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A B S T R A C T

Atomic diffraction is the central concept of matter-wave interferometers, which provide
the opportunity of high-precision rotation and acceleration sensing. Ultracold atoms are
the ultimate quantum sensors for this purpose. Transferring photon momentum from two
counterpropagating laser beams to atomic wavepackets prepares coherent superpositions in
the momentum space, realising atomic beamsplitters and mirrors.

Like classical optical systems, these matter-wave devices require exact specifications and
ubiquitous imperfections need to be quantified. Therefore, in this thesis, the performance
of (3+1)D atomic beamsplitters in the quasi-Bragg regime is studied numerically as well as
analytically and is confirmed by experimental data [1]. Ideally, the incoming wavepacket can be
split exactly into two parts or reflected perfectly with unit response, independent of its spatial
and velocity distribution. However, the velocity selectivity of the Bragg diffraction, as well
as losses into undesired diffraction orders in the quasi-Bragg regime, constitute aberrations,
which cannot be neglected. The non-ideal behaviour due to spatial variations of the laser
beam profiles and wavefront curvatures, regarding realistic Laguerre-Gaussian laser beams
instead of ideal plane waves, reduces the diffraction efficiency and leads to rogue momentum
components, just like misaligned lasers. In contrast, smooth temporal envelopes improve the
beamsplitter performance. Different pulse shapes are taken into account, where some are
amenable for closed analytical solutions.

The realistic modelling and exhausting aberration studies characterises in detail atomic
Bragg beamsplitters and demonstrate pathways for improvements, both required by challeng-
ing experiments.

For hot ions in accelerator beams the atomic diffraction is used contrary to generate a
velocity filter. Two counterpropagating far-detuned lasers transfer a narrow velocity class of
ions from an initially broad distribution via a stimulated Raman transition between the ground
states of aΛ-system. This colder subensemble prepares optimal initial conditions for precision
collinear laser spectroscopy on fast ion beams. The efficiency of the filter is diminished by
aberrations like the spontaneous emission from the two single-photon resonances, as well as
the ground-state decoherence induced by laser noise. Spatial intensity variations of the ion
and laser beams are considered, whereas wavefront curvature is negligible. A comprehensive
master equation leads to conditions for the optimal frequency pair of lasers. The time-resolved
population transfer characterises the filter performance and is evaluated numerically as well
as analytically. Derived models match the numerical results, keeping the computational effort
small.

Taking into account the mentioned aberrations, the possible use of Raman transition as
velocity filter for hot ions is demonstrated. Velocity classes with widths as low as 0.2 m/s can be
transferred, achieving a significant population proportion from per mill to percent. Applying
the analysis to current 40Ca+ ion experiments, a sensitivity for measuring high ion acceleration
voltages on the ppm level or below is substantiated.



Z U S A M M E N FA S S U N G

Atombeugung ist das zentrale Konzept von Materiewelleninterferometern, die das Potenzial
für hochpräzise Rotations- und Beschleunigungsmessungen bieten. Dafür sind ultrakalte
Atome die ultimativen Quantensensoren. Indem der Impuls zweier Photonen aus gegen-
läufigen Laserstrahlen auf atomare Wellenpakete übertragen wird, entsteht eine kohärente
Überlagerung im Impulsraum, wodurch atomare Strahlteiler und Spiegel realisiert werden.

Genauso wie klassische optische Systeme erfordern diese Materiewellenelemente genauste
Spezifikationen und allgegenwärtige Imperfektionen müssen quantifiziert werden. Daher wird
in dieser Arbeit die Performance von (3+1)D Atomstrahlteilern im Quasi-Bragg-Regime so-
wohl numerisch als auch analytisch untersucht und durch experimentelle Daten bestätigt [1].
Idealerweise wird das einlaufende Wellenpaket in zwei gleichgroße Teile aufgespalten oder
perfekt reflektiert, unabhängig von seiner räumlichen und seiner Geschwindigkeitsverteilung.
Die im Quasi-Bragg-Regime auftretende Geschwindigkeitsselektivität sowie Verluste in un-
erwünschte Beugungsordnungen stellen jedoch nicht zu vernachlässigende Aberrationen
dar. Im Gegensatz zu idealen ebenen Wellen, führen räumliche Variationen und Wellenfront-
krümmung von realistischen Lauguerre-Gauß Laserstrahlprofilen, genauso wie unzulänglich
ausgerichtete Laser, zu einer Verringerung der Beugungseffizienz und unerwünschten Impuls-
komponenten. Zeitlich glatte Pulseinhüllende verbessern dahingegen die Strahlteilereffizienz.
Hier werden verschiedene Pulsformen berücksichtigt, wobei für einige geschlossene analyti-
sche Lösungen zugänglich sind.

Die realistischen Modellierungen und umfangreichen Aberrationsstudien charakterisieren
die Atomstrahlteiler detailreich und zeigen Optimierungsmöglichkeiten, wobei beides für
anspruchsvolle Experimente erforderlich ist.

Für heiße Ionen in Beschleunigerstrahlen wird die Atombeugung konträr zur Erzeugung
eines Geschwindigkeitsfilters verwendet. Zwei gegenläufige, weit verstimmte Laser filtern
eine enge Geschwindigkeitsklasse aus einer anfänglich breiten Ionenverteilung heraus. Da-
für wird ein stimulierter Raman-Übergang zwischen den Grundzuständen eines Λ-Systems
verwendet. Dieses kältere Subensemble stellt optimale Anfangsbedingungen für präzise kol-
lineare Laserspektroskopie von schnellen Ionenstrahlen dar. Die Effizienz des Filters wird
durch Aberrationen, wie spontane Emission der beiden Einzelphotonenresonanzen, sowie
durch Laserrauschen induzierte Dekohärenz des Grundzustands, verringert. Räumliche In-
tensitätsschwankungen der Ionen- und Laserstrahlen werden berücksichtigt, während die
Wellenfrontkrümmung vernachlässigbar ist. Eine umfassende Mastergleichung führt zu Be-
dingungen an das optimale Laserfrequenzpaar. Die Filterperformance wird charakterisiert
durch den, sowohl numerisch als auch analytisch ausgewerteten, zeitaufgelösten Popula-
tionstransfer. Dabei bestätigen die analytische Modelle die numerischen Ergebnisse und
verringern den Rechenaufwand.

Unter Berücksichtigung der genannten Aberrationen wird die Verwendung des Raman-
Übergangs als Geschwindigkeitsfilter für heiße Ionen demonstriert. Dabei können sehr schma-
le Geschwindigkeitsklassen mit Breiten von 0,2m/s übertragen werden, wobei gleichzeitig
eine signifikante Population im Promille- bis Prozentbereich erreicht wird. In Bezug auf
aktuelle 40Ca+-Ionenexperimente begründet dies für die Messung hoher Ionenbeschleuni-
gungsspannungen eine Sensitivität auf ppm-Niveau oder darunter.
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1
I N T R O D U C T I O N

The physics of ultracold atomic gases has achieved spectacular successes in recent years. One
milestone in the history of physical achievements was the generation of the first Bose-Einstein-
condensates (BECs) [2–4] by E. Cornell, C. Wieman and W. Ketterle in 1995, 71 years after
the theoretical prediction by Albert Einstein [5, 6]. This was awarded with the Nobel prize in
2001 [7, 8]. The development of modern lasers since the 1960s represents an additional break-
through. Several pioneering contributions to the field of laser physics were also awarded with
the Nobel prize [9–13]. The combination of both groundbreaking achievements establishes
the conditions for precisely controllable driven matter-laser interactions, including atomic
diffraction processes. While the theoretical description of these interactions for ultracold
atoms at nanokelvins to hot alkali-like ions at Kelvin temperatures are based on the same
fundamental concepts, their applications are diverse.

The well-defined properties of ultracold (nK) atomic test masses and their precise control
by laser light (cf. Sec. 1.3) are utilised for matter-wave interferometers [14–18], which are the
state-of-the-art instruments for high-precision measurements of rotation and acceleration.
Applications range from tests of fundamental physics, like the equivalence principle [19–27]
or quantum electrodynamics [28–30], to inertial sensing [31–36]. As for all imaging systems,
atom optics suffer from imperfections and an accurate characterisation is required in order to
rectify them. This is particularly relevant for high precision experiments, like gravimetry [37]
and extended free-fall experiments in micro-gravity and space [30, 38–45]. Such challenging
experiments require realistic modelling and aberration studies, as presented in this thesis,
ideally hinting towards rectification.

At the hot side of the temperature scale (K), the use of Raman diffraction within this thesis
is extended to a velocity filter (cf. Sec. 1.4) for precision collinear laser spectroscopy [46–48] on
fast ion beams with several keV kinetic energy. Chandrasekhara Raman himself attributes ‘the
wonderful blue opalescence of the Mediterranean Sea’ as one of the phenomena to the effect he
discovered [49–51] a century ago. Inelastic two-photon scattering, as known today, has found
innumerable applications from solid-state spectroscopy and enhanced microscopic imaging
[52] to actively cooling atoms with velocity selective coherent population trapping [53].

1.1 T H R E E T Y P E S O F AT O M I C D I F F R A C T I O N

The basic mechanism of atomic diffraction is the stimulated absorption (and emission) of
photons from laser beams. Therefore, transferring photon momenta from a laser to the atom
can split (beamsplitter) and reverse (mirror) the atomic motion, or slice a narrow contribution
out of it (filter). The photon momentum p = ħhk and the laser frequencyω are coupled with
the wavenumber k , the reduced Planck constant ħh , and the speed of light c by the vacuum
dispersion relationω= c k .
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There are three types of atomic diffraction with the possibility to generate an atomic beam-
splitter, mirror, or filter, described in the following and depicted in Fig. 1.1.
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Figure 1.1: Energy diagrams of atomic diffraction: (a) with one on-resonant laser, (b) Bragg diffraction
between momentum p = ħhk states, and (c) Raman diffraction. The atomic internal states
|σ〉,σ ∈ {g , e , m} of energy ħhωσ are coupled with laser(s) of frequencyωL (ω1,ω2) and a
detuning∆ to the atomic resonance.

D I F F R A C T I O N W I T H R E S O N A N T L I G H T Resonant coupling of a two-level system with
laser light can generate an absorptive grating. After the stimulated absorption of one laser
photon, the atoms in the excited state carry the additional photon momentum in contrast
to the ground state. However, this scheme can be used only, if the spontaneous decay of the
excited state proceeds mainly to an internal state, which is not detected. The decay back to
the ground state produces decoherence, which diminishes the diffraction efficiency.

B R A G G D I F F R A C T I O N The moving standing light field, generated by two far-detuned coun-
terpropagating laser beams, builds an optical grating. Therefore, different momentum ground
states are coupled without populating the excited state. The transferred momentum is the
sum of the single photon momentum of each laser. Due to the coupling within one internal
state, the diffracted parts are distinguishable only by carrying different momenta. Therefore,
they need to be well localised in the momentum space with momentum widths much smaller
than the transferred photon momenta ħh (k1+k2), which is provided by ultracold atoms.

R A M A N D I F F R A C T I O N For Raman diffraction, the interaction with two far-detuned laser
beams couples two different internal ground states with one excited state. Again, the excited
state stays ideally unpopulated. For the purpose of a filter, from an initially hot ensemble
with wide momentum distribution only those velocity classes, respectively momenta, are
transferred, which match the resonance condition of the Doppler shifted laser frequencies.

1.2 F R O M U LT R A C O L D AT O M S T O H O T I O N S ( O R V I C E V E R S A )

In the classical limit of hot ensembles, the quantum mechanical properties of the external
motion of the quasi point particles do not matter. Therefore, a non-interacting ensemble of hot
ions is an incoherent mixture, distributed according to the Maxwell-Boltzmann distribution,
with an extremely large momentum expansion, as visualised with a sketch of the phase-
space distribution in Fig. 1.2 (a). The momentum width is defined by the thermal velocity
vt ∝

p
T for temperatures in the Kelvin regime. In general, these thermal clouds are an

incoherent mixture of coherent states. In case of bosons, their energy distribution follows
the Bose-Einstein statistic. However, even for small temperatures, they have a wide velocity
spread [cf. Fig. 1.2 (b)] in comparison to Bose-Einstein condensates. The condensation starts
at temperatures below the finite phase-transition temperature Tc in the range of nanokelvins.
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Figure 1.2: Sketch of the phase-space distributions from hot ions (left) to ultracold atoms (right). Accord-
ing to the Nernst heat theorem the absolute zero T = 0 is not reachable but real temperatures
indefinite close to T=0 can be realised [54].

Here, the thermal de Broglie wavelength λdB∝ 1/
p

T covers the mean particle distance and
the atomic wavepackets of the bosonic ensemble start to overlap. However, in Fig. 1.2 (c),
a remaining thermal background with its broader expansion, is distinguishable from the
narrower Bose-condensed subensemble. This characterises partially condensed clouds in the
crossover from incoherent to coherent states. At zero temperature1, a collection of bosonic
atoms occupies only one quantum state. This macroscopic quantum state can be described
with one single wavefunction. Pure Bose-Einstein condensates are the optimal initial states
for matter-wave interferometers based on Bragg diffraction, because these are ultracold fully
coherent states, providing required properties of suitable test states, like a narrow velocity
spread, as sketched in Fig. 1.2 (d).

1.3 B E A M S P L I T T E R F O R U LT R A C O L D AT O M S

Atoms are the ultimate abrasion free quantum sensors for electro-magnetic fields and gravita-
tional forces. By a feat of nature, they occur with bosonic or fermionic attributes, but were
produced otherwise identically without manufacturing tolerance. A beamsplitter prepares
superpositions of matter-wave packets by transferring photon momentum from a laser to
an atomic wave, while a mirror reverses the atomic motion. These devices are the central
components of a matter-wave interferometer.

1.3.1 Matter-wave interferometry

Atom interferometers use the wave properties of particles, introduced by Louis-Victor de
Broglie in 1924 [55] (awarded with the Nobel prize in 1929 [56]), with assigning a wavelength
λ= h/p to every particle with momentum p . Therefore, the role of light and matter is reversed
compared to optical interferometers. A Mach-Zehnder type atom interferometer is depicted
in Fig. 1.3. An incoming wavepacket is split into two parts applying a beamsplitter π/2-pulse
with two counterpropagating laser beams. With this atomic diffraction the two wavepackets
carry momenta in different directions and therefore they separate in space in the following
free propagation of time T . An atomic mirror, realised with a π-pulse, reflects the atomic
motion. After the second interrogation time T the two paths are closing again in position space.
Applying a second beamsplitter, the resulting interference pattern, depending on the evolution

1 According to the Nernst heat theorem the absolute zero T = 0 is not reachable but real temperatures indefinite
close to T=0 can be realised [54].
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Figure 1.3: Time evolution of an incoming wavepacket (green) in a Mach-Zehnder type matter-wave
interferometer. A beamsplitter π/2-pulse, generated by two counterpropagating lasers
(magenta), splits the spreading wavepacket into two parts, moving in different directions.
After a free propagation time T a mirror π-pulse inverts these directions. Finally, the two
wavepackets are recombined with a second beamsplitter pulse after an additional time of
free propagation.

of the atomic wavefunction, provides insight into the potential probed by the atom. Atoms
are sensitive to acceleration and rotation and due to the small de Broglie wavelengths, higher
frequencies can be used as in optical interferometers, increasing the precision. Therefore,
ultracold atoms in matter-wave interferometers are the ultimate test objects for a variety of
forces and fields.

1.3.2 Quantum gases in microgravity: the QUANTUS project

This work is part of the German collaboration QUANTUS, QUANtengase Unter Schwerelosigkeit
- quantum gases in microgravity2. This project paves the way for the application of matter-wave
interferometers under microgravity and ultimately in space. Thereby, microgravity provides
several benefits for the experiments with ultracold atoms. Due to longer free-fall times, the
sensitivity of an atom interferometer can be improved, because it increases quadratically with
the interrogation time T of the BECs in such devices [16]. Therefore, space platforms provide
ultra-long interrogation and observation times, due to permanent microgravity. In addition,
they are undisturbed by seismic noise, offering a ‘quiet’ environment.

As part of the QUANTUS-1 [57] project, the first BEC under microgravity was created in
2007, in the drop tower at the ZARM (Zentrum für Angewandte Raumfahrttechnologie und
Mikrogravitation - Center of Applied Space Technology and Microgravity) in Bremen, which
provides a free fall time of 4.7 s [58, 59]. Further, the realisation at the drop tower of an atom
interferometer with a BEC under microgravity [40] demonstrates the high potential of mat-
terwave interferometry using ultracold quantum gases. With QUANTUS-2 [57] the catapult
operation doubles the microgravity duration to 9.4 s. In addition, a dual species interferom-
eter of rubidium and supplementary potassium will be established. The miniaturisation,

2 The QUANTUS project under the direction of the Leibniz University Hannover is supported from the DLR Ger-
man Aerospace Center with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi),
for the Technische Universität Darmstadt under Grant No. 50WM1137, 50WM1557, and 50WM1957 (https:
//foerderportal.bund.de/foekat/jsp/SucheAction.do?actionMode=view&fkz=50WM1957).

https://foerderportal.bund.de/foekat/jsp/SucheAction.do?actionMode=view&fkz=50WM1957
https://foerderportal.bund.de/foekat/jsp/SucheAction.do?actionMode=view&fkz=50WM1957
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robustness and further restrictions on the cold atom experiments due to the environment at
the drop tower, make the developed apparatus implementable in ballistic rockets or space
missions. The first BEC in space was realised with the MAIUS (MAteriewellenInterferometer
Unter Schwerelosigkeit - matter-wave interferometers under microgravity) rocket mission in
2017, with a several minutes lasting free fall [43]. Based on QUANTUS and MAIUS, the BECCAL
(Bose-Einstein Condensate and Cold Atom Laboratory) project aims for the realisation of ex-
periments with ultracold and condensed atoms on the International Space Station (ISS) [60].

A crucial requirement of these project is the fast, robust and miniaturised generation of
BECs. On atom chips [61] the atoms can be decelerated and trapped in the smallest possible
space. With this microfabricated device generated electric and magnetic fields confine, control
and manipulate cold atoms. With the atom chips of the QUANTUS collaboration BECs of
several hundred thousand atoms can be generated within a few seconds [62] .

Overall, such challenging experiments with low repetition rates ask for realistic as possible
simulations to provide precise predictions as well as simple analytical models to understand
and describe the underlying physical concepts.

1.3.3 Quasi-Bragg diffraction

For ultra-sensitive atom interferometry a large and precise momentum transfer is essential
[63–66]. Therefore, the quasi-Bragg regime of atomic diffraction with smooth temporal pulse
shapes proves to be optimal [30, 41, 63–65, 67–71]. Bragg scattering [cf. Fig. 1.1 (b)] of atoms
from a moving standing light wave [72–75], also in combination with further techniques like
Bloch oscillations [30, 64, 66, 68, 76–80], provides an efficient transfer of photon momentum
without changing the atomic internal state, while the diffracted populations can be controlled
exactly to realise either a beamsplitter or a mirror.

The quasi-Bragg regime is preferred, because it provides a high diffraction efficiency with
simultaneously low velocity dispersion for applicable pulse durations. In Fig. 1.4 the velocity
selective population transfer is visualised for a mirror pulse.

2kL-2kL 0 4kL

ωg (k )

ωe (k )
E /ħh

∆

p
ħhκ

|e 〉
|g 〉

ω1
ω2

+k1 −k2

Figure 1.4: (Top) The interaction of two coun-
terpropagating (+k1,−k2), far detuned (∆)
lasers (magenta) of wavenumbers k1+k2 ≡ 2kL

with a two-level atom (green) is represented
by the energy diagram for first order quasi-
Bragg diffraction versus atomic wavenumber
k = p/ħh (bottom). The free ground and excited
state’s energies are ħhωg (k ), ħhωe (k ). Mainly
the momentum states |0〉, |2ħhkL 〉 are cou-
pled (magenta solid). The atomic population
distributions are initially centred around 0
(green dotted) and after a mirror pulse around
0,±2kL ,±4kL , . . . (green shadowed). This is
caused by losses into higher diffraction orders
(magenta dashed) and the velocity selectivity
of small momentum detunings κ (magenta dot-
ted), due to off-resonant coupling.

In the limit of the deep-Bragg regime [72, 81, 82]with detrimentally long interaction times
and shallow optical potentials a perfect on-resonance diffraction efficiency is accompanied
by an adversely sharp velocity dispersion. However, they can be used as a velocity filter
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[41, 64]. While the contrasting Raman-Nath limit [83–85] with short laser pulses provides
a vanishing velocity dispersion, the diffraction efficiency is very low. However, these limits
have the advantage that particularly for constant interaction strengths, viz. rectangular pulse
shapes and no spatial variations of the laser beams, simple analytical solutions can be given.

1.3.4 Sources of aberrations

For precise predictions, both, losses into higher diffraction orders and the velocity dispersion
[86] of the quasi-Bragg diffraction must be considered. Because atomic clouds do have a finite
momentum width, the velocity selectivity of the Bragg diffraction results in an incomplete
population transfer, as shown in Fig. 1.4. The population loss into higher diffraction orders
signals the crossover from the deep-Bragg- towards the Raman-Nath regime, referred to as
quasi-Bragg regime [67].

In general, smooth time-dependent laser pulses lead to equally smooth beamsplitter re-
sponses. In contrast, spatial envelopes lead to aberrations [30, 41, 87, 88], especially for large
momentum transfer interferometers. Even very wide (collimated) Laguerre-Gaussian beams
exhibit spatial inhomogeneity and wavefront curvature. This becomes relevant for large atomic
clouds compared to the laser beamwaist or for significantly displaced clouds from the sym-
metry axis. Laser misalignment further degrades the diffraction efficiency and leads to rogue
momentum components.

While for huge detunings and short interaction times (< 1 ms) for most experiments spon-
taneous emission is not an issue, in general, it leads to incoherence and reasons aberrations.

In addition, there are sundry other technical sources of aberrations, such as mechanical
vibrations (jiggling mirrors) and stochastic laser fields [89] (phase noise), but not considered
in this framework.

1.4 V E L O C I T Y F I LT E R F O R F A S T A N D H O T I O N S

While in the context of matter-wave interferometers the diffraction processes are primarily
used to transfer the entire velocity distribution of an ultracold atomic wavepacket, the use for
fast and hot ions is the opposite as velocity filters. Here, the velocity selectivity of a stimulated
Raman transition is exploited to filter out a velocity class that is as narrow as possible from an
initially broad distribution. The transferred colder subensemble provides optimised initial
conditions for subsequent precision collinear laser spectroscopy.

1.4.1 Collinear laser spectroscopy

In the context of fast ion and atom beams, collinear laser spectroscopy [46–48] enables the
investigation of optical transitions with high resolution and sensitivity. The outstanding feature
is the kinematical compression of the velocity width due to the electrostatic acceleration, with
reducing the Doppler width of initially hot thermal samples to the typical natural linewidth
of allowed optical dipole transitions [46]. This, together with the fast transport of the ions
is the reason why collinear laser spectroscopy represents the ideal tool to study short-lived
isotopes, produced at on-line facilities, with lifetimes in the millisecond range [90, 91]. Usually,
these investigations are performed to determine nuclear ground state properties such as
spins, charge radii and electromagnetic nuclear moments [91–94]. In addition, collinear laser
spectroscopy has been used for the ultratrace analysis of long-lived isotopes at very low
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abundance [95] and it was proposed as a technique to measure high voltages U with very high
precision, using Doppler velocimetry [96–98].

The kinematical compression of collinear laser spectroscopy is able to produce spectra
with resolution close to the limit of the natural linewidth. However, also a substantial residual
broadening can remain, for example when the ions are generated in a plasma. Moreover,
instead of the ground state of the ion, an excited metastable level might be a better initial
level for the spectroscopy. The transition from this level can provide atomic hyperfine fields
with better accuracy or a higher angular momentum provides the possibility of determining
the nuclear spin. In such cases, population transfer has already been used for collinear laser
spectroscopy, but only while the ions were stored in a linear Paul trap. In [99], pulsed lasers
efficiently excite ions of all velocity classes into a higher-lying state that has a decay branch
into the metastable state. After ejection from the trap, this state is addressed by collinear laser
spectroscopy. However, such schemes often suffer from various decay paths into a multitude
of levels after the resonant excitation. In contrast, with a Raman transition the population is
transferred between two levels without occupying a third level with potential leakage into dark
states. So far, one experiment reported on a Raman transition in collinear laser spectroscopy
[100], where a transition between two hyperfine components of Y+ was induced using a single
laser beam that was frequency modulated using an electro-optic modulator.

In the framework of this thesis, two counterpropagating laser beams are applied to theoreti-
cally investigate the possibility of using Raman transitions to selectively transfer ions from
the ground state to a higher-lying metastable state. Afterwards, high-resolution collinear laser
spectroscopy can be performed on this excited population. As a first potential application for
such a scheme, high-voltage measurements using calcium ions 40Ca+, are addressed by the
group of Prof. Dr. W. Nörtershäuser at the Technische Universität Darmstadt.

1.4.2 Raman diffraction

The Raman scheme is used as a velocity filter to prepare ions in a very narrow velocity distri-
bution in a meta-stable state. Therefore, beams from different lasers have to be used to bridge
the large excitation energy, coupling the Λ-system depicted in Fig. 1.5.

ă
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Laser 2: +k2 Laser 1: −k1

E /ħh

|g 〉

ω′2ω′1

Γe g

Γe m
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Figure 1.5: (Top) The interaction of two coun-
terpropagating, far detuned lasers of wavenum-
bers k1, k2 with moving ions is represented by
the Λ-type energy diagram for Raman diffrac-
tion versus atomic wavenumber k = p/ħh (bot-
tom). In the rest frame of the ions, the one-
photon detuning is∆ and the two-photon de-
tuning is δ with respect to the Doppler-shifted
frequencies ω′1, ω′2. The spontaneous decay
rates Γe g , Γe m and decoherence rates Γg g ,Γmm

induced by laser noise, diminish the efficiency
of the Raman filter, transferring from the initial
population (dotted) in the ground state |g 〉with
a broad velocity distribution a narrow cutout
(shadowed) into the metastable state |m〉with-
out populating the excited state |e 〉.
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1.4.3 Sources of aberrations

The ideal filter is characterised by transferring one velocity class of initially hot ions with 100 %
transfer efficiency into another internal ground state, in the limit of a delta function. Aberra-
tions lead to a broadening of that resonance and a reduced transfer efficiency, especially for
the resonant velocity, as indicated in Fig. 1.5. In particular, the filter efficiency is diminished
by rouge resonances. The spontaneous emission from the two single-photon resonances
in the Λ-system, each coupled by mainly one of the lasers, leads to broad velocity distribu-
tions, which can cover the narrow Raman resonance. In addition, laser noise with finite laser
linewidths leads to ground-state decoherence, broadening the Raman resonance. Just as for
atomic beamsplitters, spatial intensity variations of the laser beams lead to aberrations for
the Raman velocity filter, while wavefront curvature is not an issue here. However, also the
spatial distribution of the ion beam needs to be considered, because its size is in the same
range as the laser beams and can be even larger.

1.5 S T R U C T U R E O F T H E T H E S I S

This work is organised in four parts.
Part I starts with the concepts and methods of light-matter interaction in Chapter 2, covering

the interaction of classical laser light with ultracold atoms as well as with hot ions. The essential
methods to solve the time-evolution of the interacting system represent the special tools of
the trade for this thesis, outlined in Chapter 3.

Part II covers the diffraction of ultracold atoms by classical laser light. It starts in Chapter 4
with the resonant diffraction with one laser beam. The analytical treatment provides physical
insight into the basic mechanism of the diffraction of ultracold atoms. The focus of this thesis
lies on the atomic quasi-Bragg diffraction with two counterpropagating laser beams. Therefore,
Chapter 5 provides the fundamentals for the atomic diffraction by two counterpropagating
pulsed Laguerre-Gaussian laser beams, covering the aberrations due to the velocity dispersion
of the beamsplitter response as well as losses into higher diffraction orders. Here, plane
laser waves with constant interaction strengths are considered. Different temporal envelopes
are studied in Chapter 6, providing the opportunity to smooth the beamsplitter response.
Spatial envelopes as well as laser misalignment reduce the diffraction efficiency and lead to
rogue velocity components, considered in Chapter 7. The diminishing effects of spontaneous
emission are included in Chapter 8. Derived analytical models as well as numerical simulations
are verified by experimental data [1]. Finally, the effects of the multitude of aberrations are
summarised in Chapter 9.

Part III deals with the diffraction of hot ions by classical laser light. The presented theoretical
studies are motivated by the possible use of Raman velocity filters as a new tool to measure high
voltages (Sec. 10.1). They are based on an experiment performed in the research group of Prof.
Dr. W. Nörtershäuser at the Technische Universität Darmstadt, which is briefly introduced in
Section 10.2. These experimental boundary conditions are covered by the derived theoretical
model in Section 10.3. The results of numerical and analytical studies are presented in the
frequency domain in Chapter 11 as well as in the time domain in Chapter 12. The former
demonstrates the contributions of different resonances. The latter gives the ideal lower bound
of the velocity width of the transferred ions as well as the broadening effects due to aberrations
caused by rogue resonances, finite laser linewidths and spatial intensity variations of the ion
and the laser beams. These results show promise for the realisation of optical high-voltage
measurements with spectroscopic precision.
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Finally, this thesis concludes with a summary of the findings and an outlook about further
interesting research options in Part IV.

The elaborated, numerical and analytical concepts, methods and solutions has been im-
plemented into the MAT T E RWAV ESI M Python software package of the group of Prof. Dr. R.
Walser at the Technische Universität Darmstadt. Central results of this thesis are or will be
published in scientific journals:

A. Neumann, M. Gebbe, R. Walser [101]
Aberrations in (3+1)-dimensional Bragg diffraction using pulsed Laguerre-Gaussian
laser beams
Phys. Rev. A 103, 043306 (2021)
Based on Chapter 1 and Part II: Chapters 5, 6, and 7.

O. Marchukov, A. Neumann, J. Teske, R. Walser
Collimation of Bose-Einstein condensates within Bragg-beam splitters applying
pulsed Laguerre-Gaussian laser beams
In preparation
Contribution by Part II: Chapter 7, especially Section 7.3.

A. Neumann, M. Gebbe, R. Walser
Aberrations in (3+1)-dimensional Bragg diffraction due to misaligned, pulsed
Laguerre-Gaussian laser beams
In preparation
Based on Part II: Chapter 7, especially Section 7.5.

A. Neumann, W. Nörtershäuser, R. Walser [102]
Raman velocity filter as a tool for collinear laser spectroscopy
Phys. Rev. A 101, 052512 (2020), Editors’ Suggestion 3

Based on Chapter 1 and Part III.

3 ‘A small number of Physical Review A papers that the editors and referees find of particular interest, importance, or
clarity.’





Part I

F U N D A M E N TA L C O N C E P T S A N D M E T H O D S





2
C O N C E P T S O F L I G H T- M AT T E R I N T E R A C T I O N

The interaction of electromagnetic radiation and matter leads to fascinating physical effects
and numerous scientific advances [103–105]. Ultracold atoms interacting with laser light are
of special interest to investigate elementary questions in quantum physics. For ultracold
temperatures close to the absolute zero, typically in the regime of nano- to microkelvin, the
quantum mechanical properties of the atoms become essential. Then, the atoms behave
more like waves than classical particles. In addition, the main concept of the diffraction of
alkali-like ions is similar to that of ultracold atomic diffraction.

In the next Sections 2.1- 2.3 the basic concepts for a dilute gas of ultracold, neutral atoms
interacting with classical laser fields in the dipole approximation are given. In this framework
semi-classical approaches are almost always adequate in practice. These lay the foundations
and introduce the notations for the main topic of this thesis: the description of the diffraction
process of matter waves engendered by laser light. Section 2.4 shows the different aspects,
which must be taken into account for the treatment of hot alkali-like ions.

2.1 C O L D AT O M S I N T E R A C T I N G W I T H L A S E R L I G H T

Within the semi-classical quantum theory, which is used to describe the interaction dynamic
of coherent light fields with one ultracold, hydrogen-like atom, the atomic system is treated
quantum mechanically, while the light fields are treated classically.

2.1.1 Interaction Hamilton operator

T H E L I G H T F I E L D The electromagnetic field is generated by one or two monochromatic
lasers providing coherent light in the visible (390nm− 790 nm) to near-infrared (700 nm−
1000 nm) spectrum. Before different approaches describe explicitly the spatial properties
of the laser fields in Section 2.2, firstly a general description considering both spatial and
temporal variations is given. The transverse electric field of one single-mode laser L is

E L (t , r ) = εL E0,L (t , r )cos[ωL t +ΦL (r )], (2.1)

with polarisation vectorεL . The field is decomposed into a slowly varying amplitudeE0,L (t , r ) ∈
R as well as the spatial phase ΦL (r ), including the rapidly oscillating carrier phase k L r . Here,
the vacuum dispersion relationωL = c kL applies, with the speed of light c and the positive
wavenumber kL = |k L |> 0. The total electric field is consequently the sum over all NL laser
beams

E (t , r ) =
NL
∑

L=1

E L (t , r ). (2.2)
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T H E AT O M I C M O D E L The considered atomic matter is a cold, dilute gas of neutral atoms
with relative velocities much smaller than the speed of light. Although ensembles of many
atoms should be considered, we start with the description of one single atom of mass M .
Different approaches to define a quantum mechanical state for (an ensemble of) ultracold
atoms are given in Section 2.3.
The simplest atomic model for the quantum mechanical description of atom-light interaction
is the two-level system. Here, the internal structure of the atoms is modelled with two elec-
tronic levels {|g 〉, |e 〉}, referred to as the ground- and excited state, spanning the Hilbert space
Hint. The corresponding energies ħhωg and ħhωe define the transition frequencyω0 =ωe −ωg .
Together with the external degrees of freedom, namely the non-relativistic centre-of-mass
motion in three dimensions Hcom, the total single-particle Hilbert space for the atomic degrees
of freedom results in the product H1 =Hint⊗Hcom. Considering an atomic medium, which is
very dilute, atom-atom interactions can be safely ignored.

T H E Q U A N T U M M E C H A N I C A L M O D E L O F T H E I N T E R A C T I O N Bringing both interaction
parts together, the system Hamilton operator contains the kinetic centre-of-mass energy as
well as the atomic internal energy and the atom-laser interaction potential

Ĥ (t , r̂ , p̂ ) =
p̂ 2

2M
+ħhωg |g 〉〈g |+ħhωe |e 〉〈e |+ V̂ (t , r̂ ). (2.3)

When the lasers are far detuned from the atomic resonance frequencies |ω0−ωL | � Γ , where
Γ is the natural linewidth of the transition, the population loss into unobserved states is
negligible and the two-level atom without spontaneous emission is a suitable approximation.

For the further theoretical description of atomic diffraction, different coordinate frames
occur, giving rise for several frame transformations. Therefore, it is important to note that
the system Hamilton operator (2.3) refers to the laboratory frame, the inertial rest frame of
the atomic chip experiment. In this frame, denoted with S0, the centre-of-mass motion of the
particle with mass M is parametrised with phase-space coordinates (r , p ).

Concentrating on interactions with optical fields, it is adequate to apply the long-wavelength
or electric dipole approximation [103]. This utilises that the electric field with an optical wave-
length in the range of hundreds of nano-meters to micro-meters does not change significantly
over the size of the atom with angstroms scales. Therewith, the resulting interaction potential
is restricted to the lowest-order term and purely defined through the dipole interaction energy

V̂ (t , r̂ ) =−d̂ ·E (t , r̂ ). (2.4)

The dipole operator for the two-level system can be written in terms of the Pauli matrices
for the two-level system σ̂ = |g 〉〈e |, σ̂† = |e 〉〈g | and the non-zero dipole matrix elements
d e g ≡ 〈e |d̂ |g 〉= d g e [106]

d̂ = 〈e |d̂ |g 〉
�

σ̂+ σ̂†
�

. (2.5)

It is worth mentioning, that in the long-wavelength approximation the electric field is evalu-
ated at the atomic centre-of-mass location r .
Finally, the Hamilton operator defining the total energy of the quantised atom is

Ĥ (t , r̂ , p̂ ) =
p̂ 2

2M
+ħhωg σ̂g +ħhωe σ̂e + V̂ (t , r̂ ), V̂ (t , r̂ ) =−d e g E (t , r̂ )

�

σ̂+ σ̂†
�

, (2.6)

with the Pauli spin operators σ̂ς ≡ σ̂ςς = |ς〉〈ς|.
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2.1.2 Rotating-wave approximation

The electric field of any laser field (2.1) as well as the dipole operator (2.5) can be decomposed
into positive- and negative-rotating parts

E = E (+)+E (−), E (±)(t , r ) = εE(±)(t , r )e ∓iωt , E(±)(t , r ) = E0(t , r )e ∓iΦ(r ), (2.7)

d = d (+)+d (−), d (+) = 〈e |d̂ |g 〉σ̂∼ e −iω0t , d (−) = 〈e |d̂ |g 〉σ̂† ∼ e +iω0t . (2.8)

The expectation value of σ̂ is the evolution of |e 〉with the free atomic Hamilton operator with
the unperturbed time dependence e −iω0t . Within the rotating-wave approximation (RWA)
[107], the antiresonant, rapidly oscillating terms d (±)E (±) are neglected in V̂ , because they
have no contribution on average. Concentrating on the slow dynamics, the dipole potential
simplifies to

V̂RWA(t , r̂ ) =−
1

2
σ̂†

NL
∑

L=1

〈e |εL · d̂ |g 〉EL (t , r̂ )e −iφL (t ,r̂ )+h.c., (2.9)

with introducing the slowly varying complex envelope EL (t , r ) [the real amplitude is E0,L (t , r )]
and rapidly oscillating carrier phaseφL (t , r ) of one certain laser L , defined with

EL (t , r ) = E0,L (t , r )e iϕL (r ), ϕL =−k L r −ΦL , φL (t , r ) =ωL t −k L r . (2.10)

The RWA1 (2.9) is valid for no overly strong coupling strengths d e gεLEL (t , r )/ħh �ωL [108]
and obviously, only for not extremely far detuned lasers |ωL −ω0| �ω0,ωL .

2.1.3 Rabi frequency

Introducing the Rabi frequency for each laser

ΩL (t , r )≡Ω0,L (t , r )e iϕL (r )≡−
〈e |εL · d̂ |g 〉EL (t , r )

ħh
, (2.11)

the coupling potential between the light and the atomic transition finally reads

V̂ (t , r̂ ) =
ħh
2
σ̂†ΩNL

(t , r̂ )+h.c., ΩNL
(t , r )≡

NL
∑

L=1

Ω0,L (t , r )e −iΦL (t ,r ). (2.12)

In the experiments, the Rabi frequency is defined by the total measured power P , the beam
waist w0 and the effective coupling strength of the transition Deff [109]

Ω0 =
|Deff|
ħh

E0 =
|Deff|
ħh

√

√

√

4P

πε0c w 2
0

, (2.13)

with the real electric field amplitude E0 = E0(r = 0) ∈R and the vacuum permittivity ε0. In order
of spatial intensity variations this represents the maximum Rabi frequency (in the centre) of
the laser region. The effective coupling strength is proportional to the reduced matrix element
D = 〈J ||e r ||J ′〉, which can be calculated from the lifetime via [109]

1

τ
=

ω3
0

3πε0ħh c 3

2J +1

2J ′+1
|D|2. (2.14)

Assuming the lasers are far detuned from the atomic resonance of the rubidium-87 D2-line
[110], they interact with the full J = 1/2 → J ′ = 3/2 transition. They are linearly polarised,
interacting only with one (of three) component of the dipole operator. Therefore, the effective
transition strength is given by the reduced dipole matrix element lowered to Deff =D/

p
3. For

the rubidium-87 D2-transition, D is listed in Table A.1.

1 The specifying index ‘RWA’ of the interaction potential will be skipped in the further course of this thesis.
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2.2 S PAT I A L M O D E S O F T H E E L E C T R O M A G N E T I C F I E L D

So far the classical laser light field was introduced most generally in (2.1) with spatio-temporal
variations. Making for a certain laser L the ansatz of a monochromatic field

E L (t , r ) = εL E
(+)
L (r )e

−iωL t + c .c ., (2.15)

the spatial mode EL (r ) = E
(+)
L + E

(−)
L is a solution of the scalar Helmholtz equation [111]

∇2EL (r )+k 2
L EL (r ) = 0, (2.16)

where the wavenumber satisfies the dispersion relation |k L | = ωL/c . Two types of spatial
modes solve this equation: plane waves with E+ ∼ exp(i k r ) (cf. Sec. 2.2.1) and spherical waves
with E+ ∼ exp(i k r )/|r | leading with an imaginary source point to realistic Laguerre-Gaussian
laser beams (cf. 2.2.2).

2.2.1 Plane waves

Collimated laser beams are usually approximated with plane waves. Therefore, the complex
amplitude of the positive frequency field reads

E
(+)
L (r ) = EL (r )e

i k L r = EL ,0e −iΦL , ΦL =−k L r , (2.17)

representing a solution of the Helmholtz equation (2.16). Theses plane waves provide wave-
front normals that coincide with the propagation direction but their intensity is constant

I (r ) = |E(+)L (r )|
2 = E2

L ,0 unlike the spatial confinement of real laser beams. However, this ide-
alisation is amenable for analytical treatments and can be used as reference to quantify
aberrations due to more realistic laser beams.

2.2.2 Laguerre-Gaussian beams

Laguerre-Gaussian (LG) beams [112] exhibit the characteristics of a realistic optical beam: the
angular and spatial confinement. Even if lasers are collimated, they are still LG-beams, char-
acterised by transversal as well as longitudinal intensity variations and wavefront curvature.
For one LG-beam, propagating in its intrinsic reference frame SL in x -direction, the ansatz

E
(+)
L (r ) = EL ,0uL (r )e

i kL x (2.18)

is appropriate. Here, the complex envelope uL (r ) is a slowly varying function in the propa-
gation direction, with ∂x uL � uL/λL . Therefore, ∂ 2

x uL � kL∂x uL � k 2
L uL , which leads to the

two-dimensional paraxial approximation of the Helmholtz equation [113]

i∂x uL (x ,%) =−
βL

2
∇2
%uL (x ,%), βL = k−1

L , % = (y , z ). (2.19)

Hence, the scalar fundamental mode uL (r ) of a circularly symmetric LG-beam (visualised in
Fig. 2.1) follows with

uL (x ,%) =
xR

i q (x )
e i

kL%
2

2q (x ) , q (x ) = x − i xR , (2.20)

using the complex beam parameter q (x ) and % =
p

y 2+ z 2 is the radial distance to the
symmetry axis. The solution (2.20) can be described with a real envelope uL (x ,%) and the
slowly varying phase ϕL (x ,%) as

uL (x ,%) = uL e iϕL , uL (x ,%) =
w0

w (x )
e
− %2

w (x )2 , ϕL (x ,%) =
kL%

2

2R (x )
−ζ(x ). (2.21)
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w (x )
w0R (x )

%

x0

Figure 2.1: Laguerre-Gaussian beam
propagating in x -direction, with colour
coded spatial intensity, beamwaist
w (x ), minimum waist w0 and radius
of curvature of the beam’s wavefronts
R (x ), where the local orientation of the
wavevector is indicated with grey arrows.

The characterising beam parameters are: the beamwaist w (x ), the radius of curvature R (x ),
the Gouy phase ζ(x ) and the Rayleigh range xR , reading

w (x ) =w0

√

√

√

1+
�

x

xR

�2

, R (x ) = x
�

1+
� xR

x

�2
�

, ζ(x ) = arctan
�

x

xR

�

, xR =
πw 2

0

λL
, (2.22)

with the minimum waist w0 = 2σL and the wavelength λL = 2π/kL . Finally, the complex
amplitude of the positive-rotating part of the electric field (2.18) is parametrised with

E
(+)
L (r ) = EL ,0uL (r )e

i kL x = EL ,0uL (x ,%)e −iΦL (r ), ΦL (r ) =−kL x −ϕL (x ,%). (2.23)

Propagation directions unequal to x will be considered later on with geometric coordinate
transformations SL 7→ S , including translations and rotations (cf. Sec. 3.4.2).

C O L L I M AT E D B E A M S Collimated (c) laser beams are characterised by an almost constant
beam radius for moderate propagation distances w (x ) ≈ w0. For Laguerre-Gaussian laser
beams this requires a long Rayleigh length in comparison to the envisaged propagation
distance xR � x . Therefore, large radii w0 � λL are essential, because the Rayleigh length
scales with the square of the beamwaist. Therefore, the spatially evolved mode uL (x ,%) (2.21)
simplifies to

uL (x ,%)
w0�λL= u c

L (%) = e
− %

2

w 2
0 . (2.24)

The slowly varying phaseϕL vanishes, because for relevant propagation distances x � xR one
can approximate R →∞ and ζ≈ 0.

2.3 S PAT I A L M O D E S O F M AT T E R W AV E S

In quantum theory wave-particle duality is a central aspect. To define proper spatial modes
(cf. Sec. 2.3.3-2.3.7) it is necessary to take a closer look at the quantum mechanical model of
the two-level atomic initial states (cf. Sec. 2.3.1, 2.3.2).

2.3.1 Single-particle systems

The single-particle (N = 1) wavefunction includes three external degrees of freedom, i.e. its
position. In addition, the internal degree of freedom is spanned by the atomic internal states
|ς〉, with ς ∈ {g , e } for the two-level system. Working in the complete orthonormal basis B of
the single-particle Hilbert space H1

B = {|ς〉, |r 〉 : ς ∈ {g , e }, r ∈R3}, 〈ς, r |ς′, r ′〉=δςς′δ(r − r ′), (2.25)

the complete quantum states are denoted with |ς, r 〉. The non-relativistic, normalised single-



18 2 C O N C E P T S O F L I G H T- M AT T E R I N T E R A C T I O N

particle quantum system is represented by |ψ〉with

|ψ〉=
∫

d3r
∑

ς

ψς(r )|ς, r 〉, ψς(r ) = 〈ς, r |ψ〉, ||ψ||2 ≡ 〈ψ|ψ〉=
∫

d3r
∑

ς

|ψς(r )|2 = 1, (2.26)

whereψς(r ) is the amplitude, viz. the spatial mode of the single-particle matter wave, and ||ψ||
is the continuum norm. The coherent time-evolution of |ψ〉 is characterised by the Hamilton
operator (2.6) and given by the single-particle Schrödinger equation

iħh∂t |ψ(t )〉= Ĥ |ψ(t )〉. (2.27)

In the position space, the time evolution of the two spatial modesψς=e ,g (r ) reads

i∂t

�

ψe (t , r )
ψg (t , r )

�

=

�

−ħh∇
2

2M +ωe ΩNL
(t , r )

Ω∗NL
(t , r ) −ħh∇

2

2M +ωg

�

�

ψe (t , r )
ψg (t , r )

�

, (2.28)

using the definition of ΩNL
(t , r ) from Eq. (2.12).

2.3.2 Many-particle systems

Atomic clouds are many-body system of indistinguishable particles that are either bosons
of fermions. For their quantum mechanical representation the second quantisation [114]
is appropriate. Therefore, the non-relativistic atomic field operator Ψ̂ς(r ) annihilates a par-
ticle at the position r , in the internal state ς. Regarding bosons2, they satisfy the following
commutation rules

�

Ψ̂ς(r ), Ψ̂
†
ς′ (r
′)
�

=δςς′δ(r − r ′),
�

Ψ̂ς(r ), Ψ̂ς′ (r
′)
�

= 0. (2.29)

It is convenient to expand Ψ̂ς(r ) in a complete set of orthonormal single-particle functions,
using here the Fourier sum with

Ψ̂ς(r ) =
∑

k

〈r |k 〉âςk . (2.30)

In Eq. (2.30), 〈r |k 〉 is the position representation of the momentum3 eigenstates, representing
the wavefunctionsψςk (r ) in the single-particle basis |ς, k 〉, i.e. plane wave amplitudes

ψk (r ) = 〈r |k 〉=
e i k r

p

(2π)3
, (2.31)

and 〈ς′, r |ς, k 〉=δςς′ψςk (r ). The bosonic creation and annihilation operators â †
ςk , âςk satisfy

the bosonic commutation rules
�

âςk , â †
ς′k ′

�

=δςς′δk k ′ ,
�

âςk , âς′k ′
�

= 0. (2.32)

In the Fock space F=H0 ⊕H1 ⊕H2 ⊕ . . . , which is the direct sum of the N -particle Hilbert
spaces HN for N = 0, 1, 2, . . . , they are defined through the relations

â †
α|n0, n1, . . . , nα, . . . 〉=

p

nα+1|n0, n1, . . . , nα+1, . . . 〉,
âα|n0, n1, . . . , nα, . . . 〉=pnα|n0, n1, . . . , nα−1, . . . 〉,

(2.33)

2 Rubidium-87 and rubidium-85 atoms are bosons, where rubidium-87 is considered in the experiments [1], but for
example other isotopes such as rubidium-82 or potassium-40 are fermions.

3 In the field of atomic diffraction naturally the momentum p = ħhk occurs in units of the reduced Planck constant
ħh . For the sake of simplicity, the wavenumber k is therefore equivalently referred to as the momentum. The reader
is kindly asked to forgive this indistinctness.
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where α≡ ςk represents the complete set of quantum numbers. Here, the number nα ∈N0 of
atoms in the single-particle state α are the eigenvalues of the occupation-number operator

n̂α = â †
αâα, n̂α|n 〉= nα|n 〉, |n 〉= |n0, n1, . . . , nα, . . . 〉. (2.34)

The generic state of the many-body system of the Fock space Fcan be written in occupation
number representation as linear combination of the many-body basis states |n 〉with

|Ψ〉=
∑

n

ψn |n 〉, |n 〉=
∏

α

(â †
α)

nα

p

nα!
|0〉. (2.35)

In the Schrödinger representation, the state |Ψ〉 can be expressed as N -particle amplitudes,
reading

|Ψ〉=
∞
∑

N=0

|Ψ (N )〉=ψ(0)|0〉 (2.36)

+

∫

d3r1

∑

ς1

ψ(1)ς1
(r 1)Ψ̂

†
ς1
(r 1)|0〉 (2.37)

+

∫

d3r2d3r1

∑

ς1,ς2

ψ(2)ς1,ς2
(r 1, r 2)Ψ̂

†
ς1
(r 1)Ψ̂

†
ς2
(r 2)|0〉 (2.38)

+

∫

d3r3d3r2d3r1

∑

ς1,ς2,ς3

ψ(3)ς1,ς2,ς3
(r 1, r 2, r 3)Ψ̂

†
ς1
(r 1)Ψ̂

†
ς2
(r 2)Ψ̂

†
ς3
(r 3)|0〉 (2.39)

+ . . . , (2.40)

whereψ(0) is the vacuum amplitude, Eq. (2.37) represents a single-particle state, Eq. (2.38) a
two-particle state and Eq. (2.39) a three-particle state, where for the N -particle state |Ψ (N )〉, N
particles are created with applying N field operators to the vacuum |0〉. In general, N -particle

amplitudesψ(N )ς1,...,ςN
(r 1, . . . , r N ) do not factorise.

T H E T I M E E V O L U T I O N of the field operator Ψ̂ς(r ) is defined by the Heisenberg equation

iħh∂t Ψ̂ς(t , r ) = [Ψ̂ς(t , r ), ĤII (t )], (2.41)

where ĤII denotes the Hamilton operator in second quantisation, given by

ĤII (t ) = Ĥsp(t )+ V̂d (t )+ V̂2(t ). (2.42)

In the Fock space F, the single-particle Hamiltonian Ĥsp, including an external potential Vext

for example gravity or a trapping potential Vt , the dipole interaction V̂d and the two-body
interatomic interactions V̂2 read (cf. [114, 115])

Ĥsp(t ) =

∫

d3r
∑

ς

Ψ̂†
ς (r )

�

−
ħh 2

2M
∇2+ħhως+Vext(t , r )

�

Ψ̂ς(r ), (2.43)

V̂d (t ) =
ħh
2

∫

d3r ΩNL
(t , r ) Ψ̂†

e (r )Ψ̂g (r )+h.c., (2.44)

V̂2(t ) =
1

2

∫

d3r d3r ′
∑

ς,ς′
Ψ̂†
ς (r )Ψ̂

†
ς′ (r
′)V ς,ς′

2 (r − r ′)Ψ̂ς′ (r
′)Ψ̂ς(r ), (2.45)

withΩNL
from Eq. (2.12). For the considered dilute gases it is appropriate to restrict the particle-

particle interactions to two-particle interactions V̂2. The pair potential, which is assumed to

be local and exhibits translational invariance, depends on the particle distance V ς,ς′

2 (r − r ′)
and in general different scattering properties for atoms in different states ς are considered.
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D I L U T E G A S A P P R O X I M AT I O N Within the very dilute gas, during the short atomic diffrac-
tion pulses, two-particle interactions are assumed to be negligible V̂2 = 0. Therefore, the time
evolution (2.41) simplifies to

i∂t

�

Ψ̂e (t , r )
Ψ̂g (t , r )

�

=

�

−ħh∇
2

2M +ωe +
Vext(t ,r )
ħh ΩNL

(t , r )
Ω∗NL
(t , r ) −ħh∇

2

2M +ωg +
Vext(t ,r )
ħh

�

�

Ψ̂e (t , r )
Ψ̂g (t , r )

�

, (2.46)

which is dynamically equivalent to the single-particle Schrödinger equation (2.28) for Vext = 0,
but has operator valued amplitudes.

