotation V1 to the right of the matrix B:

BV1 =




∗ ∗
∗ ∗
∗ ∗
∗


V1 =




∗ ∗
+ ∗ ∗

∗ ∗
∗


. (25)

The bidiagonal form is destroyed by the unwanted non-zero element (bulge) indicated
by the “+” sign. Therefore, we apply the Givens rotations U1, V2, U2, . . ., Vn−1, and Un−1
to chase the badges.

We apply a Givens transformation U1 to the left of the matrix BV1 to eliminate the
unwanted sub-diagonal element. This reintroduces a badge in the first row to the right of
the super-diagonal element:

U1BV1 =




∗ ∗ +
0 ∗ ∗

∗ ∗
∗


. (26)

We apply the Givens rotations V2 to remove the badge in the matrix U1BV1. This
introduces a new badge into the sub-diagonal of the third row, which is eliminated by the
Givens rotation U2:

U2U1BV1V2 =




∗ ∗ 0
∗ ∗
+ ∗ ∗

∗


 = U2




∗ ∗
∗ ∗ +
0 ∗ ∗

∗


. (27)

The matrix pair (V3, U3) terminates the chasing process and delivers a new bi-diagonal
matrix B̃:

B̃ = U3U2U1BV1V2V3. (28)

In general, the chasing process creates a new bi-diagonal matrix B̃ that is related to
the matrix B as follows [28]:
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B̃ = (Un−1 . . . U1)B(V1V2 . . . Vn−1) = ŨBṼ, (29)

where Ũ and Ṽ are orthogonal. During the chasing process, we distinguish between the
splitting, the cancellation, and the negligibility steps [57]:

At the i-th iteration, we assume that the matrix B̃ is equal to:

B̃i =




q1 e2
. . . . . .

qn−1 en
qn




. (30)

Splitting: If the matrix entry ei is equal to zero, we split the matrix B̃i into two block
diagonal-matrices whose singular values can be computed independently:

B̃i =

[
B̃1 0
0 B̃2

]
, (31)

svd
(

B̃i

)
= svd

(
B̃1

)
+ svd

(
B̃2

)
, (32)

where svd
(

B̃i

)
is the singular value decomposition of the matrix B̃i; in this case, we

compute the matrix B̃2 first. If the split occurs at i equal to n, then the matrix B̃2 is
equal to qn and qn is a singular value.

Cancellation: If the matrix entry qi is equal to zero, we split the matrix B̃i by using Givens
rotations from the left to zero out row i as follows:

GT
i,i+1




q1 e2
. . . . . .

qi−1 ei
0 ei+1

qi+1
. . .
. . . en

qn




=




q1 e2
. . . . . .

qi−1 ei
0 0 b

qi+1
. . .
. . . en

qn




,

(33)

whereas the budge b is removed by using the Givens rotations for k = i + 2, . . . , n.
Since the matrix element ei+1 is equal to zero, the matrix splits again into two block
diagonal sub-matrices (see the splitting step).

Negligibility: The values of the matrix elements ei or qi will be small but not exactly zero
due to the finite precision arithmetic used by digital processors. Therefore, we require
a threshold to decide when the elements ei or qi can be considered zero. Golub and
Reinsch [58] recommend the following threshold rule:

|ei+1| ,
∣∣qi
∣∣ ≤ ε max

i

(∣∣qi
∣∣+|ei|

)
= ε‖B‖1 , (34)
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where ε is the machine precision. Björck [27] suggests the following approach:

|ei+1| ≤ 0.5ε
(∣∣qi
∣∣+
∣∣qi+1

∣∣
)

, (35)
∣∣qi+1

∣∣ ≤ 0.5ε(|ei|+|ei+1|). (36)

Linpack [5] uses a variant Björck’s approach that omits the factor 0.5 in Equations (35)
and (36).

5. Usage of the RcdMathLib

RcdMathLib can be used on PCs, resource-constrained devices such as microcon-
trollers, or on small single-board computers like Raspberry Pi devices. It is a free software
and available under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, version 2.1 (LGPLv2.1) [59]. The RcdMathLib software is
written in the C programming language by using the GNU Compiler Collection (GCC) for
full-fledged devices and embedded tool chains for resource-limited devices; for instance,
the GNU ARM Embedded Toolchain. RcdMathLib can also be used on top of an Operating
System (OS) for resource-constrained devices with a minimal effort due to the modular
architecture of the library. We support the RIOT-OS, which is an open source IoT OS [60].
RcdMathLib is interfaced with the RIOT-OS using the GNU Make utility, whereby the
user only needs to choose the modules needed by setting the USE_MODULE-macro. We
automatically calculate the dependencies of the modules needed and the user can choose
between a floating-point single-precision or double-precision depending on the available
stack memory. An OS for resource-limited devices is recommended for the use of the
RcdMathLib, but it is not required. A minimum stack size of 2560 bytes is needed to
compute with floating-point numbers. The printf() function needs extra memory stack,
therefore a minimum stack size of 4608 bytes is required to work with double-precision for
floating-point arithmetic. We recommend a stack size of 8192 bytes.