C L A S S I C A L F I E L D A P P R O X I M AT I O N Optimal initial states for matter-wave interferometers
are Bose-Einstein condensates (BECs). In these states a collection of bosonic atoms occupies
macroscopically one quantum state. In the mean-field approximation for T ≪ T c the BEC
has a macroscopic mean value of the field operator [116]

Ψ̂ς(t , r ) =ψc
ς (t , r )+δΨ̂ς(t , r )≈ψc

ς (t , r ). (2.47)

The complex, condensate (c) wavefunctionψc
ς (t , r )≡ 〈Ψ̂ς(t , r )〉 is defined as the expectation

value of the field operator and quantum fluctuations δΨ̂ς(t , r ) cause only small deviations
around it, i.e. 〈δΨ̂ς(t , r )〉= 0. Applying the approximation (2.47) to the time evolution (2.46)
yields equations of motions formally identical to the two component Schrödinger equation
(2.28) for single particle quantum states. From the many-particle treatment only the normali-
sation to the particle number N is left over, as expected for non-interacting particles. This
results from the expectation value N = 〈N̂ 〉 of the particle-number operator

N̂ =

∫

d3r
∑

ς

n̂ς(r ), 〈N̂ 〉=
∫

d3r
∑

ς

n c
ς (r )+

∫

d3r
∑

ς

〈n̂ t
ς (r )〉=N c +N t , (2.48)

Here, n̂ =
∑

ς n̂ς is the density operator and for one internal state n̂ς reads

n̂ς(r ) = Ψ̂
†
ς (r )Ψ̂ς(r ) = n c

ς (r )+ n̂ t
ς (r )+δΨ̂

†
ςψ

c
ς (r )+δΨ̂ςψ

c ∗

ς (r ), (2.49)

n c
ς (r ) = |ψ

c
ς (r )|

2, n̂ t
ς (r ) =δΨ̂

†
ς (r )δΨ̂ς(r ), (2.50)

with the density of the condensate n c
ς and the density operator of the quantum depletion n̂ t .

For very low temperatures T � T c one gets N t �N c , limiting in N ≈N c for T ≪ T c .

AT O M I C I N I T I A L S TAT E S For the diffraction analysis, the initial population is in the internal
ground state. Therefore, the following sections present different approaches for the spatial
modesψg (t = 0, r ), skipping in the following the index g .

Bose-Einstein condensates provide a narrow velocity respectively momentum spread∆p .
Therefore, in the ideal limit of a vanishing∆p → 0 the condensate wavefunctionψc (t = 0, r )
can be approximated with plane-wave modes (cf. Sec. 2.3.3). However, this as well as Gaussian
wavepackets, which provide a finite momentum expansion (cf. Sec. 2.3.4), are more theoretical
approaches to model reasonably the position and momentum expansion of an atomic initial
state with a single-particle wavefunction. To approximate the condensate wavefunction more
realistically, an external trapping potential and particle-particle interactions are taken into
account in Section 2.3.5. In general, there are also thermal clouds (cf. Sec. 2.3.6 and Sec. 2.3.7).
These incoherent mixed states have a wide velocity spread in comparison to BECs, even for
small temperatures. In regard to temperatures, especially the momentum distribution of
a state is relevant. Indeed, for the diffraction efficiency of atomic beamsplitters with large
collimated laser beams, where a plane-wave approximation for the laser beams is appropriate,
the required information about the atomic initial state is completely given by its momen-
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tum density distribution. Heisenberg’s uncertainty principle ∆x∆p ≥ ħh/2 defines (in one
dimension) the minimum relation between the confinement of a state in the position and the
momentum space, because it is impossible to measure the two canonically conjugate vari-
ables with arbitrary precision. Therefore, the initial distributions of the following approaches
are sketched in the phase-space (x , p ) to assign them to the temperature scale (cf. Fig. 1.2).

2.3.3 Plane waves

x

p0

0p

An idealised case are initial states with ultimate momentum confinement, thus
with a precisely defined momentum p 0 = ħhk 0, provided by plane wave modes

ψ(t , r ) = e i (k 0r−ω(k 0)t ) (2.51)

in the position representation. They are solutions of the free Schrödinger equation

i∂tψ(t , r ) =−
α

2
∇2ψ(t , r ), α=

ħh
M

, (2.52)

where for t > 0 the phase velocity vφ(k ) = ω/k with ω(k ) = ħhk 2/2M is considered. With
a suitable normalisation they are the momentum eigenstates in position representation
〈r |k 〉= exp(i k r )/

p

(2π)3 (2.31) called de Broglie waves with assigning to all particles with the
momentum p = |p |= ħh |k | the wavelength λ= h/p [55].

The density n (t , r ) = |ψ(t , r )|2 (2.51) gives the probability distribution of the particle. While
plane waves carry only one linear momentum component, they are not spatially localized
n (t , r ) = 1µm−3, as prescribed by Heisenberg’s uncertainty principle. In Fig. 2.2 the canonically
conjugated density and phase are depicted for t = 0 and using a one-dimensional expansion.
The density in the position space n (x ) = 1µm−1 [cf. Eq. (2.51)] is obviously constant, while the
phaseϕ(x ) = arg[ψ(x )] = kx ,0 x depends linearly on x . In the momentum space the population
of only one momentum component is apparent n (kx ) = |Ψ(kx )|2 =δ(kx −kx ,0), while the phase
vanishes ϕ(kx ) = 0. Free time-evolved plane waves receive an additional constant phase in
the position space with 0≤ω(k 0)t < 2π.
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Figure 2.2: Density and phase of a one dimensional plane wave in position (left) and momentum
px = ħhkx space (right), with k0,x =−10µm−1.

2.3.4 Coherent states

x0 0
x

p0

0p

Coherent states are the most classical single-particle quantum states, invented by
E. Schrödinger [117]. They can be introduced differently. With the displacement
operator T̂ , they are defined as displaced vacua

|α〉= T̂ (α)|0〉, T̂ (α) = e αâ †−α∗â , â =
1
p

2

�

x̂

a0
+ i a0

p̂

ħh

�

, (2.53)

where â is the dimensionless annihilation operator with [â , â †] = 1 and
a0=

p

ħh/(Mω) is the harmonic oscillator ground state size. In a position represen-
tation coherent states are G AU S S I A N WAV E PA C K E T S with minimum uncertainty. Therefore,
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they provide a good localisation in the position as well as in the momentum space, con-
nected by the Heisenberg principleσxσk = 1/2, with the spatial widthσx and the momentum
widthσk . The free d -dimensional, not-normalised, stationary wavefunction of the Gaussian
wavepacket is a linear combination of plane waves, defined as [118]

ψ0(r ) = e i k 0(r−r 0)− 1
2 (r−r 0)(2Σ0)−1(r−r 0) =

∫

ddk
e i k r

(2π)d /2
Ψ0(k ), (2.54)

Ψ0(k ) =
Æ

|2Σ0|e −i k r 0− 1
2 (k−k 0)(2Σ0)(k−k 0) =

∫

ddr
e −i k r

(2π)d /2
ψ0(r ). (2.55)

This wavepacket is initially centred at (r 0, k 0) = (〈r 〉, 〈−i∇〉) and its norm is∫
ddr |ψ0|2 =

p

|2πΣ0|with the covariance matrix Σ0 = 〈(r − r 0)⊗ (r − r 0)〉.

x0 0
x

p0

0p

Ballistically spreading Gaussian wavepackets represent S Q U E E Z E D S TAT E S ,
withσxσk > 1/2. They are useful input states to test a beamsplitter. Using different
expansion times t , one can vary the position widthσx , while keeping the momen-
tum widthσk constant. The three-dimensional d = 3 free Schrödinger equation
(2.52) [equivalent to the paraxial approximation of the Helmholtz equation (2.19)]
describes the spreading of a matter wave

ψ(t , r ) =

∫

ddk e −i t α2 k 2 e i k r

(2π)d /2
Ψ0(k ) =A(t )e −iθ (t )e i k 0[r−r 0]− 1

2 [r−r 0(t )][2Σ(t )]−1[r−r 0(t )], (2.56)

using the Fourier-transformed field Ψ0(k ) implicitly defined in (2.54). The evolving centre
position r 0(t ), spreading covariance Σ(t ), dynamical phase θ (t ) and scale-factor A(t ) read

r 0(t ) = r 0+ tαk 0, Σ(t ) =Σ0+ i t
α

2
, θ (t ) = t

αk 2
0

2
, A(t ) =

√

√ |Σ0|
|Σ(t )|

. (2.57)

For the simulations, isotropic initial states are used with an identical expansion in all
dimension in the position space, with Σi j =δi jσ

2
x and a time-dependent spatial spreading

σx (t ) =σx

Æ

1+ (t /tH )2, tH = 2σ2
x M /ħh , (2.58)

with the Heisenberg time tH . The momentum width follows from the Heisenberg uncertainty
σk (t ) =σx (t = 0)/2. Therefore, the ballistically evolved wavepacket in position space simplifies
to

ψ
�

t̃ , r
�

=

 

σx
p

2π
�

σ2
x +

i t̃
2

�

!d /2

e i
�

k 0(r−r 0)−k 2
0

t̃
2

�

e
−
�

r−r 0−k 0 t̃
�2

4
�

σ2
x +

i t̃
2

�

, (2.59)

where it is useful to introduce the scaled time t̃ = ħh t /M . In the momentum representation

Ψ(t̃ , k ) =
�

2σxp
2π

�d /2

e −i (k r 0+k 2 t̃
2 )e −(k−k 0)2σ2

x , (2.60)

the constant momentum width becomes obvious, while the spreading in the position space
with the scaled time isσx (t̃ ; t̃H ) (2.58) with t̃H = 2σ2

x . In addition, the centre of the wavepack-
age is moving with v 0 = ħhk 0/M . These properties are visualised in Fig. 2.3 in one dimension
x (d = 1), with the densities n (t̃ , x ) = |ψ(t̃ , x )|2 and n (kx ) = |Ψ(kx )|2, i.e.

n (t̃ , x ) =

 

σ2
x

2π
�

σ4
x +

t̃ 2

4

�

!1/2

e
−σ

2
x
�

x−x0−kx ,0 t̃
�2

2
�

σ4
x +

t̃ 2
4

�

, n (kx ) =
2σxp

2π
e −(kx−kx ,0)2σ2

x (2.61)
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Figure 2.3: Density and phase of a one dimensional Gaussian wavepacket in position (left) and mo-
mentum space (right), without ballistical expansion (solid) and after t = 685µs (dashed).
The initial position is x0 = 0 and the initial momentum k0,x =−10µm−1. The expansion size
isσx = 0.5µm leading to the momentum widthσk = 1µm−1.

and the phases ϕ(t̃ , x ) = arg[ψ(t̃ , x )] and ϕ(t̃ , kx ) = arg[Ψ(t̃ , kx )], i.e.

ϕ(t̃ , x ) = kx ,0(x − x0)+
t̃

2

�

(x − x0−kx ,0 t̃ )2

4σ4
x + t̃ 2

−k 2
x ,0

�

−arctan

�

t̃

2σ2
x +

Æ

4σ4
x + t̃ 2

�

, (2.62)

ϕ(t̃ , kx ) =−x0kx −
t̃

2
k 2

x . (2.63)

The initial wavepacket centred at x = 0 shows the characterising momentum and simulta-
neously spatial confinement, where the density in the position as well as in the momentum
space is Gaussian distributed, also for t > 0 [cf. Eq. (2.61)]. Similar to plane waves, for t = 0
they have a linear phase in position space, which vanishes in momentum space for x0 = 0 [cf.
Eq. (2.62)]. After free evolution, the atom is moving corresponding to its initial momentum and
spreading in x , while the density distribution in k stays constant [cf. Eq. (2.61)]. In contrast,
a quadratic phase is received for both, the position and the momentum representation but
with a different sign of the curvature [cf. Eq. (2.62)].

2.3.5 Bose-Einstein condensates

x

p

T = 0
At ultracold temperatures T � T c , a bosonic gas can become a Bose-Einstein
condensate. In the framework of preparing an ultracold initial state for the atomic
diffraction, the focus is on harmonically trapped gases of N bosonic atoms
with temperatures well below this Bose-Einstein phase-transition T c . For non-
interacting bosons this temperature is given by [116]

kB T c = ħhω̄
�

N

ζ(3)

�1/3

≈ ħhω̄N 1/3, (2.64)

where kB is the Boltzmann constant, ζ(n ) the Rieman-ζ function. For experimentally4 given
values in Table A.1 the transition temperature is T c = (34±1)nK. For an anisotropic harmonic
oscillator potential in d = 3 dimensions

Vt (r ) =
1

2
M
�

ω2
x x 2+ω2

y y 2+ω2
z z 2

�

, (2.65)

4 For experiments with ultracold atoms the D2-line of rubidium-87 atoms serves optimal conditions, accessible for
common optical devices. Table A.1 lists fundamental parameters as well as explicit parameters used in experiments,
which are used to gauge the numerical simulation results.
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the geometric average of the trap frequencies is ω̄= (ωxωyωz )1/3. For non-interacting bosons
one can use single-particle formulations and in such a harmonic trap the ground-state den-
sity has the form of a Gaussian wavepacketψ0(r ) (2.54) normalised to the particle number
N =

∫

d3r |ψ0(r )|2. However, even for weak interactions the shape of the condensate can be
significantly different [116]. Therefore, for temperatures well below T c , the coherent mode of
the condensate can be described using the Gross-Pitaevskii mean-field equation [116, 119].
Further, for strong interactions with mean-field energies much larger than the vacuum energy,
one can use the Thomas-Fermi approximation [120], to obtain relevant physical observables,
like the position and momentum width. Both approaches are derived in the following.

Gross-Pitaevskii classical field approximation

The dilute gas of N interacting bosons in the internal ground state |g 〉 with the scalar field
operator Ψ̂(r )≡ Ψ̂g (r ), confined by an external potential Vt are described by the many-body
Hamilton operator (2.42) for ς= g , where the energy is shifted to be zero in the ground state
and V̂d = 0, resulting in [116]

ĤII =

∫

d3r Ψ̂†(r )

�

−
ħh 2

2M
∇2+Vt (r )

�

Ψ̂(r )+
1

2

∫

d3r d3r ′Ψ̂†(r )Ψ̂†(r ′)V2(r − r ′)Ψ̂(r ′)Ψ̂(r ). (2.66)

Therefore, the time evolution of the field operator, described by the Heisenberg equation
(2.41) with the Hamilton operator (2.66), reads

iħh∂t Ψ̂(t , r ) =

�

−
ħh 2

2M
∇2+Vt (r )+

∫

d3r ′Ψ̂†(t , r ′)V2(r − r ′)Ψ̂(t , r ′)

�

Ψ̂(t , r ). (2.67)

Using for the field operator the classical field approximation, neglecting the quantum de-
pletion Ψ̂(t , r )≈ψc (t , r ) (2.47), the essential time evolution of the condensate wavefunction
ψc (t , r ) is given by the classical Gross-Pitaevskii mean-field equation

iħh∂tψ
c (t , r ) =

�

−
ħh 2

2M
∇2+Vt (r )+ g n c (t , r )

�

ψc (t , r ), N c =

∫

d3r n c (t , r ), (2.68)

where the atomic density is normalised to the particle number in the condensate N c [cf. Eqs.
(2.48)-(2.50)]. The Gross-Pitaevskii equation (2.67) has the form of a non-linear Schrödinger
equation. The non-linearity is given by the internal mean-field energy g n c (r ), which arises
from the van der Waals interaction. At sufficiently low temperatures, with a thermal de Broglie
wavelength λdB = ħh

p

2π/M kB T much longer than the range of two-particle interactions,
the interaction term in Eq. (2.66) can be approximated with an effective contact potential
V2(r ′− r ) = gδ(r ′− r ), where the strength g = 4πħh 2as /M is characterised by the s -wave scat-
tering length as . This is compatible with replacing Ψ̂(t , r )withψc (t , r ) in the time evolution.

For the stationary state of the condensate wavefunction one uses the ansatz
ψc (t , r ) =ψc (r )exp

�

−iµt /ħh
�

. This leads to the time-independent Gross-Pitaevskii equation

�

−
ħh 2

2M
∇2+Vt (r )+ g n c (r )

�

ψc (r ) =µψc (r ), (2.69)

where µ is the energy of the ground state and is identified as the chemical potential.
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Thomas-Fermi approximation

In the Thomas-Fermi (TF) limit [116] for mean-field energies much larger than the vacuum
energy, the stationary condensate wavefunctionψc

TF(r ) can be approximated by the solution
of the Gross-Pitaevskii equation (2.69), neglecting the quantum pressure

[Vt (r )+ g n c
TF(r )−µ]ψ

c
TF(r ) = 0. (2.70)

The algebraic solutionψc
TF =

Æ

n c
TF of Eq. (2.70) is given by

n c
TF(r ) =

¨

[µ−Vt (r )]/g , µ>Vt (r ),

0, µ≤Vt (r ).
(2.71)

For a harmonic trap Vt (2.65), the Fourier transform of the TF-field is a Bessel function [120]

Ψc
TF(k ) =

∫

ddr

(2π)
d
2

e −i k rψTF(r ) =
√

√πµ

2g

J d+1
2
(k ′r ′)

(k ′r ′)
d+1

2

, (2.72)

k ′r ′ =
q

(kx xTF)2+ (ky yTF)2)+ (kz zTF)2, for d = 3. (2.73)

The trap frequenciesωa , a ∈ {x , y , z } define the TF-radii aTF =
Æ

2µ/Mω2
a and the geometri-

cal average ω̄= (ωxωyωz )1/3 the averaged TF-radius rTF as well as the chemical potential µ

rTF =

√

√ 2µ

mω̄2
, µ=

ħhω̄
2

�

15N c as

ā

�2/5

, ā =

√

√ ħh
M ω̄

, (2.74)

with the harmonic oscillator length ā .
For the given atom and trap parameters (cf. Table A.1) the TF-approximation is suitable,

because N c as /ā � 1, thus the mean-field energies are much larger than the vacuum energy
[116]. The position and momentum distributions are depicted in Fig. 2.4, where the phase
vanishes. The typical parabolic shape in the position space is visible. This demonstrates the
influence of the boson-boson interactions leading to a condensate shape differing to the non-
interacting Gaussian wavepacket. Due to the wide wings of the Bessel function towards large
momenta, the TF-wavefunction has no finite momentum width. However, for the diffraction
analysis only the distribution around the maximum, especially the 1/e -width, is important.
Therefore, it can be approximated very well with an anisotropic Gaussian wavepacket (2.54)
with momentum widthsσkx

=0.39µm−1,σky
=0.15µm−1 andσkz

=0.26µm−1, also depicted in
Fig. 2.4. The beamsplitter performance is much more sensitive to the momentum distribution
than to the spatial distribution of the initial state. Therefore, even the TF-limit of strong
interactions indicates that Gaussian wavepacktes (cf. Sec. 2.3.4) are appropriate test states for
the beamsplitter simulations.
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Figure 2.4: Density n = n c
TF of the three-dimensional Thomas-Fermi wavefunction resulting from the

atom and trap parameters of Table A.1, together with a Gaussian fit (2.54) as slices through
the origin in position (left) and momentum space (right) with vanishing initial momentum.
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Free propagation of the BEC

In the experiment the diffraction pulses are applied to the atomic cloud, after release from
the trap and some milliseconds time-of-flight (TOF). Therefore, the condensate expands in
position space and also in momentum space due to atomic mean-field interaction, in contrast
to a non-interacting Gaussian wavepacket [121]. To compare the diffraction simulations
later with experimental data this needs to be considered within the initial state. The time-
evolved condensate is simulated by Jan Teske from the TU Darmstadt by solving the (3+1)D
Gross-Pitaevskii equation (2.68) for the given parameters of Table A.1 and the experimental
time-of-flight. These results are confirmed by the scaling approach [122–125] to the numerical
Gross-Pitaevskii ground state. Details will be published in Jan Teske’s dissertation.

2.3.6 Thermal clouds

x

p

T > Tc

A thermal ensemble of N = 〈N̂ 〉 particles, above the BEC transition temperature
T > T c , is represented as statistical mixture of coherent states. These M I X E D

S TAT E S are described with the density operator ρ̂ as weighted sum over all possible,
normalised states |Ψ〉 ∈Fof the many-body Fock space

ρ̂ =
∑

Ψ

pΨ |Ψ〉〈Ψ|, Tr
�

ρ̂
	

=
∑

Ψ

pΨ = 1, 〈Ψ|Ψ〉= 1, (2.75)

where pΨ ≥ 0 is a probability to find a quantum many-body system in the quantum state |Ψ〉.
For a system in equilibrium at finite temperature, the density operator of the grand canonical

ensemble reads

ρ̂ =
e −β (Ĥ−µN̂ )

Z
, Z = Tr

¦

e −β (Ĥ−µN̂ )
©

, β =
1

kB T
, (2.76)

with the partition function Z as normalisation factor, ensuring Tr{ρ̂} = 1, and the inverse
temperatureβ . Although a system with fixed particle number represents a canonical ensemble
with ρ̂ = e −βĤ /Z , it is easier to move to the grand canonical ensemble (2.76), where the
particle number N is variable and the partition function Z is determined in the Fock space F.
For the condition of a fixed N in the grand-canonical ensemble, the chemical potential µ is
determined as a function of the temperature T and the particle number N with choosingµ(N )
such that N =

∑

k 〈n̂k 〉, where n̂k = â †
k âk measures the occupancy nk ∈N0 of the state |k 〉

with energy εk [cf. Eq. (2.34)]. For a system of non-interacting bosons the Hamilton operator
is diagonalizable and therefore additive, just like the particle number operator N̂ with

Ĥ =
∑

k

εk n̂k , N̂ =
∑

k

n̂k . (2.77)

Therefore, the grand canonical density operator can be described as product of the single-
mode density operators ρ̂k with

ρ̂ =
e −β (Ĥ−µN̂ )

Z
=
∏

k

ρ̂k , Z = Tr
¦

e −β (Ĥ−µN̂ )
©

=
∏

k

Zk , (2.78)

ρ̂k =
e −β (Ĥk−µn̂k )

Zk
, Zk = Tr

¦

e −β (Ĥk−µn̂k )
©

=
∑

nk

e −βnk (εk−µ) =
1

1− e −β (εk−µ)
. (2.79)

Using the geometrical series
∑∞

n=0 x n = (1 − x )−1 in Eq. (2.79) implies εk > µ. From the
expectation value N = 〈N̂ 〉 = ∂µkB T ln(Z ) =

∑

k 〈n̂k 〉 one obtains the average occupation
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number of the single-particle state |k 〉, which is given by the Bose distribution function [119]

f (εk )≡ 〈n̂k 〉=
1

e β (εk−µ)−1
. (2.80)

S E M I - C L A S S I C A L A P P R O X I M AT I O N Considering harmonically trapped bosons with T > T c ,
in the semi-classical approximation the thermal energy is much larger than the quantum
mechanical level spacing kB T � ħhωx ,y ,z of the trapping potential Vt (2.65). Therefore, the
lengthscale over which the trapping potential varies significantly is large in comparison to
the thermal de Broglie wavelengths λdB = ħh

p

2π/M kBT of the particles. Thus, variations
over the quantum mechanical uncertainty∆r ,∆p are negligible and the energy of the par-
ticle can be approximated with its classical single-particle energy at the location r , thus
εk =H0(r , p ) = p 2/2M +Vt (r ), including the kinetic energy and the trapping potential Vt (r )
(2.65). Therefore, the initial position and momentum of the bosons are distributed according
to [119]

f (r , p ) =
1

e β (H0(r ,p )−µ)−1
. (2.81)

For a known chemical potential the density of the thermal cloud can be calculated by [119]

n t (r ) =

∫

d3p

(2πħh )3
f (r , p ) =

1

λ3
dB

g3/2[z (r )], z (r ) = exp
�

µ−Vt (r )
kB T

�

(2.82)

and it is normalised to the number of thermal atoms N t =
∫

d3r n t (r ). Here, the effects of quan-
tum statistics are taken into account with g j (z ) =

∑

i z i /i j . Due to the indistinguishability of
bosons, the density is increased by g3/2(z )/z in comparison to a distribution of distinguishable
particles.

x

p
T ≫ Tc

C L A S S I C A L L I M I T Well above the Bose-Einstein condensation temperature
T � T c (2.64), one finds the Maxwell-Boltzmann result of an anisotropic Gaussian
distribution [119]

n t (r , T � T c ) =
N t

π3/2Rx Ry Rz
e −x 2/R 2

x e −y 2/R 2
y e −z 2/R 2

z , (2.83)

with the thermal size R 2
a={x ,y ,z } = 2kB T /mω2

a .

2.3.7 Partially condensed clouds

x

p

T < Tc

Partially condensed clouds arise for temperatures between the two limits of a fully
condensed (c) Bose gas at T = 0 K (cf. Sec. 2.3.5) and a thermal (t) cloud for T > T c

(cf. Sec. 2.3.6). Analogue to the separation in Eq. (2.47) the single-body coherence
matrix of the atomic gas in position representation can be separated [126–128]

ρ(1)(r , r ′) = 〈r |ρ̂(1)|r ′〉= 〈Ψ̂†(r ′)Ψ̂(r )〉 (2.84)

=ρc (r , r ′)+ρt (r , r ′) =ψc ∗ (r ′)ψc (r )+ρt (r , r ′) (2.85)

into a mean-field contributionρc (r , r ′), describing the condensate, and a fluctuationρt (r , r ′)
around it as the thermal background, each contributing with the ratio p a={c ,t } =N a/N of the
total atom number N . The weight p c of the condensed part increases with decreasing the
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temperature (cf. Sec. 2.2.1, page 24 in [119]). The density of the partially condensed cloud is
also a bimodal distribution [129]

n (r )≡ρ(1)(r , r ) = n c (r )+n t (r ) = n c
max f c (r )+n t

max f t (r ),

∫

d3r n (r ) =N c +N t =N . (2.86)

For the condensate part n c applying the TF-density, thus a parabolic distribution at zero
temperature, with [129]

f c (r )≈ f c
TF(r ) =max

 

1−
∑

a={x ,y ,z }

a 2

a 2
TF

, 0

!

, f c
TF(a ) =max

�

1−
a 2

a 2
TF

, 0

�

, (2.87)

is appropriate. The thermal density n t can be described as a broader, Bose-enhanced Gaussian
distribution at the transition temperature with [129]

f t (r ) =
1

g3/2(1)
g3/2

 

∏

a={x ,y ,z }
e −a 2/2σ2

a

!

, g j (z ) =
∑

i

z i /i j , (2.88)

according to Eq. (2.82) for the anisotropic harmonic oscillator potential (2.65). This distri-
bution is similar to a Maxwell distribution (2.83), but with different temperatures Ta for the
three directions a ∈ {x , y , z }. Even in this case of Bose enhancement, the wings of the spatial
distribution decays generally as e −a 2/2σ2

a . Therefore, the momentum widthsσt
ka

of the thermal
background can be estimated from time-of-flight measurements ofσa (t ) (2.58) of the freely
expanding cloud. This results in

σt
ka
=Mσva

/ħh =
p

kB Ta M /ħh , a ∈ {x , y , z }, (2.89)

with σva
= σa (0)/tH , and is in turn linked to the different temperatures Ta in the three di-

rections. For these measurements the experimentally observed, also bimodal marginal one-
dimensional density distributions are used as fit-functions with

n (a ) =N c 3

4aTF
f c

TF(a )+N t 1
p

2πσa
e
− a 2

2σ2
a , a ∈ {x , y , z }. (2.90)

For example, a temperature of T = 20 nK leads to a momentum widthσt
k = 1.89µm−1 = 0.23 kL

(in units of the wavenumber kL , given in Table A.2) of the thermal cloud, much broader than
those of the condensate (cf. TF-Approximation 2.3.5) [119, 130].

Partially condensed clouds with bimodal density distributions represent the most realistic
ultracold atomic ensembles, considered within the framework of this thesis. It turns out, that
this is necessary to reproduce real experimental results with the numerical atomic diffrac-
tion simulations. Therefore, the condensed part is not characterised with the approximated
TF parabolic shape but even with a more realistic numerical simulation taking mean field
expansion after release from the trapping potential into account.

2.4 H O T A L K A L I - L I K E I O N S I N T E R A C T I N G W I T H L A S E R L I G H T

The knowledge gained by the diffraction processes of ultracold, neutral atoms can be applied
to other kinds of light-matter interactions, like the interaction of alkali-like ions with classical
laser light. In Part III, the transfer and application of these findings to the topic of optical
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high-voltage measurements with spectroscopic precision, using Raman transitions, is shown.
Hence, this Section 2.4 provides the necessary theoretical fundamentals of the therefore used
ion-light interaction. While the main concept of the diffraction of alkali-like ions is similar to
that of atomic diffraction, the full theory is not repeated, but the differences are presented
in detail.

Alkali-like ions possess only one outermost valence electron similar to alkali-atoms and
therewith a hydrogen-like electronic structure. That is the reason why a single alkali-like ion
experiences the same dipole-interaction, presented in Section 2.1 with

V̂ =−d̂ ·E (t , r̂ ). (2.91)

Considering multiple ions, in general they interact with each other via the Coulomb inter-
action, due to their electric charge. However, in the framework of this thesis, the treatise is
restricted to very dilute ion beams, where the ion-ion interactions are negligible. In contrast,
for the velocity distribution of the ions their electric charge is relevant. They are accelerated
with high voltages to large velocities in the range of one per mill of the speed of light, but a
non-relativistic theory is still valid.

The velocity spread of the ions ∆vI = (10 − 100)m/s is connected to a temperature
T =M∆v 2

I /3kB ∼ (108−1010)nK. It reasons a large momentum uncertainty M∆vI � ħhk
compared to the photon momentum recoil ħhk and momentum widths of ultracold atomic
clouds σk < k , as depicted with the phase-space distributions for ensembles with differ-
ent temperatures in Fig. 1.2. This represents the essential difference of the ion-light inter-
action to the interaction with ultracold atoms: the ions can be treated as classical particles
in the sense of a vanishing wavelength in the range of λ = h/M v ∼ 10−14 m, v ≈ 0.001c
and thermal de Broglie wavelength λdB ∼ 10−10 m. While for ultracold atoms both, the in-
ternal and the external degrees of freedom need to be treated quantum mechanically [cf.
Eq. (2.25)], for the diffraction of hot ions still the quantum mechanically internal states
need to be considered but the external motion can be treated purely classically. That is
the reason, why in the theoretical description of the ion-light interaction mechanical light

x

p

T ≫ 0
effects are disregarded. The mixed state [cf. Eq. (2.75)] of the ion ensemble is de-
scribed with the density operator ρ̂(t ) = ρ̂int⊗ ρ̂ext. In the classical limit, the po-
sition r and the momentum of the particle p =M v can be treated as parameters,
thus the single-body coherence matrix reads

ρ̂(1)(t ; r , p ) =
∑

ς,ς′
ρςς′ (t ; r , p )|ς〉〈ς′|, ρςς′ = 〈ς|ρ̂(1)|ς′〉, (2.92)

with ς,ς′ ∈ {g , e , m} for the three-level system, depicted in Fig. 1.5. Consequently, observables
〈Â〉 are obtained by static averaging over the initial phase-space distribution f (r , p ) of the
ions with

〈Â(t )〉=
∫

d3r d3p f (r , p )Tr
�

Â(t , r , p )ρ̂(1)(t ; r , p )
	

. (2.93)

The interaction Hamilton operator is given by

Ĥ = ħh
∑

ς

ωςσ̂ςς+ V̂ (t , r ), σ̂ςς = |ς〉〈ς|. (2.94)

Due to the large velocity spread the ballistic evolution can be eliminated and no intrinsic
kinetic energy distribution needs to be considered within the Hamilton operator (2.94). As a
more detailed derivation, respectively description of this ionic diffraction is strongly connected
with the experimental boundary conditions, it is detailed in Part III.
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T I M E E V O L U T I O N O F L I G H T- M AT T E R I N T E R A C T I O N

The performance of matter-wave diffraction is given by the time evolution of the interacting
system. During the short diffraction pulses only the light-matter interaction is considered,
matter-matter interactions are assumed to be negligible. Therefore, different approaches
are given, which are adequate to consider the characteristic properties of a certain system.
The Schrödinger equation (cf. Sec. 3.1) is used for single-particle quantum mechanics, re-
spectively, if the initial state can be modelled with one collective mean wavefunction of a
many-particle system, like the BEC ground state. The von-Neumann equation (cf. Sec. 3.2)
handles statistically mixed states like the many-particle systems of thermal clouds. Finally,
the master equation (cf. Sec. 3.3) also takes dissipation into account. In particular, methods
are presented, which are efficient to solve the certain equations of motions numerically.

3.1 S C H R Ö D I N G E R E Q U AT I O N

The Schrödinger equation
iħh∂t |ψ〉= Ĥ |ψ〉, (3.1)

describes the coherent time evolution of a non-relativistic quantum mechanical state with a
Hamilton operator Ĥ , possibly time- and/or position-dependent. The formal solution reads

|ψ(t )〉= Û (t , t0)|ψ(t0)〉, Û (t , t0) = T exp

�

−
i

ħh

∫ t

t0

dt ′Ĥ (t ′, r̂ , p̂ )

�

(3.2)

with t > t0 and the time-evolution operator Û (t , t0). In case this equation cannot been solved
analytically, numerical simulation methods on orthorhombic Fourier grids (cf. App. B.1) are
applied. Important properties and methods for these simulations are given in Appendix B.

The Hamiltonian system, describing the light-matter interaction as a two-component
(3+1)D problem, consists of the kinetic energy T̂ as well as the potential V̂

Ĥ (t , r̂ , p̂ ) = T̂ (p̂ )+ V̂ (t , r̂ ). (3.3)

For time-independent potentials or approximating V̂ to be constant during one sufficiently
small time step τ= t − t0 (lower sum of the temporal envelope), the time-evolution reads

Û (τ) = exp
�

−
i

ħh
Ĥ (r̂ , p̂ )τ

�

= exp
�

−
i

ħh
�

T̂ (p̂ )+ V̂ (r̂ )
�

τ

�

. (3.4)

Evaluating an exponential function exp
�

−i
�

T̂ + V̂
�

τ/ħh
�

with non-commutative operators
T̂ and V̂ , where τ is a small real number, is in general not possible. However, due to the
separability of the Hamilton operator, symplectic integrators can be used to split the time
evolution operator into parts depending on either the momentum p or the position r . Then,
the kinetic part of the form exp

�

−i T̂ (p̂ )τ/ħh
�

can be easily calculated, with Fourier transform-
ing the wavefunction into momentum space. On the other hand, the impact of the potential
part exp

�

−i V̂ (r̂ )τ/ħh
�

can be calculated also exactly with the methods of disentangling an
exponential of the SU (2) algebra, given in Section 3.1.2. The methods for constructing these
symplectic algorithms are given in the next Section 3.1.1.
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3.1.1 Symplectic integration

Symplectic integrators are numerical integration schemes for Hamiltonian systems. In compar-
ison to other common integration schemes like Runge-Kutta-methods [131, 132], symplectic
integrators provide great advantages. They preserve the geometry of phase space and con-
served quantities such as the total system energy and angular momentum. Further, they are
easy to implement. The integrator of order n uses the following expansion [133]

Û (τ) = e τ(T̂+V̂ ) =
k
∏

i=1

e ciτT̂ e diτV̂ +O
�

τn+1
�

, Û (0) =1. (3.5)

The difference of the exponential function Û and the product of exponential functions on
the right side is of the order of τn+1. Expanding both sides of Eq. (3.5) to the same order of τ
determines the coefficients ci and di . Within the framework of this thesis, second, fourth or
sixth order splitting is applied, depending on which one is more efficient for the used size of
one time step and the required accuracy.
For S E C O N D O R D E R S P L I T T I N G the coefficients are c1 = c2 = 1/2, d1 = 1, d2 = 0 and therefore
the expansion reads

Û (τ) = Û2(τ)+O
�

τ3
�

, Û2(τ) = e
1
2τT̂ e τV̂ e

1
2τT̂ . (3.6)

The index of Û indicates the used splitting order. Combining several consecutive time steps
reduces the arithmetic operations. This becomes obvious in the time-evolution of two con-
secutive time steps t2 = t0+2τ

Û2(t2, t0) = Û2(t2, t1)Û2(t1, t0) = Û2(τ)Û2(τ) = e
1
2τT̂ e τV̂ e τT̂ e τV̂ e

1
2τT̂ . (3.7)

For F O U R T H O R D E R S P L I T T I N G the expansion reads

Û (τ) = Û4(τ)+O
�

τ5
�

, Û4(τ) = e c1τT̂ e d1τV̂ e c2τT̂ e d2τV̂ e c 3τT̂ e d3τV̂ e c4τT̂ , (3.8)

where some more coefficients are required

c1 = c4 =
α

2
, c2 = c3 =

α+β
2

, d1 = d3 =α, d2 =β , α=
1

2−21/3
, β =−

21/3

2−21/3
. (3.9)

The fourth order splitting time evolution for two consecutive time steps follows with

Û4(t2, t0) = e
α
2 τT̂e ατV̂ e c2τT̂e βτV̂ e c2τT̂e ατV̂ e ατT̂e ατV̂ e c2τT̂e βτV̂ e c2τT̂e ατV̂ e

α
2 τT̂ . (3.10)

The S I X T H O R D E R S P L I T T I N G is the highest splitting order considered within this work, with

Û6(τ) = e c1τT̂ e d1τV̂ e c2τT̂ e d2τV̂ e c 3τT̂ e d3τV̂ e c4τT̂ e d4τV̂ e c5τT̂ e d5τV̂ ×

e c6τT̂ e d6τV̂ e c 7τT̂ e d7τV̂ e c8τT̂ e d8τV̂ e c 9τT̂ e d9τV̂ e c10τT̂ ,
(3.11)

and the following coefficients, using α and β from Eq. (3.9),

d1 = d3 = d7 = d9 =αα
′, d2 = d8 =βα

′, d4 = d6 =αβ
′, d5 =ββ

′, (3.12)

ci = (di−1+di )/2, i = 2, 3, . . . ,9, c1 = c10 = d1/2, α′ =
1

2−21/5
, β ′ =−

21/5

2−21/5
. (3.13)

Numerical verification

The achievable precision of the different splitting orders is demonstrated in Fig. 3.1 depending
on the number of simulation time steps Nt , under monitoring the needed computational
time tc . Therefore, anticipating Part II about the diffraction of ultracold atoms, the numerical
one-dimensional simulations of an atom interacting with one resonant laser [cf. Fig. 1.1
(a), Eq. (4.6) in Chap. 4] are used as test example. The interaction time is chosen to invert
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Figure 3.1: Relative energy conservation ε= |H (t )−H (0)|/H (0) and required computational time tc

versus inverse number of simulation time steps Nt , for 2nd, 4th, 6th splitting order of the
symplectic integrators. Combining consecutive time steps (solid) reduces the computational
time compared to separating them (dashed). As highlighted, to achieve ε= 5.5×10−6, the
computational time is the same for using splitoperators of 4th or 6th order.

the population (initially in ground state, finally in excited state), realising an atomic mirror.
Neglecting spontaneous emission, for constant laser powers the Hamilton operator in the
rotating frame (4.6) is time-independent Ĥ (t ) = const. Therefore, additionally to the norm of
the wavefunction also the expectation value H (t )≡ 〈Ĥ (t )〉= T (t )+V (t ) =H (0) is conserved
(cf. App. B.1.2). The latter is more sensitive and therefore the precision ε= |H (t )−H (0)|/H (0)
is depicted. Be aware that this conserved quantity is not equivalent to energy conservation,
due to the absorption and emission of photons from the laser beam, which is only conserved,
concerning both, the energy of the atom and of the laser.

By construction, one expects a power law for the precision ε∝ τm = (1/Nt )m , where m
identifies the splitting order. In the double-logarithmic scale this reveals the linear behaviour

log(ε) =mε log(1/Nt )+ b . (3.14)

Indeed, the results of the ε conservation show different slopes mε = {2.0, 4.0, 6.1} related
to the splitting orders. The computational time shows also a linear dependence log(tc ) =
mt log(Nt ) + b but with a slope mt ≈ 1 approximately independent of the splitting order. The
numerical double precision is reached for ε ∼ 10−13, cancelling higher energy precisions
for larger numbers of simulated time steps. Combining consecutive time steps reduces the
arithmetic operations and consequently the computation time, as depicted. However, to
monitor the temporal evolution of an observable, it is necessary to split the time evolution.

From this example, one can define optimal working regimes: For ε ≥ 2.9× 10−2 the 2nd
splitting order provides the lowest computational times, while for 6.2×10−6 <ε≤ 2.9×10−2

the 4th order and for ε< 6.2×10−6 the 6th order are optimal. However, in general the better the
requested precision of the energy conservation, also the higher splitting orders are beneficial,
but usually the 4th splitting order is the appropriate choice.

3.1.2 Disentangling an exponential sum

Applying the potential part exp[−i V (r̂ )τ/ħh ] of the Hamilton operator to the wavefunction
can be done exactly with the methods of disentangling an exponential of the SU (2) algebra
described in [134]. Here, the main aspects are recaptured. For a finite-dimensional Lie algebra,
like the SU (2), the in general infinite expansion to disentangling an exponential

e Â+B̂ = e Âe B̂ e Ĉ1 e Ĉ2 . . . (3.15)
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is finite, more precisely only three terms are necessary to disentangling the potential

e −
i
ħh τV̂ = e iτ

�

α+σ̂
†+αz σ̂z+α−σ̂

�

= e f+(τ)σ̂†
e fz (τ)σ̂z e f−(τ)σ̂ =

�

F −1
z + f+ f−Fz f+Fz

f−Fz Fz

�

, (3.16)

with the complex functions

f± =
iα±
Γ1

sin(Γ1τ)
Fz

, fz =− ln(Fz ), Fz = cos(Γ1τ)−
iαz

Γ1
sin(Γ1τ). (3.17)

They depend on the laser interaction [cf. Eq. (2.12)]with

Γ 2
1 =α+α−+α

2
z , α+ =− 1

2ΩNL
(t , r ), α− =− 1

2Ω
∗
NL
(t , r ), αz =− 1

2∆. (3.18)

The non-trivial derivation of the matrix form of exp
�

−i V̂ τ/ħh
�

as well as of the solutions of
the functions f±, fz can be found in Appendix C.

3.2 V O N - N E U M A N N E Q U AT I O N

The time evolution of incoherent mixed states in the Schrödinger picture is given by the
quantum analogue to the classical Liouville equation, the von-Neumann equation

d

dt
ρ̂ =−

i

ħh
�

Ĥ , ρ̂
�

. (3.19)

The mixed state is described with the density operator as weighted superposition of all possible,
normalised states |ψi 〉 of the event set Ωwith probabilities pi ≥ 0, reading

ρ̂ =
∑

i∈Ω
pi |ψi 〉〈ψi |,

N
∑

i∈Ω
pi = 1. (3.20)

The trace of the density operator is Tr
�

ρ̂
	

= 1. The formal solution of the von-Neumann
equation reads

ρ̂(t ) = Û (t , t0)ρ̂(t0)Û (t , t0)
†, (3.21)

with t > t0 and the Schrödinger time-evolution operator Û (t , t0) (3.2).

3.3 M A S T E R E Q U AT I O N

In case spontaneous emission cannot be neglected any longer, or rather dissipation in general
should be considered, the incoherent dynamics of the system are treated by the master
equation approach (cf. Chap. 1 in [135]), describing the dissipative coupling between a small
system and a large reservoir. With tracing over the reservoir variables of the total density
matrix ρ̂ = Trres ρ̂full the time evolution of the density operator of the small system ρ̂ (3.20) is
defined by the master equation in Lindblad form [136]

d

dt
ρ̂ =−

i

ħh
�

Ĥ , ρ̂
�

+L(ρ̂). (3.22)

For small temperatures, the Lindblad superoperator Lacts on the density operator with [137]

L(ρ̂) =−
1

2

∑

m

�

Ĉ †
m Ĉm ρ̂+ ρ̂Ĉ †

m Ĉm

�

+
∑

m

Ĉm ρ̂Ĉ †
m . (3.23)

It can be used to describe most of the dissipative quantum optics problems in vacuum of a
zero temperature reservoir, where the contributions of stimulated absorption and emission
vanish (cf. Chap. 2 in [135]). The relaxation operator contains at least one to an infinite number
of Lindblad, also called jump operators Ĉm , depending on the physical problem.
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R E L A X AT I O N F O R A T W O - L E V E L S Y S T E M Considering spontaneous emission in a two-
level atom, there is only one operator Ĉ =

p
Γ σ̂, contributing to the relaxation operator (3.23)

L2LS(ρ̂) = Γ σ̂ρ̂σ̂
†−
Γ

2

�

σ̂†σ̂ρ̂+ ρ̂σ̂†σ̂
�

. (3.24)

The excited state |e 〉 has a lifetime Γ−1, decaying into the stable ground state |g 〉, giving reasons
for the lowering and raising operators σ̂= |g 〉〈e |, σ̂† = |e 〉〈g |.

3.3.1 Quantum Monte Carlo wavefunction method

The Quantum Monte Carlo wavefunction (QMCWF) method was devolved by Dum, Zoller and
Ritsch [138] and Dalibard, Castin and Mølmer [139] in 1992. Within this method a stochastic
solution of the Schrödinger equation is used rather than the explicit resolution of the master
equation. Therefore, M quantum trajectories are calculated, reducing the dimension of the
problem from dim(ρ̂) =N 2 to dim(Ĥ ) =M ×N . Especially for large N the QMCWF-method
becomes very efficient in comparison to solving the master equation. Therefore, for two- or
three-level systems solving the master equation is the appropriate working tool, but consider-
ing thermal states, a statistical mixture of many coherent states with different initial positions
and momenta (cf. Sec. 2.3.6), the QMCWF-method is favourable.

The evolution of one stochastic wavefunction is described with a non-Hermitian Hamilto-
nian and randomly decided quantum jumps, followed by wavefunction renormalisation. It
can be easily shown, that in the statistical average of many simulated quantum-trajectories
the QMCWF-method results are equivalent to that one of the master equation treatment [137].
Physically observable expectation values are given by averaging over single expectation values

〈Â(t )〉=
1

M

M
∑

i=1

〈Â(i )(t )〉=
1

M

M
∑

i=1

〈ψ(i )(t )|Â(t )|ψ(i )(t )〉, (3.25)

where |ψ(i )〉 represents one of M quantum trajectories.
In the framework of this thesis, the QMCWF-method is used within the atomic beamsplitter

description. Therefore, the general procedure is taken from [137], while the focus lies on the
application to a two-level atom with the Liouville-relaxation operator L2LS(ρ̂) (3.24).

QMCWF-procedure

In the course of the QMCWF-method an initially normalised wavefunction |ψ(t )〉 is evolved
for discrete timesteps δt . For each timestep a uniform variate ε, namely a random num-
ber uniformly distributed in [0,1] is used to decide whether a quantum jump occurs (with
probability δp ) or the wavefunction is propagated with a non-hermitian effective Hamilton
operator. Regarding the Lindblad equation (3.22) with the dissipation operator (3.23) the
master equation can be rewritten as

d

dt
ρ̂ =−

i

ħh
�

Ĥeffρ̂− ρ̂Ĥ †
eff

�

+
∑

m

Ĉm ρ̂Ĉ †
m , (3.26)

giving rise to the effective Hamiltonian

Ĥeff = Ĥ −
iħh
2

∑

m

Ĉ †
m Ĉm (3.27)

and specifically for the two-level system

Ĥeff = Ĥ −
iħh
2
Γ σ̂†σ̂. (3.28)
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The probability of occurrence of a quantum jump is

δp =δt
i

ħh
〈ψ(t )|Ĥeff− Ĥ †

eff|ψ(t )〉=
∑

m

δpm , δpm =δt 〈ψ(t )|Ĉ †
m Ĉm |ψ(t )〉 ≥ 0, (3.29)

with δp � 1, why δt must be sufficient small. For the two-level system the probability reads

δp =δt Γ 〈ψ(t )|σ̂†σ̂|ψ(t )〉=δt Γ |〈ψ(t )|e 〉|2. (3.30)

Q U A N T U M J U M P If ε < δp a quantum jump occurs and with choosing one realisation Ĉm

with a probability
∏

m =δpm/δp , the new normalised wavefunction reads

|ψ(t +δt )〉=
1

p

δp/δt
Ĉm |ψ(t )〉. (3.31)

For the two-level system one possibility remains

|ψ(t +δt )〉=
1

p

|〈ψ(t )|e 〉|2
σ̂|ψ(t )〉. (3.32)

P R O PA G AT I O N If ε ≥δp , the wavefunction is propagated with the non-hermitian effective
Hamilton operator (3.27)

|ψ′(t +δt )〉= e −
i
ħh Ĥeffδt |ψ(t )〉. (3.33)

This evolution can be solved with different approaches depending on the particular form of
Ĥ . However, because Ĥeff is non-hermitian in all cases the propagated wavefunction needs to
be normalised with

|ψ(t +δt )〉= ||ψ′(t +δt )||−1|ψ′(t +δt )〉, ||ψ||=
Æ

|〈ψ|ψ〉|2. (3.34)

F U L L S O L U T I O N Calculating the time evolution for all time steps results in the time-
dependent solution of one quantum trajectory. Finally, averaging over a sufficient large num-
ber of trajectories gives the solution of the master equation (3.22).

QMCWF-method including center-of-mass motion

For the beamsplitter description considering the center-of-mass motion is essential. Therefore,
the induced recoil due to spontaneous emission of photons needs to be taken into account
with the relaxation operator [137]

L(ρ̂) =−
Γ

2

�

Ŝ
†

Ŝ ρ̂+ ρ̂ Ŝ
†

Ŝ
�

+
3Γ

8π

∫

d2Ω
∑

ε⊥k 0

e −i k 0r (ε∗ Ŝ )ρ̂(εŜ
†
)e i k 0r . (3.35)

Here, Ŝ
†

and Ŝ are raising and lowering operators proportional to the atomic dipole operator.
The relaxation operator contains the spontaneous decay of excited state populations and
coherences as well as of optical coherences together with the corresponding growing of the
ground state populations and coherences. Now, the direction as well as the polarisation of the
emitted photon is taken into account. One photon is emitted spontaneously with wavevector
k 0 = k0n (|k 0|= k0 =ω0/c ) and one integrates over the direction of the photon defined by the
solid angle Ω with the differential d2Ω = sinβdβdα. The polarisation εmust be orthogonal
to k 0, wherefore the sum includes a basis set of these two polarisations. This sum can be
explicitly calculated, defining q as direction of the atomic dipole operator and using (cf. page
36 in [140])

∑

ε⊥k 0

|ε ·X |2 = X ·X ∗−
(k 0 ·X )(k 0 ·X ∗)
|k 0|2

. (3.36)
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Therewith the relaxation operator can be written as

L(ρ̂) =−
Γ

2

�

σ̂†σ̂ρ̂+ ρ̂σ̂†σ̂
�

+ Γ
∫

d2Ω W (q , n )e −i k0n r σ̂ρ̂σ̂†e i k0n r , (3.37)

W (n ,q ) =
3

8π

�

1−
(n ·k 0)2

|k 0|2

�

=
3

8π

�

1− (n ·q )2
�

=
3

8π
sin2β ,

∫
d2Ω W (n ,q ) = 1. (3.38)

Defining the lowering operator as

Ĉn =
p
Γ σ̂e −i k0n r (3.39)

the relaxation operator can be written in the form of Eq. (3.23). Therefore, the effective Hamil-
tonian stays the same as in Eq. (3.28), but the quantum jump process needs to be adjusted.
The probability is still determined by the total population of the excited state with Eq. (3.30).