The Linaro toolchain can be used on Linux or Windows to build applications for
a target platform [61]. The OpenOCD can be used for flashing the code to the target
(chip) as well as for low level or source level debugging [62]. The source code as well
as the documentation (APIs) of the RcdMathLib can be downloaded from the GitLab
repository [63]. The wikis are available on the homepage of the library to get started with
the RcdMathLib [9].

Simple Example

We present a simple example to demonstrate how to use the RcdMathLib by defining
two (3, 4) matrices in Listing 1. We create a matrix with specific values equal to π in
the main diagonal by calling the “matrix_get_diag_mat()” function. In the next step, we
calculate the transpose of the second matrix by invoking the “matrix_get_transpose()”
function. Finally, we calculate the multiplication of the first matrix with the transpose of
the second matrix by executing the “matrix_mul()” function. In these three cases, the user
should deliver the dimension of the matrices as well as a reference to the matrix resulted.
The outputs of the calculated results are presented in Listing 2.

https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
https://git.imp.fu-berlin.de/zkasmi/RcdMathLib/-/wikis/Home
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Listing 1. Example of basic matrix algebra.

Sensors 2021, 1, 0 15 of 23

1000 # include " u t i l s . h "
# inc lude " matrix . h"

1002

void m a t r i x _ t e s t ( void )
1004 {

puts ( " ############ Bas ic Matrix Algebra ############### " ) ;
1006 u i n t 8 _ t m = 3 ;

u i n t 8 _ t n = 4 ;
1008 matr ix_t diag_elem = M_PI ;

1010 matr ix_t matrix1 [ 3 ] [ 4 ] = {
{ 0 . 2 7 8 5 , 0 . 9 6 4 9 , 0 . 9 5 7 2 , 0 .1419 } ,

1012 { 0 . 5 4 6 9 , 0 . 1 5 7 6 , 0 . 4 8 5 4 , 0 .4218 } ,
{ 0 . 9 5 7 5 , 0 . 9 7 0 6 , 0 . 8 0 0 3 , 0 .9157 } ,

1014 } ;

1016 matr ix_t matrix2 [ 3 ] [ 4 ] = {
{ 0 . 7 9 2 2 , 0 . 0 3 5 7 , 0 . 6 7 8 7 , 0 .3922 } ,

1018 { 0 . 9 5 9 5 , 0 . 8 4 9 1 , 0 . 7 5 7 7 , 0 .6555 } ,
{ 0 . 6 5 5 7 , 0 . 9 3 4 0 , 0 . 7 4 3 1 , 0 .1712 } ,

1020 } ;

1022

matr ix_t res_matr ix [m] [ n ] ;
1024 matr ix_t t rans_matr ix [ n ] [m] ;

matr ix_t res_mul_matrix [m] [m] ;
1026

% Create a matrix with s p e c i f i e d values in the main diagonal
1028 matrix_get_diag_mat (m, n , diag_elem , res_matr ix ) ;

p r i n t f ( " diag_matrix = " ) ;
1030 m a t r i x _ f l e x _ p r i n t (m, n , res_matr ix , 7 , 4 ) ;

1032 % Matrix transpose
matr ix_transpose (m, n , matrix2 , t rans_matr ix ) ;

1034 p r i n t f ( " t r a n s ( matrix2 ) = " ) ;
m a t r i x _ f l e x _ p r i n t ( n , m, trans_matr ix , 7 , 4 ) ;

1036

% Matrix m u l t i p l i c a t i o n
1038 matrix_mul (m, n , matrix1 , n , m, trans_matr ix , res_mul_matrix ) ;

p r i n t f ( " matrix1 x matrix2 = " ) ;
1040 m a t r i x _ f l e x _ p r i n t (m, m, res_mul_matrix , 7 , 4 ) ;