Q U A N T U M J U M P When a quantum jump occurs, random angles α, β specify the direc-
tion of the spontaneously emitted photon. Therefore, α ∈ [0,2π) is uniformly distributed,
implemented by α= ε2π with a uniform variate ε. Under the terms of Eq. (3.38), for β ran-
dom numbers distributed according to sin2β must be generated. This can be done with the
help of the inverse transform sampling method [141] for pseudo-random number sampling.
Here, a uniform random variate γ is transformed into one distributed as an arbitrary desired,
normalised distribution pβ (β )

pβ (β ) =
2

π
sin2β ,

∫ π

0

dβpβ (β ) = 1. (3.40)

The inverse transform sampling method is based on matching the differential probabilities

pγ(γ)dγ= pβ (β )dβ . (3.41)

Thus, γ is the indefinite integral Pβ (β ) of pβ (β )with

γ= Pβ (β ) =

∫ β

0

dβ pβ (β ) =
β

π
−

sin 2β

2π
, (3.42)

because pγ(γ) = 1 for the uniform random variate γ. Finally, numerically solving Pβ (β )−γ= 0
for uniform variates γ, results in the sought random numbers with sin2-distribution. The unit
vector n = (nx , ny , nz ) is then defined with spherical coordinates

n = (sinβ cosα, sinβ sinα, cosβ ). (3.43)

In this way, the jump operator with the emission of a photon in the n -direction can be applied

|ψ(t +δt , r )〉= (
Æ

|〈ψ(t )|e 〉|2)−1σ̂e −i k0n r |ψ(t , r )〉. (3.44)

P R O PA G AT I O N The propagation (3.33), taking into account the center-of-mass motion, can
be estimated with the help of symplectic integrators as presented in Section 3.1.1, splitting
the time evolution into the kinetic and the potential part with Ĥeff(t , r̂ , p̂ ) = T̂ (p̂ )+ V̂eff(t , r̂ ).
The additional spontaneous emission term of Ĥeff (3.28) is considered within the effective
potential

V̂eff(t , r ) =
ħh
2

��

∆− i
Γ

2

�

σ̂z +ΩNL
(t , r )σ̂†+Ω∗NL

(t , r )σ̂− i
Γ

2

�

. (3.45)

Therefore, the disentangling of exp
�

−i V̂effδt /ħh
�

(cf. 3.1.2) reads

e −
i
ħh δt V̂eff = e iδt

�

α+σ̂
†+αz σ̂z+α−σ̂

�

e −δt Γ4 = e −δt Γ4

�

F −1
z + f+ f−Fz f+Fz

f−Fz Fz

�

, (3.46)

with f±, Fz and Γ1 built as in Eqs. (3.17) and (3.18), but with coefficients

α+ =−
1

2
ΩNL
(t , r ), α− =−

1

2
Ω∗NL
(t , r ), αz =−

1

2

�

∆− i
Γ

2

�

. (3.47)



38 3 T I M E E V O L U T I O N O F L I G H T- M AT T E R I N T E R A C T I O N

F U L L S O L U T I O N Again going through the QMCWF-procedure for every time step and
averaging over many trajectories gives the final solution of the master equation including now
recoils of spontaneous emission.

3.4 C O O R D I N AT E T R A N S F O R M AT I O N S

Inertial frames are a central concept of physics. Coordinate transformations are used to
describe a physical problem in reasonable coordinates. Therefore, the mathematical treatment
of the time evolution of the light-matter interaction, discussed in the last Sections 3.1-3.3,
simplifies enormously.

3.4.1 Moving frames: Galilean transformation

In quantum mechanics the Galilean transformation is represented by the displacement oper-
ator

Ĝ (t ) = e
i
ħh (pr̂−r(t )p̂ ) = e −

i
2ħh pr(t )e

i
ħh pr̂ e −

i
ħh r(t )p̂ , (3.48)

with a time-dependent coordinate r(t ) = r0+v t and a momentum p=mv . It transforms the
corresponding Heisenberg operators as

�

r̂ ′

p̂ ′

�

= Ĝ

�

r̂
p̂

�

Ĝ † =

�

r̂ − r(t )
p̂ −p

�

. (3.49)

This transformation enables the relation of a measurement in one inertial reference frame to
another moving with a constant velocity |v | � c for classical motion, as non-relativistic limit
of a Lorentz transformation. As our experience of nature, the laws of physics are the same
in all inertial reference frames. Galileo himself illustrated for experiments observed from a
standing ship as well as from a ship moving with constant velocity: ‘When you have observed
all these things carefully (though there is no doubt that when the ship is standing still everything
must happen in this way), have the ship proceed with any speed you like, so long as the motion
is uniform and not fluctuating this way and that. You will discover not the least change in all
the effects named, nor could you tell from any of them whether the ship was moving or standing
still.’ [142]

The change of coordinates with the transformation (3.49) is referred as passive picture,
where the state of the system remains unchanged. By contrast, in the Schrödinger picture,
Ĝ (t ) transforms the laboratory frame state |ψ(t )〉 = Ĝ (t )|ψ′(t )〉 into the state |ψ′(t )〉 of the
moving frame, while conserving the original coordinates. This corresponds to the active picture
and is applied in the further course of this thesis. Evaluating the comoving-frame Hamilton
operator Ĥ ′(t , r̂ , p̂ ) = Ĝ †(Ĥ − iħh∂t )Ĝ , the Schrödinger equation reads

iħh∂t |ψ′〉= Ĥ ′|ψ′〉= Ĝ †(Ĥ − iħh∂t )Ĝ |ψ′〉. (3.50)

For an ultracold atom interacting with classical laser light, most generally introduced in
Chapter 2, this affects only the interaction potential

Ĥ ′ =
p̂ 2

2M
+ħhωg σ̂g +ħhωe σ̂e + V̂ (t , r̂ + r(t )). (3.51)

In this frame, the velocity shift has to be considered in the boosted state with

Ψ′(p ) = 〈p |ψ′〉= 〈p |Ĝ †|ψ〉= e
i
ħh

�

r(t )p+ pr(t )
2

�

Ψ(p +p), |Ψ′(t , p −p)|2 = |Ψ(p )|2, (3.52)

leading to an additional momentum p=mv of the state in frame S ′ in relation to S , apparent
in the probability density in the momentum space |Ψ′(p )|2.
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3.4.2 Static frame transformations

Within the interaction of several laser fields and a cloud of ultracold atoms there are some
salient directions that need to be considered: The in general unequal propagation directions
of the laser fields, the orientation of the atom cloud, as soon as it is asymmetric and the
orientation of the chip, resulting possibly in corresponding velocity components of the atoms.
Therefore, it is important, firstly, to define precisely the used reference frame and secondly, to
calculate carefully all needed transformations from other coordinate frames into this frame.

In Chapter 2, the reference frame S0 of the laboratory, i.e. the inertial rest frame of the atomic
chip experiment, was introduced. Its coordinates are denoted with (x0, y0, z0). Assuming that
in the reference frame used within this work and denoted with S and coordinates (x , y , z )
laser 1 propagates exactly in positive x -direction, the misalignment of both lasers can be
expressed as displacement and tilt of laser 2 with respect to the orientation of laser 1. The
origin O of the reference frame S is chosen to be the initial1 centre-of-mass position of the
atoms, lying in between of both laser origins O1 and O2 as depicted in Fig. 3.2. The orientation
of S is chosen to be identical to the propagation direction of laser 1. Therefore, ideally without
a laser misalignment the diffraction direction coincides with the x -direction of frame S .

x1

y1

z1

O1 x

y
z

x2

y2z2

O2
y0

z0

atom chip

O

x0

O0

S2

S1

restframe S

S0

Figure 3.2: Two counterpropagating, bichromatic Laguerre-Gaussian laser beams, with their intrinsic
reference frames SL={1,2}, with coordinates (xL , yL , zL ), interact with an atomic cloud. While
the laboratory frame of reference S0 is centred on the laboratory of the atomic chip experi-
ment, the reference frame S with coordinates (x , y , z ), used for the theoretical description of
the atomic diffraction, is centred at the initial centre-of-mass position of the atomic cloud
and orientated as laser 1. The distance between the origins O and O1 is |d | and the distance
between O1 and O2 is |`|.

Based on the assumption that the atoms initially stay at rest and possess (in the majority of
simulated cases) a symmetric expansion size, this frame S is an appropriate choice. Asymmet-
ric expansions or small initial velocities of the atoms in arbitrary directions can be handled
either explicitly expressed in the S-coordinates or by using an additional transformation. That
would be a rotation of S according to a certain orientation characterised by the atoms.

The Laguerre-Gaussian (LG) laser beams are defined with (2.23) in their intrinsic reference
frames SL , L ∈ {1,2} with coordinates xL , yL , zL , also depicted in Fig. 3.2. While here, the

necessary transformations to express E
(+)
L (r L ) of laser L = 1 and L = 2 in coordinates x , y , z

of frame S are presented, a detailed description of generally three-dimensional coordinate
transformations is given for example in [143]. Using homogeneous coordinates, the translation
and a linear map of an affine transformation, both can be represented using a single matrix

1 The initial time is defined as the time, when the diffraction pulses are switched on.
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multiplication. Therefore, all vectors are augmented to r = (x , y , z ,1) and the matrices are
also four dimensional. The augmented matrix is called an affine transformation matrix.

The origin of laser 1 is shifted in relation to the origin O of the coordinate system S , defined
by the transformation

r 1 =M −1
1 r , M1 = T (−d ), d = (dx , d y , dz ), da=x ,y ,z ≥ 0, (3.53)

with the translation matrix

T (d ) =









1 0 0 dx

0 1 0 d y

0 0 1 dz

0 0 0 1









, T −1(d ) =









1 0 0 −dx

0 1 0 −d y

0 0 1 −dz

0 0 0 1









. (3.54)

For active transformations, used within this thesis, the inverse of the transformation matrix
needs to be applied, resulting in

x1 = x +dx , y1 = y +d y , z1 = z +dz . (3.55)

The transformation for laser 2 is

r 2 =M −1
2 r , M2 = T (−d +`).R (α,β , 0).Sy z . (3.56)

Here, the translation matrix takes into account not only the shift d , but also the distance
`= ( x̀ , ỳ , z̀ ), `a=x ,y ,z ≥ 0, between both laser origins O1 and O2. Within the Tait-Bryan con-
vention, the rotation matrix

R (α,β ,ψ) =









cαcβ cαsβ sγ− cγsα sαsγ+ cαcγsβ 0
cβ sα cαcγ+ sαsβ sγ cγsαsβ − cαsγ 0
−sβ cβ sγ cβ cγ 0

0 0 0 1









,
cθ ≡ cos(θ ),
sθ ≡ sin(θ ),

(3.57)

describes intrinsic rotations around the z - ,y ′-, x ′′-axis. The so called Yaw-Pitch-Roll angles
α, β ,γ play an important role in the vehicle and aircraft technology. However, this choice is
also advantageous here, as the γ-rotation around x ′′ can be skipped, since the LG-beams are
rotationally symmetric for rotations around the propagation axis. For the counter- propagation
of laser 2 in relation to laser 1, first of all a reflection (Sy z )i j = (−1)i jδi j on the y z -plane is
added in equation (3.56). Applying the transformation M2 ends up with

x2

y2

z2

= −cβ (cα x̃ + sα ỹ )+ sβ z̃
= cα ỹ − sα x̃
= cβ z̃ + sβ (cα x̃ + sα ỹ )

≈ −x̃ −α ỹ +β z̃ ,
≈ ỹ −αx̃ ,
≈ z̃ +β x̃ +αβ ỹ ,

(3.58)

using the abbreviations ã = a + da − à and on the right-hand side assuming only small
misalignments where the small-angle-approximation can be applied with

cos(θ ) = 1−
θ 2

2!
+
θ 4

4!
−
θ 6

6!
+O

�

θ 8
�

⇒ cos(θ )≈ 1,

sin(θ ) = θ −
θ 3

3!
+
θ 5

5!
−
θ 7

7!
+O

�

θ 9
�

⇒ sin(θ )≈ θ .

(3.59)

Now, the positions and orientations of laser 1 and 2 are well-defined in the chosen frame of
reference S .
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4
D I F F R A C T I O N W I T H R E S O N A N T L I G H T

While the focus of this thesis lies on the interaction with two counterpropagating laser beams,
this Chapter 4 starts with a short overview of the simpler scenario: The interaction with
only one laser demonstrates the basic mechanism of the diffraction of ultracold atoms. The
analytical treatment gives deep physical insights into the interaction mechanisms of ultracold
atoms with laser light. While some aberrations of atomic diffraction appear here unavoidably,
an extensive aberration analysis is given for the interaction with two laser beams, in the next
Chapters 5-8.

4.1 I N T E R A C T I O N E N E R G Y

The diffraction of ultracold atoms is based on the stimulated absorption (and emission) of
laser photons. In this Chapter 4, the two-level system, with ground state |g 〉 and excited

E /ħh

|g 〉

|e 〉ω0

0

Γ
ωL

Figure 4.1: Two-level atom with
ground state |g 〉and excited state |e 〉
with transition frequency ω0 cou-
pled by laser light of frequencyωL .
The spontaneous emission with rate
Γ decays into an unobserved state.

state |e 〉, is coupled resonantly with one laser, as depicted
in Fig. 4.1. It is assumed that the spontaneous decay of the
excited state proceeds mainly to an internal state which
is not detected. Thus, the two-level system without spon-
taneous emission is an appropriate approximation and
the time evolution can be described with the Schrödinger
equation

iħh∂t |ψ〉= Ĥ |ψ〉. (4.1)

The Hamilton operator Ĥ of the interacting system con-
sists of the kinetic energy T̂ of the atoms and the potential
energy V̂ , including the potential energy of the internal
atomic levels and the interaction potential (cf. Sec. 2.1)

Ĥ = T̂ + V̂ =
p̂ 2

2M
+ħhωg σ̂g +ħhωe σ̂e +

ħh
2
Ω0

�

σ̂†e i (k L r̂−ωL t )+ σ̂e −i (k L r̂−ωL t )� . (4.2)

Here, the laser is assumed to be a monochromatic plane wave (2.17) of angular frequency
ωL = c |k L | and a temporal constant amplitude during the interaction time, viz. a rectangular
pulse is applied. Transforming into a rotating frame |ψ〉= F̂ |ψ′〉with

F̂ (t ) = exp
�

−iωg t − iωL t σ̂e

�

, (4.3)

eliminates the rapid temporal oscillations and the transformed Hamilton operator results in

Ĥ ′ = F̂ †Ĥ F̂ + iħh (∂t F̂ †)F̂ =
p̂ 2

2M
−ħh∆σ̂e +

ħh
2
Ω0

�

σ̂†e i k L r̂ + σ̂e −i k L r̂
�

. (4.4)
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Here, the detuning of the laser frequencyωL

∆≡ωL −ω0 (4.5)

in relation to the resonance frequency of the atomω0 =ωe −ωg is introduced.

4.2 L O C A L R A B I O S C I L L AT I O N S

Neglecting the kinetic energy term T̂ = p̂ 2/(2M ), local Rabi oscillations between the atomic
internal states can be observed. Therefore, the Schrödinger equation iħh∂t |ψ〉 = V̂ |ψ〉 with
|ψ(t )〉=ψe (t )|e 〉+ψg (t )|g 〉 in matrix representation reads

i∂t

�

ψe

ψg

�

=

�

−∆ Ω(r )/2
Ω∗(r )/2 0

��

ψe

ψg

�

≡V

�

ψe

ψg

�

, Ω(r ) =Ω0e i k L r . (4.6)

The solution is given by the exponential

|ψ(t )〉= Û (t )|ψ(0)〉= e −
i
ħh t V̂ |ψ(0)〉, (4.7)

which can be carried over into a transfer matrix U , using the methods of disentangling an
exponential (cf. Sec. 3.1.2)

U (t ) = e i t ∆2

�

F −1
z + f+ f−Fz f+Fz

f−Fz Fz

�

, f± =
iα±
Γ1

sin(Γ1t )
Fz

, Fz = cos(Γ1t )−
iαz

Γ1
sin(Γ1t ).

(4.8)
The complex functions fi , Fz are defined by the laser properties with

α± =−
Ω0

2
e ±i k L r , αz =

∆

2
, Γ 2

1 =α+α−+α
2
z =
Ω2

0

4
+
∆2

4
. (4.9)

Starting with the whole population initially in the ground state, the ground and excited state
populations are

pe (t) = |ψe (t)|2 = |〈e |Û (t)|ψ(0)〉|2 =
|α+|2

Γ 2
1

sin2(Γ1t ) =
Ω2

0

Ω̃2
0

sin2

�

Ω̃0t

2

�

, (4.10)

pg (t) = |ψg (t)|2 = |〈g |Û (t)|ψ(0)〉|2 = cos2(Γ1t )+
α2

z

Γ 2
1

sin2(Γ1t ) = cos2

�

Ω̃0t

2

�

+
∆2

Ω̃2
0

sin2

�

Ω̃0t

2

�

,

(4.11)

with the generalised Rabi frequency

Ω̃0 =
q

Ω2
0+∆2. (4.12)

This effective coupling strength results also from the difference of the eigenvalues of V (4.6).
The resulting local Rabi oscillations are depicted in Fig. 4.2, with the oscillation frequency
Ω̃0t /2. The relation Ω2

0/Ω̃
2
0 defines the maximum population of the excited state. Therefore,

only for∆= 0 a full population inversion can be achieved. It is worth mentioning, that the
solution can also been derived in the dressed state picture as a common initial value problem
with evaluating the eigenvalues and eigenvectors of the coupling matrix V (this procedure
is explained in quantum mechanic textbooks, like [144]). However, here the usability of the
methods of disentangling an exponential is demonstrated.
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Figure 4.2: Local Rabi oscillations for different detunings∆ and constant Rabi frequency Ω0 = 1ωu . An
arbitrary frequency unitωu is chosen.

4.3 AT O M M O V I N G I N A P L A N E L A S E R W AV E

Taking into account the kinetic energy, the atom’s external degrees of freedom also need to
be considered, due to momentum conservation. Therefore, the wavefunction includes the
internal state’s coordinate and the position vector r with

|ψ(t , r )〉=ψe (t , r )|e 〉+ψg (t , r )|g 〉. (4.13)

Now the solution of the Schrödinger equation (4.1)

|ψ(t , r )〉= Û (t , r )|ψ(0, r )〉= e −
i
ħh t (T̂+V̂ )|ψ(0, r )〉, (4.14)

is not as simple as before, because T̂ and V̂ do not commutate in general. A numerical so-
lution is possible, using the methods of symplectic integrators to split the exponential in
components, depending either on T̂ or on V̂ , as presented in Section 3.1.1. In addition, an
analytical solution is derived in the following, using the dressed state picture.

To excite an atom from the ground to the excited state, one laser photon is absorbed.
Therefore, the photon momentum p L , defined by the vacuum dispersion relation
ωL = c pL/ħh = c kL is transferred to the atom, with the absolute values pL = |p L | and kL = |k L |.
The wavevector k = p /ħh equates to the momentum in units of the reduced Planck constant.
Therefore, in the field of atomic diffraction naturally the wavevector occurs instead of the
momentum. In terms of the simplification to use natural units it is common, and used in the
further course, to call the wavenumber equivalently momentum. The reader is kindly asked
to forgive this indistinctness.

Absorption leads to a kick in the propagation direction of the laser. This momentum kick of
the excited state can be taken into account with introducing

ψe (r ) = e i k L rψ′e (r ), ψg (r ) =ψ
′
g (r ), (4.15)

because exp(±i k L r̂ ) is the translation operator of the momentum eigenstates |p 〉

e ±i k L r̂ =

∫

d3p |p ±ħhk L 〉〈p |. (4.16)

In addition, using the position representation of the momentum operator p̂ = −iħh∇, the
stationary Schrödinger equation

E |ψ(r )〉= (T̂ + V̂ )|ψ(r )〉 (4.17)
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leads in the position representation to two equations with coefficients not depending on r

Eψ′e (r ) =

�

−
ħh 2

2M

�

∇2+2i k L∇−k 2
L

�

−ħh∆
�

ψ′e (r )+
ħh
2
Ω0ψ

′
g (r ), (4.18)

Eψ′g (r ) =−
ħh 2

2M
∇2ψ′g (r )+

ħh
2
Ω0ψ

′
e (r ). (4.19)

Such a system of partial differential equations with constant coefficients always possesses
plane-wave solutions. Therefore, the following ansatz using plane waves is reasonable

ψ′e (r ) = e i k r ae (k ), ψ′g (r ) = e i k r ag (k ). (4.20)

Inserting this ansatz into Eqs. (4.18) and (4.19), the problem is studied in the momentum
space, leading to

E

�

ae (k )
ag (k )

�

= ħh
� ħh

2M (k L +k )2−∆ Ω0/2
Ω0/2

ħh
2M k 2

��

ae (k )
ag (k )

�

≡H
�

ae (k )
ag (k )

�

. (4.21)

Therewith, the solutions will depend on the atomic velocity v = ħhk /M , which was neglected
within the scope of local Rabi oscillations in Section 4.2. The direction of interest is the propa-
gation direction of the laser. Assuming a propagation exactly in x -direction with k L = kL e x ,
reduces the Hamilton matrix to one dimension

H=
H
ħhωr

=

�

(1+k )2−∆ Ω0/2
Ω0/2 k2

�

. (4.22)

Here, the recoil frequency

ωr =
ħhk 2

L

2M
(4.23)

emerges as frequency scale and the dimensionless quantities1

k =
kx

kL
, ∆=

∆

ωr
, Ω0 =

Ω0

ωr
(4.24)

are applied. The eigenfrequencies of the Hamilton matrix Hare given by

ω± =
1

2ħhωr

�

H11+H22±
q

(H11−H22)
2+4|H12|2

�

=
1

2

�

∆k +2k2±
q

∆2
k +Ω

2
0

�

, (4.25)

with ∆k = 1 + 2k −∆. The frequency functions depending on the momentum in this di-
rection are shown in Fig. 4.3, together with the unperturbed eigenfrequenciesω′g = k2 and

ω′e = (1+ k )2 −∆. Obviously, the minima of ω′e ,g are separated horizontally by the photon
momentum kL , because they are related to the ground and excited state energy which are
distinguished kinetically by simply the photon momentum, as exploited in Eq. (4.15). The
frequency difference of the minima is ∆. In the weak interaction limit the two minima of
ω− coincide approximately with the minima ofω′e andω′g . The generalised Rabi frequency
defines the spacing between the curvesω±, i.e. the frequency gap

Ωk =Ωk/ωr =ω+−ω− =
q

Ω2
0 +∆

2
k . (4.26)

1 The usage of dimensionless variables provides a tremendous improvement of the readability of formulas. However,
for a physical interpretation of quantities their dimension is indispensable. For this reason, always when explicit
quantities appear, they are given in their physical units.
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Figure 4.3: Eigenfrequenciesω+ andω− depending on the atomic momentum kx in propagation direc-
tion of the laser for the Rabi frequencyΩ0 = 0.5ωr and different detunings∆ in comparison
to the eigenfrequencies for a vanishing laser beamω′e ,g .

In the limit kx =−kL/2 it is k =−1/2 and the generalised Rabi frequency is independent of the
atomic velocity, recovering the expression in the framework of local Rabi oscillations (4.12).
To estimate the velocity dependent population distributions, apart from the eigenenergies
also the eigenstates need to be evaluated. In the dressed-state picture, the two eigensolutions
are defined with an orthogonal eigenvector matrix

�

|+〉
|−〉

�

=R (θ )M (φ)

�

|e 〉
|g 〉

�

, R (θ ) =

�

cosθ2 sinθ2
−sinθ2 cosθ2

�

, M (φ) =

�

e −iφ/2 0
0 e iφ/2

�

, (4.27)

that is parametrised through the angles θ andφ, namely

sinθ =
2|H12|

p

(H11−H22)2+4H12H21

=
Ω0

Ωκ
, φ = arg(H21) = 0. (4.28)

The time-dependent solution follows with

|a (τ,k )〉=λe −iω+τ|+〉+µe −iω−τ|−〉, (4.29)

with the dimensionless time τ= tωr , scaled in accordance to the frequency scaleωr (4.23).
The initial condition |a (τ = 0,k )〉 = ag (0,k )|g ,k〉 + ae (0,k )|e ,k〉 defines the coefficients
λ= ag (0,k )sin(θ/2)+ae (0,k )cos(θ/2) and µ= ag (0,k )cos(θ/2)−ae (0,k )sin(θ/2). Therefore,
the amplitudes of the excited and of the ground state are given by the matrix product

�

ae (τ,k )
ag (τ,k )

�

= e −i (∆k+2k2) τ2 R (−θ )M (Ωkτ)R (θ )

�

ae (0,k )
ag (0,k )

�

. (4.30)

To study the efficiency of the atomic diffraction the velocity dependent population of the
excited state is of special interest

pe (τ,k ) = |〈e ,k |ψ(τ)〉|2 = |ae (τ,k +1)|2, (4.31)

where the momentum shift kL ofψe (4.15) must be considered. For the atom initially prepared
in the ground state, one obtains

pe (τ,k −1) = |ag (0,k )|2
Ω2

0

Ω2
k

sin2
�

Ωkτ

2

�

= |ag (0,k )|2
Ω2

0

Ω2
k

sin2
�

Ωk t

2

�

, (4.32)

pg (τ,k ) = 1−pe (τ,k −1). (4.33)
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In the closed system, the ground state population is given via the population conservation.
Postulating that the Schrödinger equation is linear, with the superposition principle also the
sum of plane waves should solve it. Therefore, the initial state is generated by a sum of plane
waves with momentums kx ∈ [−3kL , 3kL ] respectively kx /kL = k ∈ [−3, 3]. Regarding Eq. (4.32),
on resonance∆= 0, the maximum excited state population is reached for k =−1/2 and the
mirror time tπ,0 =π/Ω0. In Fig. 4.4 the population of the ground and excited state after tπ,0 is
depicted in the momentum space.
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Figure 4.4: Velocity dispersion of the ground and excited state population pg ,e (kx ). The analytical solu-
tions (4.32),(4.33) (solid) are confirmed by the numerical integration (4.14) using symplectic
integrators (dashed). Different detunings∆ and Rabi frequencies Ω0 are applied.

For vanishing detuning, the perfect transfer from |g ,−kL/2〉 to |e , kL/2〉 is clearly visible.
However, for∆ 6= 0 there is always one plane-wave momentum kx = (∆−1)/2, defined with
equal unperturbed eigenfrequenciesω′g =ω

′
e , whereforeΩk =Ω0 and thus perfect transfer

can be achieved for tπ,0. For ∆ = 0.5ωr this is the case for kx = −kL/4, respectively kx = 0
for ∆ = 1ωr . The sinc2-behaviour2 is the typical response to rectangular pulses. The finite
width of the transferred population shows that the velocity dispersion diminishes the total
diffraction efficiency for wavepackets with finite momentum widths. Power broadening with
larger Rabi frequencies reduces the velocity selectivity. The population distributions can
become as broad as they overlap for the ground and the excited state. The numerical (1+1)D
simulation (4.14) confirms the analytical results. Therefore, symplectic integrators are applied
with 500 integration time steps δt = tπ,0/500, where for tπ,0 =π/Ω0 it is ensured δtΩ0� 1.

A B S O R P T I O N L I N E S H A P E The absorption line shape A of the diffraction is given by the
envelope

A= |ag (0,k )|2
Ω2

0

Ω2
k
= |ag (0,k )|2

Ω2
0

Ω2
0 +∆

2
k
= |ag (0,k )|2

Ω2
0

Ω2
0 + (1+2k −∆)2

, (4.34)

depicted in Fig. 4.5. The excited state population for different interaction times is always
enclosed by A.

2 sinc(x)= sin(x )/x
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Figure 4.5: Velocity dispersion of the ground and excited state population pi (kx ), i ∈ {g , e } for different
times between 0≤ t ≤ tπ,0. The absorption line shape A (4.34) envelopes the excited state
population. Different detunings∆ and Rabi frequencies Ω0 are applied.

M O M E N T U M K I C K The time-dependent velocity dispersion of the transfer efficiency de-
fines the amount of the transferred momentum. Therefore, it is possible to realise an atomic
beamsplitter, mirror and filter. To demonstrate their realisation the momentum expectation
value in the propagation direction of the laser

〈k̂x 〉=

∫
d3k kx |Ψg (τ,k )|2+

∫
d3k kx |Ψe (τ,k )|2

∫
d3k |Ψ(0,k )|2

=

∫
d3k kx |Ψ′g (τ,k )|2+

∫
d3k (kx +1)|Ψ′e (τ,k )|2

∫
d3k |Ψ(0,k )|2

(4.35)

=

∫
d3k k̂x |Ψg (0,k )|2+

∫
d3k |Ψg (0,k )|2 Ω

2
0

Ω2
k

sin2
�

Ω2
kτ
2

�

∫
d3k |Ψg (0,k )|2

(4.36)

is studied. Assuming the whole population is initially in the ground state, Eq. (4.36) depends
only on the initial ground state momentum density distribution |Ψg (0,k )|2. As initial state
Ψg (0,k ) a not-normalised Gaussian wavepacket with Ψg (0,k0) = 1 is considered by

Ψg (0,k ) = e
− (k−k0)

2

(2σk )2 , (4.37)

with momentum width σk = σk/kL , initial momentum k0 = k 0/kL = −1/2e x and located
at r 0 = (0,0,0). On resonance ∆ = 0 with Ω0 = 0.5ωr , the final population distributions are
shown in Fig. 4.6, restricting to one dimension x , the expansion direction of the laser.
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Figure 4.6: Velocity dispersion of the normalised ground and excited state population
pi (t f , kx )/pg (0,−kL ), i ∈ {g , e } at time t f . The analytical solutions (4.32),(4.33) (solid) are
confirmed by the numerical integration (4.14). For a narrow initial wavepacket (4.37) with
σk = 0.01 kL a mirror [beamsplitter] is realised for t f = tπ,0 =π/Ω0 [t f = tπ,0/2]. For a broad
wavepacket withσk = 0.2 kL a narrower packet withσk ,e = 0.125 kL is transferred into the
excited state, realising a filter. The detuning is∆= 0 and the Rabi frequency Ω0 = 0.5ωr .
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For a narrow initial wavepacket withσk = 0.01 kL a mirror can be realised for t f = tπ,0. Then the
whole population is transferred into the excited state carrying a momentum
〈k̂x (t f )〉=−〈k̂x (0)〉= kL/2. Therefore, the propagation direction of the wavepacket is reversed.
After t f = tπ,0/2 only the half of the population is transferred into the excited state. Thus, a
50:50 beamsplitter is realised. The wavepacket is split into two equal parts, moving in opposite
directions.

Regarding broad initial wavepackets withσk = 0.2 kL , due to the velocity selectivity of the

atomic diffraction, a narrower wavepacket σk ,e (t f ) =
q

〈k̂x (t f )2〉e −〈k̂x (t f )〉2e = 0.125kL is
transferred to the excited state, working as a velocity filter, realising a cooling mechanism. In
addition, as demonstrated in Fig. 4.3, the central momentum of the filtered wavepacket can
be tuned, depending on the detuning∆.

Depicting the time-dependent momentum expectation value (4.35) of the two-level system
in Fig. 4.7 also visualises the realisation of an atomic beamsplitter and mirror.

Figure 4.7: Time-dependent momen-
tum expectation value 〈k̂x (t )〉, numer-
ically (4.35) (coloured) and analyti-
cally (4.36), (4.38) (black) for a Gaus-
sian initial wavepacket of momentum
widthσk = 0.01kL , a vanishing laser
detuning∆= 0 and a Rabi frequency
Ω0 = 1ωr . 0 2 tπ/2 4 6 tπ

t ωr
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While the part of the wavepacket in the ground-state carries the momentum 〈k̂x 〉g =−kL/2,

the excited-state population carries 〈k̂x 〉e = kL/2, but the total momentum of the two-level
system changes smoothly from initially 〈k̂x (t = 0)〉 = −kL/2 over realising a beamsplitter
with 〈k̂x (t = tπ/2)〉 = 0kL ending in a mirror with 〈k̂x (t = tπ)〉 = kL/2. Using the analytical
solution for Ψ′e (4.36) coincides exactly with the full numerical solution (4.35). In addition,
approximating the atomic initial state with a plane wave Ψg (0,k ) =δ(k −k0), one obtains an
analytical expression for the momentum expectation value

〈k̂x 〉= kx ,0+
Ω2

0

Ω2
k0

sin2

�

Ωk0
τ

2

�

. (4.38)

For kx ,0 =−kL/2 and∆= 0 this simplifies further to 〈k̂x 〉=−1/2+ sin
�

Ω2
0τ/2

�2
. This approxi-

mation matches also the numerical results, becauseσk � kL . For larger momentum widths,
population contributions with k 6=−kL/2 remain in the ground state. In this case, 〈k̂x 〉would
not reach exactly kL/2 after the mirror pulse.

4.4 C O N C L U S I O N

The on-resonant diffraction of a two-level atom by a plane-wave laser beam can form a
beamsplitter, mirror and velocity filter. Therefore, the coherent splitting of atomic wavepackets
is realised due to momentum transfer between the ground and the excited state during the
interaction. In general, if there is spontaneous emission from the excited state to the ground
state, this incoherent process diminishes the diffraction efficiency. However, the considered
analytically solvable interaction scenario provides deep physical insights in the diffraction
process of ultracold atoms by laser light.
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Bragg diffraction of ultracold atoms by moving standing light fields provides the opportunity
for high precision acceleration and rotation measurements, using matter-wave interferometry.
Like optical systems, matter-wave devices require exact specifications and ubiquitous imper-
fections need to be quantified. Therefore, the performance of atomic Bragg diffraction and its
aberrations are studied with full (3+1)D simulations. In addition, simple analytical models
are derived, providing deep physical insight into the underlying processes. The content of
this Chapter 5 as well as of the next two Chapters 6 and 7 follows mainly [101]. However, it is
described in more detail, here.

This Chapter 5 starts with the theoretical concepts of atomic Bragg diffraction with two
counterpropagating, bichromatic laser beams. Therefore, momentum and energy conser-
vation represent the fundamental cornerstones (cf. Sec. 5.1). The diffraction is revisited in
the rest frame of the moving standing wave, using a Galilean transformation, which sim-
plifies the mathematical treatment (cf. Sec. 5.2, 5.3). Defining the properties of ideal Bragg
diffraction (cf. Sec. 5.4) enables to quantify the effect of different aberrations, introduced in
Sec. 1.3.4. In addition, the plane-wave approximation (cf. Sec. 5.5) represents an origin to
gauge more realistic calculations. Therefore, two common methods are compared to solve
the Schrödinger equation with plane-wave laser beams. This is the Bloch-wave ansatz and an
ad-hoc ansatz, leading to a more convenient extended zone scheme. Both include the velocity
selectivity of the Bragg diffraction and losses into off-resonantly coupled diffraction orders in
the quasi-Bragg regime.

Four non-adiabatic temporal pulse envelopes are studied in Chapter 6, where some are
amenable for analytical models. Thereafter, in Chapter 7 also spatial variations are taken into
account, considering more realistic Laguerre-Gaussian laser beams and misalignment. To
complete, in Chapter 8 the effect of spontaneous emission is studied. In Chapter 9 several
linear susceptibilities quantify and compare the influence of different aberrations, pointing
the way to optimise the beamsplitter performance.

The corresponding comprehensive theoretical studies are applied to experiments on ground
performed by Dr. Martina Gebbe at the ZARM in Bremen.

5.1 C O N S E R VAT I O N L AW S

The basic mechanism of an atomic beamsplitter and mirror is the stimulated absorption and
emission of two photons from counterpropagating laser beams [14, 145] respecting energy
and momentum conservation

ħhω1+
p 2

i

2M
= ħhω2+

p 2
f

2M
, p i +ħhk 1 = p f +ħhk 2. (5.1)
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Here p i and p f are the initial and final momenta of the particle with mass M , the photon
momenta are ħhk 1,2 and the laser frequenciesω1,2. The wavenumbers are positive ki = |k i |> 0
and the propagation directions are emphasised with explicit signs. Frequency and wavenum-
ber are coupled by the vacuum dispersion relationω= c k , with the speed of light c . Energy
and momentum conservation holds also for the resonant transfer of 2Nphotons, charac-
terising Nth-order Bragg diffraction. This thesis focusses on the fundamental mechanism
covered by first order Bragg diffraction with N= 1. The overall resonant momentum transfer
ħhk eff = p f − p i is maximised for counterpropagating fields to k eff = 2kL e x for N= 1 and
lasers propagating in x -direction. Therefore, the average wavenumber and frequency

kL ≡
k1+k2

2
, ωL ≡ c kL (5.2)

are used. However, off-resonant 2N -photon transfers with N > 1 need to be considered
because they lead to population loss into higher diffraction orders (dashed arrows in Fig. 5.1).
In general, wavemechanics require the consideration of superpositions of initial |g , p i 〉 and
final momentum states |g , p f 〉, where g denotes the internal ground state of the atom. This is
depicted in the energy diagram in Fig. 5.1, reduced to the beamsplitter direction, where both
laser propagates exactly in x -direction with k 1 = k1e x and k 2 =−k2e x . Only a few transitions
are permitted by energy conservation.

kL-3kL 0-kL 3kL

ωg (k )

ωe (k )
E /ħh

∆

p ′

ħh

laboratory frame S comoving frame S ′

ωr
δ

κ0 2kL

ωg (k )

ωe (k )
E /ħh

∆

p
ħh

κ

ω2r

δ

Figure 5.1: Energy diagram for first order quasi-Bragg diffraction versus atomic wavenumber k = p/ħh .
A Galilean transformation (cf. Sec. 3.4.1), transforms the laboratory frame S (left), with a
moving grating and the atoms at rest to the frame S ′ (right) of symmetric diffraction with
the grating at rest and a non-vanishing initial momentum of the atoms (green dotted). The
ground and excited state’s energies of a free particle are denoted with ħhωg (k ) and ħhωe (k ),
the recoil frequencies of the two-photon and the single photon transfer areω2r andωr . In
the studied frame S ′ two counterpropagating lasers (magenta arrows) with wavenumbers
k ′1,2 = ±kL (5.2) couple mainly the initial |p ′i = −ħhkL 〉 and final atomic momentum states
|p ′f = ħhkL 〉. The momentum dependent population distributions (magenta) are initially
centred around −kL (green dotted) and after the diffraction around ±kL , ±3kL (green shad-
owed). This is caused by losses into higher diffraction orders (magenta dashed arrows)
and the velocity selectivity of momentum detunings κ (magenta dotted arrows) due to
off-resonant coupling. A frequency mismatch δω≈δ (5.7), (5.8) can lead to the same off-
resonance (dashed-dotted arrows) and is therefore connected to the momentum detuning
via relation (5.9).
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5.1.1 On-resonance response

In the laboratory frame S , for atoms initially at rest pi = 0, energy and momentum conservation
(5.1) for the transfer of two photons (solid arrows in Fig. 5.1) is satisfied for bichromatic laser
fields with frequencies

ω1 =ω2+ω2r =
1
a

�

1−aω2−
p

1−4aω2

�

=ω2+2aω2
2+

1
a O

�

(4aω2)
3
�

≈ω2+
ħh (2k2)2

2M
, (5.3)

with a = ħh/M c 2. In Eq. (5.3) the two-photon recoil frequency

ω2r ≡ 4ωr , ωr =
ħhk 2

L

2M
(5.4)

in terms of the single photon frequencyωr (4.23) is introduced, due to the two-photon recoil.
The approximation in Eq. (5.3) holds for non-relativistic energies, just as the kinetic energy in
(5.1). For these resonant laser frequencies (5.3), the most population (green) can be transferred
from initially pi = 0 (green, dotted) to finally pf = 2ħhkL (green shadowed).

5.1.2 Off-resonance response

Releasing ultracold atomic ensembles from traps provides localised wavepackets with a finite
momentum dispersion. Therefore, one needs to study the response of the Bragg beamsplitter
with finite initial momenta p̄i = κħhkL and therefore p̄f = (2+κ)ħhkL , introducing a dimension-
less momentum

κ =
κ

kL
. (5.5)

This opens a frequency gap

δ≡
p̄ 2

f

2M ħh
+ω2−

p̄ 2
i

2M ħh
−ω1 =ω2r

�

�

1+
κ
2

�2
−

κ2

4

�

−ω2r =ω2r κ, (5.6)

leading to an off-resonant coupling as shown in Fig. 5.1 (a) (dotted magenta arrows), where
the population transfer (green shadowed) is less efficient.

Alternatively, one can also probe the momentum response by a detuning of the laser fre-
quencies ω̃1,2 from the resonant valuesω1,2 (5.3). Conveniently, this detuning is measured by

δω≡ (ω1− ω̃1)− (ω2− ω̃2). (5.7)

Dash-dotted arrows mark the deviant frequencies in Fig. 5.1 (a). For a particle, which is initially
at rest p̃i = 0 and acquires a momentum p̃f = ħh (k̃1+k̃2) = (2−δω/ωL )ħhkL after the momentum
transfer, a frequency gap δ is implied with

δ=
p̃ 2

f

2M ħh
+ ω̃2− ω̃1 =ω2r

�

1−
δω

2ωL

�2

−ω2r +δω≈δω. (5.8)

The approximation holds for |ω̃1,2 −ω1,2| � ωL , which is satisfied very well in the present
context of optical transitions, equivalently to δω/2ωL � 1, here δω/2ωL ∼ 10−11.
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Comparing Eqs. (5.6) and (5.8), reasons the linear relation

δω=ω2r κ, (5.9)

between laser-frequency mismatch δω and the dimensionless initial particle momentum κ.
Therefore, both realisations are suitable to probe the momentum response of Bragg diffraction
and their results are related by Eq. (5.9).

Experimentally, it is advantageous for examining the resonance shape of the Bragg diffrac-
tion to modify the laser-frequencies (cf. Sec. 5.1.2) and to prepare atomic wavepackets initially
at rest in the lab-frame S . Theoretically, it is beneficial to emphasise the symmetries of the sys-
tem, adopting a moving inertial frame S ′ (cf. Sec. 3.4.1, 5.3.1). In this frame, depicted in Fig. 5.1
(b) the Doppler-shifted laser-frequencies coincideω′1 =ω1−kL vg =ωL ,ω′2 =ω2+kL vg =ωL

and the momentum coupled states p ′i = −ħhkL , p ′f = +ħhkL are distributed symmetrically.

Therefore, in S ′ the grating is at rest, but the atoms get a non-vanishing initial momentum. To
keep this symmetric diffraction scheme, the velocity dispersion can be scanned with detuning
the atomic initial momentum.

5.2 C O U N T E R P R O PA G AT I N G B I C H R O M AT I C F I E L D S

The electric field of the superposition of two counterpropagating laser beams E = E 1+E 2 is

defined by the constituent fields E l={1,2} = E (+)l +E (−)l with the positive frequency components

E (+)l (t , r ) = εl El (t , r )e −iΦl (t ,x ). (5.10)

Here,εl denote the polarisation vectors,El (t , r ) the slowly varying complex Laguerre-Gaussian
envelopes and Φ1(t , x ) = ω1t − k1 x , Φ2(t , x ) = ω2t + k2 x are the rapidly oscillating carrier
phases for fields propagating along the x-direction (cf. Sec. 2.1.2 and 2.2.2). From the superpo-
sition of these two scalar counterpropagating bichromatic fields

E = E1e −iφ1(t ,x )+E2e −iφ2(t ,x ), (5.11)

one obtains a steady motion of the intensity pattern

|E |2 = |E1|2+ |E2|2+2 Re
�

E∗2E1 e i (k1+k2)(x−vg t )� , (5.12)

where nodes move with the group velocity vg

vg =
ω1−ω2

ω1+ω2
c , |vg |=

ω2r

2kL
� c . (5.13)

The frequency difference determines the direction of the motion, here vg > 0 for the as-
sumptionω1 >ω2. If in the laboratory frame S the lasers are bichromatic, then the moving
interference pattern defines another inertial frame S ′, where the grating is at rest and the
coordinates

x ′ = x − vg t , (5.14)

are related to the laboratory frame coordinates x by a passive Galilean transformation (cf. Sec.
3.4.1). This symmetrises the Bragg diffraction as depicted in Fig. 5.1. Therefore, it is useful to
describe the atom-light interaction in this frame. However, for the theoretical description, the
equivalent active Galilean transformation is advantageous and applied in the next Section.
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5.3 I N T E R A C T I O N E N E R G Y

The atom is represented by a ground |g 〉 and an excited state |e 〉. These levels are separated
by the transition frequencyω0 =ωe −ωg and coupled by the electric dipole matrix element

d e g = 〈e |d̂ |g 〉. This two-level model does not describe the coupling of the excited state to
unobserved states, leading to population losses. A sufficiently far detuning from the atomic
resonance |ω0−ωi | � Γ , where Γ is the natural linewidth of the transition, makes these losses
negligible. Therefore, also spontaneous emission back to the ground state, diminishing the
diffraction efficiency, is minimised.

In the laboratory frame S the Hamilton operator of an atom with mass M is given by

Ĥ (t ) =
p̂ 2

2M
+ħhωg σ̂g +ħhωe σ̂e +

ħh
2

�

σ̂†
2
∑

l=1

Ωl (t , r̂ )e −iφl (t ,x̂ )+h.c.

�

, (5.15)

using the Pauli spin operators σ̂ς=e ,g = |ς〉〈ς| and σ̂= |g 〉〈e | [cf. Sec. 2.1, Eqs. (2.6) and (2.12)].
In the Bragg regime the effects of energy-momentum conservation are so severe that the
kinetic energy distribution of the internal levels needs to be taken into account. The electric
dipole interaction energy is evaluated in the rotating-wave approximation and denotes the
Rabi frequencies as Ωl (t , r ) =−εl ·d g e El (t , r )/ħh (2.11).

5.3.1 Comoving, rotating frame

Making use of a transformation to the frame S ′ comoving with the nodes of the interference
pattern and applying a suitable corotating internal frame S ′′, then the Hamilton operator
simplifies to

Ĥ ′′(t ) =
p̂ 2

2M
−ħh∆σ̂e +

ħh
2
σ̂†

�

Ω1(t , r̂ )e i kL x̂ +Ω2(t , r̂ )e −i kL x̂
�

+h.c. (5.16)

Both transformations are derived in the following.

G A L I L E A N T R A N S F O R M AT I O N The active Galilean transformation (cf. Sec. 3.4.1), comoving
with the group velocity v = vg e x (5.13), transforms the interaction potential to [cf. Eq. (3.51)]

V̂ ′ =V (t , r̂ + r(t )), r(t ) = (x0+ vg t )e x . (5.17)

Therefore, the Doppler shifted laser phases in x -direction

φ′1 =ω1t −k1(x̂ + x0+ vg t ) =ωL t −k1(x̂ + x0), (5.18)

φ′2 =ω2t +k2(x̂ + x0+ vg t ) =ωL t +k2(x̂ + x0) (5.19)

oscillate synchronously with

ωL =
ω1+ω2

2

�

1−β2
�

≈
ω1+ω2

2
. (5.20)

The second order correction inβ = vg /c can be neglected safely in the nonrelativistic scenario.
In this frame, the state |ψ〉= Ĝ |ψ′〉 is boosted with the displacement operator Ĝ (3.48) in the
Schrödinger picture, while the coordinate operators x̂ , p̂ remain unchanged.
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C O R O TAT I N G F R A M E An additional local frame transformation |ψ′〉= F̂ |ψ′′〉, with

F̂ (t ) = exp
�

−iωg t − iωL t σ̂e +
i

2
[k12(x̂ −χ12)]σ̂z

�

(5.21)

eliminates the rapid temporal oscillations and establishes a single spatial period λL = 2π/kL

of the optical potential. Now, the transformed Schrödinger equation reads

iħh∂t |ψ′′〉= Ĥ ′′|ψ′′〉, (5.22)

Ĥ ′′ =
(p̂x +

1
2ħhk12σ̂z )2

2M
+

p̂ 2
y + p̂ 2

z

2M
−ħh∆σ̂e

+
ħh
2

�

σ̂†
�

Ω1(t , r̂ + r(t ))e i kL x̂ +Ω2(t , r̂ + r(t ))e −i kL x̂
�

+h.c.
�

,

(5.23)

with the already defined common wavenumber kL = (k1+k2)/2 (5.2) and a relative wavenum-
ber mismatch k12 =∆k/2 with

∆k ≡ k1−k2. (5.24)

The laser detuning ∆ ≡ωL −ω0 is measured with respect to the common Doppler-shifted
frequencyωL (5.20). Global phases of the Rabi frequencies Ω̃l (t , r ) =Ωl (t , r )e −iχl do vanish
with the proper gauge χ12 = (χ1+χ2)/2 and the shifted coordinate origin x0 = (χ1−χ2)/2kL .

Please note, k12 is infinitesimal with∆k ∼ 1×10−10µm−1 ∼ 1×10−11 kL in comparison to
other relevant momenta. Compared to reasonable momentum widths, in the range between
the minimal width of trapped BECs σk ≥ 10−2kL (cf. Sec. 2.3.5) and the width of thermal
clouds σk ∼ 10−1kL (cf. Sec. 2.3.7), the wavenumber mismatch k12 can be neglected safely.
In addition, beamsplitter pulses are typical short (<1 ms), why the ballistic displacement
vg t ∼ µm < σx is also negligible Ωl (t , r + r(t )) ≈ Ωl (t , r ), leading to the Hamilton operator
(5.16).

Therefore, considering two counterpropagating Laguerre-Gaussian laser beams (cf. Sec.
2.2.2), which are symmetrically displaced with respect to their waists by a distance x̀ in
x -direction, the dipole interaction energy in the comoving, rotating frame (5.23) reads

V̂ ′′ =
ħh
2
σ̂†

�

Ω1(t , x̂1, ŷ , ẑ )e i kL x̂ +Ω2(t , x̂2, ŷ , ẑ )e −i kL x̂
�

+h.c., (5.25)

using χ12 = (χ1+χ2)/2−kL x̀ /2 and x0 = (χ1−χ2)/2kL −∆k x̀ /4kL ≈ (χ1−χ2)/2kL
1. The Rabi

frequencies Ωl (t , r l ) include the real pulse amplitudes Ω0,l (t ) and complex spatial envelopes
of Laguerre-Gaussian beams u (xl , y , z ) (2.23). For the displaced beams the shifted coordinates
x1/2 =±(x +vg t )+ x̀ /2 are used (cf. Sec. 3.4.2). These define the beam parameters wl =w (xl ),
Rl = R (xl ) and ζl = ζ(xl ), slowly varying for x � xR . This demonstrate that the ballistic dis-
placement vg t ∼µm<σx � x̀ , xR is indeed negligible. In addition, for not too large atomic
cloudsσx <w0/3, one can even approximate x1 ≈ x2 ≈ x̀ /2.

Finally, it is essential that in the comoving, rotating frame S ′′ with the Hamilton operator
(5.16) the atom responds only to a single laser frequencyωL = (ω1+ω2)/2 and one carrier
wavenumber kL = (k1+k2)/2.

1 The detailed transformations for arbitrarily misaligned laser beams are given in Section 7.5.1.
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5.3.2 Time evolution

For large detunings∆, dissipative processes are not an issue. Therefore, the time evolution
within the diffraction is given by the solution of the Schrödinger equation (cf. Sec. 3.1) for
t > ti and |ψ〉 ≡ |ψ′′〉

|ψ(t )〉=G (t , ti )|ψ(ti )〉, (5.26)

G (t , ti ) = T e
−i
∫ t

ti
dt ′H (t ′)

θ (t − ti ), i∂t G (t , ti ) =H (t )G + iδ(t − ti ), (5.27)

with the time-ordered propagator G (t , ti), as a retarded Green’s function [146].
As introduced in Section 3.1, this two-component, (3+1)D problem is solved numerically,

using Fourier methods with symplectic integrators (cf. Sec. 3.1.1) and operator disentangling
(cf. Sec. 3.1.2). Analytical solutions are examined later for rectangular pulses (Sec. 6.2) and
hyperbolic secant pulses (Sec. 6.3).

5.4 I D E A L B R A G G B E A M S P L I T T E R A N D M I R R O R

P U L S E A R E A The interaction of a two-state system with laser pulses can be understood
qualitatively by the pulse area [147]which is rather an angle by dimension

θ (t ) =

∫ t

−∞
dt ′Ω(t ′), Ω(t ) =

|Ω0(t )|2

2∆
. (5.28)

Here, the time-dependent two-photon Rabi frequency Ω(t ) is introduced, assuming equal
amplitudes Ω0,1(t ) = Ω0,2(t ) = Ω0(t ). In the context of ideal first order Bragg scattering, the
two states are the momentum states {|−kL 〉x , |kL 〉x }. One can visualise the evolution during
the action of the Bragg pulse as a motion on the Bloch sphere [148]. An ideal, symmetrical
50:50 Bragg beamsplitter is a θ = π/2 rotation from the south pole to the equator at some
longitude. This gives equal probability to the outputs channels | ±kL 〉. A θ =π rotation from
the south pole to the north pole reverses the momenta |−kL 〉→ |kL 〉 and thus acts like a mirror.
The following discussion, is focussed on the mirror configuration as it is most susceptible to
aberrations, due to the longer interaction time corresponding to the larger pulse area.

D I F F R A C T I O N E F F I C I E N C Y The polar decomposition of the transition amplitude

〈k ′|G (t , ti )|k 〉=
p

ηk ′k e iφk ′k (5.29)

between initial |k 〉 and final |k ′〉 momentum state characterises the diffraction efficiency
0≤ηk ′k ≤ 1. Anticipating the following results, it shows resonances at k ′ = k +2N k L , N ∈Z.
This was visualised in Fig. 5.1 with the off-resonant coupling to higher diffraction orders. For
atomic wavepackets the diffraction efficiencyηN for N-th order Bragg diffraction, i.e. resonant
coupling of k with k ′ = k ′N≡ k +2Nk L , is defined by the total population proportion that can
be transferred into k ′N. For lasers propagating in x -direction and normalised wavepacktes
∫

d3k n (k ) = 1 with the density in the momentum space n (k ) = |Ψ(k )|2 the diffraction efficiency
ηN is given by the expectation value of R̂N(k ) = Θ[(N+ 1)kL − k ]Θ[k − (N− 1)kL ] (Θ is the
Heaviside step function), reading

ηN= 〈R̂N(k
′
x )〉=
∫

d3k ′RN(k
′
x )|Ψ(k

′, t )|2, Ψ(k ′, t ) =
∫

d3k 〈k ′|G (t , ti )|k 〉Ψ(k , ti ). (5.30)

For in general
∫

d3k n (k ) 6= 1, the normalised diffraction efficiency η̄N reads

η̄N=
ηN

∑

N ηN
. (5.31)
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An important experimental observable represents the normalised diffraction efficiency of the
resonantly coupled states for first-order diffraction N= 1

η̄≡ η̄1 =
η1

∑

N ηN
. (5.32)

In the deep-Bragg regime, one obtains

η̄+− =
N+

N−+N+
=

η+1

η−1+η+1
≈ η̄ (5.33)

from the number of diffracted atoms N+ into the first diffraction order with k ′ = k + 2k L ,
−2k L ≤ k < 0 and the undiffracted atoms N− remaining in the initial momentum state k ′ = k .
The approximation is exact in the deep-Bragg limit, where no population at all is lost into
off-resonant diffraction orders.

F I D E L I T Y The introduced diffraction efficiencies are independent of the phase of the final
wavefunction. Therefore, to quantify the quality of the diffraction, additionally the phase
sensitive fidelity F is used with

F ≡ F 1, FN= |〈ψideal|ψ(t )〉|2, |ψideal〉= e 2iNk L x̂ |ψi 〉, (5.34)

characterising the overlap of the final state |ψ(t )〉 of (5.26) and the ideal final mirror state
|ψideal〉, for first-order diffraction i.e.N= 1. In the limit of a plane wave as atomic initial state (cf.
Sec. 2.3.3), the fidelity corresponds to the diffraction efficiency FN= η̄N with k ′ = k +2Nk L .

5.5 P L A N E - W AV E A P P R O X I M AT I O N

Clearly, the basic mechanism of Bragg beamsplitters arises from the momentum transfer of
plane waves with a real, constant Rabi frequency Ω1(t , r ) =Ω2(t , r ) =Ω0 within the duration
of a rectangular pulse. Due to the long interaction times in the Bragg regime, the details of
switching on and off can be ignored, assuming the Rabi frequency to be constant. This model
is the reference to gauge more realistic calculations. Consequently, the two components
{ψe (t , r ),ψg (t , r )} of the Schrödinger field |ψ(t , r )〉 = ψg (t , r )|g , r 〉 +ψe (t , r )|e , r 〉 evolve
according to

i∂tψe =
�

−
ħh

2M
∇2−∆

�

ψe +Ω0 cos(kL x )ψg , (5.35a)

i∂tψg =−
ħh

2M
∇2ψg +Ω

∗
0 cos(kL x )ψe , (5.35b)

using the Hamilton operator (5.16), together with plane-wave laser beams (2.17).

5.5.1 Adiabatic elimination of the excited state

Assuming the excited state is initially empty, the atom’s kinetic energy is small and the lasers
are far detuned from the excited state leads to the separation of frequency scales 2

2 The frequency scales are provided by the experimental parameters (cf. Tables A.1 and A.2). However, in general
for Bragg diffraction a large detuning∆≫ Γ is required to keep the coherent photon transfer not impaired by
spontaneous emission processes. This requires Rabi frequencies Ω0 > Γ or depending on the detuning Ω0� Γ to
achieve π-pulses for accessible pulse durations (cf. Sec. 6.1). Finally, the recoil frequency is approximately defined
by the optical transition frequency, withωr � Γ for rubidium-87 atoms.
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ωr � Γ �Ω0≪∆ . (5.36)

Therefore, the excited state can be adiabatically eliminated [67, 149] using standard methods
[150], resulting in

ψe ≈
Ω0

∆
cos(kL x )ψg . (5.37)

Then, the ground state Schrödinger equation reads

i∂tψg =
�

−
ħh

2M
∇2+V(x )

�

ψg , V(x ) =
|Ω0|2

∆
cos2(kL x) , (5.38)

with the dipole potential V(x ). Stationary solutions of this one-dimensional problem are
Mathieu functions [151], but in general it is not possible to give a full analytical solution of
such a Mathieu equation [67, 149]. Here, the primarily interest is not the idealised case of de-
termining stationary eigenmodes but to formulate a suitable ansatz for the (3+1) dimensional
non-separable equation with time-dependent pulses.

5.5.2 Bloch-wave ansatz

The Bloch band picture is suitable to describe the velocity selective atomic diffraction by a
standing laser wave [14, 152, 153]. The characteristic translation invariance of the Hamilton
operator (5.38) by a displacement of ax =λL/2 defines a natural length scale. Its reciprocal is
the lattice vector qx = 2π/ax = 2kL , which is twice the laser wavenumber. It is convenient to
embed the total three-dimensional wavefunction in an orthorhombic volume with lengths
(Nx ax , a y , az ), Nx ∈N and to impose periodic boundary conditionsψg (x +Nx ax , y +a y , z +
az ) =ψg (x , y , z ). Bragg scattering involves at least two photons, one photon from each of the
counterpropagating lasers. Therefore, the two-photon recoil frequencyω2r (5.4) emerges as
the frequency scale. In terms of the dimensionless length ξ= qx x and dimensionless time3

τ=ω2r t , (5.39)

the Schrödinger field

ψg (t , r ) =

l

Ny
2

m

−1
∑

r=−
j

Ny
2

k

 

Nz
2

£

−1
∑

s=−
�

Nz
2

�

e i (r qy y+sqz z−ω̄r,sτ)h (r,s )(τ,ξ), (5.40)

factorises into one-dimensional fields h (r,s )(τ,ξ) and two-dimensional plane waves with multi-
ples of the transversal lattice vectors qy ,z = 2π/a y ,z . The integers Ny ,z ∈N define the maximal
momentum resolution qmax

i = qi bNi /2c. Please note the use of the Gauss brackets rounding
towards the nearest integer at the ‘floor’ b c or the ‘ceiling’ d e. With a detuning dependent shift
of the frequency

ω̄r,s = ħh
r 2q2

y + s 2q2
z

2Mω2r
+Ω, (5.41)

the Schrödinger equation for each amplitude simplifies to

i∂τh (τ,ξ) =
�

−∂ 2
ξ +Ω cosξ

�

h (τ,ξ). (5.42)

3 The usage of dimensionless variables provides a tremendous improvement of the readability of formulas. However,
for a physical interpretation of quantities their dimension is indispensable. For this reason, always when explicit
quantities appear, they are given in their physical units.
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Here, the two-photon Rabi frequency Ω (dimensionlessΩ) for equally strong laser beams

Ω=
|Ω0|2

2∆
, Ω =

Ω

ω2r
(5.43)

appears. By construction, the potential is 2π-periodic and the eigenfunctions h (τ,ξ) =
e −iτω(b )(q )h (b )(ξ, q ) are given by Bloch-waves h (b )(ξ, q ) [154–157] with the lattice periodic
function g (b )(ξ, q ) for momentum q and band index b

h (b )(ξ, q ) = e i qξg (b )(ξ, q ), g (b )(ξ+2π, q ) = g (b )(ξ, q ). (5.44)

From the periodic boundary conditions for the wavefunction h (b )(ξ+2πNx , q ) = h (b )(ξ, q ), one
obtains a quantisation of the wavenumber qn = n/Nx with n ∈Z. The interval−1/2≤ qn < 1/2
defines the first Brillouin zone in the reduced zone scheme, whose extent equals the crystal
momentum Q = 1.

Bloch wavefunctions are also periodic in momentum space h (b )(ξ, q +Q ) = h (b )(ξ, q ), pro-
vided one defines

g (b )(ξ, q ) =
N−1
∑

m=−N
e i mξg (b )(m +q ), (5.45)

by a Fourier series for a maximal diffraction orderN ∈Nwith boundary condition g (b )
�

q +N
�

=
g (b )

�

q −N
�

= 0. From a superposition of these Bloch waves, one obtains the ansatz

h (τ,ξ) =

 

Nx
2

£

−1
∑

n=−
�

Nx
2

�

N−1
∑

m=−N
e i (m+qn )ξg (τ, m +qn ), (5.46)

for the time-dependent solution of Eq. (5.42), compatible with the Bloch theorem and suitable
for numerical computation. This ansatz transforms the partial differential equation into the
parametric difference equation

i∂τgm (τ, q ) = (m +q )2gm +
Ω
2
(gm+1+ gm−1). (5.47)

The q -dependence of the m-th order scattering amplitude gm (τ, q )≡ g (τ, m +q ) leads to the
velocity dispersion of Bragg diffraction. Assuming Dirichlet boundary conditions, one can
use a (2N − 1)-dimensional representation g e = (g1−N , . . . , gN−1), to study the initial value
problem

i ġ e =H e (q )g e , H e =D e + L + L †. (5.48)

For the indices 1−N ≤m ≤N −1, the Hamilton matrix H e is formed by a diagonal matrix D e

and a lower triangular matrix L

D e
m ,n = (m +q )2δm ,n , Lm ,n =

Ω
2
δm ,n+1. (5.49)

In order to study the discrete Bloch energy bands ω(b )(q ), one has to solve the eigenvalue
problem

g e (τ, q ) = e −iτω(q )g e (q ), ω(q )g e =H e (q )g e . (5.50)

In Fig. 5.2, the lowest few energy bandsω(b )(q ) are depicted versus the lattice momentum
q in an extended momentum zone scheme. For reference, the quadratic dispersion relation
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Figure 5.2: Energy bandsω(0,1,2)(q ) of a periodic lattice in the extended zone scheme depending on the
quasimomentum q for the empty latticeΩ = 0 (dotted) and a finite depthΩ = 1 (solid). The
frequency unit isω2r = 4ωr . Wavepackets with odd momenta (2m +1)kL are located at the
edges q =± 1

2 of the first Brillouin zone, even momenta 2mkL are located at the center q = 0.

of an empty latticeΩ = 0 and the dispersion relation for a moderately deep lattice withΩ = 1
is shown. In dimensional units, this lattice is Ω = Ωω2r = 1ω2r = 4ωr = 4 (ħhk 2

L/2M ) deep.
The ideal situation for a Bragg beamsplitter are narrow momentum wavepacketsψ(k )with
σk � kL . If they are located at the band edges k = qqx = (m±1/2)2kL , the two-photon process
covers at least three Brillouin zones. For wavepackets at the center of the band k = qqx = 2mkL ,
only two Brillouin zones are coupled by a Bragg pulse.

5.5.3 Ad-hoc ansatz

There are alternative formulations [67, 86] to the Bloch-wave ansatz. Therefore, a Fourier
series on the periodic lattice h (τ, x +Nx ax ) = h (τ, x ) is defined as

h (τ, x ) =
∞
∑

l=−∞
e i 2πl

Nx ax
x g l (τ),

2πl

Nx ax
=

2l

Nx
kL . (5.51)

By decomposing the index l =Nx m+r into a quotient m = bl /Nx c and a remainder 0≤ r <Nx ,
one obtains with n = r − bNx /2c

h (τ, x ) =

 

Nx
2

£

−1
∑

n=−
�

Nx
2

�

N−1
∑

m=−N
µ=2m+1

gµ(τ,κn )e
i k n
µ x (5.52)

=

 

Nx
2

£

−1
∑

n=−
�

Nx
2

�

N−1
∑

m=−N
µ=2m+1

g +µ (τ,κn )cos
�

k n
µ x

�

+ g −µ (τ,κn )sin
�

k n
µ x

�

. (5.53)

In this series expansion a momentum as multiples of the laser wavenumber kL

k n
µ = (µ+κn )kL , κn =

κn

kL
, (5.54)

is used with the dimensionless quasimomentum κn

−1≤ κn =
2n

Nx
−

�Nx
2

�

−
�Nx

2

�

Nx
< 1, (5.55)
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in an extended Brillouin zone. The first form (5.52) uses complex plane waves with well defined
momentum, while the second form (5.53) uses real plane waves with well defined parity ±. As
the Schrödinger equation (5.42) has even parity, parity is a conserved quantity.

However, the decomposition of the index l =Nx m +n is not unique, admitting signed inte-
gral remainders within the limits −bNx /2c ≤ n < dNx /2e. This implies a quotient
m = b(l + bNx /2c)/Nx c. Now, the Fourier series reads

h (τ, x ) =

 

Nx
2

£

−1
∑

n=−
�

Nx
2

�

N−1
∑

m=−N
µ=2m

gµ(τ,κn )e
i k n
µ x =

 

Nx
2

£

−1
∑

n=−
�

Nx
2

�

N−1
∑

m=−N
µ=2m

g +µ (τ,κn )cos
�

k n
µ x

�

+ g −µ (τ,κn )sin
�

k n
µ x

�

,

(5.56)
with the quasimomentum κn

−1≤ κn =
2n

Nx
≤ 1−

1

Nx
. (5.57)

The definition of the quasimomenta in Eqs. (5.55) and (5.57) agree exactly for even numbers
Nx = 2n of lattice sites or coincide asymptotically for Nx →∞. The even/odd ambiguity of
number of lattice sites cannot be of physical significance as the periodic boundary condition
are mere mathematical conveninence. They have no physical counterparts in reality. Therefore,
assuming an even number of lattice sites is no limitation. Consequently, it is advantageous to
use Eq. (5.52) for wavepackets located around odd multiples of kL or Eq. (5.56) for wavepackets
located around even multiples of kL (cf. Fig. 5.2).

Using time-dependent amplitudes gµ(τ,κn ) in the even/odd series Eqs. (5.52) and (5.56),
transforms the Schrödinger equation (5.42) into a single difference equation, valid for all µ ∈Z

i∂τgµ(τ,κ) =
1

4
(µ+κ)2gµ+

Ω
2
(gµ+2+ gµ−2). (5.58)

Due to the two-photon transfer, there is a selection rule, which avoids coupling between
the even (e) and odd (o) solution manifolds. As the focus of this thesis lies on symmetric
Bragg diffraction in the comoving frame S ′, coupling mainly | − kL 〉 with | + kL 〉, the odd
solution manifold with µ= 2m +1 is of special interest. Therefore, Eq. (5.58) can be cast into a
tridiagonal system of linear differential equations

i ġ o =H o (κ)g o , H o =D o + L + L †, (5.59)

for g o = (g−2N+1, g−2N+3, . . . g2N−1)with L from Eq. (5.49) and a diagonal matrix

D o
µ,ν =

1
4 (µ+κ)2δµ,ν ≡Dµ,ν+$δµ,ν, (5.60)

with the frequency offset $= (κ −1)2/4. In the following, it will be reasonable to adopt a
rotating frame with this offset, using the transformation

g o (τ,κ) = e −i$τg (τ,κ), (5.61)

to obtain the frequency shifted tridiagonal system of linear differential equations

i ġ =H(κ)g , H=D + L + L †, (5.62a)

Dµ,ν =ωµδµ,ν, ωµ =
1
4 (µ+κ)2−$, (5.62b)

with the lower triangular matrix L (5.49). This transformation grounds the energy ħhω−1 of the
amplitude g−1 to zero.
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Commencing with the basic model of Bragg scattering, using the ad-hoc ansatz, successively
more realistic processes are considered to asses their contribution to aberrations. This Chapter
6 focuses on temporal envelopes. Therefore, the plane-wave approximation is used, con-
sidering four different temporal Bragg-pulse shapes f j (τ)with simulations in (1+1)D. Their
influence on the velocity dispersion as well as losses into higher diffraction orders are analysed.

6.1 P U L S E S H A P E S

The examined temporal envelopes are Gaussian (G), rectangular (R), hyperbolic secant (S)
and Blackman (B) Rabi pulses, with

Ω(τ) =Ω f j (τ), j ∈ {G , R ,S , B }. (6.1)

The shape functions f j , defining the temporal envelope and depicted in Fig. 6.1, are all nor-
malised to unity at maximum and characterised by a window width τ j . Different Rabi pulses
(6.1) can be compared physically, if they cover the same pulse area (5.28)

θ ≡ θ (τ=∞) =ΩT , T ≡ Tj (−∞,∞), Tj (τi ,τ f ) =

∫ τ f

τi

dτ f j (τ), (6.2)

for equal nominal time T =TG =TR =TB =TS .

τi =−∆τ/2 0 τ f =∆τ/2τS τR

τ

0

1

f

τB τG

R

G

S

B

Figure 6.1: Temporal envelopes f (τ) of a Rectangular-, Gaussian-, hyperbolic Secant- and Blackman-
pulse, for equal nominal time T = Tj , with j ∈ {R ,G ,S , B }, and total pulse length∆τ= 8τG .
The vertical lines indicate the pulse widths τ j .

R E C TA N G U L A R P U L S E S are popular in theory, as they are constant during the interaction
time and lead to simple analytical approximations. They read

fR (|τ| ≤τR ) = 1, TR = 2τR (6.3)

and fR (|τ| > τR ) = 0, elsewhere. In experiments, where interaction time is precious, they
provide short pulse widths.
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G AU S S I A N P U L S E S of width τG provide a smooth temporal envelope

fG (τ) = exp

�

−
τ2

2τ2
G

�

, TG =
p

2πτG . (6.4)

However, for finite pulse durations they have to be truncated, which introduces higher spectral
components.
B L A C K M A N P U L S E S rectify this, providing minimal spectral sidebands at finite pulse dura-
tions. They are characterised by a window function [158–161]

fB (τ) =wB

�

τ

τB

�

, wB (|φ| ≤π) =
1

50

�

21+25 cos
�

φ
�

+4 cos
�

2φ
��

, TB =
21π

25
τB , (6.5)

and wB (|φ|>π) = 0 elsewhere. Due to this cut-off, like rectangular pulses, they provide shorter
total pulse lengths in comparison to Gaussian pulses, but nevertheless a smooth envelope.
H Y P E R B O L I C S E C A N T P U L S E S provide also a smooth temporal envelope and are defined
with

fS (τ) = sech
�

τ

τS

�

, TS =πτS . (6.6)

They are amenable for closed analytical solutions [162–164].

Definition of π- and π
2 -pulses

The symmetrical 50:50 beamsplitter pulse and the 0:100 mirror pulse are the two most rel-
evant applications of atomic Bragg diffraction (cf. Sec. 5.4). Irrespective of the pulse shape,
a symmetrical beamsplitter pulse is defined by a pulse area of θπ/2 =π/2, while a complete
specular reflection in momentum space is achieved for θπ = π. This defines the nominal
mirror and beamsplitter time

Tπ =
π

|Ω|
, Tπ/2 =

Tπ
2

. (6.7)

In particular, the four pulse shapes yields mirror widths

τRπ =
π

2|Ω|
, τGπ =

p
π

p
2|Ω|

, τBπ =
25

21|Ω|
, τSπ =

1

|Ω|
. (6.8)

These are related to each other with the equal nominal mirror time Tπ = TRπ = TGπ = TBπ =
TSπ =π. Due to linearity, the beamsplitter width is just a half of the mirror width τπ/2 =τπ/2.

6.2 D I F F R A C T I O N W I T H R E C TA N G U L A R P U L S E S

Constant interaction strengths within rectangular pulse shapes provide the advantage that
with no spatial variations of the laser beams, simple analytical solutions can be given at least
for some limits of interaction times and strengths.

6.2.1 Velocity selective Pendellösung

In the deep-Bragg regime (N = 1) off-resonantly coupled diffraction orders are negligible.
Thus, for first-order diffraction (N = 1), the state vector in the beamsplitter manifold {k±}

k± ≡ (±1+κ)kL , (6.9)
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simplifies to the amplitude tuple g∓(τ) = (g−1, g+1) and their equations of motion within the
rectangular pulse window (6.3) follow from (5.62a)

i ġ ∓ =H∓g ∓, H∓ =
�

0 Ω
2

Ω
2 κ

�

. (6.10)

With the initial datum g∓(τi ) = (1, 0) their well-known Pendellösung [165, 166]

g−1(τ) = e −iϕ
�

cosϑ−
κ

iΩκ
sinϑ

�

, g+1(τ) = e −iϕ Ω
iΩκ

sinϑ, (6.11)

depends on the angles ϕ = κ(τ−τi )/2 and ϑ =Ωκ (τ−τi )/2 as well as the generalised two-
photon Rabi-frequencyΩκ =

p
κ2+Ω2. With this solution the mirror pulse width (6.8) can be

generalised for arbitrary κ 6= 0. The condition of utmost population transfer |g+1(τπ)|2 = 1 is
obviously ϑ =π/2 and determines the mirror pulse width

τRπ(κ) =
π

2Ωκ
. (6.12)

Thereby, κ = κkL should be chosen as the central momentum component of the initial
wavepacket. Choosing appropriate laser frequencies, this is optimally κ = 0. However, in
general, on resonance (κ = 0), the definition (6.8) is recaptured, leading to the diffraction
efficiency ηk ′,k (5.29) after a mirror pulse with total pulse duration∆τRπ = 2τRπ =π/|Ω|

η+−(τRπ) = |g+1(τRπ)|2 =
Ω2

Ω2
κ

sin2ϑπ, ϑπ =
π

2

Ωκ
Ω

. (6.13)

The index +− indicates abbreviatory the momentums k ′ = k+ and k = k− (6.9). The relative
phase of the transfer function (5.29) between the final k ′ = k− and k ′ = k+ components is

0.0

0.5

1.0

η
+
−

−1.0 −0.5 0.0 0.5 1.0

κ/kL

1

2

3

4

∆
φ
/π

Ω= 1ωr

Ω= 3ωr

Ω= 5ωr

Figure 6.2: Velocity dispersion of the diffraction ef-
ficiency η+−(κ) (top) and of the phase shift∆φ(κ)
(bottom) after a rectangular mirror pulse with total
interaction time∆τRπ = 2τRπ(Ω) (6.8), calculated
for the deep-Bragg limit, for three Rabi frequencies
Ω=Ωω2r .

∆φ ≡φ− − −φ+− = arctan
� κ
Ωκ

tanϑ
�

−
π

2
.

(6.14)
For ϑ = ϑπ, one obtains the phase shift after
a mirror pulse∆φ(τRπ).

In Fig. 6.2 the diffraction efficiency η+−
(6.13) and the phase shift ∆φ (6.14) after a
mirror pulse τ = τRπ(Ω) (6.8) is depicted
depending on the detuning κ (5.5), demon-
strating the velocity dispersion of the Bragg
diffraction. As for the Pendellösung losses
into higher diffraction orders are neglected,
a perfect efficiency is reached on resonance
(κ= 0), while the phase shift shows aπ-jump
here, as well as on the side maxima of η+−.
The sinc-behaviour of the efficiency is the
typical Fourier-response to rectangular pulse
shapes. With increasing the two-photon Rabi
frequency Ω (5.43) the resonance is power
broadened.
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6.2.2 Losses into higher diffraction orders: Kato solution

In general, the transfer function 〈k ′|G (t , ti )|k 〉 (5.29) exhibits resonances at k ′ = k +2N k L ,
|N | ≤ N , which needs to be considered in the quasi-Bragg regime. Therefore, Eq. (5.59) is
truncated at a sufficiently largeN . This initial value problem (5.62) is solved by diagonalisation.

On the one hand, resonances with N 6= 1 lead to a population loss from the N = 1 beam-
splitter manifold {k±} and reduce the diffraction efficiency. On the other hand, they diminish
the coupling strength within the beamsplitter manifold. Consequently, this increases the
optimal π-pulse time τ̃π >τπ of a Bragg mirror compared to the prediction of the Pendellö-
sung (6.8). Gochnauer et al. [167] have demonstrated this effect experimentally for Gaussian
pulses, proving that the effective coupling strength is given by the energy bandgap in the
quasimomentum space. Hartmann et al. [168] also find an effective pulse area, considering
double Raman diffraction.

Effective π-pulse time and degenerate perturbation theory

The population loss into higher diffraction orders leads to an effectively reduced Rabi fre-
quency. Therefore, to achieve furthermore a π-pulse longer interaction times are necessary.

K AT O ’ S T H E O R Y

To rectify the Pendellösung (6.11) with contributions from higher order diffraction, Kato’s
method is employed for the stationary eigenvalue problem in the presence of degeneracy [169–
171]. On resonance, all eigenvalues of the diagonal part D0 =D (κ = 0) of the Bragg-Hamilton
operator (5.62a) are doubly degenerated 1 ≤ α ≤ 2. Therefore, the flow of the eigensystem
H(λ)vi ,α(λ) = ωi ,α(λ)vi ,α(λ) is considered in the degenerate subspace Ei with splitting the
frequency shifted Hamiltonian H (5.62a) in

H=D0+λV , V =D (κ)−D0+ L + L †, 0≤λ≤ 1. (6.15)

Denoting the orthonormal eigenvectors of D0 with v(0)i ,α and their eigenvalues withω(0)i ,α, then
the eigenvectors of the interacting Hamilton operator Hi (λ) restricted to the subspace Ei , are

vi ,α(λ) = Pi (λ)v
(0)
i ,α. Now, all efforts are put in the perturbative evaluation of the projection oper-

ator Pi (λ), which evolves from the unperturbed projection P (0)i . This results in the generalised
eigenvalue problem

Hi v(0)i ,α =ωi ,αKi v(0)i ,α, (6.16)

Hi = P (0)i HPi P (0)i , Ki = P (0)i Pi P (0)i , (6.17)

with power series expressions for the projection operators

Pi (λ) = P (0)i +
∞
∑

n=1

λn A(n )i , A(n )i =−
∑

(n )

S (k1)
i VS (k2)

i V . . .VS (kn+1)
i . (6.18)

Here,
∑

(n ) is a sum over all combinations of ki ∈N0 satisfying k1+k2+ . . .+kn+1 = n and

S (0)i =−P (0)i , S (k>0)
i = (Si )

k , Si =
1−P (0)i

ω(0)i 1−D0

. (6.19)
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The eigenvalues and eigenvectors of H are the eigenvalues and -vectors of

HPi (λ) =ω
(0)
i Pi (λ)+

∞
∑

n=1

λn B (n )i , B (n )i =
∑

(n−1)

S (k1)
i VS (k2)

i V . . .VS (kn+1)
i , (6.20)

in the subspace i with projection Pi . Equally, the eigenvalues are given by the roots of
det |Hi −ωi Ki |= 0, respectively by the eigenvalues of H̃i = K −1

i Hi .
It is straight forward to evaluate Hi and Ki from (6.17) for the ground-state manifold i = 1

to order O(λn ). A third order truncation of the series

H1 =

�

0 Ω
2

Ω
2 κ

�

−2I
�

1 0
0 1

�

−I
�

κ Ω
Ω 0

�

+O
�

λ4
�

,

K1 = (1−I)
�

1 0
0 1

�

−I
�

κ Ω
2

Ω
2 −κ

�

+O
�

λ4
�

,

I =
Ω2

16
, (6.21)

agrees very well with the numerical results. The roots of the characteristic equation

|H1− (ω1−ω
(0)
1 )K1|= 0, determine the corrected eigenfrequencies of the Pendelösung. As the

frequency shiftsω1(λ)−ω
(0)
1 , are already O(λ), it is consistent to use a lower approximation

for K1, which leads to better results at the specified order. In particular, here H̃1 = K −1
1 H1 are

evaluated and Taylor expanded to the specified order

H̃1 = lim
λ→1

�

−Iλ2(2+κλ) Ω
2 λ(1−Iλ2)

Ω
2 λ(1−Iλ2) κλ−Iλ2(2−κλ)

�

+O
�

λ4
�

=

�

−I(2+κ) Ω
2 (1−I)

Ω
2 (1−I) κ −I(2−κ)

�

+O
�

λ4
�

.

(6.22)
This leads to the succinct expression for the eigenvalues and -vectors

ω1,± =
κ
2
−2I ±

Ω̃
2

, v(0)1,± =

�

2(I −1)
p
I

− 1
2 κ(1+2I)± Ω̃

�

, (6.23)

in terms of a corrected Rabi frequency Ω̃ =
p

κ2(1+2I)2+Ω2(1−I)2. For this correction an
expansion at least up to the order λ3 in this i = 1 subspace is necessary, for lower expansion
orders Ω̃ =Ωκ is recovered. Remarkably, Kato’s first order perturbation theory coincides with
the Pendellösung (6.11).

Analogous to the subspace i = 1, the eigenvalues of the next subspace, coupling µ = ±3
can be calculated. This subspace represents the most important loss channel, because higher
diffraction orders are even less populated. Therefore, to handle the quasi-Bragg regime per-
turbatively, it is sufficient to consider only the two subspaces µ=±1 and µ=±3. In this way,
the eigenvalues of H are given by {ω1,±,ω3,±}. The latter can be calculated from H̃3 = K −1

3 H3

H̃3 =

�

2(1+I)−κ 0
0 2(1+I)+2κ

�

+O
�

λ3
�

, (6.24)

skipping the λ3 terms, which overestimate the losses into µ=±3. Including higher expansion
orders would correct this, but the lower expansion, with its simple result (6.24), is already
sufficient. The eigenvalues and -vectors of H̃3 are

ω3,± = 2(1+I)+
κ
2
±

3κ
2

,
�

v(0)3,+, v(0)3,−

�

=12. (6.25)
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The eigenvectors vi , j = Pi v(0)i , j are defined by the projections (6.18), which are also expanded

up to λ3 for µ=±1 and λ2 for µ=±3,

P1 =









(1+κ)I p1+ −(1+ 3
2 κ)I 2I3/2

p1+ 1− (1+κ)I −2I3/2 −(1− 3
2 κ)I

−(1+ 3
2 κ)I −2I3/2 1− (1−κ)I p1−

2I3/2 −(1− 3
2 κ)I p1− (1−κ)I









, P3 =









1−I p3+ I 0
p3+ I 0 I
I 0 I p3−
0 I p3− 1−I









,

(6.26)
with p1± = (I − 1− κ(2±κ)

4 )
p
I and p3± =

1
2 (2± κ)

p
I. Then the solution of the Schrödinger

equation with the Kato Hamiltonian (6.15) results in

g K (τ) =
g̃ K (τ)
|g̃ K (τ)|

, g̃ K (τ) =
∑

i={1,3}

∑

j={+,−}
ci , j e −iωi , j (τ−τi )vi , j , (6.27)

where the eigenvectors vi , j are normalised and the integration constants ci , j are defined by the
initial condition g̃ K (τi ) = (0,1,0,0), with g̃ K (τi ) = (g̃ K

−3, g̃ K
−1, g̃ K

+1, g̃ K
+3). The exact expressions

are uninspiring, but their calculation is given in Appendix D.1.
The population of the µ = 1 state is of special interest, because it defines the diffraction

efficiency η+−. On resonance (κ = 0), already g̃ K (τ) is approximately normalised. Therefore,
the on-resonance diffraction efficiency ηr can be approximated to

ηK
r (τ)≈ |g̃

K
+1(τ)|

2 =a
�

1+ bcos
�

4τ′(I −1)
p
I
�

+ccos
�

2τ′(1+
p
I +2I −I3/2)

�

+dcos
�

2τ′(1−
p
I +2I −I3/2)

�

�

,
(6.28)

with τ′ =τ−τi and coefficients, expanded up to the suited order O
�

I2
�

a=
1

2
−I −

I2

2
+O

�

I3
�

, b=−1+O
�

I3
�

, c=−d=−4I3/2+O
�

I5/2
�

. (6.29)

E F F E C T I V E π- P U L S E T I M E

From the third order perturbation calculation O(Ω4
κ ) the renormalised Rabi frequency

Ω̃ =
p

κ2(1+2I)2+Ω2(1−I)2 I�1−→ Ωκ , (6.30)

within the beamsplitter manifold, is derived in Eq. (6.23), using the abbreviation I =Ω2/16.
For weak dressing I � 1, it reduces to the generalised Rabi frequency of the Pendellösung.
With the effective Rabi frequency Ω̃ and Eq. (6.8), one can evaluate theπ-pulse time stretching
factor

ζκ
π =

τ̃Rπ

τRπ
=
Ωκ

Ω̃
, ζπ ≡ ζκ=0

π =
1

1−I
(≈1+I). (6.31)

Figure 6.3 depicts a contour plot of the fidelity F (I,ζ) (5.34) as well as of the normalised diffrac-
tion efficiency η̄(I,ζ) (5.32) for a Bragg-mirror pulse versus the bare two-photon intensity
I and the inverse pulse stretching factor ζ−1 = τ jπ/τ j , j ∈ {G , B ,S , R }. This representation
uncovers the linear relation (6.31). The numerical calculation considers four off-resonant
diffraction orders (N = 5). As initial condition 1D Gaussian wavepackets (2.54) are considered,
which are centred at k0 =−kL with momentum widthσk and localised in the centre of the
laser beams x0 = 0. Here, in the plane-wave approximation, the results are independent of
the expansion size. This sizeσx = (2σk )−1 follows from the Heisenberg uncertainty. Clearly,
the π-pulse stretching factor ζπ (6.31) traverses the optimal fidelity and efficiency regions for
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all pulse shapes and momentum widths, as a universal rule, motivating the effective π-pulse
widths

τ̃ jπ = ζπτ jπ, j ∈ {G , B ,S , R }, (6.32)

with τ jπ from Eq. (6.8).
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Figure 6.3: (a) Fidelity F (5.34) and (b) diffraction efficiency η̄ (5.32) versus two-photon intensity
I =Ω2/16, respectively two-photon Rabi frequency Ω=Ωω2r , and inverse π-pulse stretch-
ing factor ζ−1 = τ jπ/τ j , j ∈ {G , B ,S , R }, in columns for Gaussian, Blackman, sech and
rectangular pulses. The initial state is a 1D Gaussian wavepacket (2.54), initially centered at
(x , kx ) = (0,−kL )with momentum widthσk = 0.01 kL (top rows),σk = 0.1 kL (bottom rows).
The optimal stretching factor ζπ (6.31) (solid line) traverses the regions of maximal fidelity
and efficiency. For the numerical (1+1)D integration (5.26) with pulse widths ζτ jπ, and
total pulse length∆τ j = 8ζτG , typical laser and atom parameters, used in experiments of
Tables A.1 and A.2, are applied.
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As expected, for the extremely small momentum widthσk = 0.01 kL the atomic initial state is
approximately a plane wave, why the fidelity and the diffraction efficiency show no significant
difference (cf. Sec. 5.4). In contrast, for finite σk = 0.1kL the areas of maximum diffraction
efficiency are slightly larger than the areas of maximum fidelity.

E F F E C T I V E π- P U L S E E F F I C I E N C Y

In Fig. 6.4 the velocity dispersion of the response of an atomic mirror is visualised for typical
parameters used in experiments (cf. Tables A.1, A.2). The results of the numerical solution
(5.26), considering losses into four off-resonant diffraction orders (N =5), are compared to
the perturbative Kato solution (6.27), considering the losses into the most important loss
channels (N =2) and the Pendellösung (6.11), neglecting all losses (N = 1). Please note that
the numerical results are identical to the solution of the initial value problem (5.62a). A mirror
pulse is applied of width τ̃Rπ(Ω) (6.32) for the numerical as well as the Kato solution and
τRπ(Ω) (6.8) for the Pendellösung for different two-photon Rabi frequencies Ω=Ωω2r .

The diffraction efficiency ηk ′k reveals the velocity selectivity of the Bragg condition [cf.
Fig. 6.4 (a)] and the population loss into higher diffraction orders [cf. Fig. 6.4 (c) and (d)]. For a
weak couplingΩ= 1ωr , the diffraction efficiency exhibits still the sinc-behaviour of the Pendel-
lösung. Equally, increasing Ω, the response is power broadened, but now in conjunction with
a reduced efficiency. Therefore, in the quasi-Bragg regime the Pendellösung is not suitable. In
contrast, the Kato solution provides reliable predictions. For large Rabi frequencies, only at the
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Figure 6.4: Velocity dispersion after a rectangular mirror pulse of (a) the diffraction efficiency η+−(κ) in
the beamsplitter manifold N =1, (b) the relative phase shift∆φ(κ) (6.14) and losses into
higher diffraction orders for (c) N =−1 and (d) N =2, with k = (−1+κ)kL and k ′=k +2N kL .
The numerical solution (solid) considers four off-resonant diffraction orders (N =5), the
Kato approximation (6.27) (dashed) the next off-resonant diffraction order (N = 2) and
the Pendellösung (6.13), (6.14) the closed system of the resonant order (N = 1). For the
numerical as well as for the Kato solution the applied pulse width is τ̃πR (Ω) (6.32) and for
the Pendellösung (dotted) τπR (Ω) (6.8). Different two-photon Rabi frequencies Ω=Ωω2r

are compared, defining these π-pulse widths.
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band edges κ→±1 the Kato solution shows deviations, especially for N =2, but the efficiency
around the resonance κ = 0 can be approximated further.

The phase difference∆φ (6.14) [cf. Fig. 6.4 (b)] shows a smoothed π-jump at the resonance
and in contrast to the Pendellösung at the minima. Again, the Kato solution (6.27) describes
the beamsplitter response very well. Even at the band edges the deviations to the numerical
results are extremely small for the phase shift.

In addition, the accuracy of the Kato solution especially at resonance is demonstrated in
Fig. 6.5. Here, the diffraction efficiency on resonanceηr=η+−(κ = 0)and the full width half max-
imum of the diffraction efficiency in the beamsplitter manifold∆η+− depending on the two
photon Rabi frequency is depicted. The Kato approximation (6.27) is gauged by the numerical
solution (5.26). For an ideal mirrorηr = 1 and∆η+−→∞ are desirable, but impossible. Differ-
ent pulse widths are compared to study the optimal interaction time. In particular, the approx-
imationτRπ (6.8) for strict first-order diffraction of the Pendellösung in the deep-Bragg regime
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Figure 6.5: (Top) Resonant transfer effi-
ciency ηr and (bottom) efficiency width
∆η+− versus two-photon Rabi frequency
Ω=Ωω2r after a π-pulse. Different pulse
widths τ(Ω) are compared.

and τ̃Rπ (6.32) for the quasi-Bragg regime, considering
higher diffraction orders, are compared to the optimal
interaction time. This time is defined by the maximum
numerical transfer efficiency at resonanceκ= 01. With
increasing Ω, in a regime where the losses into higher
diffraction orders are important, the approximation
τRπ is less accurate, while τ̃Rπ can be used further.
Please note that for the maximised transfer efficiency
the velocity acceptance∆η+− is reduced, while for τ̃Rπ

it remains larger, for increasing Ω. The results of the
Kato solution (6.27) show the applicability of the on-
resonance diffraction efficiency. Due to the deviations
for large detunings κ, the width is overestimated for
large Rabi frequencies. In addition, from the full Kato
solution a simple analytic form for the diffraction ef-
ficiency on resonance (6.28), for the effective π-pulse
time τ̃Rπ =π/[2|Ω|(1−I)] (6.32) can be derived to

ηK
r (τ̃Rπ) = (1−2I)

�

1+ |Ω|I sin
�

2π

|Ω|
1+2I
1−I

��

, (6.33)

which is also depicted in Fig. 6.5. It predicts losses into
higher diffraction orders within the convergence radius Ω=Ωω2r < 4ωr (I < 0.0625), very
well. Beyond this point, it remains positive up to Ω= 8

p
2ωr (I = 0.5).

6.3 D I F F R A C T I O N W I T H H Y P E R B O L I C S E C A N T P U L S E S

The shape of hyperbolic secant pules is very similar to that of the smooth pulse shapes of
Gaussian envelopes, but in contrast to these, they are amenable for closed analytical solutions
of second order differential equations, using the Demkov-Kunike (DK) model [162–164].

1 It is calculated with a basin-hopping algorithm [172–175].
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6.3.1 Velocity selective Demkov-Kunike Pendellösung

For hyperbolic secant envelopes Ω(τ) = Ω fS (τ) (6.6), an analytical solution for first order
Bragg diffraction (µ=±1) can be obtained. The system of two first-order differential equations

i ġ (τ) =

�

0 Ω(τ)
2

Ω(τ)
2 κ

�

g (τ), g = (g−1, g+1) (6.34)

can be decoupled due to the adopted corotating frame (5.61). Using

g+1 =
2i

Ω(τ)
ġ−1, (6.35)

leads to Hill’s second order differential equation [151]

0= g̈−1−
�

Ω̇(τ)
Ω(τ)
− i κ

�

ġ−1+
Ω(τ)2

4
g−1. (6.36)

With the nonlinear map

z (τ) =
1

2

�

1+ tanh
τ

τS

�

, (6.37)

the differential equation for γ(z )≡ g−1(τ) emerges as

0= z (1− z )γ′′+ [c − z (1+a + b )]γ′−a bγ, (6.38)

with the coefficients a = ΩτS/2, b = −a and c = (1+ i κτS )/2. This represents the hyper-
geometric differential equation with hypergeometrical Gauss solutions f1 = 2F1(a , b ; c ; z ),
f2 = z 1−c

2F1(1+ a − c ,1+ b − c ;2− c ; z ) and Wronski determinant w = (1− z )c−1z−c [151].
Straightforward analysis leads to the Demkov-Kunike (DK) solution with the unitary propaga-
tor G∓(τ,τi )

g ∓(τ) =G∓(τ,τi )g ∓(τi ), G∓(τi ,τi ) =1. (6.39)

The two-dimensional Green’s function G∓ (5.27) of the DK-model can be expressed completely
for Ω, κ 6= 0 with the hypergeometric basis functions f1 and f2

G∓(τ,τi ) =M (z )S (z )S−1(zi )M
−1(zi ), M =

�

1 0
0 i

a

p

z (1− z )

�

, S =

�

f1 f2

f ′1 f ′2

�

. (6.40)

For the initial datum g ∓(τi ) = (1, 0), one obtains

g−1(τ) =
f1(τ) f ′2 (τi )− f2(τ) f ′1 (τi )

w (τi )
. (6.41)

The total pulse duration∆τ in the experiment is sufficiently large∆τ�τS . Therefore, one
can expand to a pulse beginning in the remote past τi →−∞, leading to

g−1(τ) = 2F1 (a ,−a ; c , z ) , (6.42a)

g+1(τ) =
a

i c

p

z (1− z ) 2F1 (1−a , 1+a ; 1+ c , z ) . (6.42b)

The diffraction efficiency reads

ηD K
+− (τ,κ) = |g+1(τ)|2 = 1− |g−1(τ)|2. (6.43)
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Further, for very long pulse durations τS �τ f , |τi |, the diffraction efficiency simplifies to

ηD K
+− (κ,Ω, T ) = sech2

�κT

2

�

sin2
�

ΩT

2

�

, (6.44)

with the nominal time T =πτS (6.2).

In the important case of exact resonance κ = 0, the unitary propagator simplifies to

G∓(τ,τi ) =

�

cos∆ϕ −i sin∆ϕ
−i sin∆ϕ cos∆ϕ

�

,
∆ϕ =ϕ(z )−ϕ(zi ),
ϕ(z ) =ΩτS arcsin

p
z .

(6.45)

In order to achieve full diffraction efficiency on resonance ηD K
r =ηD K

+− (κ = 0) = 1, regarding
the efficieny for unlimited pulse duration (6.44) one should choose the π-pulse width as
τSπ = |Ω|−1. This is in agreement with the pulse area (6.8). Waiting indefinitely long is hardly
ever an option [176]. Therefore, the finite time approximation for the π-pulse width
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Figure 6.6: (Top) Velocity dispersion of the diffrac-
tion efficiency η+−(κ) and (bottom) of the phase
shift ∆φ(κ) after a sech-mirror pulse, calculated
for the deep-Bragg limit, for three Rabi frequen-
cies Ω=Ωω2r . The efficiency for an infinite pulse
ηD K
+− (T ) (6.44) (dotted) fits the results with finite in-

teraction time (6.43)∆τSπ = 8τGπ (solid).

ηD K
r (τ;τS =τSπ)≈ z =

1+ tanhΩτ
2

(6.46)

reveals the exponential convergence past
several π-pulse times τ � τS . Please note
that the approximation (6.46) requires addi-
tionally Ω=Ωω2r < 3ωr .

Obviously, for the π-pulse width, the
diffraction efficiency on resonance reaches
always its maximum, independent of the
Rabi frequency, as shown in Fig. 6.6. Here,
the diffraction efficiency ηD K

+− (6.43) and the
phase shift∆φ between g−1 and g+1 are de-
picted, depending on the detuning κ, after
a mirror pulse of width τ = τSπ (6.8). The
limit of an infinite pulse duration ηD K

+− (T )
(6.44) describes the sech-behaviour of the
efficiency perfectly. Therefore, in contrast to
rectangular pulses, the diffraction efficiency
is smoothed, showing no side maxima. The
π-jump of the phase shift on resonance is
also a bit smoothed in comparison to the
rectangular Pendellösung (cf. Fig. 6.2).

6.3.2 Losses into higher diffraction orders: extended DK-model

Losses into higher diffraction orders can be taken into account with a time-dependent pertur-
bation theory. Therefore, the Hamilton operator (5.62a) is split into

i ġ =H(τ)g , H(τ) =H0(τ)+H1(τ). (6.47)

The free evolution H0(τ) consists of a direct sum

H0(τ) =
N
⊕

µ=−N+1
µ 6=0,1

ω2µ−1

⊕

H∓(τ) (6.48)
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of the DK-generator H∓(τ) (6.34) in the beamsplitter manifold and the unperturbed energies
ωµ =

1
4 (µ+κ)2− 1

4 (1−κ)2 (5.62b) in the higher momentum states. The perturbation H1(τ) is
simply the complement of the complete Hamilton operator.
Regarding the time-evolution, the definitions of the retarded Green’s functions (5.27) hold
equally for the free evolution G0(τ,τi ) by substituting H → H0. This leads to the Dyson-
Schwinger integral equation

G (τ,τi ) =G0− i

∫ ∞

−∞
dτ′G0(τ,τ′)H1(τ

′)G (τ′,τi ), (6.49)

which is central to time-dependent perturbation theory. Here, the free retarded propagator is
defined for τ≥τi as

G0(τ,τi ) =
N
⊕

µ=−N+1
µ 6=0,1

e −iω2µ−1(τ−τi )
⊕

G∓(τ,τi ) (6.50)

and vanishes elsewhere. It involves the DK-Pendellösung G∓ (6.40) and the free time evolution
of off-resonant momentum states. The complete solution

g (τ) =G (τ,τi )g (τi ) (6.51)

follows from the solution G (τ,τi )of the integral equation (6.49). A second order approximation
couples to the ±3kL ,±5kL momentum states and shifts the frequencies of the beamsplitter
manifold

G (τ,τi ) =G0− i

∫ ∞

−∞
dτ′G0(τ,τ′)H1(τ

′)G0(τ
′,τi )

−
∫ ∞

−∞
dτ′dτ′′G0(τ,τ′)H1(τ

′)G0(τ
′,τ′′)H1(τ

′′)G0(τ
′′,τi ).

(6.52)

The second term of G leads to population of the off-resonantly coupled orders g±3. This is
required to observe the stretching of the π-pulse time. The third term adjusts g±1 such that
mainly population remains in g−1 especially for off-resonant detunings κ 6= 0, what is essential
to approximate the velocity dispersion. In addition, the third term leads to very little popula-
tions of the µ=±5 diffraction order. An explicit analytical approximation for the propagator
(6.52) can be obtained. It is derived in Appendix D.2, considering the most important loss
channels µ=±3 as for the perturbative Kato solution for rectangular pulses. It is numerically
efficient and useful for the interpretation, but remains unwieldy for display.

In Fig. 6.7, the simple DK-Pendellösung (6.42) and the extended DK-model (6.51) after a
π-pulse are compared with the corresponding numerical (1+1)D simulations (5.26). The
diffraction efficiency is depicted in Fig. 6.7 (a) and the phase shift∆φ between the coupled
states in Fig. 6.7 (b). The simple DK-Pendellösung (6.42) is valid for Ω=Ωω2r < 3ωr . For
Ω>3ωr , losses into higher diffraction orders are significant, but the extended solution (6.52)
still matches the numerical solution.

A D I A B AT I C I T Y The crossover from the deep- to the quasi-Bragg regime at Ω ≈ 3ωr for
atomic mirrors using τ̃ jπ (6.32) is related to the adiabaticity criterium [177]

max
τ∈[τi ,τi+∆τ]

�

�

�

�

d

dτ

�

g o
n (τ)
∗ ġ o

m (τ)
ωn (τ)−ωm (τ)

��

�

�

�

∆τ� 1, ∀m 6= n , (6.53)
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Figure 6.7: Velocity dispersion
of (top) the diffraction effi-
ciency η+−(κ) and (bottom)
of the phase shift ∆φ(κ) for
sech-pulses with pulse width
τS = τ̃Sπ(Ω) (6.32), total interac-
tion time∆τ= 8τ̃Gπ and differ-
ent Rabi frequencies Ω=Ωω2r .
The DK-Pendellösung (6.42)
(dotted) is suitable for Ω < 3ωr

while the extended model (6.52)
(dashed) matches the numerical
results (5.26) (solid) very well
also for larger Ω.

with the eigenvaluesωm (τ) and eigenvectors g o
m (τ) of H o (5.59). Equation (6.53) results in

Ω=Ωω2r � 4ωr for τ̃Sπ at κ = 0. This is confirmed by the results of Gochnauer et al. [167]
and visible in Figs. 6.7, 6.10, 6.11. Adiabaticity is given in the deep-Bragg regime, where losses
into higher diffraction orders are negligible and therefore η+− ≈ 1, here for Ω ® 3ωr . Thus,
while the DK-Pendellösung (6.42) is valid in the adiabatic regime, the extended model (6.52)
can be used even for non-adiabatic pulses.

6.4 D I F F R A C T I O N W I T H G AU S S I A N P U L S E S

In the compared beamsplitter experiments, Gaussian laser pulses are used. There is a good rea-
son for it, as they are self-Fourier-transform functions. Unfortunately, they are not amenable
to closed analytical models. However, due to the similarity of the Gaussian- (6.4) to the sech-
pulses (6.6) (cf. Fig. 6.1), one can estimate the velocity selective diffraction efficiency for
infinitely long Gaussian pulses in the deep-Bragg regime. The different pulses have equal nom-
inal times (6.2). Therefore, approximating sech2(a ) from Eq. (6.44), with a similar exponential
form, providing the same integration area as

∫∞
−∞da sech2(a ) =

∫∞
−∞da exp

�

−πa 2/4
�

= 2,
leads to

ηG
+−(κ,Ω, T ) = exp

�

−π
�κT

4

�2
�

sin2
�

TΩ
2

�

, (6.54)

with the nominal time T =
p

2πτG (6.2). The results are depicted in Fig. 6.8. The efficiency
becomes power-broadened for increasing the Rabi frequency. As long as losses into higher
diffraction orders are negligible Ω< 3ωr , the approximation (6.54) for infinite pulses matches
the numerical results (5.26) with finite integration time ∆τG = 8τ̃Gπ(Ω). However, due to
the similarity to sech-pulses the extended DK-model (6.52) can estimate the results also in
the quasi-Bragg regime, as shown in Fig. 6.9. The results depicted in Fig. 6.8 and 6.9, as well
as the explicit formula ηG

+− (6.54) demonstrates, that the Gaussian pulses are self-Fourier-
transform functions. The velocity dispersion of the diffraction efficiency is free of the side
lobes of rectangular pulses, seen in Fig. 6.4 (a).
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Figure 6.8: Velocity selective diffraction efficiency
η+−(κ) of a Gaussian mirror pulse for Rabi fre-
quencies Ω = Ωω2r . The approximation ηG

+−
(6.54) (dotted) fits the numerical results with
∆τG = 8τGπ(Ω) (solid) for Ω≤ 3ωr .
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Figure 6.9: Velocity dependent diffraction effi-
ciency η+−(κ) for a Gaussian pulse [ j =G , solid:
numerical, dotted: deep-Bragg limit (6.54)] and
a sech pulse [ j = S , dashed: extended DK-model
(6.52)]. A mirror pulse of width τ̃ jπ(Ω) (6.32) with
total pulse duration ∆τ = 8τ̃Gπ is applied for
three two-photon Rabi frequencies Ω=Ωω2r .