}

Listing 1: Example of basic matrix algebra

1000 ## ########## Bas ic Matrix Algebra ###############
diag_matrix = {

1002 { 3 . 1 4 1 6 , 0 . 0 0 0 0 , 0 . 0 0 0 0 , 0 . 0 0 0 0 } ,
{ 0 . 0 0 0 0 , 3 . 1 4 1 6 , 0 . 0 0 0 0 , 0 . 0 0 0 0 } ,

1004 { 0 . 0 0 0 0 , 0 . 0 0 0 0 , 3 . 1 4 1 6 , 0 . 0 0 0 0 }
} ;

1006

t r a n s ( matrix2 ) = {
1008 { 0 . 7 9 2 2 , 0 . 9 5 9 5 , 0 . 6 5 5 7 } ,

{ 0 . 0 3 5 7 , 0 . 8 4 9 1 , 0 . 9 3 4 0 } ,
1010 { 0 . 6 7 8 7 , 0 . 7 5 7 7 , 0 . 7 4 3 1 } ,

{ 0 . 3 9 2 2 , 0 . 6 5 5 5 , 0 . 1 7 1 2 }
1012 } ;

1014 matrix1 x matrix2 = {
{ 0 . 9 6 0 4 , 1 . 9 0 4 8 , 1 . 8 1 9 4 } ,

1016 { 0 . 9 3 3 8 , 1 . 3 0 2 8 , 0 . 9 3 8 7 } ,
{ 1 . 6 9 5 5 , 2 . 9 4 9 5 , 2 . 2 8 5 8 }

1018 } ;

Listing 2: Outputs of the example of basic matrix algebra

Listing 2. Outputs of the example of basic matrix algebra.

Sensors 2021, 1, 0 15 of 23

1000 # include " u t i l s . h "
# inc lude " matrix . h"

1002

void m a t r i x _ t e s t ( void )
1004 {

puts ( " ############ Bas ic Matrix Algebra ############### " ) ;
1006 u i n t 8 _ t m = 3 ;

u i n t 8 _ t n = 4 ;
1008 matr ix_t diag_elem = M_PI ;

1010 matr ix_t matrix1 [ 3 ] [ 4 ] = {
{ 0 . 2 7 8 5 , 0 . 9 6 4 9 , 0 . 9 5 7 2 , 0 .1419 } ,

1012 { 0 . 5 4 6 9 , 0 . 1 5 7 6 , 0 . 4 8 5 4 , 0 .4218 } ,
{ 0 . 9 5 7 5 , 0 . 9 7 0 6 , 0 . 8 0 0 3 , 0 .9157 } ,

1014 } ;

1016 matr ix_t matrix2 [ 3 ] [ 4 ] = {
{ 0 . 7 9 2 2 , 0 . 0 3 5 7 , 0 . 6 7 8 7 , 0 .3922 } ,

1018 { 0 . 9 5 9 5 , 0 . 8 4 9 1 , 0 . 7 5 7 7 , 0 .6555 } ,
{ 0 . 6 5 5 7 , 0 . 9 3 4 0 , 0 . 7 4 3 1 , 0 .1712 } ,

1020 } ;

1022

matr ix_t res_matr ix [m] [ n ] ;
1024 matr ix_t t rans_matr ix [ n ] [m] ;

matr ix_t res_mul_matrix [m] [m] ;
1026

% Create a matrix with s p e c i f i e d values in the main diagonal
1028 matrix_get_diag_mat (m, n , diag_elem , res_matr ix ) ;

p r i n t f ( " diag_matrix = " ) ;
1030 m a t r i x _ f l e x _ p r i n t (m, n , res_matr ix , 7 , 4 ) ;

1032 % Matrix transpose
matr ix_transpose (m, n , matrix2 , t rans_matr ix ) ;

1034 p r i n t f ( " t r a n s ( matrix2 ) = " ) ;
m a t r i x _ f l e x _ p r i n t ( n , m, trans_matr ix , 7 , 4 ) ;

1036

% Matrix m u l t i p l i c a t i o n
1038 matrix_mul (m, n , matrix1 , n , m, trans_matr ix , res_mul_matrix ) ;

p r i n t f ( " matrix1 x matrix2 = " ) ;
1040 m a t r i x _ f l e x _ p r i n t (m, m, res_mul_matrix , 7 , 4 ) ;