6.5 C O M PA R I S O N O F T H E D I F F R A C T I O N F O R A L L P U L S E S H A P E S

Because, all smooth pulse shapes ( j =G , B ,S ) with pulse widths τ̃ jπ(Ω) (6.32) are very similar
(cf. Fig. 6.1) they exhibit quasi identical results for the diffraction efficiency, phase shift and
fidelity, as depicted in Fig. 6.10 and Fig. 6.11. The advantages in comparison to rectangular
pulses are clearly visible. The diffraction efficiency and the fidelity are improved for smooth
temporal envelopes. Beyond Ω> 3ωr , scattering into higher diffraction order depletes the
population in the beamsplitter manifold, but less than for rectangular pulses [cf. Fig. 6.10 (b),
Fig. 6.11]. However, it is worth mentioning that rectangular pulses provide a wider velocity
acceptance [cf. Fig. 6.10 (d)].

In Fig. 6.11, the phase-sensitive fidelity F (5.34) is compared for different momentum widths
σk of an initial Gaussian wavepacket in 1D (2.54). In addition, the normalised diffraction effi-
ciency η̄ (5.32) of the wavepackets is depicted. Increasingσk reduces the range of admissible
Rabi frequencies Ω=Ωω2r , which shifts the optimum to higher values.

In Fig. 6.10 and Fig. 6.11, the explicit Kato solution (6.27) matches the results for rectangular
pulses very well, demonstrating also its applicability for wavepackets with finite momentum
width. The Pendellösung for Gaussian pulses (6.54) as well as the DK-Pendellösung (6.42)
matches the numerical simulations for Ω< 3ωr , while the extended DK-model (6.52), taking
off-resonantly coupled diffraction orders into account, remains further valid. The explicit solu-
tion for sech-pulses deviates slightly from the results for Gaussian- and Blackman-pulses, but
provides very detailed forecasts. The Blackman-pulse shape differs only marginally from the
Gaussian pulse, resulting in a nearly identical beamsplitter response, but indeed marginal im-
provements can be achieved, like slightly larger diffraction efficiencies in Fig. 6.10 (b), Fig. 6.11,
a wider velocity acceptance in Fig. 6.10 (d) and larger fidelities in Fig. 6.11. In particular, forΩ=
3ωr Blackman pulses achieve slightly better results for the on-resonance diffraction efficiency
ηB

r = 0.9992, efficiency width∆ηB = 0.864, fidelity F B = {0.9989,0.9901,0.9620,0.8474} and
total efficiency η̄B = {0.9989, 0.9903, 0.9647, 0.8775} forσk = {0.01, 0.05, 0.1, 0.2}kL in compari-
son to Gaussian pulses with ηG

r = 0.9989,∆ηG = 0.854kL , F G = {0.9987, 0.9896, 0.9607, 0.8440}
and η̄G = {0.9987,0.9898,0.9634,0.8743}. The additional benefit of Blackman pulses is that
while they achieve the same or even better diffraction results than the other smooth pulses,
they provide a shorter total interaction time, due to their cut-off (6.5). In experiments this
reduces diminishing effects like the expansion of the atomic cloud, or detrimental movements
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Figure 6.10: Comparison of the Bragg diffraction for a mirror pulse of width τ̃ jπ(Ω) (6.32), for rectan-
gular (R, violet, solid: numerical, dashed: Kato solution (6.33)), Gaussian (G, green, solid:
numerical, dashed: G-Pendellösung (6.54)), sech (S, yellow, solid: numerical, dotted: DK-
Pendellösung (6.42), dashed: extended DK (6.52)) and Blackman (B, magenta, dashed)
pulses. The total interaction time is∆τ= 8 τ̃Gπ for the smooth pulses and∆τ= 2τ̃Rπ for
the rectangular pulse. (a) Velocity dispersion of the numerical diffraction efficiency η+−(κ)
and (c) phase shift ∆φ(κ) for Ω=Ωω2r = 3ωr. (b) On-resonance diffraction efficiency
ηr (Ω) and (d) width of the diffraction efficiency∆η(Ω) depending on the two-photon Rabi
frequency Ω=Ωω2r .
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Figure 6.11: (Top) Fidelity F (Ω;σk ) (5.34) and (bottom) diffraction efficiency η̄(Ω;σk ) (5.32) after a
mirror pulse of width τ̃ jπ versus two-photon Rabi frequency Ω=Ωω2r for different initial
atomic momentum widthsσk for Gaussian, Blackman, sech and rectangular pulses. Via
Eq. (2.89) the momentum widthσk = {0.01, 0.05, 0.1, 0.2}kL is connected to a temperature
T (σk ) = {0.04, 1, 4, 15}nK. The total interaction time is∆τ= 8 τ̃Gπ. The 1D initial Gaussian
wavepacket (2.54) is centered at (x , kx ) = (0,−kL ). The DK-Pendellösung (6.42) (dotted)
matches the results of the numerical integration (5.26) (solid) for sech pulses very well for
Ω< 3ωr and considering population loss to higher diffraction orders with the extended
model (6.52) (dashed) also for larger Ω. For rectangular pulses, the Kato solution (6.27)
(dashed) matches also the numerical results.
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during the interaction time. For the simulations this means a reduction of the necessary
number of calculated timesteps, shortening the simulation time. Therefore, the Blackman
pulse represents the optimal temporal envelope (of the here considered pulse shapes).

It is worth mentioning that for finite total interaction times∆τ, with pulse areas [cf. Eq. (6.2)]

θ j =ΩTj (−∆τ/2,∆τ/2) =Ω

∫ ∆τ/2

−∆τ/2
dτ f j (τ), (6.55)

the π-pulse conditions are not met exactly θ j ≈π. One could adjust the pulse width τ̃ jπ (6.32)
for each pulse shape j to obtain a π-pulse individually θ j =π, but this leads to unequal nomi-
nal times Tj 6= T (6.2) causing significant phase differences. Thus, the same total interaction
time∆τ= 8τ̃Gπ of a π-pulse is considered for all pulse shapes and the widths τ j = τ̃ jπ are
connected via Tj = T . The resulting differences in the pulse areas θ j (6.55) are negligible.

6.6 P R O V I N G T H E D E M K O V- K U N I K E M O D E L E X P E R I M E N TA L LY

To verify the predictions of the Demkov-Kunike model and thereof derived formulas, they are
gauged to experimental diffraction efficiencies [1].

6.6.1 Experimental scenario

Experimentally, an atom chip apparatus [59, 66] is employed to prepare Bose-condensed 87Rb
atoms, with a condensate (c) fraction of N c = (10±1)×103 and a quantum depletion (thermal
cloud, t) of N t = (7±1)×103 atoms. After release from the trap (laboratory chip frame S0),
with trap frequencies [ωx ,ωy ,ωz ] = 2π× [46(2), 18(1), 31(1)]Hz, they expand ballistically and
fall vertically towards nadir. The Bragg-laser beams are aligned horizontally. It is sufficient
to consider inertial motion during the short Bragg pulses (<ms). At the beginning of the
diffraction pulses, after 10 ms time-of-flight (TOF), the temperature of the thermal cloud is
obtained from a bimodal fit (2.90) of TOF-measurements as T ≤ (20±3)nK (cf. App. E.1). At this
time, the size of the cloudσx ≈ 20µm�w0 = 1386µm is extremely small in comparison to the
beam waist w0, wherefore the plane-wave approximation is suitable. This will be demonstrated
in the next Chapter 7.

6.6.2 Measured observable: normalised diffraction efficiency

Experimentally, the first-order diffraction efficiency in the deep-Bragg regime (5.33)

η̄+− =
N+

N−+N+
=

p+
p−+p+

(6.56)

is obtained from the number of diffracted atoms N+ into the first diffraction order k ′ = k+ and
the undiffracted atoms N− remaining in the initial momentum state k ′ = k−. It is identical to
the ratio of the proportions p± =N±/N

A with the total atom number2 N A =N c +N t . In the
experiment, the diffraction efficiency (6.56) is a function of the detuning δω (5.7) of the laser
from the two-photon resonance with a fixed atomic preparation, where ideally the atoms are

2 Now the total atom number is called N A to avoid confusions with the Bragg resonances k ′ = k +2N k L (Sec. 5.4).
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initially at rest 〈p̂x (τi )〉 = 0. However, this efficiency can also be the response for resonant
lasers and an initial wavepacket centred at

〈p̂x (τi )〉= (−1+ κ̄)ħhkL , κ̄ =
δω

ω2r
, (6.57)

directly connected to the laser detuning via Eq. (5.9) (cf. Sec. 5.1.2). In theory, the velocity
dispersion of the diffraction efficiency is probed in this way, by a variation of the center-of-
mass momentum 〈p̂x (τi )〉 (6.57) of the atomic cloud in the rest frame S ′ of the nodes of the
bichromatic Bragg beamsplitter (cf. Sec. 5.3.1).

Therefore, theoretically, the diffraction efficiency (6.56) is computed in the laser plane-wave
approximation from the number of diffracted atoms

N±(κ̄) =
∫ 1

−1

dκη±−(κ)n (κ, κ̄), (6.58)

resulting from a reaction equation derived in the following, which completely encloses the
wavepacket with the effectively one-dimensional momentum density n (κ, κ̄) and the average
initial momentum κ̄ (6.57). In the limit of ideal plane matter waves with wavenumber κ̄ the
diffraction efficiency (6.56) reduces to η=η+−(κ̄).

Diffraction efficiency for partially coherent bosonic fields

In the experiment, both, the coherent BEC and the incoherent thermal cloud have a finite
momentum width and contribute to the population parts N+ and N−. The bosonic amplitude
âg (k ) describes the ground state atoms in momentum space and obeys the commutation
relation [âg (k ), â †

g (k
′)] =δ(k −k ′). For a Bose-condensed sample, the single-particle density

matrix
ρ(k , k ′)≡ 〈â †

g (k
′)âg (k )〉=ρc (k , k ′)+ρt (k , k ′), (6.59)

separates into a condensate ρc (k , k ′) =α∗(k ′)α(k ) and a quantum depletion ρt (k , k ′) [cf. Sec.
2.3.7, skipping the index (1)]. The equally bimodal momentum density

n (k )≡ρ(k , k ) = n c (k )+n t (k ) =N A
�

p c nc (k )+p t nt (k )
�

, (6.60)

is the observable in a beamsplitter3. It is normalised to the total number of atoms
N A =

∫∞
−∞d3k n (k ) =N c +N t . The densities nc ,nt are probability normalised, thus defining a

condensate fraction p c =N c /N A = 0.59±0.07 and a thermal fraction p t =N t /N A = 0.41±0.06.
Dynamically, the classical fieldα(t )obeys the Gross-Pitaevskii equation and extensions thereof
for ρt (t ) [178–180].

For the diffraction efficiency (6.56), the number of diffracted atoms N± are given by

N± =

∫ kL±kL

−kL±kL

dk ′x

∫ ∞

−∞
dk ′y

∫ ∞

−∞
dk ′z 〈k

′|ρ̂(τ)|k ′〉. (6.61)

During the short beamsplitter pulse (< 1 ms), only single particle dynamics (5.26) are relevant,
given by the von-Neumann equation (cf. Sec. 3.2) with the Schrödinger time evolution operator,
described as Green’s functions G (τ,τi ) (5.26)

ρ(τ) =G (τ,τi )ρ(τi )G
†(τ,τi ), (6.62)

3 Experimentally, the spatial density is the observable. After some time of free evolution the wavepackets with
different momenta are separated in space. In the momentum space, this separation is visible directly after the
diffraction pulses.
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for the condensate as well as the thermal cloud. In the plane-wave approximation (with lasers
propagating in x -direction), the three-dimensional Fourier propagator G(k , k ′) = G‖G⊥ (5.29)
factorises into the transverse propagator of free time evolution

G⊥(τ,τi , k ⊥, k ′⊥) = exp

�

−i
ħh (k 2

y +k 2
z )

2M
(τ−τi )

�

δ(2)(k ⊥−k ′⊥), k ⊥ = (ky , kz ) (6.63)

and the longitudinal Greens function in x-direction, describing the diffraction process

G‖(τ,τi , x , x ′) =
∑

µ,µ′,n

Gµ′,µ(τ,κ′n )
Nx ax

exp
�

i (k n
µ x −k n

µ′x
′)
�

. (6.64)

The latter follows from the diffraction solution of the Schrödinger equation (5.52), using the
definitions k n

µ = (µ+κ′n )kL (5.54) and (5.55). The discrete Green’s matrixGµ′,µ(τ,τi ,κ′n ) satisfies

the system of differential equations (5.59) with initial condition Gµ′,µ(τi ,τi ,κ′n ) =δµ,µ′ . In the
continuum limit, one uncovers the momentum conservation on a lattice with kx = (µ+κ)kL

and k ′x = (µ
′+κ′)kL = kx +2N kL , from the Fourier transformation of Eq. (6.64)

G‖(τ,τi , kx , k ′x ) =δ(κ −κ′)Gµ′,µ(τ,τi ,κ′). (6.65)

From the propagation equation (6.62), one obtains the final momentum density

n f (k
′) = 〈k ′|ρ̂(τ f )|k ′〉=

∫

R3

d3k

∫

R3

d3q 〈k ′|G (τ f ,τi )|k 〉〈k |ρ̂(τi )|q 〉〈q |G †(τ f ,τi )|k ′〉

=

∫ ∞

−∞
dkx

∫ ∞

−∞
dqx G‖(τ f ,τi , kx , k ′x )ρ(τi , kx , k ′y , k ′z , qx , k ′y , k ′z )G

†
‖ (τ f ,τi , qx , k ′x ),

(6.66)

which is needed to calculate the atom numbers N± (6.61) for the diffraction efficiency η (6.56).
All observables are along the x-direction. Thus, averaging over the transversal directions
introduces the marginal momentum densities at time τ

n (τ, kx ) =

∫ ∞

−∞
dky dkz n (τ, k ). (6.67)

Assuming that the initial ensemble is well localised around kx = (µ+ κ)kL with µ = −1, its
density is denoted by ni (κ) = n (τi , kx ). From the final density (6.66) with G‖ from Eq. (6.65)
one obtains n f (κ) = n (τ f , k ′x ), with k ′x = (µ

′+κ′)kL at the diffraction order µ′

n f (µ
′,κ′) = |Gµ′,−1(τ f ,τi ,κ′)|2ni (κ′). (6.68)

Now, one can identify the diffraction efficiencies withµ′ = {+1,−1} asη+−(κ) = |G1,−1(κ,τ f )|2
and η−−(κ) = |G−1,−1(κ,τ f )|2. Thus, for atomic clouds with initial momentum 〈p̂x (τi )〉 =
(−1+ κ̄)ħhkL (6.57), the observables in first-order diffraction theory, which are the number of
diffracted atoms N±, read

N±(κ̄) =
∫ 1

−1

dκη±−(κ)ni (κ, κ̄) =N Ap±(κ̄), p±(κ̄) =
∫ 1

−1

dκη±−(κ)
�

p c nc (κn , κ̄)+p t nt (κn , κ̄)
�

.

(6.69)
For the proportions p± =N±/N

A the definitions of the densities n a={c ,t } =N Ap ana (6.60) are
used. In the deep-Bragg regime losses into higher diffraction orders are negligible, wherefore
theoretically N++N− =N A and the diffraction efficiency (6.56) simplifies to

η̄+− =
N+(κ̄)

N A
= p c nc

+(κ̄)+p t nt
+(κ̄), na={c ,t }

+ (κ̄) =
∫ 1

−1

dκη+−(κ)na (κ, κ̄), (6.70)

splitting into a condensate and a thermal cloud fraction.
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Approximating the normalised initial momentum distributions nc
i (κ, κ̄) ≈ ñc (κ, κ̄) and

nt
i (κ, κ̄)≈ ñt (κ, κ̄) (6.60) by Gaussian functions

ñ(κ, κ̄) =
1

p
2πσ̃k

exp

�

−
(κ − κ̄)2
2(σ̃k )2

�

, σ̃k =
σk

kL
,

∫ ∞

−∞
dκ ñ(κ, κ̄) = 1, (6.71)

of widthsσc
k = 0.087 kL ,σt

k = (0.237±0.015)kL (cf. Sec. 6.6.2) and using the Gaussian approxi-
mation (6.54) for the diffraction efficiency η±−(κ), one obtains the analytical model for the
first-order diffraction efficiency (6.56)

η̄+− = sin2
�

ΩT

2

�

∑

a={c ,t }

p a

σ̃a
k (T̃ )

exp

�

−
1

2

�

κ̄T̃

σ̃a
k (T̃ )

�2�

, (6.72)

with σ̃a
k (T̃ ) =

Ç

1+
�

T̃ σ̃a
k

�2
, T̃ = T

p

π/8 and σ̃a
k =σ

a
k /kL . For this diffraction efficiency the

required information about the atomic initial state is fully characterised with the condensate
ratio and the momentum widths of the condensate and the thermal background.

Initial momentum distributions

M O M E N T U M D I S T R I B U T I O N O F T H E C O N D E N S AT E After release from the trap, the width
of the BEC in momentum space increases due to atomic mean-field interaction [121]. Jan
Teske determines the momentum distribution by solving the (3+1)D Gross-Pitaevskii equation
(2.68) for the given parameters of Table A.1 and 10 ms time-of-flight before the diffraction
pulses (cf. Sec. 2.3.5). The result is confirmed by the scaling approach [122–125] applied to the
numerical Gross-Pitaevskii ground state. Finally, the doubly-integrated momentum density
distribution of the BEC at the beginning of the diffraction pulses nc

i (κ, κ̄) ≈ ñc (κ, κ̄) (6.67),
can be approximated with a Gaussian distribution (6.71) of widthσc

k = (0.087±0.001)kL
4, as

depicted in Fig. 6.12.
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p t ñt +p c ñc

Figure 6.12: One-dimensional den-
sity n= p c nc +p t nt (6.60), with con-
densate ratio p c =0.49 and p t =0.51,
versus momentum kx , respectively
momentum detuningκ. The thermal
cloud nt as well as the condensate
nc , obtained from a (3+1)D GP sim-
ulation, can be approximated with
a Gaussian distribution na={c ,t } ≈ ña

(6.71).

M O M E N T U M D I S T R I B U T I O N O F T H E T H E R M A L C L O U D The thermal cloud is also ap-
proximately a Gaussian distribution, where the marginal, one-dimensional momentum width
σt

k =
p

M kB T /ħh introduces a temperature T (cf. Sec. 2.3.6). Experimentally, time-of-flight
measurements (cf. App. E.1.1) of the spatial expansion σx (t ) (2.58) lead to the momentum
widthσt

k = (0.237±0.015)kL of the density nt (6.71). The horizontal trap direction x ′ = x cosφ,
φ = 5.5◦±1◦ differs slightly from the beamsplitter direction x . However, the resulting differ-
ence in the momentum width |σkx

−σk ′x |= 0.001 kL is negligible within the uncertainty.

4 For the fit of the numerical (3+1)D GP result with the Gaussian distribution (6.71) the flanks are stronger weighted
to match the 1/e width of the simulation results.
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6.6.3 Results

In Fig. 6.13 the diffraction efficiency (6.56) is depicted for different laser powers P . In Fig. 6.13
(A) Gaussian pulses of width τG (6.4) and total interaction time ∆τ = 8τG are applied for
the laser powers P• = 20 mW and PÈ = 30 mW. In addition, in (B) rectangular pulses of width
τR =∆τG /2 are applied for P� = 5mW and PÎ = 10 mW. Therefore, the diffraction efficiency
for the atomic cloud with finite momentum width cannot be calculated analytically, however
numerical simulations can be compared to the experimental data.

The laser power defines with Eq. (2.13) the Rabi frequency Ω0 and with Eq. (5.43) the two-
photon Rabi frequency Ω, which characterises the interaction strength. In the experiment, the
atoms are significantly displaced with respect to the axis of the beamsplitter beams to z0 =
(1165±50)µm= (0.84±0.04)w0, while x0 ≈ y0 ≈ 0µm (cf. App. E.1.2). This reduces the effective
Rabi frequency at the location of the atoms Ω(r 0), according to the intensity of collimated
(w0�λL ) Laguerre-Gaussian laser beams [cf. Sec. 2.2.2, Eq. (2.24)] toΩ(r 0)≈Ωexp

�

−2%2
0/w 2

0

�

,
with the transversal displacement %2

0 = y 2
0 + z 2

0 .
Fits using the model (6.72) describe the experimental data for Gaussian pulses very well

and provide appropriate starting parameters [p c , Ω(r 0)] for the effective (1+1)D numerical
simulations with Gaussian pulses [using Eqs. (6.56), (6.58), (5.26), (5.27),(5.29)], fully matching
the experimental data. The experimental, numerical and fit parameters are listed in Table 6.1.

In Fig. 6.13 (a), the velocity dispersion of the diffraction efficiency uncovers a residual
initial motion k S

x = κ̄S kL = 0.12 kL (A) respectively k S
x = 0.105 kL (B) of the atomic cloud in the

laboratory frame S . Considering this in an atomic initial momentum 〈p̂x (τi )〉= (−1+κ̄S+κ̄)ħhkL

with κ̄ =δω/ω2r leads to a very good match of the fit model (6.72), the numerical simulations
and the experimental data.

In Fig. 6.13 (b), the diffraction efficiencies display damped Rabi oscillations versus the
total pulse length ∆τ = 8τG . This is a typical inhomogeneous line-broadening caused by
the momentum widths σc

k , σt
k , the two-photon detuning δω = κ̄ω2r 6= 0 and a residual

velocity κ̄S 6= 0, as also revealed by the Gaussian approximation (6.72). Here, the fit results for
Gaussian pulses (A) for the two-photon Rabi frequency are also the optimal values for the
numerical simulations, matching the experiment within the error level. For rectangular pulses
(B) additionally to the decay of the efficiency, it is not possible to reach a full transfer back
into the initial state after 2nπ-pulses, n ∈Z+.

It is worth mentioning, that the velocity dispersion of the efficiency [Fig. 6.13 (a)] is less
sensitive to the condensate ratio p c than the Rabi oscillations [Fig. 6.13 (b)]. The Gaussian
approximation (6.72) underestimates the second maxima, but the fit of p c matches the exper-
imental value within its uncertainty. The numerical simulations (for Gaussian and rectangular
pulses) predict a condensate ratio at the lower bound of the experimental ratio, but still within
the uncertainty. Please note, that reducing the condensate fraction p c for the simulations
and the Gaussian approximation is equivalent to increasing the momentum width of the con-
densate or of the thermal cloud. However, for the theoretical results the momentum widths
are kept constant withσc

k = 0.087 kL andσt
k = 0.237 kL , although they contain uncertainties,

while the ratio p c is used as a free parameter.
Thus, the Gaussian approximation (6.72) of the DK-model gives a very good prediction of

the experimental data for Gaussian pulses. It assumes weak local two-photon Rabi frequencies
Ω(r 0)< 3ωr , justifying the Pendellösung (6.44), with η+−+η−− = 1 and small atomic clouds
σx �w0 to approximate Laguerre-Gaussian beams by plane waves. The numerical results for
both, the Gaussian and the rectangular pulses, agree with the experimental data systematically
without any bias.
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Figure 6.13: Experimental diffraction efficiency η̄+− (6.56) (black) for different laser powers with numer-
ical simulations (green) and fits (6.72) (magenta) based on the DK-model. In (A) temporal
Gaussian pulses of width τG =∆τ/8 are applied for P• = 20mW and PÈ = 30mW. In (B)
temporal rectangular pulses of widthτB =∆τ/2 are applied for P� = 5 mW and PÎ = 10 mW.
(a) Velocity dispersion of the diffraction efficiency η̄+− versus detuning κ̄ of the initial
central momentum 〈p̂x (τi )〉= (−1+ κ̄S + κ̄)ħhkL , were κ̄S = κ̄S kL = 0.12 kL is a small initial
velocity of the atoms in the laboratory frame S and κ̄ =δω/ω2r . (b) Rabi oscillations of the
diffraction efficiency versus total interaction time∆τ and highlighted pulse widths of (a).
Other parameters cf. Tables 6.1, A.1 and A.2.
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(A) Gaussian pulses

P•=(20±2)mW PÈ=(30±3)mW

exp.

p c 0.59±0.08
Ω (2.13), (5.43) (6.60±0.66)ωr (9.89±0.99)ωr

Ω(r 0) (1.61±0.27)ωr (2.41±0.40)ωr

κ̄S (0.12±0.01)kL

(a)
exp.

∆t = 8τG /ω2r 147.45µs 98.3µs
θG (6.55) (0.56±0.09)π

ana.
p c 0.59±0.06 0.59±0.14
Ω(r 0) (1.74±0.01)ωr (2.27±0.01)ωr

num.
p c 0.59 0.59
Ω(r 0) 1.71ωr 2.28ωr

(b) exp. δω/2π (5.7) −2 kHz −2.5 kHz

ana.
p c 0.55±0.03 0.59±0.04
Ω(r 0) (1.81±0.01)ωr (2.30±0.01)ωr

num.
p c 0.52 0.52
Ω(r 0) 1.81ωr 2.30ωr

(B) Rectangular pulses

P�=(5.0±0.5)mW PÎ=(10±1)mW

exp.

p c 0.59±0.08
Ω (2.13), (5.43) (1.65±0.16)ωr (3.30±0.33)ωr

Ω(r 0) (0.40±0.07)ωr (0.80±0.13)ωr

κ̄S (0.105±0.005)kL

(a)
exp.

∆t = 2τR/ω2r 198µs
θR (6.55) (0.60±0.10)π (1.10±0.19)π

num.
p c 0.52 0.52
Ω(r 0) 0.33ωr 0.7ωr

(b) exp. δω/2π (5.7) −2 kHz −1.5 kHz

num.
p c 0.52 0.52
Ω(r 0) 0.34ωr 0.7ωr

Table 6.1: Parameters of the results in Fig. 6.13 for the experiment (exp.), the numerical simulation
(num.) and the analytical approximation (6.72) (ana.): laser power P , condensate fraction
p c , maximum two-photon Rabi frequency Ω, local two-photon Rabi frequency Ω(r 0) at the
initial atomic position r 0, initial atomic momentum in x -direction ħh κ̄S , total interaction
time∆τ, pulse width τ j , pulse area θ j , laser frequency detuning δω.
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( 3+ 1 ) D B R A G G D I F F R A C T I O N : S PAT I A L E N V E L O P E S

Spatial envelopes in addition to temporal envelopes can affect the beamsplitter performance.
Eventually, the spatial envelopes of Laguerre-Gaussian (LG) laser beams are added in this
Chapter 7 to consider the cumulative effect. Therefore, full (3+1)D simulations are used. For
LG-laser beams both, the intensity and the phase show spatial variations, adversely affecting
the fidelity as well as the diffraction efficiency of the beamsplitter and leading to an additional
transfer of transverse momentum components.

To illustrate these effects and motivate the need of as realistic as possible (3+1)D simu-
lations, the final column integrated density of the wavepacket in the momentum space is
depicted in Fig. 7.1. An ideal and an adverse mirror pulse are compared, where the latter
is generated with LG-laser beams. For completion, the results using the plane-wave (PW)
approximation are also shown. Obviously the effect of realistic LG-laser beams can be cru-
cial. Quantifying this, here, the fidelity is reduced drastically from ideal Fi = 1 to FPW = 0.61,
FLG = 0.08. The diffraction efficiency is also reduced from η̄i = 1 to η̄PW = 0.69, η̄LG = 0.41. The
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Figure 7.1: Column integrated, atom den-
sity in momentum space n (kx , ky ) =
∫

dkz |Ψg (k )|2 after a π-pulse, normalised

with
∫

d3k |Ψ(k )|2 = 1. The initial state is
a temporally evolved, symmetric Gaus-
sian wavepacket (2.59) transversally dis-
placed to r 0 = (0,0.9w0,0) with momen-
tum widthσk = 0.2 kL and expansion size
σx = w0/5 = 2µm. Rectangular pulses
with Ω = 6ωr , τR = τ̃Rπ(Ω(r 0)) (6.32) and
beamwaist w0 = 10µm are applied. The
ideal situation is compared to the results
with Laguerre-Gaussian laser beams (LG)
and the plane-wave approximation (PW).

spatial profile of the LG-laser beams is characterised in Section 7.1. In addition to the extreme
disadvantages depicted in Fig. 7.1, also weak deviations from the plane-wave idealisation lead
to aberrations, which are apparent in the spatially resolved beamsplitter results presented in
Section 7.2. Thereby, the influence of the wavefront curvature and the intensity variations to
the beamsplitter performance can be differentiated with the radiative force exerted by the
laser light field, acting on the atoms. This force is studied in Section 7.3, where it is further used
to quantify the transferred transverse momentum components. The influence on the fidelity
and diffraction efficiency in details is presented in Section 7.4. Finally, Section 7.5 concludes
with analysing misalignment of the laser beams and comparing the results to experiments [1].
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7.1 S PAT I A L P R O F I L E O F T W O C O U N T E R P R O PA G AT I N G G AU S S -
L A G U E R R E L A S E R B E A M S

The fields of experimental beamsplitters are pulsed, bichromatic kl={1,2}, counterpropagating
Laguerre-Gaussian modes (cf. Sec. 2.2.2). In the specific frame S ′ (cf. Fig. 5.1), comoving with
the nodes of the interference pattern, establishing one single wavenumber kL (cf. Sec. 5.3.1).
The slowly varying amplitude of the electric field El = E0,l ul (r ) (2.21) leads to Rabi frequencies
(2.11)

Ωl (t , r ) =Ω0,l (t , xl ,%l )e
iϕ(xl ,%l ), Ω0,l (t , xl ,%l ) =Ω0,l (t )

w0

wl
e
−
%2

l
w 2

l , ϕl (xl ,%l ) =
kL%

2
l

2Rl
−ζl ,

(7.1)
with beam parameters pl =p(xl ) (2.22) and the transverse direction %l =

q

y 2
l + z 2

l . The laser
coordinates l = {1, 2} are most generally defined in Section 3.4.2. However, for symmetrically
displaced but otherwise perfectly aligned beams, as depicted in Fig. 7.2, the coordinates
simplify to %1 =%2 =% and x1/2 = x̀ /2± x for a distance x̀ between both laser beamwaists.
This is used in the following, before in Section 7.5 misaligned lasers are taken into account.

x

w (x )
w0w0

R (x )

0

%

r0

− x̀ /2 x̀ /2

Figure 7.2: Two counterpropagating, bichromatic Laguerre-Gaussian laser beams build a standing
wave (5.13) in the frame S ′, with an intensity pattern in cylindrical coordinates (x ,%). The
grey arrows are the local wavevectors, w (x ) is the local waist and the radius of curvature
R (x ) are indicated by a black arrow. The distance between the two beamwaists is x̀ . The
atomic cloud, generally localised at r 0 is indicated as green ellipse.

Furthermore, for initial states withσx <w0/3 one can approximate x1/2 = x̀ /2 for the beam
parameters (2.22) w1,2 =w ( x̀ /2), R1,2 = R ( x̀ /2), ζ1,2 = ζ( x̀ /2). In case of collimated beams,
where xR �w (x )≈w0�λ, the phase ϕ(x ,%)≈ 0 vanishes according to Eq. (2.24).

7.1.1 Local plane-wave approximation

To isolate the momentum transfer of the beamsplitter from the momentum imparted by the
dipole force, a local plane-wave (PW) approximation of the LG-beam at the initial centre-of-
mass position r 0 = (x0,%0), %0 = (y0, z0) of the atomic cloud is considered with

Ωl (t , r )≈Ωl (t , r 0) =Ω0,l (t , x0,%0)e
iϕl (x0,%0) w0�λL= Ω0,l (t )e

−%2
0/w 2

0 . (7.2)

Thus, the atomic cloud feels only a reduced Rabi frequency but experiences no spatial inho-
mogeneity. Therefore, simulations with plane waves are independent of the size of the initial
state and thus of the ratio σx /w0 as long as σx > λ. For σx ≤ λ, there is still no variation in
transversal direction but for these size ratios the interference pattern in propagation direction
becomes relevant.
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Aberrations due to realistic LG-laser beams are apparent already in the density distributions1

n (t , r ) = |ψ(t , r )|2, n (t , x , y ) =
∫

dz n (t , r ), N A =
∫

d3r n (t , r ), (7.3a)

n (t , k ) = |Ψ(t , k )|2, n (t , kx , ky ) =
∫

dkz n (t , k ), N A =
∫

d3k n (t , k ), (7.3b)

as it was visualised for an extreme example in Fig. 7.1. However, there are also recognisable
impacts for more moderate scenarios. These can even improve the diffraction efficiency.

Therefore, the column integrated position and momentum density n (x , y ), n (kx , ky ) to-
gether with the phasesφ(x , y ) = arg[ψ(x , y , 0)],φ(kx , ky ) = arg[Ψ(kx , ky , 0)] are shown for the
(3+1)D simulations of a mirror [beamsplitter] pulse in Fig. 7.3 [Fig. 7.4]. In the momentum
space, the splitting is visible directly after the diffraction pulse, in contrast to the experimental
observable, the density distribution in position space is separated only after some time of
free evolution. The results for realistic LG-laser beams (c), (d) are gauged to the idealised
local PW-approximation (b). For the latter, no spatial confinement at all is taken into account,
corresponding to w0→∞. Ballistically expanded Gaussian wavepackets (2.59) are consid-
ered as atomic initial states (a) with momentum width σk = 0.1kL and spatial expansion
σx =w0/20= 2.5µm, located at r 0 = (0, 0, 0) for (a-c) and at r 0 = (0, w0/2, 0) in (d), respectively.
In Section 6.5 Blackman pulses were found to be optimal. Therefore, they are applied with
pulse widths τ̃Bπ(Ω(r 0)) and τ̃Bπ/2 (6.32). The Rabi frequencies Ω(r 0) = Ω(r 0)ω2r = 4ωr

consider the atomic centre-of-mass position, according to the local PW-approximation (7.2).
The longitudinal laser displacement x̀ = 0.1 xR is considered.

The logarithmic scale highlights the imperfections of the Bragg diffraction. The spatial den-
sity is modulated, because more than one momentum order is populated. This is elementary
for the 50:50 (BS) configuration (Fig. 7.4), showing the oscillation period of λL/2= 0.39µm
due the 2kL momentum transfer. For the 0:100 mirror (M) (Fig. 7.3) the initially concave spatial
phase changes to a convex shape due to flipping the momentum expectation value from −kL

to kL . The circular shape of the phase in the momentum space represents its quadratic form
(kx −kL )2+k 2

y +k 2
z (2.60). Using LG-laser beams a different momentum density distribution

is observable compared to the PW-idealisation especially for the population remaining un-
diffracted in the initial state, more clearly for displaced atoms (d). For centred atoms (c) the
LG-modes suppress the transfer into higher diffraction orders more strongly. Therefore, the
fidelity (5.34) FLG = 0.9653 as well as the diffraction efficiency (5.33) η̄LG = 0.9667 are insignifi-
cantly larger than for the PW-approximation with FPW = 0.9636 and η̄PW = 0.9660. However, for
displaced atoms, even with the same local effective Rabi frequency, the LG-modes cause an ad-
verse impact, leading to FLG(r 0 = (0, w0/2, 0)) = 0.8839 and η̄LG(r 0 = (0, w0/2, 0)) = 0.9466. The
fidelity is reduced significantly, mainly because the dipole force leads to a rogue, transverse
momentum component 〈k M

y 〉= 0.013 kL , primary of the wavepacket in the mirror-momentum

order k+ (6.9) with 〈k M
y ,+〉= 0.014 kL , where

〈ka={x ,y ,z }〉=
1

N A

∫

d3k ka n (t , k ), 〈ky ,+〉=
1

N A

∫ 2kL

0

dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz ky n (t , k ). (7.4)

However, the transfer efficiency is also affected, in particular for transverse momentum com-
ponents ky 6= 0, causing the reduced diffraction efficiency. For the beamsplitter the transverse
mirror-momentum 〈k BS

y ,+〉=−0.048kL is in the opposite direction to 〈k BS
y 〉= 0.0064kL ≈ 〈k M

y 〉/2.
Please note, while the diffraction efficiency and the fidelity depend only on the ratioσx /w0

as long as w0 >σx >λL (cf. App. B.3), the transferred transverse momentum component is
characterised by the actual value of the beamwaist as studied in the next Section 7.3.2.

1 Due to the huge detuning∆�Ω0,Γ the excited state’s population is negligible (< 10−6), why |ψ〉 ≈ψg |g 〉,ψg ≡ψ.



88 7 (3+1) D B R A G G D I F F R A C T I O N : S PAT I A L E N V E L O P E S

−10

0

10

y
in

µ
m

10
−5

10
−3

10
−1

n
in

µ
m

−
2

−1

0

1

k
y
/k

L

10
−4

10
−2

10
0

n
in

µ
m

2

−25 0 25

x in µm

−10

0

10

y
in

µ
m

0

25

50

φ
/π

−4 −2 0 2 4

kx/kL

−1

0

1

k
y
/k

L

0

4

8

φ
/π

(a) Initial state

−10

0

10

y
in

µ
m

10
−5

10
−3

10
−1

n
in

µ
m

−
2

−1

0

1

k
y
/k

L

10
−4

10
−2

10
0

n
in

µ
m

2

−25 0 25

x in µm

−10

0

10

y
in

µ
m

0

25

50

φ
/π

−4 −2 0 2 4

kx/kL

−1

0

1

k
y
/k

L

0

4

8

φ
/π

(b) Plane-wave approximation
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(c) Laguerre-Gaussian laser beams, r0 = (0, 0, 0)
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(d) Laguerre-Gaussian laser beams, r0 = (0, w0/2, 0)

Figure 7.3: Mirror (0:100). Column integrated atomic density n (7.3) (here normalised to N A = 1) and
phaseφ = arg(ψ) at z = 0 or kz = 0 in position (left) and momentum space (right). The phase
is set to zero for vanishing densities. The initial state (a) is a temporally evolved Gaussian
wavepacket (2.56) of size σx = w0/20 = 2.5µm, momentum width σk = 0.1kL and initial
position r 0. Blackman pulses of width τ̃Bπ(Ω(r 0)) (6.32) withΩ(r 0) =Ω(r 0)ω2r = 4ωr,∆τ=
2πτ̃Bπ and beamwaist w0 = 50µm are applied, considering idealised plane waves (b) and
Laguerre-Gaussian laser beams (c), (d). Further parameters are given in Tables A.1 and A.2.
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(b) Plane-wave approximation
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(c) Laguerre-Gaussian laser beams, r0 = (0, 0, 0)
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(d) Laguerre-Gaussian laser beams, r0 = (0, w0/2, 0)

Figure 7.4: Beamsplitter (50:50). Column integrated atomic density n (7.3) (here normalised to N A = 1)
and phase φ = arg(ψ) at z = 0 or kz = 0 in position (left) and momentum space (right).
The phase is set to zero for vanishing densities. The initial state (a) is a temporally evolved
Gaussian wavpacket (2.56) of sizeσx =w0/20= 2.5µm, momentum widthσk = 0.1 kL and
initial position r 0. Blackman pulses of width τ̃Bπ(Ω(r 0))/2 (6.32) with Ω(r 0) =Ω(r 0)ω2r =
4ωr, ∆τ = πτ̃Bπ and beamwaist w0 = 50µm are applied, considering idealised plane
waves (b) and Laguerre-Gaussian laser beams (c), (d). Further parameters are given in
Tables A.1 and A.2.
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7.3 R A D I AT I V E F O R C E

Even for perfectly aligned laser beams, the transverse intensity variations and the wavefront
curvature can cause a momentum transfer in the transverse direction. The radiative force
exerted during the light-matter interaction provides insights to which of them is dominant. The
force operator F̂ is given by the Heisenberg equation for the atomic momentum operator [181]

F̂ = ∂t p̂ =
i

ħh
[Ĥ , p̂ ] =−

∂ Ĥ

∂ r
=−∇V̂ (r ), 〈F̂ 〉= Tr

�

F̂ %̂
	

, (7.5)

with the force expectation value 〈F 〉 and the resulting momentum expectation value

〈k̂ 〉=
1

ħh

∫

dt Tr
�

F̂ (t , r )ρ̂(t , r )
	

. (7.6)

Therefore, the reduced density operator ρ̂ of the atomic system needs to be considered.
In the classical approximation of the Ehrenfest theorem [182, 183] the force expectation

value is Taylor expanded

〈F̂ 〉= F (〈r̂ 〉)+
1

2
F ′′(〈r̂ 〉)(∆r )2+ · · · ≈ F (〈r̂ 〉). (7.7)

Considering only the first, classical contribution is valid exactly if F̂ is a linear function of the
position r , or approximately if the width of the probability density is small in comparison to
the typical length scale of the force variations, here, for atomic initial states much smaller
than the beamwaistσx �w0.

Provided an interaction with one classical laser beam with a potential of the form (2.12)

V̂ (r ) =
ħh
2
Ω0(r )e

−iΦ(r )σ̂†+h.c., (7.8)

the force operator reads

F̂ =−
ħh
2
σ̂†Ω0(r )e

−iΦ(r )[α(r )− iβ (r )]+h.c. (7.9)

The two contributions

α(r ) =
∇Ω(r )
Ω(r )

, β (r ) =∇Φ(r ), (7.10)

characterise the spatial intensity variations with α, leading to the so-called reactive or dipole
force and the variation of the phase with β , defining the dissipative force also called radiation
pressure. Regarding one LG-laser beam in its intrinsic reference frame (2.23) the contributions
to the different force components for cylindrical coordinates F̂ = (F̂x , F̂% , F̂φ) in propagation

x , transversal direction % =
p

y 2+ z 2 and vanishingφ-component F̂φ =αφ =βφ = 0, can be
easily evaluated and simplified for the limit of collimation

αx =
x w 2

0

x 2
R w (x )2

�

2%2

w (x )2
−1

�

w (x )≈w0≈
x

x 2
R

�

2%2

w 2
0

−1

�

x�xR
2

≈ 0,

α% = −
2%

w (x )2
w (x )≈w0≈ −

2%

w 2
0

x�xR≈ −
2%

w 2
0

,

(7.11)

βx =−kL +
w 2

0

w (x )2 xR
−kL

%2

x 2

�

x 2
R

R (x )2
−

x

2R (x )

�

w (x )≈w0≈ −kL

�

1+
%2(x 2

R − x 2)

2(x 2
R + x 2)2

�

+
1

xR

w0�λL≈ −kL ,

β% = −
kL%

R (x )
w (x )≈w0≈ −

kL%

R (x )
w0�λL≈ 0.

(7.12)

2 This is a requirement, that can be true even for small laser beams, but it is automatically fulfilled for w0�λL .
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The approximation demonstrates the expected momentum transfer kL in longitudinal
x -direction due to the radiation pressure (β ) as well as a rogue transverse momentum kick,
for large lasers mainly due to the dipole force (α).

For optical wavelengths λ ®µm and beamwaists of collimated beams in the range of
w0 ∼mm, the Rayleigh lengths xR are several meters, thus

xR �w0 >σx >λ, (7.13)

for sizes of the initial state in the rangeσx ∼1 to 1000µm. Therefore, as applied in Eq. (7.11), the
transversal dipole forces are stronger than the dipole forces along the propagation direction
x . Latter are actually negligible for x � xR .

7.3.1 Radiation pressure due to wavefront curvature

While the essential beamsplitting process is based on the momentum translation operator
(4.16) included in the radiation pressure, the transferred momentum in transverse direction
originates in particular for collimated laser beams from the dipole force. However, the ad-
ditional transverse momentum component transferred with the radiation pressure can be
easily estimated, even without evaluating the dissipative force. Therefore, it can be decided
quantitatively justified when the wavefront curvature needs to be taken into account. The
effectively transferred momentum from the counterpropagating laser beams is given by

k eff = k 1−k 2. (7.14)

Therefore, knowing the spatial-dependent orientation of the laser wavevectors, the trans-
ferred transverse momentum component is directly determined. Regarding the total spatial
dependent phase of the LG-field (2.23) propagating in x -direction

Φ(r ) =−ϕ(x ,%)−kL x =−kL x −k
%2

2R (x )
+ζ(x ), (7.15)

the wavefront curvature is given by the reciprocal of the radius of curvature R . This defines the
orientation of the wavevector at a certain position (x0,%0, 0) inside the laser region. Regarding
the sketch in Fig. 7.5, its components are given by

kL ,x (x0,%0)/kL = cosθ = 1−O
�

θ 2
�

, kL ,%(x0,%0)/kL = sinθ = θ −O
�

θ 3
�

. (7.16)

Within the small angle approximation (SAA) it simplifies to

k SAA
L ,% (x0,%0)≈ θkL ≈

%0kL

R (x0)
=−β% , θ = arctan

�

%0

R (x0)

�

=
%0

R (x0)
−O

�

�

%0

R (x0)

�3
�

, (7.17)

recovering the transversal contribution of the radiation pressure β (7.10). The maximum is
reached for a minimal radius of curvature Rmin = R (xR ) = 2xR . Therefore, together with a
maximum transverse displacement of %0 = w0 the limit is k SAA

L ,% (x0,%0) ≤ w0kL/2xR = 1/w0

inversely proportional to the beamwaist w0, which is why kL ,%(x0,%0) vanishes for large lasers
w0�λL .

kL (r0)
kL ,%(r0)

kL ,x (r0)

r0

%

x
θ

x0

%0

R (x0)

0

Figure 7.5: Orientation of
the laser wavevector k L ,
normal to the wavefront
(magenta), depending on
the position r 0 = (x0,%0)
inside the laser region and
defined by the radius of
curvature R (x0) and the
angle θ .
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Leaving tilted laser beams out of consideration, three different limits of geometric arrange-
ments of the lasers are conceivable, depicted in Fig. 7.6.

x

%

- x̀
2

x̀
2

0

R1(x ) R2(x ) w0

(a) Ideal laser alignment:
k eff = k 1−k 2 = (2kL , 0, 0)

x

w0

%

0

R1(x )

- x̀

(b) Longitudinal misalignment:
k eff = k 1−k 2 = (2kL ,x , kL ,% , 0)

x

%

- x̀
2

x̀
2

0

w0

(c) Longitudinal and transverse mis-
alignment:
k eff = k 1−k 2 = (2kL ,x , 2kL ,% , 0)

Figure 7.6: Different laser geometries lead to different momentum transfers to the atomic wavepacket
k eff = k 1−k 2. The amount is defined by the radius of curvature of laser 1 and 2, the distance
between the laser origins `= ( x̀ , %̀ ,0) and the position of the wavepacket inside the laser
region, in units of the Rayleigh length xR in longitudinal direction and in units of the minimal
beamwaist w0 in transverse direction.

In scenario (a), the atoms are positioned exactly in the centre between both laser origins. In
the ideal limit, the origin of both lasers coincides with the atomic initial position, but also for a
finite distance x̀ between both lasers the transferred transverse momentum components due
to the wavefront curvature cancel each other. For a maximal longitudinal misalignment in
(b), one laser origin coincides with the initial atomic position, corresponding here to a plane
wave, while the other is displaced, providing a wavefront curvature at the atom’s position.
Therefore, the total transverse momentum component due to the wavefront curvature of the
displaced laser is transferred to the atom without compensation. Adding an opposite trans-
verse displacement to both lasers in (c), leads contrary to scenario (a) not to the compensation
but rather to an enhancement of the transferred transverse momentum. For a symmetric
displacement this limits in the sum keff,% = k1,% +k2,% . Because setup (c) promises the largest
rogue momentum components, it is studied for different beamwaists and transverse atomic
initial positions. The analytical result for the %-component of the transferred momentum
kick with an atomic initial location r 0 = (0,%0)with a transverse displacement of %0 = ξ0w0

and a distance between both lasers x̀ = 2cxR , %̀ = 2γw0, with 0<c,γ≤ 1, yields the simple
relation in the small-angle approximation

k SAA
eff,% =

�

%1

R (x1)
−
%2

R (x2)

�

kL =
�

ξ0w0

R (cxR )
−
(ξ0−2γ)w0

R (cxR )

�

kL =
4γ

w0c(1+c−2)
≤

2

w0
. (7.18)

This is independent of the transverse displacement ξ0 and the maximum for c = γ = 1 is
purely defined by the beamwaist w0. In an experiment, for γ > 1 the laser misalignment is
clearly observable, therefore one can restrict γ≤ 1. In Fig. 7.7, the result (7.18) for c= γ= 1
is compared to the according numerical expectation value of the mirror-momentum3 (7.4)
〈ky ,+〉 with choosing for the Cartesian simulation grid z0 = 0 and thus %0 = y0. To observe
only the transferred transverse momentum due to the radiation pressure the spatial intensity

3 The effective momentum keff gives the momentum transferred due to deep-Bragg diffraction. Therefore, the
numerical analogue is the momentum expectation value of this part of the wavepacket, which is diffracted into
the mirror-diffraction order, here for first-order diffraction in x -direction k ′x = k+ (6.9) with 0≤ k+ < 2kL .
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variation of the laser fields is turned-off, usingΩl (t , r ) =Ωl (t )exp
�

i kL%
2
l /2Rl

�

(7.1). To address
a suitable Bragg regime (cf. Fig. 6.11), a two-photon Rabi frequency of Ω = 2ωr is applied
for rectangular4 (6.3) π-pulses of width τ̃Rπ(Ω) (6.32). The initial atomic state is prepared as
a time-evolved Gaussian wavepacket (2.59) with a symmetric expansion σx = 1.25µm and
momentum widthσk = 0.1 kL . The numerical results confirm the simple approximation (7.18).
Only for highly focused laser beams an extremely weak linear dependence of the transverse
displacement is visible but these deviations are negligible. Therefore, the transferred transverse
momentum kick due to the wavefront curvature is practically independent of the size ratio
between atomic cloud and laserσx /w0. In addition, even the maximum transferred transverse
momentum, as considered here in scenario (c) of Fig. 7.6, is insignificant for collimated
beams with beamwaists in the range of millimetres resulting in 〈ky ,+〉 ≤ 2/w0 ∼ 0.002µm−1 ≈
2×10−4kL . Furthermore, the experimental scenario corresponds more to scenario (a), where
〈ky ,+〉 vanishes due to symmetry with limc,γ→0 k SAA

eff,y = 0 (7.18).
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Figure 7.7: Transversal momentum kick ky due to the radiation pressure, for a maximum atomic
transversal displacement ξ0 = y0/w0 = 1 depending on the beamwaist w0 (left), respectively
the difference ky (ξ0 = 0)− ky (ξ0) versus ξ0 for different w0 (right), where ky (ξ0 = 0) =
0.10[0.07]kL for w0 = 2.5[3.75]µm. The numerical results confirm the relation ky = 2/w0 of
Eq. (7.18) for c= γ= 1.

7.3.2 Dipole force due to intensity variations

The intensity variations of the laser field, especially in transverse direction, cannot be ne-
glected, if the atoms are not located at the centre of the beam line or if their expansion is
not much smaller than the laser-beam size. In these cases, the atoms adopt a spatial depen-
dent transverse momentum component and/or their transverse velocity spread becomes,
depending on the sign of the laser detuning, squeezed or stretched.

To quantify this, the expectation value of the reactive force operator or rather the resulting
momentum expectation value 〈k̂%〉 (7.6) in radial direction needs to be evaluated. Therefore,
the full time-dependent solution ρ̂(t , r ) is required. But knowing the time-dependent solution
and transforming it into the momentum space, one finds the ground-state momentum expec-
tation value components directly from Eq. (7.4). However, a simple approximation without
the requirement of the full beamsplitter solution is desirable and can be derived as follows.