}

Listing 1: Example of basic matrix algebra

1000 ## ########## Bas ic Matrix Algebra ###############
diag_matrix = {

1002 { 3 . 1 4 1 6 , 0 . 0 0 0 0 , 0 . 0 0 0 0 , 0 . 0 0 0 0 } ,
{ 0 . 0 0 0 0 , 3 . 1 4 1 6 , 0 . 0 0 0 0 , 0 . 0 0 0 0 } ,

1004 { 0 . 0 0 0 0 , 0 . 0 0 0 0 , 3 . 1 4 1 6 , 0 . 0 0 0 0 }
} ;

1006

t r a n s ( matrix2 ) = {
1008 { 0 . 7 9 2 2 , 0 . 9 5 9 5 , 0 . 6 5 5 7 } ,

{ 0 . 0 3 5 7 , 0 . 8 4 9 1 , 0 . 9 3 4 0 } ,
1010 { 0 . 6 7 8 7 , 0 . 7 5 7 7 , 0 . 7 4 3 1 } ,

{ 0 . 3 9 2 2 , 0 . 6 5 5 5 , 0 . 1 7 1 2 }
1012 } ;

1014 matrix1 x matrix2 = {
{ 0 . 9 6 0 4 , 1 . 9 0 4 8 , 1 . 8 1 9 4 } ,

1016 { 0 . 9 3 3 8 , 1 . 3 0 2 8 , 0 . 9 3 8 7 } ,
{ 1 . 6 9 5 5 , 2 . 9 4 9 5 , 2 . 2 8 5 8 }

1018 } ;

Listing 2: Outputs of the example of basic matrix algebra
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6. Evaluation of the Algorithms

We evaluated the linear as well as the nonlinear algebra modules on an STM32F407
Microcontroller Unit (MCU) based on the ARM Cortex-M4 core operating at 168 MHz and
having a memory capacity of 192 KB RAM. In order to demonstrate the scalability of the
algorithms implemented, we also evaluated the same algorithms on Raspberry Pi 3, which
has more capacity (Quad Core 1.2 GHz and 1 GB RAM) than the STM32F4-MCU.

6.1. Evaluation of the Linear Algebra Module

We evaluated the linear algebra module by using a (m× n) matrix A and a vector
~b with uniformly distributed random numbers. The aim is to calculate and measure the
mean execution time of the methods for solving linear equation systems. We evaluated
the SVD-, QR-, and the LU-based algorithms for solving linear equation systems described
in Section 3.1. The determined and the over-determined linear equation systems can be
represented by the colon notation as follows:

A(1 : i, 1 : i)~x =~b(1 : i), (37)

where 2 ≤ i ≤ n, and
A(1 : i, 1 : n)~x =~b(1 : i), (38)

where n + 1 ≤ i ≤ m and A(1 : i, 1 : n) is the sub-matrix of A with rows 1 up to i and
columns 1 up to n. We use the same format as the corresponding column notation in
MATLAB. The determined and the over-determined linear equation systems are illustrated
in the matrix form in Equations (39) and (40), respectively.

(39)
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Table 2: Complexity of the algorithms evaluated.

Algorithm Complexity [flops]

Matrix multiplication: Am,n × Bn,p mp(2n− 1)

QR-Householder 2mn2 − 2
3 n3

Golub–Kahan–Reinsch 4m2n + 8mn2 + 9n3
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The horizontal and vertical dotted lines enclose the square and rectangular sub-514

matrices in (39) and (40). We set the maximal row (m) and column (n) numbers to 10 and 5.515

We also measured the mean execution time of the matrix multiplication by using the same516

matrix Am,n and a matrix B(n,p) initialized with uniformly distributed random numbers.517

The row and column number of the matrix B are equal to 5 and 10. The row number518

(m) of the matrix A varies from 1 to 10. The linear equation systems are solved by using519

three different decomposition algorithms: the Golub–Kahan–Reinsch, Householder, and520

GE with pivoting. We measured the execution time of matrix multiplications as well521

as of the methods for solving linear equation systems on the STM32F4 MCU and the522

Raspberry Pi 3.523

For solving linear equation systems, Figure 4 compares the execution time of the fol-524

lowing algorithms: GE with pivoting, the Householder, and the Golub–Kahan–Reinsch.525

Furthermore, Figure 4 represents the execution time of the matrix multiplications. Fig-526

ures 4a and 4b illustrate the execution time of these algorithms in function of the row527

number of the matrix on the STM32F4 MCU and the Raspberry Pi 3. The Golub–Kahan–528

Reinsch-based algorithm has the largest execution time, since it is more expensive than529

other algorithms (see Table 2). Table 3 summarizes the mean execution time of the530

matrix evaluated by calculating an A10,5× B5,7 matrix or solving an (7, 5) linear equation531

system. These execution times are measured on the STM32F4 MCU and the Raspberry532

Pi 3. The Raspberry Pi 3 outperforms the STM32F4 MCU, as expected, due to the limited533

computing capacity of the STM32F4 MCU. However, the execution time for finding a534

solution applying the Golub–Kahan–Reinsch algorithm remains in micro-second range535

on the STM32F4 MCU, which would be sufficient for many IoT applications.536

(40)

The horizontal and vertical dotted lines enclose the square and rectangular sub-
matrices in Equations (39) and (40). We set the maximal row (m) and column (n) numbers
to 10 and 5. We also measured the mean execution time of the matrix multiplication by using
the same matrix Am,n and a matrix B(n,p) initialized with uniformly distributed random
numbers. The row and column number of the matrix B are equal to 5 and 10. The row
number (m) of the matrix A varies from 1 to 10. The linear equation systems are solved by
using three different decomposition algorithms: the Golub–Kahan–Reinsch, Householder,
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and GE with pivoting. We measured the execution time of matrix multiplications as well
as of the methods for solving linear equation systems on the STM32F4 MCU and the
Raspberry Pi 3.

For solving linear equation systems, Figure 4 compares the execution time of the fol-
lowing algorithms: GE with pivoting, the Householder, and the Golub–Kahan–Reinsch. Fur-
thermore, Figure 4 represents the execution time of the matrix multiplications. Figure 4a,b
illustrate the execution time of these algorithms in function of the row number of the matrix
on the STM32F4 MCU and the Raspberry Pi 3. The Golub–Kahan–Reinsch-based algorithm
has the largest execution time, since it is more expensive than other algorithms (see Table 2).
Table 3 summarizes the mean execution time of the matrix evaluated by calculating an
A10,5 × B5,7 matrix or solving an (7, 5) linear equation system. These execution times are
measured on the STM32F4 MCU and the Raspberry Pi 3. The Raspberry Pi 3 outperforms the
STM32F4 MCU, as expected, due to the limited computing capacity of the STM32F4 MCU.
However, the execution time for finding a solution applying the Golub–Kahan–Reinsch al-
gorithm remains in a micro-second range on the STM32F4 MCU, which would be sufficient
for many IoT applications.
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(a) Time Measurement on STM32F4 MCU
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Figure 4. Computing time evaluation of matrix multiplications and linear equation systems.
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Table 2. Complexity of the algorithms evaluated.

Algorithm Complexity [Flops]

Matrix multiplication: Am,n × Bn,p mp(2n− 1)

QR-Householder 2mn2 − 2
3 n3

Golub–Kahan–Reinsch 4m2n + 8mn2 + 9n3

Table 3. Mean execution time of computing A7,5 × B5,10 or solving an (7, 5) linear equation system.

Algorithm
Mean Execution Time (µs)

STM32F4 Raspberry Pi 3

Matrix multiplication: A7,5 × B5,10 356 49

Householder-based solution 906 54

Golub–Kahan–Reinsch-based solution 3647 204

6.2. Evaluation of the Non-Linear Algebra Module

The nonlinear algebra module is evaluated by using exponential and sinusoidal
data [64]. Optimizing of least-squares problems are solved by using the modified GN and
LVM methods as described in Sections 3.2.1 and 3.2.2.

6.2.1. Evaluation with Exponential Data

Given the model function g(~x, t) that is equal to:

g(~x, t) = x1ex2t, (41)

where ~x = [x1, x2]
T and ~x0 = [6, 0.3] is the initial guess. The data set is d(ti, yi), whereby ti

is equal to {1, . . . , 8} and yi is equal to {8.3, 11.0, 14.7, 19.7, 26.7, 35.2, 44.4, 55.9}.
The aim is to find the parameters (x1, x2) that most accurately match the model

function g(~x, t) by minimizing the sum of squares of the error function fi. The function fi
computes the residual values and is equal to:

fi(x1, x2) = x1ex2ti − yi. (42)

We introduce the error function vector ~f :

~f (x1, x2) =
[

x1ex2 − y1, . . . , x1e8x2 − y8

]T
. (43)

The Jacobian matrix is equal to:

J f =




∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

...
...