4 The effective momentum kick is independent of the pulse shape. Therefore, rectangular pulses are used, because
they provide the shortest computational times for the simulations.
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Simple steady-state approximation

For collimated laser beams w0 � λL the wavefront curvature and intensity variations in
propagation direction are negligible as pointed out in Section 2.2.2, Eq. (2.24). Therefore, the
transverse component of the reactive force operator for one (1) collimated (c) laser reads

F̂ c
1,% = ħh

ξ

w0
Ωc

0 (ξ)e
i kL x σ̂†+h.c., Ωc

0 (ξ) =Ω0e −ξ
2
, ξ≡

%

w0
, (7.19)

because α% = ∂%Ωc
0 (%)/Ω

c
0 (%) = −2%/w 2

0 . Using a local density approach the force expecta-
tion value can be approximated, using the common semiclassical limit [103, 181] for atomic
wavepackets sufficiently well localised in position as well as in momentum space. Their
position is given by r = r 0 + v 0t = r 0 + v0e x t , because in the chosen reference frame the
atoms move in x -direction but initially without a velocity component in %-direction. The
Rabi frequency Ωc

0 depends only on % not on x . Therefore, at the atomic position it is time
independent Ωc

0 (r = r 0+v 0t ) =Ωc
0 (%0). On the other hand, the phase is now time dependent

ϕc (t , r ) =−k L v 0t . This can be considered by taking into account the resulting Doppler shift
within the detuning ∆D =∆−k L v 0. Using the fact that the mean value of σ̂† is ρg e (t ) the
optical Bloch equations5

∂tρe e =−Γρe e − i
2Ω

c
1 (r 0)ρg e +

i
2Ω

c
1 (r 0)

∗ρe g , (7.20)

∂tρg g =+Γρe e − i
2Ω

c
1 (r 0)

∗ρe g +
i
2Ω

c
1 (r 0)ρg e , (7.21)

∂tρe g =
�

i∆D − Γ2
�

ρe g +
i
2Ω

c
1 (r 0)(ρe e −ρg g ) (7.22)

must be solved to evaluate the force expectation value. They depend on the local Rabi fre-
quency for one collimated laser beam

Ωc
1 (r 0)≡Ωc

0 (ξ0)exp(i kL x0), ξ0 ≡
%0

w0
. (7.23)

Using further the local steady-state solutions ∂tρ = 0 results in

ρc ,s t
g e (r 0) =

1

2
Ω0e −ξ

2
0 e −i kL x0

∆D + i Γ2

∆2
D +

Γ 2

4 +
|Ωc

1 (r 0)|2
2

. (7.24)

Therefore, the transverse local force expectation value at the position %0 [cf. Eq. (7.7)] reads

〈F̂ c ,s t
1,% 〉|%0

= ħhΩ2
0

ξ0

2w0
e −2ξ2

0

 

∆D + i Γ2

∆2
D +

Γ 2

4 +
|Ωc

1 (r 0)|2
2

+h.c.

!

= ħhΩ2
0

ξ0

w0
e −2ξ2

0
∆D

∆2
D +

Γ 2

4 +
|Ωc

1 (r 0)|2
2

(7.25)

and depends only on the transversal direction %0. However, the aim is to estimate the exerted
force of the two counterpropagating lasers (given the same intensity). For low intensities with
saturation parameters s =Ω2

0/2(∆
2+ Γ 2/4)−1� 1 the interference effects of the two beams can

be neglected and the full local force is simply the sum

〈F̂ c ,s t
% 〉|%0

= 〈F̂ c ,s t
1,% (k L = kL e x )〉|%0

+ 〈F̂ c ,s t
1,% (k L =−kL e x )〉|%0

(7.26)

= ħhΩ2
0

ξ0

w 2
0

e −2ξ2
0

�

∆+2µ0ωr

(∆+2µ0ωr )2+
Γ 2

4 +
|Ωc

1 (r 0)|2
2

+
∆−2µ0ωr

(∆−2µ0ωr )2+
Γ 2

4 +
|Ωc

1 (r 0)|2
2

�

(7.27)

≈ 2ħh
Ω2

0

∆

ξ0

w0
e −2ξ2

0 = 4ħhΩ
ξ0

w0
e −2ξ2

0 =−∂%Vdip(x = 0,%)|%0
. (7.28)

5 The optical Bloch equations can be derived straightforwardly from the master equation (3.22) with one operator
Ĉ =
p
Γ σ̂. A detailed derivation for a three-level system is given for the Raman velocity filter for hot calcium ions

in Section 10.3.2, which can be easily reduced to the two-level approach.
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In Eq. (7.27) the initial velocity of the atoms is expressed with v0 =µ0ħhkL/M using the recoil
frequency ωr (4.23), for first-order Bragg diffraction µ0 = −1. Regarding the separation of
frequency scales ωr � Γ � Ω0≪ ∆ (5.36), the approximation (7.28) can be made, demon-
strating the negative parity of the force concerning %0 as well as the detuning∆. In addition,
it reveals 4ħhΩ/w0 as the spring constant, resulting also from the gradient of the optical dipole
potential Vdip(x ,%) = ħhΩ2

0 exp
�

−2ξ2
�

/∆ for two counterpropagating collimated laser beams
[cf. Eqs. (5.38), (7.23)].

This force acting during the interaction time T leads to a transverse momentum with the
same parity and with linear time dependency for a rectangular pulse6 (6.3)

〈k̂ c ,s t
% 〉|%0

=
1

ħh

∫ T

0

dt 〈F̂ c ,s t
% 〉|%0

=
T

ħh
〈F̂ c ,s t
% 〉|%0

. (7.29)

In the deep-Bragg regime for a mirror π-pulse of width τRπ(Ωc (r 0)) (6.8) the interaction time
is Tπ =π/|Ωc (r 0)| and Eq. (7.29) simplifies to

〈k̂ c ,s t
%,π 〉|%0

=
Ω

|Ω|
4πξ0

w0
≤
Ω

|Ω|
4π

w0
, for ξ0 =

%0

w0
≤ 1. (7.30)

Here, the local two-photon Rabi frequency Ωc (r 0) = Ωexp
�

−2%2
0/w 2

0

�

at the initial position
r 0 = (x0,%0) [cf. (7.2)] is considered. Clearly, it shows a negative parity with respect to the
detuning∆ included in the two-photon Rabi frequency Ω= |Ω0|2/2∆ (5.43). In addition, its
maximum is even 2π times larger than the maximum transverse momentum kick at x = xR

due to wavefront curvature (7.18).
Finally, in the impact approximation, the mean force and resulting momentum kick to an

entire atomic wavepacket is given by spatially averaging over the initial density n (t = 0, r )
(7.3), assuming a population completely in the ground state

〈F̂ c ,s t
% 〉=

∫

d3r 〈F̂ c ,s t
% 〉|%

n (0, r )
N A

=
4ħhΩ

N A w0

∫

d3rξe −2ξ2
n (0, r ), (7.31)

〈k̂ c ,s t
% 〉=

T

ħh
〈F̂ c ,s t
% 〉. (7.32)

Time-dependent force

Using the collimated (c) beam approximation (7.23), the spatial dependent Rabi frequency
for two (2) exactly counterpropagating laser beams, with equal amplitude is approximately

Ω2(r )≈Ωc
2 (r ) =Ω

c
1 (x ,%)+Ωc

1 (−x ,%) = 2Ω0e −ξ
2

cos(kL x ) = 2Ωc
0 (ξ)cos(kL x ). (7.33)

This leads to the force operator and its local time-dependent expectation value

F̂ c
% (r ) = ħh

ξ

w0
Ωc

2 (r )(σ̂
†+ σ̂), 〈F̂ c

% (t , r )〉= ħh
ξ

w0
Ωc

2 (r )[ρe g (t , r )+ρg e (t , r )]. (7.34)

The matrix elements of the density operator are defined with the time-dependent solution of
the Schrödinger equation7 ρi j =ψiψ

∗
j . Making use of the adiabatic elimination of the excited

6 In the steady-state approximation, the transferred momentum depends only on the pulse area, but not on the
pulse shape. This applies approximately also for the full numerical results. Therefore, rectangular pulses are
studied, providing the shortest computational times.

7 Only pure states are considered and because of the extremely large detuning∆≫ Γ spontaneous emission can be
neglected.
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state (cf. Sec. 5.5.1), itself and thus the density matrix elements can be expressed in terms of
the ground-state wavefunction

ψe =
Ωc

0 (ξ)
∆

cos(kL x )ψg (t , r ), ρg e =ρe g =
Ωc

0 (ξ)
∆

cos(kL x )n (t , r ). (7.35)

Therefore, the force and the momentum expectation value of the atomic wavepacket read

〈F̂ c
% (t )〉=

8ħhΩ
N A w0

∫

d3rξe −2ξ2
cos2(kL x )n (t , r )≈

4ħhΩ
N A w0

∫

dy

∫

dzξe −2ξ2
n (t , y , z ), (7.36)

〈k̂ c
%〉=

1

ħh

∫ T

0

dt 〈F̂ c
% (t )〉 ≈

∫ τ f

τi

dτ
Ω

N A w0

∫

dy

∫

dzξe −2ξ2
n (τ, y , z ). (7.37)

For wavepackets with sizes larger than the wavelengthσx >λL , the interference term cos2(kL x )
vanishes with averaging over one wavelength. Then, for t = 0 the result coincides with the
impact approximation (7.31), which was derived from the steady-state solutions of the inter-
action with one laser.

Transverse momentum kick

The approximative results for collimated laser beams 〈k c
%〉 (7.37) and additionally using the

steady-state solution 〈k c ,s t
% 〉 (7.32) are compared to the full numerical expectation value 〈k̂%〉

(7.4) for different beamwaists and displacements %0 of the initial state.
The transverse intensity variations of the laser field are maximum at the minimal beamwaist.

Therefore, a vanishing distance `= (0, 0, 0) between the laser origins is chosen, coinciding with
the atomic initial position in propagation direction x0 = 0. The initial state is a time expanded
Gaussian wavepacket with symmetrical width in positionσx = 1.25µm and momentum space
σk = 0.1kL . To address the deep-Bragg regime the Rabi frequency Ω(%0 = 0) = 2ωr is used to
apply rectangular π-pulses of widths τ̃Rπ(Ω(r 0))(6.32) considering the local Rabi frequency at
the initial position r 0 = (x0, y0, z0) (7.2). The displacement is x0 = z0 = 0, y0 =%0 = ξ0w0 with
ξ= {0.1, 0.5, 1}.The results are depicted in Fig. 7.8.

As predicted from the steady-state approximation (7.30), the transverse momentum kick
reduces with increasing the beamwaist and in contrast, it increases for larger atomic dis-
placements. However, while this approximation has a negative parity for the detuning, the
numerical results show, that also the absolute value of the momentum kick depends on the
sign of∆. This cannot be described with the steady-state approximation, not even without
making use the separation of frequencies, i.e. using Eq. (7.27). Applying Eq. (7.27) leads to
relative differences < 10−7 in comparison to Eq. (7.28), which are negligible, because the
relative differences between the numerical results and the steady-state approximation are
in the range of 10−1. The deviation to the analytical approximation (7.30) is quantified with
comparing the numerical slope m of 〈ky 〉 ≈m/w0 (for w0 > 10µm) with the analytical slope

mπ = sgn(∆)4πξ0 of 〈k c ,s t
%,π 〉|%0

=mπ/w0. Comparing the ratio ζ
sgn(∆)
ξ0

=m/mπ for different
atomic displacements ζ0 as well as a positive and negative detuning∆ reveals

ζ
sgn(∆)
ξ0
≡

m

mπ
≈
〈ky 〉
〈k c ,s t
%,π 〉|%0

, ζ±0.1 = 1∓0.123, ζ±0.5 = 1∓0.075, ζ±1 = 1∓0.017. (7.38)

Here, mπ = [m (∆> 0) +m (∆< 0)]/2 gives indeed exactly the mean of the numerical slopes
for positive and negative detuning. For small ratiosσx /w0 ® 1/10 the spatial variations over
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Figure 7.8: Momentum kick in y -direction due to the reactive force, depending on the beamwaist, for
different atomic initial positions y0 = ξ0w0 and blue detuned lasers (left) respectively red
detuning (right). The numerical results for Laguerre-Gaussian beams including wavefront
curvature 〈ky 〉 (7.4) are compared to the results for collimated laser beams 〈k c

y 〉 (7.37), the

spatially averaged steady-state approximation 〈k c ,s t
y 〉 (7.32) and the local value of the steady-

state approximation 〈k c ,s t
y 〉|y0

(7.29). A rectangular π-pulse of width τ̃Rπ(Ω(r 0)) is applied
with Ω= 2ωr , using the atom and laser parameters of Tables A.1 and A.2.

the expansion of the atomic wavepacket becomes relevant. Therefore, the results differ from
the linear behaviour. The spatial average 〈k c ,s t

y 〉 (7.32) qualitatively confirms this. Its absolute
value gives the mean of the numerical results for∆> 0 and∆< 0. As expected, it coincides
with the local value 〈k c ,s t

y 〉|y0
(7.29) as long as the beamwaist is much larger than the atomic

sizeσx /w0 ® 1/15.
The collimated beam approximation, calculated with the reactive force, shows no visible

difference to the results taking wavefront curvature into account. The maximum difference
is in the range of some per mille for extremely small beamwaists and decreases rapidly for
increasing w0. For beamwaists in the range of millimetres the transverse momentum kick,
even if it is much larger than the momentum kick due to wavefront curvature, it is rather small.
Only for a displacement y0 ¦ 0.7 w0 the component reaches one per mille of the laser photon
momentum kL .

To analyse further the dependency on the displacement, the results for one beamwaist
w0 = 25µm but different σx = {1.25, 2.5, 5}µm are depicted in Fig. 7.9. For smaller ratios
σx /w0 the numerical results confirm the linear behaviour 〈k%〉∝% as predicted by the local
steady-state approximation 〈k c ,s t

% 〉%0
. For larger ratios, the difference of the momentum kicks

over the spatial expansion size of the wavepacket cannot be neglected any longer. The averaged
steady-state approximation can describe this behaviour, deviating from the linear relation.
However, its absolute value gives furthermore only the mean value of the numerical results
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Figure 7.9: Momentum kick in y -direction due to the reactive force, depending on the atomic initial
positions y0 for a beamwaist w0 = 25µm and symmetrical atomic initial states (2.59) of
widthσx = {1.25,2.5,5}µm (from left to right) andσk = 0.1kL . The plus marks the results
for ∆ > 0 and the minus respectively ∆ < 0. A rectangular π-pulse of width τ̃R ,π(Ω(r 0))
(6.32) with Ω= 2ωr is applied, using the atom and laser parameters of Tables A.1 and A.2.
Top: The numerical results for Laguerre-Gaussian beams including wavefront curvature
〈ky 〉 (7.4) are compared to the results for collimated laser beams 〈k c

y 〉 (7.37), the spatially

averaged steady-state approximation 〈k c ,s t
y 〉 (7.32) and the local value of the steady-state

approximation 〈k c ,s t
y 〉y0

(7.29). Bottom: The mirror-momentum 〈ky ,+〉 (7.4) differs from the
total transverse momentum 〈ky 〉. The latter can be approximated by the scaled result for
w ′0 = 12.5µm according to 〈ky (w0)〉= 〈ky (w ′0)〉w

′
0/w0 (7.30).

for positive and negative detuning. Here, the deviations to the approximated analytical slope
mπ = 4π/w0 of 〈k c ,s t

%,π 〉|%0
=mπξ0 (7.30) due to large atomic expansions are

ζ
sgn(∆)
w0/σx
≡

m

mπ
, ζ+20 = 0.88, ζ−20 = 1.10, ζ+10 = 0.84, ζ−10 = 1.04, ζ+5 = 0.69, ζ−5 = 0.83, (7.39)

where m is the slope of a linear approximation of 〈k̂y 〉=mξ0 up to y0 = 0.2w0. The momen-
tum kick of the mirror-state 〈ky ,+〉 (7.4) is also shown in Fig. 7.9. It depends strongly on the
beamsplitter efficiency and therefore it deviates from the total momentum kick 〈ky 〉. The
apparent oscillations arise due to the changing gradient of the lasers’ transverse intensity
modulations. This is why those increase for larger initial states. The actual value of 〈ky ,+〉
depends on the individual values ofσx and w0. In contrast, the total kick 〈ky 〉 is approximately
scalable according to 〈ky 〉= 〈k ′y 〉w

′
0/w0 (7.30).
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Transverse momentum stretching

In addition to the centre-of-mass momentum kick, the spatial dependence of the dipole force
leads to a stretching or squeezing of the wavepacket’s momentum distribution
σk =

p

〈k 2〉− 〈k 〉2 as depicted in Fig. 7.10. Obviously, the effects increase for larger ratios
σx /w0. The momentum width in z -direction is stretched for∆> 0 and squeezed for∆< 0,
but is mainly independent of the transverse displacement y0. For small displacements y0, this
applies also for the displacement direction y , but it can reverse due to the varying intensity
gradient of the lasers’ spatial envelopes. For the total momentum widthσky

the behaviour
is approximately symmetric around the initial value σk (0) = 0.1kL for changing the sign of
the detuning. In contrast, the momentum width of the mirror-wavepacket shows a clearly
asymmetric chracteristic. While the shown effect are considerable for these small beamwaists,
they stay qualitatively similar for larger beamwaists but quantitatively they are much smaller.
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Figure 7.10: Stretching of the momentum width (initially σk = 0.1kL ) of the y - and z -direction, de-
pending on the atomic initial positions y0 for a beamwaist w0 = 25µm, different ratios
σx /w0 and positive as well as negative detuning. A rectangularπ-pulse of width τ̃Rπ(Ω(r 0))
is applied with Ω= 2ωr , using the atom and laser parameters of Tables A.1 and A.2.

2 D A P P R O X I M AT I O N It is worth mentioning, that also for these large ratiosσx /w0 ≤ 1/10
and small beamwaists w0 ∼ (101−102)µm, 2D simulations provide useful predictions for the
transverse momentum kick as well as momentum stretching. This saves an enormous amount
of computational time, while differing from the full 3D solution only in the range of ® 2% for
σx /w0 = 1/10 and even < 10% forσx /w0 = 1/5 (besides the results for 〈ky ,+〉).

C O N C L U S I O N The investigation on the radiation force shows that the main effects of the
spatial variations of the LG-beams are reasoned by the dipole force, actually by the intensity
variation e −2%2/w 2

0 . This causes the transfer of transverse momentum components, leading
also to variations of the atomic density and phase distributions, visible in the momentum
space after applying a π-pulse in Fig. 7.3. Especially in Subfig. (d) around the initial value
kx =−kL , the significant shape deviations of the density and the phase are indeed caused by
the linear LG-intensity gradient at the atomic initial locationρ0 =w0/2 inside the laser region.

7.4 R E D U C E D B E A M S P L I T T I N G P E R F O R M A N C E

Beamsplitters perform best, if an atomic cloud is well localised within the beamwaist. The
radiative force reveals that the transversal dipole forces are stronger than the forces along the
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propagation direction x [cf. Sec. 7.3 and Eqs. (7.11), (7.12)]. For a Bragg mirror the fidelity F
(5.34) and diffraction efficiency η̄ (5.32) results are depicted in Fig. 7.11.
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Figure 7.11: (A) Fidelity F (Ω,σk ,σx ) (5.34) and (B) diffraction efficiency η̄ (5.32) versus two-photon Rabi
frequency Ω=Ωω2r for different atomic initial momentum widthsσk of a 3D ballistically
expanded Gaussian wavepacket (2.56) for Laguerre-Gaussian beams (solid) in comparison
to plane waves (dashed), using the (3+1)D numerical integration (2.59). Connecting the
momentum width with a temperature via Eq. (2.89) results in Ta=x ,y ,z (σk ) = {1,4,14}nK
forσk = {0.05,0.1,0.2}kL and using the root mean square of the total momentum width
in three dimensions T (σk ) = Ta/3= {0.3, 1.2, 4.8}nK. Blackman temporal envelopes with
∆τ= 2πτ̃Bπ (6.32) are applied. In columns different ratiosσx /w0 between spatial expan-
sion size of the initial state σx and the beamwaist w0 are compared and in the bottom
rows the atomic initial state is displaced in the radial direction of the LG-laser beams
%0 = y0 =w0/2. Further parameters are given in Tables A.1 and A.2.
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Indeed, small clouds centred at the symmetry point r 0 = 0 will feel the least degradation of
F and η̄ in Fig. 7.11 (a) and (b) due to dipole forces. Displacing the initial cloud transversely
to r 0 = (0, w0/2, 0) leads to larger aberrations [cf. Fig. 7.11 (e)-(h)].

For the depicted simulation results, Blackman π-pulses of width τ̃Bπ(Ω(r 0)) (6.32) are
applied, for different Rabi frequencies Ω=Ωω2r . To estimate the effective π-pulse time the
local Rabi frequencyΩ(r 0) (7.2) at the atomic initial position r 0 is considered. The results for
realistic LG-laser beams are gauged to the PW-idealisation, using the local density approach
(7.2). Ballistically expanded 3D Gaussian wavepackets (2.59) are considered as initial states
with different momentum widthsσk . In addition, different relations between the spatial initial
expansion size σx to the beamwaist w0 are studied. As in the experiment (cf. Table A.2) a
longitudinal laser displacement x̀ = 0.1 xR is considered.

For atoms located at the centre of the LG-laser beams, the spatial inhomogeneity leads to
significant aberrations only for large atomic wavepackets [cf. Fig. 7.11 (c) and (d)]. By con-
trast, even small, but displaced wavepackets show a significant reduction of the fidelity in
realistic LG-beams compared to ideal plane waves. It is detrimental for large wavepackets [cf.
Fig. 7.11 (e) - (h)]. Overall, the phase sensitive fidelity is more sensitive to aberrations due to
LG-modes. However, they are also significant for the phase insensitive diffraction efficiency,
but for point-particle like wavepacketsσx /w0 ≤ 1/50 the PW-approximation is exact.

It is remarkable, that without a displacement, for large momentum widths and especially
for large wavepackets, the LG-laser beams improve the Bragg diffraction performance at least
for certain two-photon Rabi frequencies. In general, the LG-laser beams reduce a bit the losses
into higher diffraction orders. Without any other negative effects, this would increase the
diffraction efficiency as well as the fidelity, in general. In addition, the on-resonance transfer
efficiency from initially k = (−kL ,0,0) to k ′ = (+kL ,0,0) decreases for larger ratios σx /w0

but the larger the momentum width the slower it is reduced. Therefore, in some parameter
regimes the on-resonance efficiency forσk = 0.2kL is even higher than forσk = 0.1kL , while it
is independent ofσx /w0 and almost independent ofσk for plane laser waves. This is assumed
to be the main reason, why LG-laser beams can improve the diffraction in certain cases.

Please note, that for the applied parameters the simulation results of the fidelity and the
diffraction efficiency for LG-beams only depend on the ratioσx /w0 (cf. App. B.3), not on their
individual values. The results for plane laser waves, without transversal intensity variations,
are of course independent ofσx and w0. In contrast, the transferred transverse momentum
component as well as the stretching of the momentum width, due to the transverse intensity
gradient of the LG-laser beams, depends on the individual values ofσx = 1.25µm and w0. The
results after a π-pulse for transversely displaced atoms r 0 = (0, w0/2, 0) are shown in Fig. 7.12.

For plane laser waves (PW) without transverse momentum kick 〈k PW
y 〉= 0, the momentum

widthσPW
ky ,π/σky ,0

= 1 remains constant. For LG-laser beams the normalised momentum kick

〈k LG
y 〉/〈k

c ,s t
y ,π 〉|y0

shows an approximately linear dependence on the two-photon Rabi frequency,
where the slope decreases for larger beamwaists w0. However, the absolute deviation to the
impact approximation increases for larger ratiosσx /w0 as already seen in Fig. 7.9. In addition,
the transverse momentum component of the mirror wavepacket 〈ky ,+〉 shows again larger
deviations. As expected, for extremely small wavepackets the momentum width is almost
unaffected (e), (f) but for larger ratios (c), (d) the total momentum widthσky ,π

is increased
due to the positive detuning ∆ > 0 and the initial position r 0 = (0, w0/2,0) (cf. Fig. 7.10).
The momentum width of the mirror wavepacketσky ,+,π can be stretched but also squeezed
depending on the actual simulation parameters (cf. Fig. 7.10, 7.12).
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Figure 7.12: Top: Transverse momentum kick 〈ky 〉 (solid) and 〈ky ,+〉 (dashed) (7.4) normalised to the re-
sult of the impact approximation for collimated lasers 〈k c ,s t

y ,π 〉|y0
(7.30). Bottom: Momentum

widthσky ,π (solid),σky ,+,π (dashed) normalised to the initial momentum widthσky ,0 =σk .
Everything depending on the two-photon Rabi-frequency Ω for different initial momen-
tum widthsσk and ratiosσx /w0. The parameters are equal to the parameters used for the
results of Fig. 7.11 with the atomic initial position r 0 = (0, w0/2, 0).

7.5 M I S A L I G N M E N T

Misalignment of the laser beams, building the optical grating for the atomic diffraction, is
defined by a transversal displacement and a tilt. For displacements, the intensity maxima
of both lasers no longer coincide, and for tilts, the lasers are no longer exactly in opposite
directions. Effectively, this leads to a reduction of the diffraction efficiency and the transfer of
transverse momentum components to the atomic wavepacket.

7.5.1 Spatial profile of misaligned laser beams

The misalignment is parametrised in relation to the orientation of laser 1, shown in Fig. 7.13.

y2
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z2
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x
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x1

y1
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y
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`

Figure 7.13: Two counterpropagating Laguerre-Gaussian laser beams, with their intrinsic reference
frames Sl=1,2, build a standing light field, interacting with an atomic cloud (green). The
reference frame S , used for the theoretical description, is centred at the atomic centre-of-
mass position and orientated like laser 1. The distance between the origins O and O1 is |d |
and the distance between O1 and O2 is |`|.
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The spatio-temporal profiles [cf. Eq. (2.23)] of the misaligned laser beams l = {1, 2} are defined
by

Ol =Ωl (t , r )e −iφl (t ,x ) =Ω0,l f (t )u (r l )e
−iφl (t ,x ), φl =ωl t −kl xl , (7.40)

with the time-dependent phase of a plane wave φl . The intrinsic coordinates r l = M −1
l r

are defined by the geometrical transformations Ml from the intrinsic laser frame Sl to the
simulation frame S (cf. Sec. 3.4.2). While for plane waves there are no spatial variations with
u PW

l (r l ) = 1, the spatial envelope of a LG-beam reads (cf. Sec. 2.2.2)

u LG
l (r l ) =

w0

w (xl )
exp

�

−
y 2

l + z 2
l

w (xl )2

�

exp

�

i kl
y 2

l + z 2
l

2R (xl )
− iζ(xl )

�

. (7.41)

A F F I N E T R A N S F O R M AT I O N S The origin of laser 1 is shifted with a translation M1 = T1 =
T (d ) [cf. Eq. (3.54)], where d is the distance between the origins of the coordinate systems S
and S1. For laser 2 the reflection (Sy z )i j = (−1)i jδi j on the y z -plane serves for the counter-
propagation. Now, a tilt is taken into account with the rotation R (α,β , 0) (3.57), with intrinsic
rotations around the z -, y ′-, x ′′-axis. In addition to the shift d the distance between both
laser origins ` is considered in T2 = T (d −`). In combination this results in the transformation
matrix M2 = T (d − `).R (α,β ,0).Sy z . For α and β the small-angle approximation (3.59) with
cos(θ )≈ 1 and sin(θ )≈ θ is appropriate for realistic scales of tilts in the range of few degrees,
even for θ < 8◦ the relative errors are less than one percent. Therefore, the coordinates of the
intrinsic laser frames read

x1 = x +dx , y1 = y +d y , z1 = z +dz . (7.42a)

x2 =−x̃ −α ỹ +β z̃ , y2 = ỹ −αx̃ , z2 = z̃ +β x̃ +αβ ỹ , (7.42b)

using the abbreviation ã = a1− à , a ∈ {x , y , z }.

G A L I L E A N T R A N S F O R M AT I O N Beneath the static transformations (7.42), the transforma-
tion into a comoving, rotating frame, similar to the transformation in Sec. 5.3.1, needs to be
considered. Within the active Galilean transformation |ψ(t )〉= Ĝ |ψ′(t )〉 the Rabi frequencies
are shifted (3.51)

Ω′l (t , r̂ ) =Ωl (t , r̂ l + r(t )), r(t ) = vg t e x . (7.43)

Therefore, the Doppler shifted plane-wave laser phasesφ′l =ωl t −kl (x̂l + vg t ),

φ′1 =ω1t −k1(x̂ + vg t +dx ) =ωL t −k1(x̂ +dx ), (7.44a)

φ′2 =ω2t +k2(x̃ + vg t +α ỹ −β z̃ ) =ωL t +k2(x̂ +dx − x̀ +α ỹ −β z̃ ), (7.44b)

still oscillate synchronously withωL = (ω1+ω2)[1− (vg /c )2]/2≈ (ω1+ω2)/2 (5.20).

C O R O TAT I N G F R A M E The additional local frame transformation |ψ′〉= F̂ |ψ′′〉with

F̂ (t ) = exp
�

−iωg t − iωL t σ̂e +
i

2
(k 12r̂ −χ12)σ̂z

�

, (7.45)

eliminates the rapid temporal oscillations. Applying

k 12 =
1

2

�

∆k ,−α
�

kL −
∆k

2

�

,β
�

kL −
∆k

2

��

, (7.46)

χ12 =−
k2

2

�

x̀ +α(d y − ỳ )−β (dz − z̀ )
�

−
∆k dx

2
, (7.47)
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with∆k = k1−k2, symmetrises the phases to

φ′′1 =−φ
′′
2 =−kL

�

x̂ +dx −
x̀

2

�

−
α

2
kL ỹ +

β

2
kL z̃ +

∆k

2

�

α ỹ −β z̃ − x̀

2

�

. (7.48)

Here, all terms scaling with∆k can be safely neglected, because∆k≪ kL , establishing again
the single spatial period λL = 2π/kL . However, the additional momentum k 12 appears in the
transformed Schrödinger equation iħh∂t |ψ′′〉= Ĥ ′′|ψ′′〉within

Ĥ ′′ =
(p̂ + 1

2ħhk 12σ̂z )2

2M
−ħh∆σ̂e +

ħh
2
σ̂†
�

Ω1(t )u (r̂ 1+ r(t ))e
−iφ′′1 (r̂ )

+Ω2(t )u (r̂ 2+ r(t ))e
iφ′′1 (r̂ )

�

+h.c.

(7.49)

Without a relative tilt α = β = 0 the momentum k 12 = (
∆k

2 ,0,0) is negligible. In addition,
for idealised plane waves, with u (r ) = 1, k 12(α,β ) (7.46) can be neglected also for small
misalignments α,β ≤ 8◦. In contrast, for LG-beams, due to their spatial envelope, k 12(α,β ) is
only negligible for almost vanishing tilts. Therefore, another local frame transformation F̂
(7.45) with

k 12 =
�

∆k

2
, 0, 0

�

, χ12 =−
k2 x̀ +∆k dx

2
(7.50)

is more reasonable. This results in the antisymmetric phases

φ′′1 =−kL

�

x̂ +dx −
x̀

2

�

−
∆k x̀

4
≈−kL

�

x̂ +dx −
x̀

2

�

, (7.51a)

φ′′2 = kL

�

x̂ +dx −
x̀

2
+α ỹ −β z̃

�

+
∆k

2

�

x̀

2
−α ỹ +β z̃

�

≈ kL

�

x̂ +dx −
x̀

2

�

+kLα ỹ −kLβ z̃ .

(7.51b)
However, without tilts they are again symmetric.

As already explained for LG-laser beams without misalignment (cf. Sec. 5.3.1), the time
dependence of the spatial envelope is negligible uG (r l + r(t )) ≈ uG (r l ) for r(t ) = vg t e x , as
long as w0 >σx >λL > vg t . For the group velocity vg =ω2r /2kL and mirror times in the quasi
Bragg regime of the order tπ ∼ 1/ω2r , the distance vg t is of the order 1/2kL ≈ 0.1µm−1 <λL .
Therefore, r(t ) can be safely neglected in the slowly varying beam parameters wl = w (xl ),
Rl =R (xl ) and ζl = ζ(xl ) of the spatial envelope u LG

l (r l ) (7.41). Finally, the spatio-temporal
Rabi frequencies of both LG-laser beams read

Ωl (t , r )≡Ω′′l (t , r ) =Ω0,l f (t )
w0

wl
e
−

y 2
l +z 2

l
w 2

l e −iΦl , Φl =φ
′′
l −kL

y 2
l + z 2

l

2Rl
+ζl . (7.52)

Collimated beams with xR �w0�λL can be approximated with

Ωc
l (t , r ) =Ω0,l f (t )e

−
y 2
l +z 2

l
w 2

0 e −iφ′′l , (7.53)

because in this case, for relevant propagation distances wl ≈w0, ζl ≈ 0 and Rl →∞.

Including a shifted coordinate origin x0 = (χ1−χ2)/2kL+ x̀ /2−dx−∆k x̀ /4kL in the Galilean
transformation r(t ) = x0+ vg t e x (7.43) for the proper gauge χ12 = (χ1+χ2−k2 x̀ −∆k dx )/2
possible global laser phases χl vanish. This simplifies the corotating phases for α=β = 0 to
φ′′1 = −φ

′′
2 = −kL x̂ . However, the shift x0 must be considered for the location of the atomic

cloud r ′0 = r 0 + x0e x . For reasonable numerical grid sizes xmax ∼ 5σx ∼ 10µm− 1 mm, just
covering the spatial extent of the initial state, the shifts (χ1−χ2)/2kL ≤ 0.4µm and∆k x̀ /4kL ®
10−6µm can be easily taken into account. The latter is generally negligible. In contrast, x̀ /2−dx

vanishes for symmetrical setups dx = x̀ /2 but it can also be in the range of centimetres.
Therefore, it is advisable to keep x= 0 for the common case of vanishing global laser phases.



7.5 M I S A L I G N M E N T 105

7.5.2 Aberrations due to misalignment

The aberration analysis is restricted to misalignments in two dimensions. Still, there are plenty
possibilities of misaligning the laser beams. However, many of them can be categorised within
three types of scenarios, depicted in Fig. 7.14.
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Figure 7.14: Different scenarios of laser misalignment. The lasers are symmetrically displaced in
x -direction to ± x̀ and the atoms (grey) are located at the origin. (a) Laser 2 is mis-
aligned with a transversal displacement ỳ . Additionally, laser 2 is tilted by the angles
(b) tanα1 = ỳ / x̀ and (c) tanα2 = 2 ỳ / x̀ .

First of all, one laser origin can be transversally displaced by ỳ in relation to the other laser
origin. Secondly, this shift can be compensated by a tilt, wherefore at the origin of laser 1 both
lasers overlap perfectly, resulting in the tilt angle tanα1 = ỳ / x̀ . At least, a shift of laser 2 can
also be compensated by a tilt tanα2 = 2 ỳ / x̀ , wherefore both lasers overlap perfectly at the
position of the atoms, here longitudinally exactly in the middle between both laser origins. A
longitudinal displacement of the atoms is not studied, because the variations of the radiative
force are negligible in this direction for relevant displacements (cf. Eq. 7.11).

The maximum transversal displacement is expected as ỳ ≤ 2w0. In this case the two inten-
sity maxima can be distinguished experimentally, revealing the misalignment. Therefore, the
maximum tilt angles result in tanα j ≤ 2 j w0/ x̀ . Regarding a longitudinal distance between
both lasers of x̀ = 0.1xR = 0.1πw 2

0 /λL the angles are tanα j ≤ 2 jλL/(0.1πw0) for typical laser
parameters (cf. Tab. A.2) smaller than one degree. However, it is worth mentioning that the sim-
ulations can be used as long as the small-angle approximation (3.59) is appropriate. Therefore,
tanα j ≈α j ≤ 8◦ requests w0 ≥ 70µm. The simulation results are depicted in Fig. 7.15.

The initial states are represented by ballistically expanded isotropic Gaussian wavepackets
(2.59) with different expansion sizesσx = {1/50,1/20}w0 = {1.4,3.5}µm for w0 = 70µm and
momentum widths σk = {0.05,0.1,0.2}kL , centred at r 0 = (0,0,0). Blackman mirror-pulses
of width τ̃Bπ(Ω) (6.32) and total interaction time∆τ= 2πτ̃Bπ(Ω) are analysed, considering a
two-photon Rabi frequency Ω= 4ωr . The results for realistic LG-laser beams are gauged to
the idealised case with plane laser waves. Here, without any misalignment in z -direction, the
momentum properties 〈kz 〉 andσkz

of the final wavepacket stay unaffected.
Without a tilt [cf. Fig. 7.15 (a)] the results for plane waves, taking no spatial confinement at

all into account corresponding to w0→∞, are obviously independent of the transversal laser
shift ỳ . In addition, as expected no transverse momentum is transferred and the momentum
width is unaffected. For LG-laser beams, both the fidelity F and the diffraction efficiency η̄ are
reduced and even vanish for large transversal laser displacements ỳ . The similar behaviour
of F and η̄ indicates, that the main reason therefore is the reduced Rabi frequency (7.52)
of laser 2 at the location of the atomic cloud. That is the reason why the pulse width τ̃Bπ is
no longer optimal. In contrast to plane waves, there is indeed a transverse momentum kick
(practically independent of the initial momentum width) and stretching of the momentum
width, but both are negligibly small. Besides the modification of the momentum width, the
fidelity, efficiency and momentum kick is nearly independent of the ratioσx /w0.
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Figure 7.15: Fidelity F (5.34), diffraction efficiency η̄ (5.32), transverse momentum 〈ky 〉 (7.4) and nor-
malised transverse momentum widthσky ,π/σky ,0 depending on the transverse shift ỳ of
laser 2 for different tilts (a) α= 0, (b) tanα1 = ỳ / x̀ and (c) tanα2 = 2 ỳ / x̀ . The atomic ini-
tial states are 3D ballistically expanded Gaussian wavepackets (2.59) centred at r 0 = (0, 0, 0),
k 0 = (−kL ,0,0) with expansions (A) σx = w0/50 = 1.4µm, (B) σx = w0/20 = 3.5µm and
momentum widthsσk = {0.05, 0.1, 0.2}kL . Blackman π-pulses of width τ̃Bπ (6.32) are ap-
plied with two-photon Rabi frequencyΩ= 4ωr for Laguerre-Gaussian beams (w0 = 70µm,

x̀ = 0.1xR ) in comparison to plane waves. Further parameters are given in Tabs. A.1, A.2.
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For the tilt α1 [cf. Fig. 7.15 (b)] the diffraction efficiency for plane waves remains constant,
while the fidelity is reduced for increasing ỳ . For LG-beams the efficiency is less reduced
than for α= 0, due to the larger effective two-photon Rabi frequency at the atomic position.
The fidelity is also less reduced, but it differs clearly from the diffraction efficiency due to the
transverse momentum kick. In the PW-approximation this kick follows, almost independently
of the widths σx , σk , the linear relation 〈ky 〉/kL = sin[arctan

�

ỳ / x̀

�

] ≈ ỳ / x̀ . For LG-beams
the momentum kick deviates from the linear relation for ỳ >w0, due to the additional kick
due to the intensity variation of laser 2 at the atomic position (cf. Sec. 7.3.2).

Finally, for the tilt α2 [cf. Fig. 7.15 (c)] the local two-photon Rabi frequency at the atomic
position is approximately the same as without misalignment. Therefore, the diffraction ef-
ficiency is almost independent of the transversal laser displacement ỳ . In contrast, the
fidelity is even more impaired as for the half angle α1 = α2/2 (b), due to the larger trans-
verse momentum kick. Additionally, this reduction depends strongly on the ratio σx /w0.
In this scenario (c), also for LG-beams the momentum kick shows the linear behaviour
〈ky 〉/kL = sin[arctan

�

2 ỳ / x̀

�

] ≈ 2 ỳ / x̀ , almost independent of the widths σx , σk . The mo-
mentum stretching is also almost independent of the spatial extentσx and in total less than
for α1 (b). On the whole, for the tilt angle α2 (c) the results for LG-beams are well described in
the PW-approximation as long asσx /w0 ≤ 1/20; only for the momentum stretching a differ-
ence is visible to the eye. It is worth mentioning, that for all scenarios the smaller the initial
momentum width the stronger it is relatively affected.

7.5.3 Comparison with on-ground experiments

To verify the predictions of the simulations of misaligned laser beams, they are gauged to
experimentally measured [1] first-order diffraction efficiencies in the deep-Bragg regime (6.56)
of partially condensed clouds (cf. Sec. 6.6.2).

Experimental scenario

In general, the experimental setup complies with that one to verify the Demkov-Kunike model
in Section 6.6.1. For the misalignment measurements, the atom chip apparatus prepares
Bose-condensed 87Rb atoms, with a condensate fraction of N c = (15±1)×103 and a quantum
depletion of N t = (11±1)×103 atoms. The trap frequencies are still [ωx ,ωy ,ωz ] = 2π ×
[46(2), 18(1), 31(1)]Hz. The wavelength is slightly but irrelevantly different λL = 780.0451 nm.

Bimodal fits (2.90) of TOF-measurements lead to the thermal cloud temperature
T ≤ (10.5±3.0)nK (cf. App. E.2.1). Two different TOF = {12,19}ms before the diffraction
pulses are compared, during which the atoms fall vertically towards nadir. Therefore, the
atoms are located at z0 = (0.75±0.03)ωr = (1040±48)µm, respectively z0 = (−0.02±0.03)ωr =
(−24±48)µm as identified in App. E.2.2. The related widthsσx ® 20µm�w0 = 1386µm are
again negligible and the PW-approximation is appropriate.

M O M E N T U M D I S T R I B U T I O N O F T H E PA R T LY C O N D E N S E D C L O U D The momentum
distribution of the condensate is determined by Jan Teske with solving the (3+1)D Gross-
Pitaevskii equation (2.68) for the given parameters of Table A.1 and the different TOF before the
diffraction pulses (cf. Sec. 2.3.5). The doubly-integrated momentum density distribution of the
BEC at the beginning of the diffraction pulses nc

i (κ, κ̄)≈ ñc (κ, κ̄) (6.67), can be approximated
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with a Gaussian distribution (6.71) of width σc
k = (0.094± 0.001)kL [(0.096± 0.001)kL ]8 for

TOF = 12 ms [19 ms], as depicted in Fig. 7.16. The thermal cloud is approximately a Gaussian
distribution, where the marginal, one-dimensional momentum width is independent of the
TOFσt

k = (0.137±0.003)kL (cf. App. E.2.1). The central momentum κ̄ is derived in the following.

Figure 7.16: One-dimensional den-
sity n= p c nc +p t nt (6.60), with p c =
0.58, p t = 0.52, versus momentum
kx , respectively momentum detun-
ing κ. The thermal cloud nt as well
as the condensate nc , can be approx-
imated with a Gaussian distribution
na={c ,t } ≈ ña (6.71). The distributions
nc for different TOF are almost iden-
tical, here it is TOF = 12 ms. −2.0 −1.5 −1.0 −0.5 0.0

kx /kL
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D
en
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ty

−1.0 −0.5 0 0.5 1.0
κ/kL

nc

ñc
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Results

In Fig. 7.17 the velocity dispersion of the diffraction efficiency (6.56) is depicted for temporal
Gaussian pulses (PÎ = (8.4±0.8)mW, tG = τG /ω2r = 200µs), assuming an ideal laser align-
ment. A fit with the analytical model (6.72) uncovers a residual horizontal atomic initial mo-
mentum κ̄S = (0.046 ± 0.012)kL and determines the two-photon Rabi frequency
ΩÎ = (1.15 ± 0.01)ωr . For both, the 0.95 confidence interval defines the uncertainty. It is
worth mentioning, that the fitted Rabi frequency disagree with that one given by the laser
power (cf. Table 7.1). The reason for that is provided further on in the text.

Figure 7.17: Velocity dispersion of the
diffraction efficiency η̄+− (6.56) versus de-
tuning κ̄ of the initial central momentum
〈p̂x (τi )〉 = (−1 + κ̄S + κ̄)ħhkL , were κ̄S =
κ̄S kL = 0.046kL is a small initial velocity
of the atoms in the laboratory frame S
and κ̄ = δω/ω2r . The experimental data
is modelled with Eq. (6.72). The parame-
ters are given in Tables 7.1, A.1 and A.2.
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The influence of laser misalignment to the Rabi oscillations of the diffraction efficiency is
studied for rectangular pulses9. Sketches of the laser alignment together with the diffraction
results are depicted in Fig. 7.18. The parameters are listed in Table 7.1. For transversally optimal
laser alignment (a), the experiment for PÎ ≈ 8 mW shows a shift of the oscillation period at the
pulse length∆t = 180µs. Therefore, two numerical simulations with different two-photon
Rabi frequencies are depicted, matching the experimental data up to the first maxima (light
magenta) and the whole flow (magenta), respectively. However, both differ tremendously from
the experimental value, just as for the fit of the velocity dispersion (cf. Table 7.1). This can be
explained by an atomic displacement y0 and/or a distance ỳ between the lasers. Although
both are realistic, the atomic displacement will cause the main contribution. Together with the
TOF-scans (cf. App. E.2.2), three independent measurements constitutes a two-photon Rabi

8 For the fit of the numerical (3+1)D GP result with the Gaussian distribution (6.71) the flanks are stronger weighted
to match the 1/e width of the simulation results.

9 Unfortunately no data for Gaussian pulses were recorded, which could have been modelled with Eq. (6.72).
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Figure 7.18: Left: Laser set-ups. Right: Rabi oscillations of the diffraction of the experimental diffraction
efficiency η̄+− (6.56) (black) and numerical simulations (coloured). Rectangular pulses
with different laser powers are applied to partially condensed clouds, located at different
positions z0 ≈ 0 (magenta), z0 ≈ 0.75 w0 (green). In (a) the lasers are approximately perfectly
aligned, while in (b) one laser is shifted, repectively tilted in (c). The parameters are given
in Tables 7.1, A.1 and A.2.

frequencyΩÎ = (1.10±0.15)ωr for PÎ = 8 mW, explaining the deviation as systematic bias. With
the relation Ω′(P ′) = P ′/PΩ(P ), the expectation for P� = 17.8 mW, namely Ω� = (2.45±0.41)ωr

is also confirmed by the numerical result listed in Table 7.1. Keeping ỳ = 0 this supposes an
atomic displacement y0 ≈ 0.66w0.

The comparison with the misalignment results [cf. Fig. 7.18 (b), (c)] reveal that the laser
beams are slightly misaligned in z -direction as depicted on the left in Fig. 7.18. Even in the
ideal case (a) there could be a transversal shift z̀ = 2dz = 0.5mm, assumed to be symmetric
for simplicity. Assuming such a misalignment is appropriate, due to the generally large ex-
perimental uncertainty of the laser distance∆ z̀ ≈ 0.5 mm. However, this affects the results
for the ideal reference (a) and the TOF-scans to determine the atomic initial position only
within the uncertainty range. In contrast, for the misalignment it is crucial. For dz = 0 the
results can be simulated only with vastly different Rabi frequencies, while they are consistent
for 2dz = 0.5 mm. As expected for a shift, the effective Rabi frequency at the atomic location is
reduced, leading to a larger oscillation period in (b). For collimated laser beams, the mini-
mal tilt angle in (c) corresponds essentially to a shift. Therefore, the oscillation period of the
diffraction results lies correctly in between the results of (a) and (b), because at x = 0 this shift
in (c) is smaller than the shift in (b).
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For some simulations the damping of the amplitude due to the finite momentum widthsσk

and the initial momentum detuning κ̄S is under estimated. However, assuming for example
the same momentum width for the condensate as for the thermal cloud, which is similar to
taking p c = 0 can reduce the maxima of the Rabi oscillations. In total, the simulations can
describe the experimental data quite well.

PÎ ≈ 8 mW P� ≈ 18mW

p c 0.58±0.04
σc

k (0.096±0.001)kL (0.094±0.001)kL

σt
k (0.137±0.003)kL

Velocity dispersion with Gaussian pulses (Fig. 7.17)

exp.
P (8.4±0.8)mW
Ω (2.13), (5.43) (2.77±0.28)ωr

∆t = 8τG /ω2r 200µs

ana.
Ω (1.15±0.01)ωr

κ̄S (0.046±0.015)kL

Rabi oscillations with rectangular pulses (Fig. 7.18)

exp.
z0 (−0.02±0.03) w0 (0.75±0.03) w0

dz (0.0±2.5)mm

num.
z0 −0.02 w0 0.72 w0

dz 0.25 mm
(a)

exp.
P (8.4±0.8)mW (17.8±1.8)mW
Ω (2.13), (5.43) (2.77±0.28)ωr (5.87±0.59)ωr

z̀ (0.0±0.5)mm

num.
Ω {1.1, 1.3}ωr 2.5ωr

z̀ 0.5 mm
(b)

exp.
P (8.45±0.85)mW (17.3±1.7)mW
Ω (2.13), (5.43) (2.79±0.28)ωr (5.70±0.57)ωr

z̀ (1.5±0.5)mm

num.
Ω 1.1ωr 2.5ωr

z̀ 1.2 mm
(c)

exp.

P (8.2±8.2)mW (17.4±1.7)mW
Ω (2.13), (5.43) (2.70±0.27)ωr (5.74±0.57)ωr

z̀ (0.0±0.5)mm

z̀
′ (1.5±0.5)mm
α 0.37◦±0.17◦

num.

Ω 1.0ωr 2.5ωr

z̀ 0.5 mm

z̀
′ 1.1 mm
α 0.15◦

Table 7.1: Parameters of the results in Fig. 7.18 for the experiment (exp.), the numerical simulation
(num.) and the analytical approximation (6.72) (ana.): condensate fraction p c , momentum
width of the condensateσc

k and the quantum depletionσt
k , laser power P , maximum two-

photon Rabi frequencyΩ, total interaction time∆t , initial atomic momentum in x -direction
ħh κ̄S , initial atomic position z0, laser shift dz and distance between lasers z̀ in z -direction,
tilt angle α and laser distance due to the tilt z̀

′.
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E M I S S I O N

Spontaneous emission [14] constitutes an incoherent aberration, diminishing the coherent
Bragg diffraction. For an extremely large laser detuning∆≫ Γ the excited state stays practi-
cally unpopulated, which is why spontaneous emission is negligible, because the probability
δp =δt Γpe (3.30) of a quantum jump is proportional to the excited state population pe . For
the so far studied Bragg diffraction mirror pulses ∆ ≈ 16000Γ , wherefore pe ∼ 10−7, while
δt Γ ∼ 1. This leads to δp ∼ 10−7 and quantum jumps virtually do not occur.

However, in general, spontaneous emission is ubiquitous. For that reason, the effect of
spontaneous emission is studied for resonant diffraction (∆= 0) with only one laser beam in
Section 8.1 and for far detuned atomic Bragg diffraction in Section 8.2. Therefore, the Quantum
Monte Carlo wavefunction method, derived in Section 3.3.1, is used. It provides a stochastic
solution of the Schrödinger equation, respecting the incoherent effects, rather than solving
explicitly the master equation, which also takes dissipation into account.

8.1 R E S O N A N T D I F F R A C T I O N W I T H S P O N TA N E O U S E M I S S I O N

To demonstrate the potentially tremendous impact, resonant diffraction with one laser beam,
propagating exactly in x -direction, is studied. Here, the impact of the radiation pressure Frp,
i.e.

Frp ≡ 〈F̂ 〉=
Γ

2

s

1+ s
ħhkL , s =

|Ω0|2

2(∆2
D + Γ 2/4)

, (8.1)

can be easily observed by the transferred longitudinal momentum expectation value, defined
in the impact approximation by∆p = F∆t resulting in

krp =
T

ħh
Frp,= kL T

Γ

2

|Ω0|2/2
|Ω0|2/2+∆2

D + Γ 2/4
, (8.2)

for rectangular pulses with pulse duration T . The radiation pressure (8.1) results from the ra-
diative force operator (7.9), considering only the radiation pressure component in x -direction
βx ≈−kL (7.10),(7.12) for collimated laser beams. To estimate the force expectation value, the
impact approximation in the semiclassical limit (cf. Sec. 7.3.2) is used with the solution (7.24)
leading straightforward to the result Frp (8.1). Please note that an atomic initial velocity v 0 is
considered within the Doppler-shifted detuning∆D =∆−k L v 0.

As usual, the initial state is an expanded isotropic coherent Gaussian wavepacket (2.59)
purely in the ground state, centred at r 0 = (0,0,0), k 0 = (−kL ,0,0) with widths σx = 1.5µm,
σk = 0.1kL . It interacts with a LG-laser beam that propagates exactly in x -direction, with
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w0 = 30µm, and thereforeσx /w0 = 1/20. Rectangular pulses with one-photon Rabi frequen-
cies Ω0 = {0.5, 1}Γ are applied. In Fig. 8.1 the results of the quantum Monte-Carlo simulation
(cf. Sec. 3.3.1) are depicted, averaging over 100 trajectories.