∂ fn
∂x1

∂ fn
∂x2



=




ex2 ex2 x1
e2x2 2e2x2 x1

...
...

e8x2 8e8x2 x1




(44)

The initial square residual ‖~f (~x0)‖2
2 is equal to 127.309. We get the solution ~x3 =

[7.000093, 0.262078]T by using the GN algorithm after three iterations. The appropriate
square residual ‖~f (~x3)‖2

2 is equal to 6.013, which indicates the improvement of the model.
We obtain the solution ~x3 = [7.000090, 0.262078]T by using the LVM algorithm after three
iterations. The LVM algorithm shows nearly the same behavior as the modified GN method.
This is confirmed by Figure 5.
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Figure 5. Exponential model approximation. GNM, Gauss–Newton Method. LVM, Levenberg–
Marquardt Method.

Table 4 summarizes the average time per iteration required from the GNM and LVM
algorithms on the STM32F4 MCU and the Raspberry Pi 3.

Table 4. Mean execution time of the Gauss–Newton and Levenberg–Marquardt methods (per
iteration) using exponential data.

Algorithm
Mean Execution Time (µs)

STM32F4 Raspberry Pi 3

Gauss–Newton 1065 35

Levenberg–Marquardt 1194 42

6.2.2. Evaluation with Sinusoidal Data

The model function is:

g(~x, t) = x1 sin(x2t + x3) + x4, (45)

whereby, ~x = [x1, x2, x3, x4]
T and ~x0 = [17, 0.5, 10.5, 77] is the initial guess. The set of data

points is d(ti, yi), where ti is equal to {1, . . . , 12} and yi is equal to {61, 65, 72, 78, 85, 90, 92, 92,
88, 81, 72, 63}. The error function is fi = x1 sin(x2ti + x3) + x4 − yi; therefore, the error
function vector ~f is:

~f (x1, x2, x3, x4) =




x1 sin(x2 + x3) + x4 − y1
x1 sin(2x2 + x3) + x4 − y2

...
x1 sin(12x2 + x3) + x4 − y12




. (46)
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Thus, the Jacobian matrix is calculated using the partial derivatives in Equation (44)
and is equal to:

J f =




sin(x2 + x3) x1 cos(x2 + x3) x1 cos(x2 + x3)
sin(2x2 + x3) 2x1 cos(2x2 + x3) x1 cos(2x2 + x3)

...
...

...
sin(12x2 + x3) 12x1 cos(12x2 + x3) x1 cos(12x2 + x3)




(47)

The initial square residual ‖~f (~x0)‖2
2 is equal to 40.048. After one iteration (‖~f (~x0)‖2

2 =

13.805), the LVM algorithm is slightly more efficient than the GN method (‖~f (~x0)‖2
2 =

13.810). Both algorithms show the same behavior after two iterations. Figure 6 shows the
sinusoidal model after three iterations by using the GN and LVM algorithms.
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(a) Sinusoidal data and GNM after the third iteration
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Figure 6. Sinusoidal model approximation. GNM, Gauss–Newton Method. LVM, Levenberg–
Marquardt Method.

Table 5 summarizes the average time per iteration required from the GNM and LVM
approaches on the STM32F4 MCU and the Raspberry Pi 3.

Table 5. Mean execution time of the Gauss–Newton and Levenberg–Marquardt methods (per
iteration) using sinusoidal data.

Algorithm
Mean Execution Time (µs)

STM32F4 Raspberry Pi 3

Gauss–Newton 3165 157

Levenberg–Marquardt 2825 141
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7. Conclusions and Outlook

We presented an open source library for linear and nonlinear algebra as well as
an application module for localization that is suitable for resource-limited, mobile, and
embedded systems. This library permits the solution of linear equations and matrix
operations like the matrix decomposition, the calculation of the inverse, or the rank of
a matrix. It provides various algorithms such as sorting or filtering algorithms. This
software also enables solving nonlinear problems like curve fitting or nonlinear equations.
RcdMathLib allows for the localization of mobile devices by using localization algorithms
like, for instance, the trilateration. The localization can be further refined by using an
adaptive optimization algorithm based on the SVD method. The localization software
module facilitates the localization of the mobile device in NLoS scenarios by using a
multipath distance detection and mitigation algorithm. RcdMathLib can serve as a basis for
artificial intelligence techniques for mobile technologies with IoT, or as a tool in research
and industry. Therefore, we intend to extend the RcdMathLib with machine learning or
digital signal processing algorithms. We also aim to extend the package with an additional
algorithm for solving nonlinear problems called the Landweber method [65].
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