For the simulations with LG-laser beams 135 [302] quantum jumps occur for Ω0 = 0.5Γ
[Ω0 = 1Γ ] and for the plane-wave approximation 120 [304]. The population of the excited state
increases rapidly, reaching a significant equilibrium. The momentum expectation value 〈kx 〉
growths approximately according to the linear model of the radiation pressure krp (8.2). In the
transversal directions the momentum expectation values 〈ky 〉 ≈ 〈kz 〉 ≈ 0 oscillate around zero,
due to the randomly directed emission of photons. The standard deviation of the momentum

σka
=
Æ

〈k 2
a 〉− 〈ka 〉2 of all dimensions a = {x , y , z } increases due to heating1 the atomic initial

state, here a single coherent state at temperature T = 0 K. The coherent diffraction processes in
x -direction additionally promote the growth of the momentum widthσkx

due to acceleration.
Due to the short interaction time tmax = 0.26µs, the initial and final density distributions in
the position space are practically identical. In contrast, the momentum density distribution
demonstrates the large expansion to larger momenta due to the radiation pressure.
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Figure 8.1: Quantum Monte Carlo calculations of the resonant diffraction with one laser beam under
consideration of spontaneous emission, with averaging over 100 quantum trajectories.
Left: (a) Population p , (b) momentum expectation value 〈k 〉 and (c) momentum width
σk versus time t . Right: Column integrated density (7.3) [normalised with Nr = Nk = 1,
cf. (7.3)] in position (d) and momentum space (e). All results are depicted for ∆ = 0 but
two Rabi frequencies Ω0 = {0.5,1}Γ . The results for Laguerre-Gaussian laser beams with
w0 = 30µm are compared to the plane-wave approximation. The atomic initial state is an
expanded Gaussian wavepacket located at r 0 = (0, 0, 0), k 0 = (−kL , 0, 0) of widthσx = 1.5µm,
σk = 0.1 kL .

1 In order to simulate laser-cooling, the initial states for the different trajectories must be sampled from a thermal
ensemble. While this is not the intention here, the simulation methods can actually be used for this purpose.
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8.2 B R A G G D I F F R A C T I O N W I T H S P O N TA N E O U S E M I S S I O N

In order to include spontaneous emission as an aberration to Bragg diffraction, here a second,
exactly counterpropagating LG-laser beam is considered. Moderate detunings ∆B = 900Γ
and∆C = 300Γ , while maintaining∆B ,C �Ω0,Γ , are compared to the experimentally given
extremely large value∆A ≈ 16000Γ and the idealisation without any spontaneous emission
(∆→∞).

Again the atomic initial state is an expanded isotropic coherent Gaussian wavepacket (2.59)
purely in the ground state, centred at r 0 = (0,0,0), k 0 = (−kL ,0,0) with widths σx = 1.5µm,
σk = 0.1kL . A ratio σx /w0 = 1/20 with beamwaist w0 = 30µm is considered. The distance
between both laser origins is x̀ = 0.1xR , but otherwise the lasers are perfectly aligned with

ỳ = z̀ = 0, α=β = 0.

The simulation results for a rectangular pulses with two-photon Rabi frequency Ω= 2ωr

are depicted in Fig. 8.2.
For ∆A ≈ 16000Γ not a single quantum jump occurs during the interaction time of the

mirror pulse τ̃Rπ(Ω = 2ωr ) (6.32). Therefore, spontaneous emission is indeed not an issue
and as expected, the results are identical to the simulation of a single wavefunction without
spontaneous emission. This results in the diffraction efficiency η̄A = η̄∞ = 0.9303 and the
fidelity FA = F∞ = 0.9284. For ∆C = 300Γ only five quantum jumps happen for all trajecto-
ries, but the diffraction efficiency and the fidelity are already reduced by a few percent to
η̄C = 0.9044 and FC = 0.8906. However, for∆B = 900Γ just one single photon is spontaneously
emitted, but leading to η̄B = 0.9250 and FB = 0.9192.

However, in general, the results for the different detunings ∆A , ∆B and ∆C mostly look
quite similar in Fig. 8.2, due to the equal two-photon Rabi frequency. For all detunings, the
excited state population is extremely small, but it becomes a bit more populated the smaller
the detuning with p max

e ,C = 3×10−5, p max
e ,B = 9×10−6, while p max

e ,A = 3×10−7 [cf. Fig. 8.2 (a)]. The
momentum transfer from−kL to kL shows no significant difference for the different detunings
[cf. Fig. 8.2 (b)]; only for∆C a really small difference is apparent. In contrast, there is a visible
but still small difference for the momentum width, especially for∆C [cf. Fig. 8.2 (c)]. Further,
the momentum density distribution uncovers rogue momentum components also apart from
the populations around mkL , m ∈N [cf. Fig. 8.2 (f)], which force the aberrations. Therefore,
also the density distributions in the position space [cf. Fig. 8.2 (e)] differ, but only for∆C this is
significant. Please note, that these results depend strongly on the actual number of quantum
jumps, which is subject to stochastic fluctuations.

To summarise, if the detuning is extremely large ∆≫ Γ , indeed, spontaneous emission
effects can be neglected safely. However, the diffraction efficiency suffers significantly even
from one single quantum jump.
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Figure 8.2: Quantum Monte Carlo calculations of a Bragg mirror under consideration of spontaneous
emission, with averaging over 100 quantum trajectories. (a) Population p , (b) momentum
expectation value 〈k 〉 and (c) momentum widthσk versus time t . Column integrated density
(7.3) (normalised with Nr = Nk = 1) in position (d) and momentum space [(e): linear, (f)
logarithmic]. The two-photon Rabi frequency is alwaysΩ= 2ωr but different laser detunings
∆ are compared. The atomic initial state is an expanded Gaussian wavepacket located at
r 0 = (0,0,0), k 0 = (−kL ,0,0) of width σx = 1.5µm, σk = 0.1kL . The laser beamwaists are
w0 = 30µm
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S U M M A R Y O F T H E A B E R R AT I O N S O F AT O M I C B R A G G
D I F F R A C T I O N

A full three-dimensional simulation of atomic Bragg diffraction as well as straightforward
analytical approximations were demonstrated in the last Chapters 5-8. Thereby, several kinds
of ubiquitous imperfections are included and characterised, like the velocity dispersion and
the population losses into higher, off-resonantly coupled diffraction orders. Temporal as well
as spatial envelopes of the laser beams, including misalignment, are considered and finally
spontaneous emission was also taken into account.

9.1 Q U A N T I F Y A B E R R AT I O N S W I T H S U S C E P T I B I L I T I E S

To quantify and compare the influence of different aberrations several linear susceptibilities
are estimated. The influence of varying relevant parameters to force aberrations is complex.
Therefore, all parameters are kept constant, while the effect of slightly changing one parameter
is studied in first order - according to a Latin square. The quality of the Bragg diffraction is
defined by observables of interest. The phase dependent fidelity F (5.34) defines the overall
quality, responding most sensitively to all parameters. The diffraction efficiency η̄+− (5.33) is
experimentally easy to observe but less sensitive. The transverse momentum component and
width, here 〈ky 〉 (7.4) andσky

provides insights into reasons why the fidelity shows deviations
to the diffraction efficiency.

R E F E R E N C E PA R A M E T E R S Common, intermediate parameters define the starting point
of the analysis. Therefore, temporal Blackman pulses with mirror pulse widths τ̃Bπ are con-
sidered, with a moderate interaction strength Ω= 4ωr . The laser wavelength and derivative
quantities are given in Table A.2. The beamwaists are w0 = 70µm, the distance between both
laser origins is x̀ = 0.1xR , but otherwise the lasers are perfectly aligned with ỳ = z̀ = 0,
α = β = 0 (cf. 7.5.1). The initial state is an expanded isotropic Gaussian wavepacket (2.59)
with sizeσx =w0/20= 3.5µm and momentum widthσk = 0.1kL , initially localised exactly in
between the lasers r 0 = (0, 0, 0)with initial momentum k 0 = (−kL , 0, 0). The atomic parameters
are given in Table A.1.

L I N E A R S U S C E P T I B I L I T Y The linear susceptibilityχo
p of the observable o and the variation

parameter p is defined via

∆o

o0
=χo

p

∆p

p0
, ∀o0,p0 6= 0, (9.1)
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where the index 0 indicates the reference value. The relation (9.1) follows from the Taylor
expansion

o= f (p) = f (p0)+ f ′(p0)(p−p0)+ ... (9.2)

with
∆o

o0
≡
o− f (p0)

o0
=χo

p

p−p0

p0
, χo

p ≡
f ′(p0)p0

o0
. (9.3)

Assuming the following variation of the parameters, with respecting explicitly the sign of
p−p0

p± =p0±∆p, ∆p> 0, (9.4)

the related susceptibilities are defined with

∆o

o0
=χo

p±
∆p

p0
, χo

p± ≡±
f ′±(p0)p0

o0
. (9.5)

Therefore, a positive χ describes a growing of the observable with increasing the absolute
value of the variation parameter, and corresponding a negative χ a decrease. The numerical
results are summarised in Table 9.1.

For non-vanishing reference parameters p0 6= 0, the parameters are varied with∆p= 0.1p0.
This corresponds for example to the power uncertainty in the experiments (cf. Sec. 6.6, 7.5.3)
and is assumed for Ω, σk , σx , w0, x̀ and kx ,0. If the reference observable o0 or parame-
ter p0 vanishes, they cannot be used as normalisation and the susceptibilities get a phys-
ical dimension, which needs to be considered. In addition, for p0 = 0, the variation ∆p is
defined by 10% of the maximally reasonable deviation, i.e. ∆ky ,0 = ±0.1kL , ∆x0 = ±0.1 x̀ ,
∆y0 =±0.1w0,∆ ỳ =±0.1w0. For tilted laser beams, a small tilt∆α1 =±0.1×2w0/ x̀ is com-
pared to∆α2 =±0.1×4w0/ x̀ with simultaneously∆ ỳ =±0.1×4w0 according to scenario (c)
in Fig. 7.14. In particular for these parameters with p0 = 0, it is of special interest to study the
sign of the variation p± =p0±∆p, because in general, susceptibilities for the same parameter
can show different parities for the observables or even diverse amplitudes.

As listed, there are several parameters, which can force aberrations.
Large two-photon Rabi frequencies Ω lead to losses into higher diffraction orders, showing

significant but interestingly almost equal susceptibilities χF
Ω ≈ χ

η̄+−
Ω . Please note, that the

pulse widths were kept constant while varyingΩ. Therefore, theπ-pulse condition for a mirror
pulse (cf. Sec. 5.4) is missed for Ω 6= 4ωr , why the diffraction efficiency is reduced for both,
increasing and decreasing Ω. However, for larger Ω the losses into higher diffraction orders
become relevant. For that reason, it is |χF,η̄+−

Ω+ |> |χ
F,η̄+−
Ω− |.

Wavepackets with large momentum distributionsσk suffer from the velocity dispersion of
the Bragg diffraction with moderate susceptibilities, but the LG-laser beams compress the
transversal momentum width a bit.

For large expansionsσx aberrations due to the intensity variations of LG-beams become
significant, but forσx �w0 the effects are rather small. As expected, the susceptibilities forσx

and w0 have an opposite sign. The variation of the ratiosσx /w0 for χo
σx

and χo
w0

differ a little,
wherefore |χo

σx
| 6= |χo

w0
| but they are indeed on the same order. Contrary to expectations the

fidelity and diffraction efficiency improves slightly with increasing the ratioσx /w0. However,
this appears only locally for small variations, here in the regime where already approximately
the optimum is reached forσx �w0. For large ratiosσx /w0 ¦ 1/10 the efficiency is reduced
tremendously (cf. Fig. 7.11).
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p

χo
p± o

F η̄+− 〈ky 〉 σky

Ω
+ −0.2552 −0.2550 0 0.0067
− −0.1575 −0.1575 0 −0.0071

σk
+ −0.0557 −0.505 0 0.9996
− 0.0500 0.0460 0 −0.9998

σx
+ 0.0013 0.0001 0 0.0090
− −0.0020 −0.0004 0 −0.0091

w0
+ −0.0016 −0.0003 0 −0.0156
− 0.0011 0.0001 0 0.0210

x0
+ 0.0001 `−1

x 0.0001 `−1
x 0 0.0003 `−1

x
− 0.0001 `−1

x 0.0001 `−1
x 0 −0.0004 `−1

x

y0
+ −0.0306 w−1

0 −0.0041 w−1
0 0.0183 kL w−1

0 −0.0036 w−1
0

− −0.0306 w−1
0 −0.0041 w−1

0 −0.0183 kL w−1
0 −0.0036 w−1

0

x̀ ± 0 0 0 0

ỳ
+ −0.0047 w−1

0 0.0017 w−1
0 −0.0089 kL w−1

0 −0.0023 w−1
0

− −0.0047 w−1
0 0.0017 w−1

0 0.0089 kL w−1
0 −0.0023 w−1

0

α1
+ −0.4942 0.0017 0.0780 kL −0.0014
− −0.4942 0.0017 −0.0780 kL −0.0014

α2
+ −1.1872 −0.0135 0.1210 kL −0.0008
− −1.1872 −0.0135 −0.1210 kL −0.0008

kx ,0
+ −0.2561 −0.2409 0 0.0070
− −0.2615 −0.2404 0 −0.0072

ky ,0
+ −0.0159 k−1

L 0 1.0001 0
− −0.0159 k−1

L 0 −1.0001 0
∆∗ ± 0 0 0 0

Table 9.1: Linear susceptibilities χo
p± (9.5) quantify the diminishing influence of different parametersp

to the performance of a Bragg mirror, which is characterised by the observables o. A positive
(+) and negative (−) variationp± =p0±∆p is compared. For vanishing reference parameters
p0 = 0 or observables o0 = 0, the susceptibilities get a physical dimension. ∗For varying∆,
the Rabi frequency Ω0 is adjusted to keep the two-photon Rabi frequency Ω (5.43) constant.

Spatial variations and misalignment are further important drivers of aberrations. However,
the effects in the longitudinal direction, probed by a displacement x0 of the initial state and
the distance x̀ between the lasers are negligible. The transverse effects are probed with
y0, ỳ and the tilt angles α1,2. Due to the rotational symmetry of the LG-laser beams, it is
sufficient to study therefore the y -direction. Here, transverse momentum transfers occur
intuitively due to the transverse component of the tilted laser wavenumber. This reasons the
sharply different behaviour of the fidelity and the diffraction efficiency. While the population
can be still transferred very efficiently to momentums around kx =+kL the fidelity (5.34) is
reduced drastically, because the ideal final state is still defined with |ψideal〉= e 2i kL x̂ |ψi 〉, as
for optimally aligned lasers. As expected χ

F,η̄+−
y0, ỳ

are negative, because y0, ỳ 6= 0 changes the

local effective Rabi frequency, reducing the diffraction efficiency. In contrast, χ
〈ky 〉
y0, ỳ

show a

negative parity for 〈ky 〉, revealing the linear relations 〈ky 〉∝ y0 and 〈ky 〉∝− ỳ . The analytical

local impact approximation (7.30) confirms approximately χ
〈ky 〉
y0± ≈ 〈k̂

c ,s t
%,π 〉|y0=±0.1w0

/(0.1w0) =
±0.0223kL w−1

0 . The small deviation complies with the results of Sec. 7.3.2 (cf. Fig. 7.9), where
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Eq. (7.30) gives the mean of the numerical results for positive and negative laser detuning∆.
For this atomic displacement y0 the effective Rabi frequency at the location of the atoms is
slightly reduced, due to the reduced intensity of both LG-laser beams. Therefore, with keeping
the interaction time constant, theπ-pulse condition is not matched exactly, which reduces the
diffraction efficiency. For a distance ỳ the intensity of only one laser changes at the position

of the atoms, wherefore χ
F,η̄+−
ỳ

<χ
F,η̄+−
y0

and χ
〈ky 〉
y0
≈−2χ

〈ky 〉
ỳ

. Here, the definition of ỳ (cf. Sec.

3.4.2) reasons the negative sign.
For tilted laser beams the effective beamsplitter wavenumber gets a transverse momentum

component transferred to the final wavepacket. Therefore, the fidelity suffers enormously from
increasing the tilt angle, while the diffraction efficiency is almost unaffected. Even, it increases
for small angles α1, essentially because losses into higher diffraction orders are suppressed,
due to a stronger off-resonance. For increasing α2 the efficiency decreases mainly because
the diffraction efficiency for initial transverse momentum components of the wavepacket is
reduced.

The impact of a residual atomic initial velocity in x -direction is tremendous, demonstrat-
ing the strong velocity dispersion, slightly depending on the sign of the initial momentum
detuning. Small transversal momentum components reduces the fidelity while the diffraction
efficiency stays constant. Of course, the parity for 〈ky 〉 is negative, but due to the intensity
variations an additional, outward (∆> 0 cf. Sec. 7.3.2) kick occurs.

For a laser detuning in the range of the reference detuning ∆≫ Γ , aberrations due to
spontaneous emission are not an issue. Therefore, the variation of ∆ is irrelevant for the
beamsplitter performance, as long as the two-photon Rabi frequency Ω=−|Ω0|2/2∆ is kept
constant.

9.2 M I N I M I S I N G A B E R R AT I O N S O F B R A G G D I F F R A C T I O N

To conclude, Bragg scattering from standing waves is efficient only for narrow velocity spreads
of the atomic cloud, where the width is much less than the photon recoil velocity. Thereby,
the laser frequency detuning must match the resonance condition for a certain atomic initial
velocity. The spatial expansion must be much smaller than the laser beamwaist and the cloud
should be centred transversally in the laser region, a moderate longitudinal displacement
is bearable. Smooth temporal pulse shapes can optimise the diffraction in comparison to
rectangular pulses. A misalignment of the lasers should be avoided. However, this is partic-
ularly important only for small laser beamwaists. For the applied extremely large detuning
of the laser frequencies to the atomic resonance, spontaneous emission is not an issue. In
combination of the detuning with the laser power, the resulting two-photon Rabi frequency
needs to be chosen carefully to reach the optimal working regime, which depends strongly
on the momentum width of the atomic cloud. Finally, the pulse width must be precisely
coordinated with the Rabi frequency to hit the aimed pulse area.
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R A M A N V E L O C I T Y F I LT E R

The knowledge gained by the diffraction processes of ultracold, neutral atoms can be applied
to other kinds of light-matter interactions, like the interaction of alkali-like ions with classical
laser light, as introduced in Chapter 2.4. In this Part III of the thesis, the transfer and application
of the previous findings to the topic of a Raman velocity filter as a new tool for collinear laser
spectroscopy is presented. While the main content follows [102], some points are described in
more detail, here.

There is a considerable interest in the investigation of a Raman velocity filter for collinear
laser spectroscopy. In particular, the promising benefits of using Raman transitions for the
scope of ultra-precise optical high-voltage measurements establish a link between accelerator
physics to the world of quantum optics.

The corresponding comprehensive theoretical studies are based on an experiment per-
formed in the research group of Prof. Dr. W. Nörtershäuser at the Technische Universität
Darmstadt, which is shortly introduced in Section 10.2. More details can be found in the
dissertation of Dr. Kristian König [184]. The describing theoretical model is derived in Section
10.3. Finally, the results of numerical and analytical studies, presented in the frequency do-
main in Chapter 11 and in the time domain in Chapter 12, give rise for a possible realisation
of optical high-voltage measurements with spectroscopic precision.

10.1 R A M A N F I LT E R A S T O O L T O M E A S U R E H I G H V O LTA G E S

Measuring high voltages with very high precision on the ppm (parts-per-million) level and
below represents a current challenge. Using Doppler velocimetry promises to be a suitable tool.
Therefore, the ions must be prepared with an exactly known, very narrow velocity distribution,
achieved by applying stimulated Raman transitions as velocity filter.

10.1.1 Present spectroscopic high-voltage measurements

Recently, it was demonstrated that an accuracy s =∆U /U of at least a few ppm can be reached
for high voltages up to 20 kV [185] in laser spectroscopic high-voltage measurements. This
is very close to the performance of the world’s best high-voltage dividers [186, 187]. In the
corresponding measurements two transitions in calcium (40Ca+ions), shown in Fig. 10.1, have
been employed: The |g = (4s 2S1/2)〉→ |e = (4p 2P3/2)〉 resonance transition was first used to
transfer population from the ionic ground level into the metastable level |m = (3d 2D5/2)〉 via
a sequential stimulated absorption and spontaneous emission cycle. For this process the
pump laser is counterpropagating to the ion beam and the laser frequency determines the
longitudinal velocity of the ions required to match the Doppler-shifted resonance condition.
Afterwards, the ions are accelerated and the velocity of those ions that are in the metastable
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|g 〉

ω′probe
ω′pump

Γe g Γe m

|m〉

|e 〉

Ions: v Pump laser: k

Figure 10.1: Left: Three-level energy diagram for 40Ca+. Stimulated absorption and spontaneous trans-
mission transfers population from |g 〉 to |m〉, which is probed afterwards by resonant
excitation. Only ion velocities that match the Doppler-shifted laser frequencies (ω′pump,

ω′probe) are addressed. Right: The laser is counterpropagating to the ion beam.

state is determined with a probe laser tuned to the Doppler-shifted |m〉→ |e 〉 transition. The
resonance is observed using the fluorescence light emitted in the subsequent decay into
the ground state. The frequencies in the laboratory frame of both lasers are measured with
a frequency comb and are used to calculate the shift in frequency and the corresponding
acceleration voltage.

While an s = 5ppm uncertainty level has been achieved by now, one of the critical issues
is the remaining transverse emittance of the Ca+ ionic beam. Due to the 23-MHz width of
the resonance transition, ions with small angles relative to the laser beam direction, might
also be excited and the angle with respect to the laser beam might be changed during the
acceleration with the high-voltage to be measured. Even though measures to avoid this have
been taken: The ion optics of the acceleration region has been designed to suppress such
effects by accelerating in the focal region and shaping the beam afterwards again into a beam
with similar parameters (size and opening angle) as before. A second point is that several
excitations are often needed to transfer the ion from the ground state to the metastable state,
which is accompanied by uncontrollable recoil effects due to the momentum transfer in
absorption and emission.

10.1.2 Raman velocimetry

Using Raman transitions between the ground |g 〉 and the metastable state |m〉 by applying
a co- and a counterpropagating laser beam, as depicted in Fig. 1.5, promises even higher
accuracy for optical high-voltage measurements. In addition, corresponding uncertainties
with the existing excitation scheme can be reduced. The advantage is that the selectivity of
the narrow Raman transition with respect to the atoms’ initial velocity as well as to the angle
between the laser direction and the atoms’ movement is considerably higher than for the
allowed dipole transitions used so far. This will provide better control of the initial conditions
of the atoms prepared in the metastable state before the acceleration.

In the framework of this thesis, the influence of interaction time, atomic velocity, laser
linewidth and laser intensity on the efficiency of the population transfer are investigated. The
results suggest that Raman transitions can be used with available laser beams to consider-
ably improve the measurement accuracy with Ca+ ions for high-voltage measurements. This
approach will be tested experimentally in the near future by the group of Prof. Dr. W. Nörter-
shäuser and might become the basis for further improvements of laser-based high-voltage
measurements, which is of great interest for several applications like, e.g., the neutrino mass
measurement at the KATRIN experiment [186–188].
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10.2 E X P E R I M E N TA L C O N D I T I O N S

The developed theoretical treatment is based on the experimental boundary conditions at
the ‘Collinear Apparatus for Laser spectroscopy and Applied Sciences’, short COALA, at the
Technische Universität Darmstadt, where the previous high-voltage measurements were per-
formed in the group of Prof. Dr. W. Nörtershäuser. Therefore, this Section 10.2 contains the
experimental conditions, that are necessary in the framework of this thesis. For more detailed
information, please see [184]. However, the later derived models are universally applicable to
three level Λ-systems together with fast atomic motion.

The Raman spectroscopy is formed with two counterpropagating laser beams that interact
with 40Ca+, moving with velocity v in the same direction as laser 2, as depicted in Fig. 10.2.

ăIons: v

Laser 2: k2 Laser 1: k1

Figure 10.2: Two counterpropagating lasers with wavevectors k 1 =−k1e x and k 2 = k2e x interact with
the ions, which move with velocity v = v e x parallel to laser 2. Wavenumbers and scalar
velocities are positive quantities ki , v > 0.

10.2.1 Ionic velocity distribution

In the beamline, ions get accelerated by a high voltage U . For the typical value U = 14 kV, the
mean velocity v̄ can be estimated from energy conservation

e U =
M v̄ 2

2
. (10.1)

For singly charged 40Ca+, one finds v̄ = 260km/s= 8.7×10−4 c , which is much smaller than
the speed of light c and justifies a nonrelativistic treatment.

v̄
v

0

f
(v
)

∆vI

Figure 10.3: Ionic initial velocity dis-
tribution f (v ) with mean velocity v̄
and width∆vI . Note that the velocity
distribution emerging from the accel-
erator is rather flat topped.

Due to technical reasons, the ensemble emerges with
an artificial velocity distribution f (v ), which is depicted
in Fig. 10.3. It exhibits an initial residual velocity spread
∆vI = (10 − 100)m/s (full width half maximum, short
FWHM). The spectroscopy is performed in an interaction
zone of length L = 1.2 m. This gives a mean transit time

t̄ = L/v̄ = 4.62µs. (10.2)

Due to the velocity spread, an interaction time spread
∆t /t̄ =∆vI /v̄ arises. For the maximal ion velocity width
∆vI = 100m/s, one finds a time spread ∆t = 1.7ns,
which can be neglected.

For the determined interaction time, the particle flux of 100 pA generates N ≈ 3000 calcium
ions. The interaction volume is approximated with the laser region, which is assumed to
be cylindrical and defined by the length L and the radius of the laser beam, given by the
beamwaist w0 = 1.7mm, and resulting in V =πw 2

0 L ≈ 11 cm3. Finally, the very low particle
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density is at most n =N /V ≈ 3×102/cm3, as long as all ions are inside this region. Therewith,
the mean inter-particle distance is approximately r̄ ≈ 1/n 1/3 = 1.6 mm. In this dilute distribu-
tion and the short time of the spectroscopy pulse, binary interactions or other charge effects
are negligible.

Due to the large momentum uncertainty M∆vI � ħhki compared to the photon momen-
tum recoil, in this theoretical treatment mechanical light effects are disregarded (c.f. 10.3).
Therefore, the position x and the momentum of the particle p =M v can be treated as param-
eters. Consequently, observables are obtained by static averaging over the initial phase-space
distribution. Hence, the proportion of the total velocity distribution that is transferred into
the metastable state is given by the incoherent average of the metastable-state population
across the velocity distribution.

10.2.2 Spatial inhomogeneities

The laser beams as well as the ion beam have spatial intensity variations. The lasers are de-
scribed with Laguerre-Gaussian (LG) laser beams, exhibiting intensity variations in transversal
r =

p

y 2+ z 2 as well as in propagation direction x

I (x , r ) = I0

�

w0

w (x )

�2

e −2r 2/w (x )2 , (10.3)

with beamwaist w (x ) =w0

q

1+ x 2/x 2
R and Rayleigh length xR =πw 2

0 /λ. For collimated laser
beams, one can approximate w (x )≈w0, getting rid of the longitudinal intensity variations
and the spatial-dependent Rabi frequency reads

Ω(r ) =Ω0 e −r 2/w 2
0 . (10.4)

The spatial distribution of the ion beam is also assumed to be Gaussian of widthσ

g (r ) =
1

2πσ2
e −r 2/(2σ2). (10.5)

As for the velocity distribution, observables are obtained by static averaging over these spatial
distributions.

If the ion beam is much smaller than the laser beamsσ�w0, the spatial inhomogeneities
are negligible. Therefore, the theoretical treatment starts with this idealised scenario, show-
ing the essential concepts. In Sec. 12.3.3 this is rectified, when spatial inhomogeneities are
explicitly taken into account.

10.2.3 Parameters

Relevant spectroscopic data for 40Ca+ ions are given in Table 10.1, together with the character-
istic properties of the applied velocity distribution. The laser parameters are specified in Table
10.2. Three different sets are compared in the further discussion. Parameter set (A) differs
from (B)mainly in the laser frequencies, while (B1) and (B2) provide different laser powers.
The beam waist as well as the laser linewidths stay the same for all cases.
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Quantity Symbol Value Ref.

Mass M 39.962 042 286(22) u [A, B]
Transition frequency ωe g 2π×761.905 012 599(82)THz [C]
Natural linewidth (FWHM) Γg e 2π×23.396 MHz [B]
Lifetime τg e = Γ−1

g e 6.8 ns

Transition dipole matrix element 〈J = 1
2 ||e r ||J ′= 3

2 〉 2.301 129×10−29 C m
Transition frequency ωe m 2π×350.862 882 823(82)THz [C, D]
Natural linewidth (FWHM) Γme 2π×1.576 MHz [B]
Lifetime τme = Γ−1

me 101 ns
Transition dipole matrix element 〈J = 5

2 ||e r ||J ′= 3
2 〉 1.250 998×10−29 C m

Acceleration voltage U 14 kV
Mean velocity v̄ 260 km/s
Initial width of velocity distribu-
tion (FWHM)

∆vI (10 - 100) m/s

Table 10.1: Parameters for 40Ca+ transitions between the states |g 〉, |e 〉 and |m〉, of the configurations
4s 2S1/2, 4p 2P3/2, and 3d 2D5/2, taken from [A]: [189], [B]:[190], [C]:[191], [D]:[192]. The pa-
rameters U , v̄ ,∆v are applied in the simulations, being experimentally accessible.

Quantity Symbol Value

Laser 1 (anti collinear) Parameter set (A) Parameter set (B1) Parameter set (B2)
Frequency f1 761.243 795 50 THz 761.241 765 92 THz
Wavelength λ1 393.8192 nm 393.8203 nm
Wavenumber k1 15.954490µm−1 15.954448µm−1

Power P1 3.29 mW 10 mW 30 mW
Rabi frequency Ω1 2π×14.828 MHz 2π×25.852 MHz 2π×44.777 MHz
Beamradius w0 1.7 mm
Linewidth Γg g 300 kHz

Laser 2 (collinear) Parameter set (A) Parameter set (B1) Parameter set (B2)
Frequency f2 351.166 422 00 THz 351.164 388 90THz
Wavelength λ2 853.7048 nm 853.7097 nm
Wavenumber k2 7.359904µm−1 7.359861µm−1

Power P2 11.13 mW 33 mW 500 mW
Rabi frequency Ω2 2π×14.827 MHz 2π×25.531 MHz 2π×99.379 MHz
Beamradius w0 1.7 mm
Linewidth Γmm 300 kHz

Table 10.2: Experimentally accessible laser parameters used for the simulations.

Rabi frequencies

The Rabi frequencies, defining the interaction strength and listed in Table 10.2, can be calcu-
lated with the total laser power P and the effective dipole moment Deff via Eq. (2.13). Due to
the non-existent nuclear spin of the considered level configurations, there is no hyperfine
splitting and consequently the lasers interact with the J → J ′ transition. It is worth men-
tioning, that any Zeeman splitting of the fine structure is neglected, assuming the absence
of static magnetic fields. The lasers are linearly polarised, wherefore they interact only with
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one of three components of the dipole operator and the effective coupling strength is given
by |Deff|2 = |D|2/3, with the reduced dipole matrix element D = 〈J ||e r ||J ′〉 [cf. Table 10.1,
Eq. (2.14)] [109, 193].

10.3 T H E O R E T I C A L M O D E L

The essential electronic structure of the ions is assumed to be a closed three-level system,
consisting of the ground-state manifold 4s 2S1/2, the excited state 4p 2P3/2, and the metastable
state 3d 2D5/2, depicted in Fig. 10.4. The lifetime τmg = 1.168(7)s [194] of the metastable state
is much longer than the duration of the spectroscopy and therefore it is considered as stable.
Further calcium data and laser parameters are provided in Tabs. 10.1, 10.2.
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Figure 10.4: Three-level energy diagram for 40Ca+. Laser 1 induces e g -transitions withωe g =ωe −ωg

and laser 2 couples the e m-transition withωe m =ωe−ωm . In the rest frame of the ions, the
one-photon detuning is∆=ω′2−ωe m and the two-photon detuningδ=ω′1−ω

′
2−ωmg with

respect to the Doppler-shifted frequenciesω′1,ω′2 given by Eq. (10.10). The spontaneous
decay rates Γe g and Γe m couple the excited state |e 〉 to the ground |g 〉 and metastable state
|m〉. Laser noise induces ground-state decoherence with rates Γg g ,Γmm .

10.3.1 Ion-field interaction

The Raman transition is generated with two counterpropagating lasers as shown in Fig. 10.2,
with electric fields E i (r , t ) = Re[εiEi e i (k i r−ωi t )]. The coordinate r refers to the laboratory
frame S . Assuming that the ion beam and the lasers are aligned along the x -direction, the
ion velocity v = v e x and the laser wavevectors k 1 = −k1e x and k 2 = k2e x are specified.
During the interaction of the laser pulses, no relevant transversal motion occurs, leading to
the reduction to the one-dimensional evolution in the x -direction.

In the optical domain, the electric dipole interaction in rotating-wave approximation is
dominant [140]. Thus, the Hamilton operator of an ion with quantised canonical coordinates
[x̂ , p̂x ] = iħh is

Ĥ (t ) =
p̂ 2

x

2M
+ħh (ωg σ̂g g +ωm σ̂mm +ωe σ̂e e )+ħh

�

σ̂e g
Ω1

2
e iφ1 + σ̂e m

Ω2

2
e iφ2 +h.c.

�

, (10.6)

with the phases of the lasersφ1 =−k1 x̂−ω1t andφ2 = k2 x̂−ω2t . It accounts for the kinetic and
the internal energy of the ion, where ħhωi is the energy of state |i 〉. The electronic transition
operators are σ̂i j = |i 〉〈 j |. The strength of the dipole interaction is measured by the Rabi



10.3 T H E O R E T I C A L M O D E L 127

frequency Ωi (c.f. Sec. 10.2.3). The complete internal and motion state %̂(t ) of the ionic beam
evolves according to (cf. Sec. 3.2)

˙̂% =−i [Ĥ /ħh , %̂]. (10.7)

The ballistic evolution is eliminated by the transformation

%̂ = exp

�

−i t
p̂ 2

x

2M ħh

�

%̂′ exp

�

i t
p̂ 2

x

2M ħh

�

. (10.8)

Then, the Liouville-von-Neumann equation ˙̂%′ =−i [Ĥ ′/ħh , %̂′] is defined by the transformed
Hamilton operator

Ĥ ′(t ) = ħh
�

ωg σ̂g g +ωm σ̂mm +ωe σ̂e e

�

+ħh
�

σ̂e g
Ω1

2
e iφ′1 + σ̂e m

Ω2

2
e iφ′2 +h.c.

�

, (10.9)

with Doppler-shifted phasesφ′1 =−k1 x̂ −(ω1+k1p̂x /M )t andφ′2 = k2 x̂ −(ω2−k2p̂x /M )t . The
motional state of the ionic beam smoothly extends over a large phase-space area∆x̂∆p̂x � ħh/2.
The photon recoils ħhki �∆p̂x are extremely small compared to the momentum width. In
addition, the recoil energyħh 2(k1+k2)2/2M � ħhΓi ,ħhΩi is extremely small compared to the level
shifts or widths, however the Doppler shifts ki∆p̂x � Γi ,Ωi are significant. Hence, the classical
approximation (x̂ , p̂x )→ (x , px =M v ) of kinetic theory [106] can be used. Consequently, the
full quantum state %̂′(t )→ ρ̂′(t ; x , v ) is replaced by an internal state operator denoting the
motional variables to the role of parameters.

Introducing the Doppler-shifted laser frequencies

ω′i =ωi −k i v =

¨

ω1+k1v,

ω2−k2v,
(10.10)

with the vacuum dispersionωi = c ki , the phases readφ′1 =−k1 x −ω′1t andφ′2 = k2 x −ω′2t .
Then, the Hamilton operator in the classical approximation Ĥ ′→ Ĥ′ is given by

Ĥ′(t ) = ħh
�

ωg σ̂g g +ωm σ̂mm +ωe σ̂e e

�

+ħh
�

σ̂e g
Ω1

2
e iφ′1 + σ̂e m

Ω2

2
e iφ′2 +h.c.

�

. (10.11)

Transforming the laboratory frame into the rest frame of an ion moving with velocity v the
remaining optical and spatial oscillations are eliminated by the transformation

ρ̂′ = Û (t ; x )ρ̂Û †(t ; x ), Û (t , x ) = exp
�

−iωe t − iφ′1σ̂g g + iφ′2σ̂mm

�

. (10.12)

This results in the Liouville-von Neumann equation for the semiclassical state ˙̂ρ =−i [Ĥ/ħh , ρ̂],
with the effective Λ-Hamilton matrix

Hi j = ħh





∆1
Ω∗1
2 0

Ω1
2 0 Ω2

2

0
Ω∗2
2 ∆2



, (10.13)

where the basis states are sorted as i ∈ {g , e , m}. The detuning of laser 1 (∆1) and laser 2 (∆2)
define the one- (∆) and two-photon detuning (δ), according to the energy diagram in Fig. 10.4
and resulting in

∆1 =ω1+k1v −ωe g =∆1,0+k1v, δ≡∆1−∆2, δ0 ≡∆1,0−∆2,0, (10.14a)

∆2 =ω2−k2v −ωe m =∆2,0−k2v, ∆≡∆2. (10.14b)

Here, transition frequencies are denoted asωi j =ωi −ω j .
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10.3.2 Optical Bloch equations

An ensemble of ions interacting with lasers in free space establishes an open quantum system
and must be described by a master equation (cf. Sec. 3.3) for the semi-classical density operator
ρ̂(t ; x , v )

˙̂ρ =−
i

ħh
�

Ĥ, ρ̂
�

+ (Le g +Le m +Lg g +Lmm )ρ̂, (10.15)

with the Lindblad operators

Lλρ̂ ≡
Γλ
2

�

2σ̂λρ̂σ̂
†
λ− σ̂

†
λσ̂λρ̂− ρ̂σ̂

†
λσ̂λ

�

. (10.16)

The first term of the master equation describes the coherent dynamics. The second and third
term represent spontaneous transitions to the ground |g 〉 and metastable state |m〉with decay
rates Γe g and Γe m , respectively. It is worth to mention, that distinguishable radiation from the

two transitions is assumed. For indistinguishable radiation
Æ

Γe g Γe m

�

σ̂g e ρ̂σ̂
†
me + σ̂me ρ̂σ̂

†
g e

�

has to be added in Eq. (10.15). Expecting |ω1−ω2| � Γe g /e m that term can be neglected. The
fourth and fifth term consider ground-state dephasing due to finite laser linewidths Γg g of
laser 1 and Γmm of laser 2 [89, 106, 195–198]. Please note, with the applied approximation for
the Hamiltonian evolution in the last Section 10.3.1, essentially any photon recoil effects are
disregarded. One can apply the same arguments to the spontaneous contributions of the
Lindblad equation [106].

If one represents the master equation in a basis and arranges the matrix elements of
ρ = (ρi j ), with ρi j = 〈i |ρ̂| j 〉, as a list, one obtains

ρ̇(t ; v ) = L (v )ρ(t ; v ). (10.17)

Explicitly, these optical Bloch equations (OBEs) read

ρ̇e e =−Γρe e +
i
2 (Ω
∗
1ρe g +Ω

∗
2ρe m −h.c.),

ρ̇g g = Γe gρe e +
i
2 (Ω1ρg e −Ω∗1ρe g ),

ρ̇mm = Γe mρe e +
i
2 (Ω2ρme −Ω∗2ρe m ),

(10.18)

for the populations and for the coherences ρi j =ρ∗j i

ρ̇e g = (i∆1− Γ1)ρe g +
i
2 [Ω1(ρe e −ρg g )−Ω2ρmg ],

ρ̇e m = (i∆2− Γ2)ρe m +
i
2 [Ω2(ρe e −ρmm )−Ω1ρg m ],

ρ̇g m =−(iδ+γ)ρg m +
i
2 [Ω2ρg e −Ω∗1ρe m ],

(10.19)

with composite rates

Γ = Γe g + Γe m , γ= (Γg g + Γmm )/2, Γ1 = (Γ + Γg g )/2, Γ2 = (Γ + Γmm )/2. (10.20)
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Analysing the solution of the optical Bloch equations in the frequency domain, gives physical
insights to the relevant underlying processes.

11.1 R E S O N A N C E C O N D I T I O N S

The objective for using the stimulated Raman transition is to filter a velocity group vR from the
ionic ensemble with a resolution far below the natural linewidth. Therefore, population from
the ground state is transferred to the metastable state via the strongly velocity selective Raman
transition. From energy conservation (cf. Fig. 10.4) and the AC-Stark shifted eigenfrequencies
∆, one obtains the kinematic condition defining the Raman velocity vR for the effective two-
photon resonance

δ(v = vR) =∆1−∆2 = 0. (11.1)

From second order perturbation theory of the Schrödinger equation Hw i = ħh∆i w i (10.13),
one obtains the AC-Stark shifted eigenfrequencies

∆1 =∆1

�

1+
s1

2

�

, ∆2 =∆2

�

1+
s2

2

�

, ∆3 =∆1+∆2−∆1−∆2 (11.2)

to order O(s 2
1 , s 2

2 ). In here, the limit of weakly saturated transitions is considered, conveniently
captured by the saturation parameter si = |Ωi |2/2∆2

i � 1. Thus, the Doppler shifted laser
frequencies must match the AC-Stark shifted transition frequencies of the ground states (11.2).
This defines the Raman resonance velocity 1

vR =−
δ0

k1+k2
+
|Ω2|2− |Ω1|2

4(k1+k2)∆̃
, (11.3)

where vR,0 =−δ0/(k1+k2) is the dominant contribution, and around the Raman resonance,
within the limit of weak saturation, one can approximate

Ω∗iΩ j

∆i (v )
≈
Ω∗iΩ j

∆̃
, ∆̃≡∆i (vR,0) =

∆2,0k1+∆1,0k2

k1+k2
. (11.4)

It is interesting to recognise the magic spot |Ω1|= |Ω2|, where second order energy shifts cancel
in (11.3) resulting in vR = vR,0.

1 The Raman resonance condition (11.1) is simplified using approximation (11.4). Then δ(vR) =∆1(vR)−∆2(vR) =

∆1(vR)+
|Ω1 |2

4∆1(vR)
−∆2(vR)−

|Ω2 |2
4∆2(vR)

≈δ(vR)+
|Ω1 |2−|Ω2 |2

4∆̃
=δ0+ (k1+k2)vR+

|Ω1 |2−|Ω2 |2
4∆̃

!= 0 results in (11.3).
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There are also two rogue resonances at velocities v1 and v2, where each laser couples
individually resonantly to the excited state

∆1(v1) = 0, v1 =−∆1,0/k1, (11.5)

∆2(v2) = 0, v2 =∆2,0/k2. (11.6)

Depending on the laser parameters and the ion velocity, all three resonances can be far apart
from each other or even coincide.

11.2 C O N T R I B U T I O N S O F T H E R E S O N A N C E S

Width and strength of the resonances are determined by the Bloch equations (10.17). Repre-
senting the master equation (10.15) in the sorted basis {|g 〉, |e 〉, |m〉} and arranging the matrix
elements as linear arrays ρ = (ρg ,ρe ,ρm )with ρi = (ρi g ,ρi e ,ρi m ), one finds the Bloch matrix

L = i

































0 Ω1
2 0 −Ω

∗
1

2 −i Γeg 0 0 0 0
Ω∗1
2 i Γ1−∆1

Ω∗2
2 0 −Ω

∗
1

2 0 0 0 0

0 Ω2
2 iγ−δ 0 0 −Ω

∗
1

2 0 0 0
−Ω1

2 0 0 ∆1+ i Γ1
Ω1
2 0 −Ω2

2 0 0

0 −Ω1
2 0

Ω∗1
2 i Γ

Ω∗2
2 0 −Ω2

2 0
0 0 −Ω1

2 0 Ω2
2 ∆2+ i Γ2 0 0 −Ω2

2

0 0 0 −Ω
∗
2

2 0 0 δ+ iγ Ω1
2 0

0 0 0 0 −Ω
∗
2

2 0
Ω∗1
2 i Γ2−∆2

Ω∗2
2

0 0 0 0 −i Γem −Ω
∗
2

2 0 Ω2
2 0

































.

(11.7)

It exhibits the block structure of two coupled two-level systems

L =





Lg g Lg e 0
Le g Le e Le m

0 Lme Lmm



. (11.8)

The Bloch equations define an initial value problem, where the whole population starts in the
ground state ρ(t = 0) = (ρ0

g ,ρ0
e ,ρ0

m ) = (1, 0, 0, 0, 0, 0, 0, 0,0). The Laplace transform

%(s ) =

∫ ∞

0

dt e −s tρ(t ), (11.9)

is ideally suited to transform the system of differential equations with initial values to an
algebraic equation





G0
g
−1 −Lg e 0

0 G0
e
−1 −Le m

0 0 G0
m
−1









%g

%e

%m



=





ρ0
g

Le g%g

Lme%e



 , (11.10)
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where G0
λ(s ) = (s − Lλλ)−1 is the resolvent matrix. The formal inversion of the Bloch matrix

is facilitated by the block structure and by backward substitution. This leads to the explicit
solution

%g (s ) = Gg (s )ρ
0
g , G−1

g = G0
g
−1− Lg e Ge Le g ,

%e (s ) = Ge (s )Le g%g (s ), G−1
e = G0

e
−1− Le mG0

m Lme , (11.11)

%m (s ) = G0
m (s )Lmeρe (s ), %i = (ρi g ,ρi e ,ρi m ).

One finds the stationary solution using the final value theorem of the Laplace transformation

ρ∞mm ≡ lim
t→∞

ρmm (t ) = lim
s→0

s%mm (s ). (11.12)

In addition, the Laplace transform can be used to approximate the initial growth rate of the
population of the metastable state ρ̇mm (t = 0). This provides insights into the contributions
of different processes of population transfer. Therefore, in Fig. 11.1 the processes generating
population in |m〉 are schematically visualised.

ρe e

ρg g ρe g ρmg ρme ρmm

Ω∗2

Ω∗2 Ω∗1

Ω∗1

Ω1 Ω2

Γe m

Figure 11.1: Linkage pattern for two-photon transitions connecting the ground state |g 〉 with the
metastable state |m〉.

From this linkage pattern, one obtains three pathways to reach state |m〉, starting at |g 〉.
Perturbatively, one obtains the Laplace transform, considering only the initial processes
(cf. App. F.1), denoted with %̃mm

%̃mm (s ) =Gmm

��

Γe m +
|Ω2|2

2
Re[Gme ]

�

%̃e e (s )+
|Ω2|2|Ω1|2

8
Re[Gme Gmg Ge g ]Gg g

�

, (11.13)

%̃e e (s ) =
|Ω1|2

2
Ge e Re[Ge g ]Gg g , (11.14)

with
G −1

g g = s , G −1
e e = s + Γ , G −1

e g = s − i∆1+ Γ1,

G −1
mm = s , G −1

g m = s + iδ+γ, G −1
e m = s − i∆2+ Γ2.

(11.15)

In equation (11.13) the three different population processes, following the scheme in Fig. 11.1,
are apparent. The first two terms lead to population in the excited state, followed by sponta-
neous emission (dotted path in the linkage pattern) for the first term or stimulated emission
(dashed) for the second term respectively into the metastable state. The third term represents
the Raman transition, without generating population in the excited state (full solid path from
ρg g to ρmm in Fig. 11.1). The initial growth rate of the metastable state’s population is then
given by rm = lims→0 s 2%̃mm (s )

rm =
Γ1s1

Γ

�

Γe m + Γ2s2

§

1+
Γδ

2(γ2+δ2)

�

∆1

Γ1
−
∆2

Γ2

�

+
Γγ

2(γ2+δ2)

�

1+
∆1∆2

Γ1Γ2

�ª�

. (11.16)
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Here, the saturation parameter is generalised from the coherent limit to si = |Ωi |2/2(Γ 2
i +∆

2
i ),

now broadening the resonances with the linewidths Γi . The first two resonances occur sponta-
neously at∆1 = 0 and∆2 = 0, while the last two describe the stimulated Raman process at
δ= 0. Due to laser noise, it acquires the finite linewidth γ.

This growth rate rm is schematically depicted in Fig. 11.2 together with the stationary solu-
tion ρ∞mm (11.12). The narrow stimulated Raman resonance at vR , is clearly distinguishable
from the resonance of laser 1 at v1, where |e 〉 gets populated followed by spontaneous emis-
sion into |m〉. This incoherent process limits the velocity determination, due to the broad
tail. Therefore, it is called the rogue resonance in the further course. In contrast to the initial
rate rm , the stationary solution ρ∞mm suppresses the resonance at v2, because stimulated
emission is compensated with stimulated absorption. Conclusively, it is import to take the
rouge resonance of laser 1 into account, while that one of laser 2 will have a much smaller
impact.

v2 v̄ vR v1v

(a
rb

.u
n

it
s)

∆vI

rm

ρ∞mm

f (v )

Figure 11.2: The initial growth rate rm (11.16) of the metastable state’s population and the exact sta-
tionary solution ρ∞mm (11.11, 11.12) exhibit resonances at v1, v2 and vR. The ionic initial
velocity distribution f (v ) is defined by its mean velocity v̄ and width∆vI . Note that the
velocity distribution emerging from the accelerator is rather flat topped.

11.3 I S O L AT I N G R E S O N A N C E S

The positions of the resonances are controlled by the laser frequencies. Obviously, the Raman
resonance at vR should be within the ion velocity distribution, also depicted in Fig. 10.3. In
contrast, the rogue resonances should be spread far apart. Therefore, optimal laser frequencies
are defined by maximising the resonance separations

βi =
vi − vR,0

c
. (11.17)

First, for a given Raman resonance velocity vR,0 (11.3), one obtains a linear frequency relation

ω2(ω1; vR,0) =
ω1α+−ωmg

α−
, α± = 1±

vR,0

c
, (11.18)

where AC-frequency shifts are deliberately disregarded. Second, the distances between the
resonances are now functions ofω1

β1(ω1) =
ωe g

ω1
−α+, β2(ω1) =α−

�

1−
ωe m

ω1α+−ωmg

�

, (11.19)

which is depicted in Fig. 11.3. The requirement of positive laser frequenciesω2(ω1)> 0, leads
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Figure 11.3: Velocity distance β1 (magenta) and β2 (green) between the Raman resonance and the
rogue resonances versus detuning∆1,0. The inadmissible rangeω2 < 0, is shaded in grey
(left). On the right, real velocities cβi and the Doppler shifted one-photon detuning ∆
(black) are shown on a small scale. Here, the detunings for parameter set (A) and (B) (cf.
Table 10.2) are highlighted (grey).

to a lower limit for ω1 > ωmg /α+. For positive laser frequencies the Raman resonance lies
always between the rogue resonances v1 and v2. Therefore, the distances β1 and β2 show
opposite signs. Obviously, the zero crossing of βi represents the worst scenario, when all
three resonances occur simultaneously and interfere. The related detuning∆1,0(βi = 0) de-
pends on vR,0 and lies between ∆1,0(βi = 0) = 0 for vR,0 = 0m/s and ∆1,0(βi = 0) = −ωe g /2
for vR,0 = c . For ultraviolet to near-infrared laser frequencies, viz. vR,0 � c , the relation
|β2|> |β1| holds. Therefore, only the distance β1 needs to be maximised, lying within the
range −α+ <β1 <α+ωe m/ωmg . For detunings |∆1,0| < 1 THz, the hyperbolic shape of the
distance

β1(∆1,0) =−
vR,0

c
−
∆1,0

ωe g
+
∆2

1,0

ω2
e g
+ . . . (11.20)

is almost linear. Then, the maximal distance of β1 is only limited by the available laser powers
and interaction time. The time should last at least for one π-pulse tπ (12.13) of a Raman
transition, where maximal population transfer is achieved. This time will be derived in the
next Chapter 11 and is proportional to the Doppler shifted one-photon detuning∆ and anti-
proportional to the laser power. Therefore,∆ is also depicted in Fig. 11.3 (right) and the values
of∆1,0 for the parameter set (A) and (B), (cf. Table 10.2) are highlighted. These parameter sets

lead to two distinct velocity distances cβ (A)1 = 400m/s, cβ (B)1 = 1200m/s, keeping ∆ small
enough for the experimentally given interaction time and provided laser power.
Due to the approximately linear behaviour of β1 there is only a very little difference between a
red- and blue detuning∆1,0. However, regarding the gradient

dβ1

dω1
=−

ωe g

ω2
1

(11.21)

its absolute value is larger for ω1 < ωe g , demonstrating the benefit of choosing negative
detuings∆1,0.

For the sake of completeness, the distances to the resonance of laser 2 are cβ (A)2 = 867 m/s and

cβ (B)2 = 2601 m/s.
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The principal aim is the optimisation of the time- and velocity-dependent population transfer
from the initial state |g 〉 to the metastable state |m〉, where the population of |m〉 is denoted
with m. Therefore, the velocity averaged quantum expectation value of the observable σ̂mm

〈m(t , v )〉v =
∫ ∞

0

dv f (v ) Tr
�

σ̂mm ρ̂(t ; v )
	

(12.1)

should be maximised. In addition, the uncertainty of the voltage measurement should be
minimised simultaneously, which is defined by the logarithmic derivative of Eq. (10.1)

s =
∆U

U
=

2∆v

vR
. (12.2)

The smallest uncertainties are obtained for minimal final velocity widths of the metastable-
state population, denoted with∆v .

Both objectives require the solution of the Bloch equations (10.17) for each velocity v within
the distribution f (v ). Formally, the solution of this initial value problem

ρ(t ; v ) =V (v )e Λ(v )t V (v )−1ρ(t = 0; v ), (12.3)

L (v )V (v ) =V (v )Λ(v ), (12.4)

is determined from the knowledge of the eigenvalues Λi and the eigenmatrix V (v ) of the
Liouvillian matrix L (v ). A numerical procedure is implemented to solve these equations for
all velocities, obtaining averages as physical observables. This is referred to as the exact so-
lution. However, in order to get insights on the underlying physical mechanisms, a simple
approximation is derived that matches the exact solution very well. In the following, different
approximations emphasise the relevance of the individual processes contributing cumu-
latively to the exact result. Therefore, a good separation of all resonances, analysed in the
last Section 11.3, is assumed. In addition to physical insights, these approximations provide
tremendous reduction in computational effort in comparison to the exact numerical solution.

12.1 S T I M U L AT E D R A M A N T R A N S I T I O N

For far detuned lasers |∆| � Γi , taking the Doppler-shifts into account, the excited state stays
nearly unpopulated, wherefore spontaneous emission is not an issue. Hence, in a small regime
around the resonant velocity vR, the dynamics can be approximated by an effective two-level
system, consisting of the ground and metastable states. This describes the pure process of the
stimulated Raman transition, neglecting the influence of any rogue resonance. Therefore, it
corresponds to the ideal solution.
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The experimental parameters provide laser linewidths γ∼ 102 kHz, much larger Rabi fre-
quencies Ωi ∼ 102 MHz and even larger one-photon detunings ∆0,i ∼ (102 − 103)GHz. In
addition, around the Raman resonance, the two-photon detuning δ is by definition very small.
Therefore, the separation of frequency scales

γ,δ� Γ ,Ωi �∆i (12.5)

will be frequently used to simplify the following approximations.

12.1.1 Coherent dynamics

The ideal coherent dynamics, assuming infinitely sharp laser linewidths (γ=0), are described
by the Schrödinger equation

iħh∂t |ψ〉= (Ĥ−ħh$)|ψ〉, (12.6)

with |ψ〉 = ψg |g 〉+ψe |e 〉+ψm |m〉 and the Hamilton matrix (10.13). In order to apply the
standard adiabatic elimination methods [150] to eliminate the extremely small excited state
population, one needs to transform to another frame. This is accomplished by introducing
the constant frequency shift$=∆+δ/2, leading only to an unobservable, global, dynamical
phase. With ∂tψe �∆ψe the usual way to eliminate the excited state consists in claiming
∂tψe (t ) = 0. Thus, the resulting effective two-level system reads

i∂t

�

ψg

ψm

�

=

�δ
2 +ωAC1

ΩR
2

Ω∗R
2 −δ2 +ωAC2

��

ψg

ψm

�

, (12.7)

with the Raman Rabi frequency ΩR and the AC-Stark shiftsωACi . They, can be simplified to

ΩR =
Ω∗1Ω2

2∆
+O

�

δ
∆

�

, ωACi =
|Ωi |2

4∆
+O

�

δ

∆

�

, (12.8)

with taking advantage of the separation of the frequency scales (12.5) with δ/∆� 1. The two-
level dynamics (12.7) can be solved analytically by diagonalisation, equivalent to
Eqs. (12.3), (12.4). For the initial condition ψg (t = 0) = 1, the metastable-state population
reads

m0(t , v ) = |ψm (t , v )|2 =
|ΩR|2

Ω2
sin2

�

Ωt

2

�

, Ω=
q

|ΩR|2+δ2, (12.9)

where the index indicates γ= 0 and the effective detuning is simplified according toωACi , i.e.

δ=∆1−∆2 =δ+
|Ω1|2− |Ω2|2

4∆
+O

�

δ

∆

�

. (12.10)

In the limit of weak saturation the solution m0(t , v ) (12.9) can be simplified with

ΩR ≈ Ω̃R ≡
Ω∗1Ω2

2∆̃
, δ≈ d ≡ (k1+k2)(v − vR), (12.11)

approximating the velocity-dependent Rabi frequencies with their on-resonance values (11.4).
Finally, the velocity averaged population is given by Eq. (12.1) and an explicit ionic velocity
distribution f (v ). In the calcium experiment, the ions emerge from the accelerator with a flat
top velocity distribution

f (ν) =

¨

1/∆vI , |ν| ≤∆vI /2,

0, else,
(12.12)

introducing the relative velocity ν= v − v̄ .
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Figure 12.1: Rabi oscillations of
the metastable-state population
m0(t , vR) (magenta) for the res-
onant velocity, together with
the velocity averaged population
〈m0(t , v )〉v (green) for an ini-
tial ion velocity width ∆vI =
50m/s. The parameter sets (A),
(B1) (solid) and (B2) (dashed) (Ta-
ble 10.2) are compared.

Figure 12.1 shows Rabi oscillations of the metastable-state population for the resonant
velocity m0(t , v = vR) together with its velocity average 〈m0(t , v )〉v . Three different laser-
parameter sets, listed in Table 10.2, are compared, demonstrating the essential impact of
different laser frequencies and powers. Parameter sets (A) and (B1) generate a π-pulse for
the experimental transit time t̄ = 4.62µs (10.2), where a complete population transfer is
achieved for the resonant velocity d (v = vR) = 0. Applying the approximations for the Raman
Rabi frequency and the effective detuning (12.11) to the metastable-state population m0(t , v )
(12.9), the π-pulse duration can be easily derived

tπ,0 ≡ tπ(γ= 0) =
π

|Ω̃R|
. (12.13)

Parameter sets (A) and (B) differ in the laser frequencies, resulting in vastly different distances

between the stimulated and the spontaneous Raman resonances β (B1)
1 >β (A)1 , as mentioned

in Section 11.3. However, this does not affect the Rabi oscillations and 〈m0(t , v )〉v in Fig. 12.1,
because for the purely coherent population transfer via the Raman transition, the spontaneous
population transfer is not at all taken into account. Hence, for (A) and (B1) there is no difference
in the Rabi oscillations and 〈m0(t , v )〉v apparent. The parameter set (B2) provides the same
laser frequencies as (B1), while the maximum laser power, available in the experiment, is
applied. Therefore, 〈m0(t , v )〉v is slightly enlarged, effectively due to power broadening. This
becomes clear in Fig. 12.2, depicting the velocity dispersion of the metastable-state population
after a π-pulse. Using approximations (12.11) and the expression for the π-pulse time (12.13),
this population can be approximated with

m0(tπ,0, v ) =
π2

4
sinc2

�

πΩ̃

2|Ω̃R|

�

, sinc(x ) = sin(x )/x . (12.14)

This approximation is exemplary plotted for (B2), matching the exact analytical solution (12.9).
The sinc2-behaviour is the typical response to constant interaction. For smooth temporal
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(B2) m0(tπ,0)

Figure 12.2: The velocity-
dependent metastable-state
population m0(tπ) after applying
a π-pulse (t (A)π = t (B1)

π = 4.62µs,
t (B2)
π = 0.68µs) is indiscernible

for parameter sets (A) and (B1).
For maximal laser power (B2) the
resonance is broadened as well
as shifted. The approximation
m0(tπ,0) (12.14) matches the full
solution.
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envelopes the side maxima vanish. Again, the results for (A) and (B1) show no difference. For

(B2), due to the differing Rabi frequencies of both lasersΩ(B2)
1 6=Ω

(B2)
2 , the resonance is AC-Stark

shifted to ν(B2)
R = vR− v̄ =−0.17 m/s as predicted by (11.3).

U N C E R TA I N T Y O F T H E V O LTA G E M E A S U R E M E N T S Finally, the velocity width of m0 (12.14)
characterises the uncertainty of the voltage measurement (12.2), aiming the ppm level. The
FWHM of m0 is defined by the first zero of the sinc-function resulting in

∆v0(tπ,0) =
p

3
|Ω̃R|

k1+k2
. (12.15)

For maximal laser power this width increases from∆v (B1)(tπ,0=4.62µs) = 0.05 m/s [0.05 m/s]
to∆v (B2)(tπ,0=0.68µs) = 0.32m/s [0.34m/s], where the results of approximation (12.15) are
displayed in square brackets, providing very good predictions. Obviously parameter set (A)
provides the same width as (B1). The sensitivity is then given by s (A),(B1) = 0.4 and s (B2) = 2.4
respectively, reaching even the sub-ppm level for (A), (B1).

12.1.2 Finite laser linewidths

Considering finite laser linewidths, the ground- and metastable-state decoherences must be
taken into account. Adiabatic elimination of the fast coherencesρg e andρme in addition to ne-
glecting population of the excited state (ρe e (t )→ 0) in the OBEs (10.18) and (10.19) leads to the
following equations of motion in matrix representation ρ̇ = Lρwithρ = (ρg g ,ρg m ,ρmg ,ρmm )
and

L =













−2Γ1
|Ω1|2
|d1|2 i

Ω1Ω
∗
2

2d ∗1
−i
Ω∗1Ω2

2d1
0

i
Ω∗1Ω2

2d ∗1
−γ− i

�

δ+ |Ω1|2
2d2
− |Ω2|2

2d ∗1

�

0 −i
Ω∗1Ω2

2d2

−i
Ω1Ω
∗
2

2d1
0 −γ+ i

�

δ+ |Ω1|2
2d ∗2
− |Ω2|2

2d1

�

i
Ω1Ω
∗
2

2d ∗2

0 −i
Ω1Ω
∗
2

2d2
i
Ω∗1Ω2

2d ∗2
−2Γ1

|Ω2|2
|d2|2













, (12.16)

with the effective detuning di = 2(∆i + i Γi ). Making use of the frequency scale separation
(12.5), it can be approximated

2Γi
|Ωi |2

|di |2
≈ 0, di ≈ 2∆. (12.17)

Therewith, the system of equations simplifies enormously, resulting in

L =











0 i
Ω∗R
2 −i ΩR

2 0
i ΩR

2 −γ− iδ 0 −i ΩR
2

−i
Ω∗R
2 0 −γ+ iδ i

Ω∗R
2

0 −i
Ω∗R
2 i ΩR

2 0











, (12.18)

with employing the definition of the Raman Rabi frequency ΩR (12.8) as well as the effec-
tive detuning δ (12.10). The corresponding initial value problem can be solved analytically.
Applying ρg g (t = 0) = 1 leads to the solution for the population of the metastable state

mR(t , v ) =
1

2
+ e −ϑt [A cos(θ t )+B sin(θ t )]− e 2(ϑ−γ)t C . (12.19)
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Here, the stationary solution approaches limt→∞mR = 1/2. The complex, velocity-dependent
frequency θ and damping rate ϑ as well as the coefficients A, B , C define damped oscillations.
Their, exact expression are given in App. F.2 but turn out to be uninspiring. Depending on the
parameters, these oscillations can be under- to overdamped.

The π-pulse for underdamped oscillations

For η=
p

3|Ω̃R|/γ > 1 the solution (12.19) is in the regime of underdamping. Here, one finds
that the coefficient C (vR) = 0 vanishes. In addition, the oscillation frequency θ and damping
rate ϑ are real. In order to maximise the population transfer, the π-pulse time tπ for the
resonant velocity v = vR is defined by the condition ṁR(tπ, vR) = 0, resulting in

tπ =
1

θ
cos−1

�

Aθ +Bϑ
p

(A2+B 2)(θ 2+ϑ2)

�

≈
π

θ
=

2
p

3πξ

γ
�

ξ2−1+η2
� , η> 1 (12.20)

ξ=

�

1−
η2

2

�

1−
Æ

4η2−3
�

�1/3

,

using again the approximations for the Raman Rabi frequency ΩR ≈ Ω̃R and the effective
detuning δ≈ d (12.11). In the limit γ= 0, tπ,0 (12.13) can be recovered.

For tπ, an upper bound for the velocity width of mR(tπ, v ) is given by the FWHM of

e 2(ϑ−γ)tπC ≈
1

2

d 2

ζ2+d 2
exp

�

D tπ
1+E d 2

�

, (12.21)

where ζ2 = γ2(η2−1)/3 and D and E are velocity-independent functions, given in App. F.2.
With this approximation the width reads

∆vR(tπ) =
2

k1+k2

Ç

p +
Æ

p 2+q , p =
ζ2E −D tπ− ln(2)

2 ln(2)E
, q =

ζ2

ln(2)E
(12.22)

using ln
�

d 2+ζ2
�

= ln
�

d 2
�

+ζ2/d 2+O((ζ2/d 2)2). Together with the lower bound, provided by
the limit of vanishing laser linewidths∆v0 (12.15), the velocity width of m(tπ) is constrained
by

∆v0(tπ)≤∆v (tπ)≤∆vR(tπ), (12.23)

for arbitrary η> 1.

Limit of large laser linewidths and long interaction times

In the limit t � 1/γ of large laser linewidths and long interaction times, the populations of the
ground and metastable state can be approximated with the solutions of the rate equations

∂t

�

ρg g

ρmm

�

= r

�

−1 1
1 −1

��

ρg g

ρmm

�

, (12.24)

derived from the two-level OBEs (12.18) with adiabatic elimination, using ρ̇g m � γρg m . The
decay rate r= γ|Ω̃R|2/(γ2+d 2)< r0 ≡ r(d = 0) involves the approximationsΩR ≈ Ω̃R andδ≈ d
(12.11). Therefore, the solution reads

mRE(t , v ) = 1
2

�

1− e −rt
�

. (12.25)
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The velocity width of mRE follows with

∆vRE(t ) =
2γ

k1+k2

√

√

√

r0t

ln
�

1+ tanh r0t
2

� −1, (12.26)

where∆vRE(t )≥ γ/(k1+k2) ∀ r0, t . The presented rate-equation limit is a good approximation
when the transient part of the general solution mR (12.19) vanishes, which is the case if γt � 1,
because γ/2≤ ϑ < γ.

The π-pulse for overdamped oscillations

For η< 1, the solution (12.25) is overdamped with m(t )< 1/2 ∀ t . Therefore, the saturation
of m defines a π-pulse with several decay times tπ = n/r0, n > 1. For a continuous π-pulse
time, n is defined by the condition limη→1−n/r0 = limη→1+ tπ with tπ(η> 1) from Eq. (12.20),
leading to n = 2π/

p
3 and

tπ =
2πγ
p

3 |Ω̃R|2
, 0<η≤ 1. (12.27)

12.2 S P O N TA N E O U S R A M A N T R A N S I T I O N

The atomic transition between the ground and the excited state can be coupled resonantly,
depending on the frequency of laser 1 and the ion velocity. In this limit, the population
transferred into the metastable state can be approximated with the solution of the rate equa-
tions for ground, excited and metastable state, assuming the steady state of all coherences
(ρ̇i j → 0, i 6= j ). Additionally, ρg m (t )≈ 0 can be approximated, being important only for the
transfer via the stimulated Raman transition. Therewith, the OBEs (10.18) and (10.19) simplify
to

∂t





ρg g

ρmm

ρe e



=





−R1 0 Γe g +R1

0 −R2 Γe m +R2

R1 R2 −Γ −R1−R2









ρg g

ρmm

ρe e



 , (12.28)

with rates Ri = Γi |Ωi |2/(4∆2
i + Γ

2
i ). Applying the initial condition ρg g (t = 0) = 1, for t > 1/Γ the

population of the metastable state reads

msp(t , v ) =
Γe m
R2
+1

Γe m
R2
+
Γe g

R1
+3

�

1− e −rt
�

, r=
R1Γe m +R2(Γg e +3R1)

Γ +2(R1+R2)
. (12.29)

O N E L A S E R L I M I T As long as the resonances at vR and v1 are spread far apart from each
other, the population transfer around v1 is primarily defined by the resonant coupling of laser
1, populating the excited state followed by spontaneous emission into the metastable state.
The far off-resonant coupling of laser 2, leading to stimulated emission into |m〉 is only of
secondary importance. Therefore, in the limit Ω2→ 0, solution (12.29) simplifies to

m1(t , v )≡msp(t , v ;Ω2 = 0) = 1− e −r
′t , r′ = r(Ω2 = 0) =

Γe m

2+ Γ
R1

. (12.30)

This represents the experiment [185]mentioned in Section 10.1.1, leading to a sensitivity of the
voltage measurement of a few ppm for high voltages up to 20 kV and motivating this topic of
the thesis. The sensitivity s (12.2) is characterised by the velocity width of the metastable-state
population (12.30), which can be given for example after applying a π-pulse. Therefore, a
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π-pulse time is defined similar to the last Section 12.1.2, when m1(tπ, v1) is saturated, with
tπ = n/r′0 and r ′0 ≡ r

′(v = v1). The FWHM of the metastable-state population around the
spontaneous resonance after tπ reads

∆v1(tπ) =

q

(2Γ1)2+2Ω2
1

2Γ1
Γ

k1

√

√

√

n

ln
�

2e n

1+e n

� −1. (12.31)

In the limit of short times n→ 0, a lower bound of the width is given by

lim
n→0
∆v1(tπ,γ= 0) =

Æ

Γ 2+2Ω2
1

k1
≤∆v1(tπ), (12.32)

which corresponds to the natural linewidth for a vanishing laser powerΩ1→ 0. For parameters
(B) the resulting width is

s =
∆U

U
=

2∆v1

v1
¦

2Γ

k1v1
= 75 ppm. (12.33)

Please note that the width of the distribution does not represent the ultimate limit of the
determination of the resonance velocity v1 and therewith of the sensitivity s . The central
velocity of the final distribution, here v1 can be determined much more precisely, characterised
by the statistical uncertainty. In the experiment velocities are measured with laser frequencies
and statistical uncertainties less than 400 kHz (cf. Chap. 4 in [184]). Therefore, even lower s
are achievable. In [185] sensitivities of around ±5 ppm could be reached.

12.3 M A X I M I S I N G T H E P O P U L AT I O N T R A N S F E R

After studying the individual population transfers into the metastable state via the stimulated
Raman transition mR (12.19) and the spontaneous population transfer msp (12.29) separately,
now the total population transfer is discussed. Therefore, it is assumed, that both processes
can be combined incoherently, as long as they do not interfere. The ad-hoc analytical ansatz

mana(t , v ) = 1
w mR(t , v )+msp(t , v ), w =mR(tπ,0, vR)+msp(tπ,0, vR), (12.34)

superposes the populations such that mana(tπ,0, vR) = 1. Therefore, the introduced weight w
prevents non-physical populations mana(t , v )> 1.

12.3.1 Vanishing laser linewidths

The numerical solutions of the OBEs (10.18) and (10.19) provide the population distributions
over a wide velocity range, depicted in Fig. 12.3 after applying a π-pulse. The approximation
mana (12.34) clearly matches the numerical results. The rogue resonance of spontaneous

population transfer, located at ν(A)1 = 400m/s respectively ν(B)1 = 1200m/s, is clearly distin-

guishable from the narrow Raman resonance at ν(A)R = ν
(B1)
R ≈ ν

(B2)
R ≈ 0m/s. Due to the larger

π-pulse time t (B1)
π,0 = 4.62µs � t (B2)

π,0 = 0.68µs the rouge resonances of parameter set (B1) is
broader than for (B2). More cycles of near-resonant stimulated absorption followed by sponta-
neous emission can happen, which cannot be compensated by the far off-resonant laser 2.
Obviously parameter sets (B) are more favourable, because with larger resonance distances β1

it can be ensured that for wider ionic velocity distributions the population of |m〉 originates
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Figure 12.3: Velocity-dependent population of the metastable state after applying a π-pulse m(tπ),
conforming with the analytical approximation mana (12.34). The narrow Raman resonance
at νR ≈ 0m/s (whose details are quasi identical to Fig. 12.2) and the broad resonance of
laser 1 at ν(A)1 = 400 m/s and ν(B)1 = 1200m/s are apparent.

(almost) exclusively from the coherent Raman transition. Thus, it remains less influenced
by the tail of the rogue resonance as for (A). However, for all parameter sets there is a small
contribution from the rouge resonance to the population at the Raman resonance, visualised
in Fig. 12.4.
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Figure 12.4: The numerical solution of the velocity-dependent population of the metastable state
around the Raman Resonance consists of a roughly constant offset, provided by the tail of
the spontaneous resonance (12.29) and the velocity dispersion is defined by the purely
coherent Raman resonance (12.19). Both processes are incoherently combined in the
analytical ad-hoc ansatz (12.34), matching the numerical results very well.

The ad-hoc ansatz (12.34) works very well. While the contribution of the spontaneous res-
onance (12.29) provides a roughly constant offset, the velocity dispersion is defined by the
analytic approximation of the Raman resonance (12.19). Its shape in details is quasi identical
to the purely coherent transfer (c.f. Fig. 12.2). However, as indicated in Fig. 12.4, there is indeed
a small deviation to the reference (12.19), considering exclusively the coherent transfer via
the Raman transition. To compare all parameter sets, this difference is depicted in Fig. 12.5
for a small velocity range around the Raman resonance. For (A) the deviation and especially
the roughly constant offset besides the Raman resonance is clearly larger than for (B1) and

(B2), due to β (A)1 <β (B)1 . However, with enlarging the laser power (B2), especially the reduction
exactly on the Raman resonance is as expected slightly enlarged again. Nevertheless, the
velocity width of the transferred population is quasi purely defined by the width of the Raman
transition∆vana =∆vR, showing no differences to the results of Section 12.1.1 (cf.∆v0(tπ,0)
(12.15) and Fig. 12.2).
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Figure 12.5: Velocity-
dependent difference
between the metastable
state’s population, consid-
ering (m) and neglecting
(m0) spontaneous emission
effects, after tπ.

The negative impact of small distancesβ1 between the Raman and the spontaneous resonance
is also apparent from the velocity averaged population 〈m(t , v )〉v (12.1), shown in Fig. 12.6.
Already for the as narrow as possible initial ion velocity distribution with∆vI = 10 m/s the
effect of the incoherent population transfer is discernible for (A). For∆vI = 50 m/s and (A) the
total transferred population (solid) is more than twice of the population, transferred via the
Raman transition (dotted). So for (A) this regime is already unsuitable to properly determine
the ion velocity. However, the major portion of 〈m(t , v )〉v for (B1) and (B2) results still from the
narrow Raman transition. In addition, the necessary, larger Rabi frequencies are still reachable,
viz. this represents a good working regime for a reachable ion velocity width.

For parameter sets (A) and (B1) the analytical approximation mana (12.34) (dashed) describes
exactly the numerical results. Only for the maximum laser power within (B2) there are very
little deviations after the first π-pulse.

0 1 2 3 4 5
t in µs

0

1

2

3

4

5

〈m
(t

,v
)〉 v

×10−2 ∆vI =10 m/s

(A)

(B1)

(B2)

mana

0 1 2 3 4 5
t in µs

0.0

0.2

0.4

0.6

0.8

1.0

〈m
(t

,v
)〉 v

×10−2 ∆vI =50 m/s

Figure 12.6: Time evolution of the velocity averaged metastable-state population 〈m(t , v )〉v for two
initial ion velocity widths: ∆vI = 10m/s (left) and ∆vI = 50m/s (right). The numerical
solutions considering incoherent effects (solid), well predicted by the analytical approxi-
mation mana (12.34) (black dashed), are compared to the analytical ones, indicating the
transferred population purely due to the Raman transition mR (12.9) (dotted).

12.3.2 Finite laser linewidths

Taking into account a non-vanishing laser linewidth (γ= Γg g = Γmm = 300kHz ) the velocity
selectivity of the Raman transition is significantly affected. On the one hand, as expected,
their width is enlarged, so the velocity determination is less exact. On the other hand, even on
the resonance vR the maximum transfer efficiency of almost 100% for tπ cannot be reached
any longer. Both effects are visible in Fig. 12.7, depicting the velocity dependent population of
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Figure 12.7: Velocity-dependent
population of the metastable state
after tπ,0. Considering finite laser
linewidths γ= 300kHz is compared
to γ= 0. The analytic approximation
mana (12.34) matches the numerical
simulation results.
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γ= 0

γ= 0

the metastable state after time tπ,0. However, the Raman resonance is still clearly discernible
and just as for γ= 0 the analytic approximation mana (12.34) can predict the numerical, exact
solution. The Lorentzian shape of the velocity dispersion for parameter set (B1) indicates
the overdamped regime, which is achieved for (B1)with γ≥

p
3|Ω̃R|. In contrast, applying the

maximal laser powers with (B2), shows underdamping, resulting in the crossover from the sinc2

shape for no damping (γ= 0) to the Lorentzian shape for overdamping. The results for (A) are
not plotted in Fig. 12.7, because they are very similar to (B1). However, the differences are not
negligible, becoming apparent in Fig. 12.8, where the velocity average 〈m(t , v )〉v is visualised.
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Figure 12.8: Time evolution of the metastable-state population summed over a certain velocity width:
∆vI = 10 m/s (left) and∆vI = 50 m/s (right). The numerical results for γ= 300 kHz (solid)
are well predicted by the analytic approximation for the full solution mana (12.34) (dashed
black). The analytic approximation mR (12.19) (dotted) gives the populations purely trans-
ferred via the Raman transition. The numerical solutions for γ= 0 (dash-dotted) are given
for the sake of completeness. The results for (B2) are scaled with a factor of 0.5.

Again the analytic approximation mana (12.34) gives reliable predictions; only for the maxi-
mum laser power and longer times very little deviations are visible. Here, the disappearance of
Rabi oscillations indicates, that the applied laser linewidths together with the interaction time
are sufficient to yield the rate equation limit. Only for (B2) the time of a π-pulse is discernible

with t (B2)
π = 0.70µs, slightly different from t (B2)

π,0 = 0.68µs. The width of the velocity dispersion
after this π-pulse time is ∆v (tπ) = 0.42m/s, where the analytical approximations ∆v0(tπ,0)
(12.15) and ∆vR(tπ) (12.22) provide an appropriate range ∆v (tπ) ∈ [∆v0(tπ,0),∆vana(tπ)] =
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[0.34, 0.60]m/s. The π-pulse times for the other parameter sets t (A)π ≈ t (B1)
π = 14.8µs are much

larger than t (A)π,0 = t (B1)
π,0 = t̄ = 4.62µs, demonstrating again the overdamping for (A) and (B1)

with γ = 300kHz. Hence, the velocity width after the experimental interaction time t̄ is of
major interest. These are∆v (t̄ ) = {0.22, 0.22, 1.34}m/s for {(A), (B1), (B2)}, demonstrating the
broadening of the Raman transition due to finite laser linewidths. They are well predicted
by the analytical approximation ∆vRE(t̄ ) = {0.21,0.21,1.38}m/s, because even though (B2)
is in the regime of underdamping with γt̄ = 9� 1, the rate equation limit is a reasonable
approximation for the solution after t̄ . Due to this broadening, in particular for (B2), the total
amount of the metastable-state population is substantially enlarged. At the same time, the
ratio µ of population transferred into the metastable state via the Raman transition to the
whole population

µ=
〈mR(t , v, r )〉v,r

〈mana(t , v, r )〉v,r
, (12.35)

depicted in Fig. 12.9, remains larger in comparison to the simulations with γ= 0.
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Figure 12.9: Time-dependent ratio µ (12.35) of the population transferred into the metastable state via
the Raman transition to the whole transferred population, including spontaneous popula-
tion transfer. Two initial, ionic velocity widths∆vI are compared, as well as considering a
finite laser linewidth γ= 300 kHz to neglecting it.

The comparison of the parameter sets demonstrates the compelling necessity of a careful
choice of laser frequencies, providing a sufficiently large distance β1 between Raman and
rogue resonance, especially for wider initial velocity distributions of the ions. It is worth
mentioning that the ratio µ decreases with time. This reduction is much more crucial for the
idealised scenario with γ= 0. However, it is also apparent for γ 6= 0. Therefore, it is important
to carefully choose the interaction time in combination to the laser powers, achieving a
significant absolute population amount and simultaneously keep a reliable ratio, optimally
µ→ 1 but at least µ> 0.5.

To identify the maximum laser powers to reach a prescribed maximum uncertainty of
the velocity determination, the widths after applying a π-pulse ∆v (tπ) as well as after the
experimental transit time ∆v (t̄ ) are depicted in Fig. 12.10. Please note the different scales
of ∆v for tπ and t̄ . Again, the quality of the analytical approximation mana(t , v ) (12.34) is
demonstrated, because their width∆vana describes the numerical, exact solution∆vnum very
well. In addition, ∆vR(tπ) (12.22) provides an upper bound for ∆v (tπ) as stated in Section
12.1.2. Due to γt̄ = 9� 1,∆vRE(t̄ ) (12.26) matches completely the actual results∆vana(t̄ ). For
tπ the border between under- and overdamping is indicated, demonstrating that parameters
(B1) are in the regime of overdamping, while (B2), with the maximal laser powers P1 = 30 mW
and P2 = 500 mW, is located far inside the underdamped regime.
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Figure 12.10: Velocity width∆v (FWHM) of the metastable-state population for parameters (B), de-
pending on the laser powers P1 and P2 for different times. Top: after applying a π-pulse
and bottom: t̄ = 4.62µs. The FWHM of the exact numerical solution∆vnum is compared
to the FWHM of mana, i.e.∆vana (12.34) and the approximations∆vR (12.22) and∆vRE

(12.26). The pluses highlight the laser powers used with parameter set (B1) and the border
between under- and overdamping is also indicated (dashed white).

12.3.3 Spatial intensity variations

So far the lasers were approximated as plane waves with no spatial dependencies. In reality,
they are collimated LG-laser beams with beamwaist w0 (c.f. (10.4)). The spatial distribution
of the ions is also assumed to be Gaussian with width σ (c.f. (10.5)). The metastable state
population observable is obtained by incoherent averaging over the cross-sectional area of the
ion and the laser beams, assuming that the respective maxima of all are perfectly overlapped

〈m(t , v, r )〉r = 2π

∫ ∞

0

dr r g (r )m(t , v, r ). (12.36)

This integral can be solved numerically with Gauss-Laguerre-Quadrature [199]. Finally, the
population of |m〉 can be additionally averaged over the velocity distribution according
to (12.1). In the following, three scenarios are compared, were the results are depicted in
Figs. 12.11 and 12.12.

• Forσ�w0, the ion beam is much narrower than the laser beam, corresponding to the
case we assumed so far, all ions experience the same Rabi frequency [Subfigures (a)].

• Forσ=w0/2, the ion beam width is of comparable size to the laser beam width [Subfig-
ures (b)].

• Forσ=w0, the ion beam is broader than the laser beam, thus some ions are not affected
at all, representing the current experimental scenario [Subfigures (c)].
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The idealised results, neglecting spatial inhomogeneities from Sections 12.3.1, 12.3.2 are again
depicted in Figs. 12.11 and 12.12, to compare them to the results, taking spatial inhomo-
geneities into account. Essentially, 〈m(tπ,0, v, r )〉r (Fig. 12.11) and 〈m(t , v, r )〉v,r (Fig. 12.12)
are reduced overall. Further away from the centre r = 0, the Rabi frequencies are reduced and
therewith vR is shifted. This effect is more crucial, the larger Ω2. Averaging over the results for
different r , for (B2) the velocity of maximum transfer efficiency is shifted from νR =−0.17 m/s
to νR =−0.12 m/s forσ=w0/2 and to νR =−0.11 m/s forσ=w0. However, the resonance of
the Raman transition is still visible. In addition, the considered spatial intensity variations
lead to a small reduction of the ratio µ (12.35), primarily for (A) and (B1).

To conclude, even with taking the aberrations due to finite laser linewidths and spatial
inhomogeneities into account, a narrow velocity class of ions can be transferred from the
ground to the metastable state with a sufficiently large population proportion.
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Figure 12.11: Velocity-dependent population of the metastable state after tπ,0 for different spatial
distributions: (a) no intensity variations according to σ � w0, and averaged over the
spatial intensity variations for an ion beam width (b)σ=w0/2, respectively (c)σ=w0.
Considering finite laser linewidths γ = 300kHz is compared to the idealisation with
vanishing laser linewidths γ= 0. The analytic approximation mana (12.34) matches the
simulation results.
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Figure 12.12: Time evolution of the velocity averaged metastable-state population and of the ratio
µ (12.35) of the population transferred into the metastable state via the Raman transition to the
whole transferred population. The considered initial ionic velocity widths are:∆vI = 10 m/s (top) and
∆vI = 50 m/s (bottom). Three spatial scenarios are analysed: (a) no intensity variations withσ�w0 and
averaged over the spatial distributions with ion beam widths (b)σ=w0/2 and (c)σ=w0. The results of
〈m(t , v, r )〉r for (B2) are scaled with a factor of 0.5. The numerical results for γ= 300 kHz (solid) are well
predicted by the analytical approximation mana (12.34) (dashed black). The population transferred via
the Raman transition mR (12.19) (dotted) and the numerical solutions for γ= 0 (dash-dotted) are also
depicted.
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13
S U M M A R Y A N D O U T L O O K

This thesis presents an extensive study of the aberrations of atomic diffraction. Thereby a
wide spectrum of atomic initial states is considered: From single coherent quantum states
at zero temperature, over multi particle coherent ultracold Bose-Einstein condensates and
thermal clouds as statistical mixtures at nanokelvin temperatures ending with hot ions with
temperatures up to the Kelvin regime. Ultracold atoms represent the optimal test states for
AT O M I C B R A G G D I F F R A C T I O N within matte-wave interferometry for high precision rotation
and acceleration measurements. Hot ions can be used with a R A M A N V E L O C I T Y F I LT E R to
prepare optimal initial conditions for high precision collinear laser spectroscopy to measure
high voltages on the sub-ppm level.

13.1 R A M A N V E L O C I T Y F I LT E R

The results of Part III show, that ion velocity classes with widths as low as 0.2 m/s can be trans-
ferred into the metastable state via the Raman transition, achieving a significant population
proportion 〈m(t , v, r )〉v,r = 10−3−10−2. This velocity width is related to voltage widths on the
sub-ppm level. To achieve such impressive resolutions, it is important to carefully choose the
laser frequency combination. One needs to ensure that the transferred population into the
metastable state originates mainly from the coherent Raman process and not from incoherent
spontaneous emission processes, when laser 1 couples resonantly the ground state to the
excited state. This also supports an initially narrow ion velocity distribution.

The idealised case of infinitely sharp laser linewidths (γ= 0) and an ion beam much smaller
than the laser beams defines the smallest reachable FWHMs of the ion velocity distribution in
the metastable state with∆v (tπ,0) = {0.05,0.05,0.32}m/s, for parameter sets {(A), (B1), (B2)}.
This results in voltage widths s = {0.4,0.4, 2.4}ppm on the sub-ppm level for (A) and (B1). The
derived analytic expressions for the resonance velocity of the Raman transition vR (11.3), the
population of the metastable state after applying a π-pulse m0(tπ,0, v ) (12.14) as well as the
corresponding FWHM∆v0(tπ,0) (12.15) give reliable predictions.

Considering finite laser linewidths, the analytic approximation for the velocity- and time-
dependent metastable-state population mana (12.34) still matches the full numerical solution
very well. In addition, the approximations for the velocity width for both, after applying
a π-pulse ∆vR(tπ) (12.22) and in the rate equation limit ∆vRE(t ) (12.26), are also suitable
models. Thereby, almost exact results for large parameter regimes are predicted while requiring
simultaneously small computational efforts. Moreover, the presented analytical models lead
to physical insights, verified by the numerical results.

Finite laser linewidths lead to a significant broadening of the Raman transition. With
γ= 300 kHz the velocity width of m is enlarged to ∆v (tπ,0) = {0.22,0.22,0.43}m/s, lead-
ing to s = {1.7,1.7,3.3}ppm, still on the ppm level. Note that this width of the distribu-
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tion does not represent the ultimate limit of the determination of the resonance velocity
vR and thereby of the sensitivity s . The centre velocity of the final distribution, here vR, can
be determined much more precisely, characterised by the statistical uncertainty. In the ex-
periment velocities are measured with laser frequencies and statistical uncertainties less
than 400 kHz (cf. Chap. 4 in [184]) are achieved. Therefore, sub-ppm high-voltage measure-
ments are still attainable. This becomes apparent in the related width in the frequency do-
main ∆ f = (k1 + k2)∆v /(2π) = {0.8,0.6,1.6}MHz, which is much smaller than the natural
linewidth Γe g = 23.396 MHz. The Raman transition has therefore the potential to provide
a significant reduction in uncertainty. Moreover, it avoids additional uncertainties caused
by varying and unknown momentum transfers in multiple resonant excitations along the
4s → 4p transition and the subsequent spontaneous decay in the current measurement
scheme. The momentum transfer during the Raman transition is very small and exactly de-
fined as h (k1+k2)2/2m = 69 kHz in direction of laser 2. Therefore, it can be taken into account
in the analysis process.

In addition, with the velocity acceptance of the Raman transition, the maximum angle be-
tween ion and laser beams can be approximated. Within this angle ions can be just transferred
into the metastable state, even though their absolute velocity value does not match the Raman
condition. By demanding that this discrepancy of the longitudinal ion velocity component
must be smaller than∆v /2 the resulting angle isα≤ arccos[(vR−∆v /2)/(vR+∆vI /2)]≈ 6 mrad
for∆vI = 10m/s and all parameter sets. Consequently, this transverse emittance is mainly
defined by the initial velocity width of the ions. However, in comparison, the natural linewidth
induces a much larger angle α′ ≤ arccos[(v1− Γe g /(2k1))/(v1+∆vI /2)] = 11 mrad. Therefore,
the use of Raman spectroscopy indeed reduces the transverse emittance, improving one of
the critical issues in the experiment applying spontaneous population transfer with only one
laser [185].

The main effect of spatial intensity variations of both the laser beams and the ion beam is a
small reduction of the transfer efficiency for all velocities (less than one order of magnitude).
Thereby, the velocity width of the transferred population is approximately not affected. Note,
that for maximum laser powers the velocity of maximum population transfer is slightly shifted
in comparison to infinitely large laser beams. Therefore, the central velocity differs from the
Raman velocity for infinite large lasers. In order to avoid systematic errors, this shift must be
taken into account when deriving specific velocity values and thus voltages. However, this can
easily be accomplished by incoherent averaging over the different Raman velocities (11.3),
according to the varying Rabi frequencies in the Laguerre-Gaussian laser beams.

Despite these experimental imperfections, the resonance of the Raman transition is still
clearly identifiable. Therefore, the presented theoretical study of aberrations to Raman velocity
filters for hot ions demonstrates the feasibility of high-voltage measurements using coherent
Raman spectroscopy on the ppm level, under realistic conditions. Besides provisioning a deep
physical understanding of Raman velocity filters, the gained findings pave the way for further
promising experiments to realise high precision measurements of high voltages, pointing out
important conditions for experimental parameters.
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13.2 AT O M I C B R A G G D I F F R A C T I O N

Bragg scattering from moving standing waves provides the opportunity to realise highly ef-
ficient matter-wave beamsplitters and mirrors, which are the central components of atom
interferometers. However, they suffer from a multitude of aberration sources. Especially for
challenging space experiments these aberrations must be considered and quantified to pro-
vide realistic predictions and to demonstrate possible optimisation approaches. Therefore, full
three-dimensional simulations and analytical models of atomic beamsplitters with different
spatio-temporal envelopes are studied in Part II.

Several kinds of ubiquitous imperfections, like the velocity dispersion and the population
losses into higher, off-resonant coupled diffraction orders are characterised. The influence of
four common pulse shapes (rectangular, Gaussian, Blackman, hyperbolic secant) is compared.
For a rectangular pulse, explicit higher order diffraction results are obtained from Kato’s
degenerate perturbation theory, which provide insight in the quasi-Bragg regime. Due to a
renormalisation of the effective Rabi frequency in the beamsplitter manifold, one finds a
significant stretching of the optimal π-pulse time (6.32), which has been seen experimentally
[167]. It is assumed to be universal, because it is found for all considered pulse shapes.

Clearly, the diffraction efficiency and the fidelity benefit from Fourier-limited, smooth en-
velopes. Thereby, much insight is gained from the analytical Demkov-Kunike model (6.42) of
a beamsplitter pulse, which assumes hyperbolic secant pulses. It reveals the explicit depen-
dence on the multitude of physical parameters. It describes very accurately one of the most
important aberrations, i.e. the velocity dispersion. Additionally, with the extended model
(6.52) also losses into the neighbouring diffraction orders are considered. Due to its similarity
with a Gaussian pulse, the diffraction efficiency for sech pulses (6.44) can be adapted to Gaus-
sian pulses (6.54). Thereby, an analytical model (6.72) of the diffraction efficiency of partially
condensed clouds can be derived for large, collimated Laguerre-Gaussian laser beams with
temporal Gaussian envelopes, considering also laser frequency mismatches and rouge atomic
initial velocity components. The model is verified experimentally [1] for a large parameter
regime, matching the velocity dispersion and the even more sensitive Rabi oscillations of the
diffraction efficiency.

In contrast to smooth temporal envelopes, smooth spatial variations diminish the diffraction
performance. Comparing Laguerre-Gaussian laser beams with plane waves almost always
reduces the diffraction efficiency and transfer fidelity. In particular, the beam inhomogeneity
becomes relevant for large atomic clouds of widthσx in comparison to the laser beam waist
w0 with ratiosσx ≥w0/10. However, even for smaller but decentred clouds, the phase sensitive
fidelity suffers significantly.

The detailed study of the radiative force, composed by the radiation pressure and the dipole
force, reveals the most important aberration sources for this worsening, namely the transfer
of transverse momentum components as well as an increase in the momentum width. For
these transverse effects, the radiation pressure is negligibly small. However, a simple analytical
model (7.18) for the effectively transferred momentum, quantifies its maximum contribution
very precisely, giving advice in which situations it could be still important to take it into
account. In contrast, while on relevant scales the dipole force in longitudinal direction is
negligible, its transversal effects can be tremendous. A simple impact approximation (7.30),
using the classical approximation of the Ehrenfest theorem, predicts sufficiently well the
transferred momentum, even taking into account only the centre-of-mass position of the
atomic states. Averaging over the spatial extent of the atomic cloud (7.31)-(7.32) is appropriate
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even for large atomic sizesσx /w0 ≥ 1/10. However, the numerical simulations show a small
systematic deviation. In contrast to the expectation, the transferred momentum has no exact
negative parity for the laser detuning. To account for this effect, the dipole force should be
studied in more detail, beyond the classical impact approximation of the Ehrenfest theorem.

In addition, laser misalignment forces a variation of the laser beam intensities and sig-
nificant transverse momentum components are transferred to the atoms. However, this is
only relevant for large misalignments or focussed laser beams. It is worth mentioning, that
especially for laser misalignment the fidelity is much more sensitive to aberrations than the
diffraction efficiency. The simulation results and the predictions for the effectively transferred
momentum due to misaligned laser beams are again verified experimentally [1].

Spontaneous emission as an incoherent aberration source can be taken into account, using
a Quantum Monte Carlo method. As expected, for extremely large laser detunings to the
atomic resonance, spontaneous emission effects can be neglected safely. However, even one
quantum jump, during the atomic diffraction, reduces the beamsplitter performance signifi-
cantly in the percent regime.

In total, the beamsplitter quality depends on and is defined by a variety of observables.
Therefore, linear susceptibilities make the diminishing effect of a multitude of aberration
sources comparable. Regarding moderate but realistic beamsplitter parameters, these sus-
ceptibilities quantify the influence of different aberrations. This confirms that the velocity
dispersion is one of the most important aberration source. To realise efficient matter-wave
devices, it is equally important to match the pulse area conditions of aπ/2- (beamsplitter) and
π-pulse (mirror) exactly by adjusting the laser power and the pulse width. Rogue transferred
transverse momentum components reduce the fidelity enormously, but leave the diffraction
efficiency mostly unharmed.

While the derived analytical models provide deep physical insights into the characteris-
tic properties of atomic Bragg diffraction, the full (3+1)-dimensional numerical simulation
possesses realistic predictions as well as the clear advantage that it can be applied straightfor-
ward to different problems. For instance, one could think of Double Bragg diffraction [200],
comparing even more temporal pulse shapes than indicated within this thesis and different
intensity distributions, considering for example damaged optical devices.

Obviously, the next step is to combine the characterised matter-wave devices, based on
atomic Bragg diffraction, with realistic (partially) condensed and expanded atomic clouds as
initial states. Along with free expansion simulations, the ultimate objective of building a full
matter-wave interferometer under realistic conditions, viz. taking plenty of aberrations into
account, can be accomplished.
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A
F U N D A M E N TA L PA R A M E T E R S

A.1 AT O M I C B R A G G D I F F R A C T I O N

For experiments with ultracold atoms the D2-line of rubidium-87 atoms serves optimal condi-
tions, accessible for common optical devices. Table A.1 lists fundamental parameters as well
as parameters mostly used for the simulations and the compared experiments.

Quantity Symbol Value Ref.

Number of atoms in BEC N c 10(1)×103

Number of atoms in thermal cloud N t 7(1)×103

Atomic mass M 86.909 180520(15)u [A]
Transition frequency ω0 2π×384.230 484468 5(62)THz [B]
Lifetime τ 26.2348(77)ns [C]
Decay rate Γ 2π×6.0666(18)MHz
Dipole matrix element D 3.58424(52)×10−29 Cm
Scattering length as 98.96 a0 [D]
Trap frequencies [ωx ,ωy ,ωz ] 2π× [46(2), 18(1), 31(1)]Hz
Thomas-Fermi radii inside trap [rx , ry , rz ] [4.2, 10.8, 6.2]µm

Table A.1: Set of rubidium-87 atom parameters of the D2 (52S1/2→ 52P3/2) transition line, used in the
experiments and simulations, taken from [A]: [201], [B]:[202], [C]:[203–206], [D]:[207].

The laser parameters mostly used for the atomic Bragg beamsplitter simulations and exper-
iments are provided in Table A.2.

Quantity Symbol Value Ref.

Wavelength λL 780.024500 015 nm
Wavenumber kL 8.056µm−1

Detuning to atomic resonance ∆=ωL −ω0 +97.875 GHz
Beamwaist w0 1.386 mm [208]
Rayleigh length xR 7.7 m
Total interaction time ∆t (102...103)µs
Temporal Gaussian pulse width (6.4) tG ∆t /8
Distance between laser origins `x ∼ 0.1xR

Table A.2: Set of laser parameters, used in this thesis for the experiments and simulations for atomic
Bragg diffraction, with the mean wavenumber 2kL = k1+k2.
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A.2 R A M A N V E L O C I T Y F I LT E R

Relevant spectroscopic data for 40Ca+ ions are given in Table A.3, together with the character-
istic properties of the applied velocity distribution. The laser parameters for the simulations
of the Raman velocity filter are specified in Table A.4. Three different sets are compared in
Part III. Parameter set (A) differs from (B)mainly in the laser frequencies, while (B1) and (B2)
provide different laser powers. The beam waist as well as the laser linewidths stay the same
for all cases.

Quantity Symbol Value Ref.

Mass M 39.962 042 286(22) u [A, B]
Transition frequency ωe g 2π×761.905 012 599(82)THz [C]
Natural linewidth (FWHM) Γg e 2π×23.396 MHz [B]
Lifetime τg e = Γ−1

g e 6.8 ns

Transition dipole matrix element 〈J = 1
2 ||e r ||J ′= 3

2 〉 2.301 129×10−29 C m
Transition frequency ωe m 2π×350.862 882 823(82)THz [C, D]
Natural linewidth (FWHM) Γme 2π×1.576 MHz [B]
Lifetime τme = Γ−1

me 101 ns
Transition dipole matrix element 〈J = 5

2 ||e r ||J ′= 3
2 〉 1.250 998×10−29 C m

Acceleration voltage U 14 kV
Mean velocity v̄ 260 km/s
Initial width of velocity distribu-
tion (FWHM)

∆vI (10 - 100) m/s

Table A.3: Parameters for 40Ca+ transitions between the states |g 〉, |e 〉 and |m〉, of the configurations
4s 2S1/2, 4p 2P3/2, and 3d 2D5/2, taken from [A]: [189], [B]:[190], [C]:[191], [D]:[192]. The param-
eters U , v̄ ,∆v are applied in the simulations, being experimentally accessible.

Quantity Symbol Value

Laser 1 (anti collinear) Parameter set (A) Parameter set (B1) Parameter set (B2)
Frequency f1 761.243 795 50 THz 761.241 765 92 THz
Wavelength λ1 393.8192 nm 393.8203 nm
Wavenumber k1 15.954490µm−1 15.954448µm−1

Power P1 3.29 mW 10 mW 30 mW
Rabi frequency Ω1 2π×14.828 MHz 2π×25.852 MHz 2π×44.777 MHz
Beamradius w0 1.7 mm
Linewidth Γg g 300 kHz

Laser 2 (collinear) Parameter set (A) Parameter set (B1) Parameter set (B2)
Frequency f2 351.166 422 00 THz 351.164 388 90THz
Wavelength λ2 853.7048 nm 853.7097 nm
Wavenumber k2 7.359904µm−1 7.359861µm−1

Power P2 11.13 mW 33 mW 500 mW
Rabi frequency Ω2 2π×14.827 MHz 2π×25.531 MHz 2π×99.379 MHz
Beamradius w0 1.7 mm
Linewidth Γmm 300 kHz

Table A.4: Experimentally accessible laser parameters used for the Raman simulations.
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B.1 D I S C R E T E F O U R I E R T R A N S F O R M O N P E R I O D I C L AT T I C E S

Using discrete Fourier transformations there are fixed relations between the grid size in the
real r = (rx , ry , rz ) and the reciprocal k = (kx , ky , kz ) space. Regarding in the three dimensions
a ∈ {x , y , z } a number of Na grid points and an extent of the grid ra ∈ [−La , La ), respectively
ka ∈ [−Ka , Ka ), the discrete grid values are defined with

rl ≡ rxl
=

2l L x

Nx
, l ∈

�

− Nx
2 , Nx

2

�

, ko ≡ kxo
=

oπ

L x
, o ∈

�

− Nx
2 , Nx

2

�

, (B.1)

rm ≡ rym
=

2m L y

Ny
, m ∈

�

− Ny

2 ,
Ny

2

�

, kp ≡ kyp
=

pπ

L y
, p ∈

�

− Ny

2 ,
Ny

2

�

, (B.2)

rn ≡ rzn
=

2n Lz

Nz
, n ∈

�

− Nz
2 , Nz

2

�

, kq ≡ kzq
=

qπ

Lz
, q ∈

�

− Nz
2 , Nz

2

�

. (B.3)

The relations between the increments read

∆a =
2La

Na
, Ka =

π

∆a
=
πNa

2La
∆ka =

2Ka

Na
=

2π

Na∆a
=
π

La
. (B.4)

Periodical boundary conditions are considered with

ψl =ψl+Nx
, ψm =ψm+Ny

, ψn =ψn+Nz
, (B.5)

which are equivalent to the continuous boundary conditionsψ(ra +2La ) =ψ(ra ).

B.1.1 Wavefunctions

The wavefunctions are defined with the discrete Fourier transform in the position space by

ψl mn ≡ψ(rl , rm , rn ) =

Nx
2 −1
∑

o=−Nx
2

Ny
2 −1
∑

p=−Ny
2

Nz
2 −1
∑

q=−Nz
2

e i ko rl

p

2L x

e i kp rm

Æ

2L y

e i kq rn

p

2Lz

Ψ(ko , kp , kq ) (B.6)

and in the reciprocal momentum space by

Ψo p q ≡Ψ(ko , kp , kq ) =
V

N̄

Nx
2 −1
∑

l=−Nx
2

Ny
2 −1
∑

m=−Nx
2

Nz
2 −1
∑

n=−Nz
2

e −i ko rl

p

2L x

e −i kp rm

Æ

2L y

e −i kq rn

p

2Lz

ψ(rl , rm , rn ). (B.7)
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Here, N̄ = Nx Ny Nz is the total number of grid points and V = 8L x L y Lz the volume of the
orthorhombic grid. The norm of the wavefunction ||ψ|| is defined by the discrete scalar product

(ψ,ψ) =
∑

l ,m ,n

|ψl mn |2 =
1

V
, (B.8)

Choosing here the normalisation of the wavefunction to the volume V , the value in the
continuous case 〈ψ|ψ〉 is defined simultaneously to

||ψ||2 = 〈ψ|ψ〉=
∫

V

d3r |ψ(r )|2 =
1

N̄
. (B.9)

Therefore, it is worth mentioning that the continuous scalar product 〈·|·〉 give a different result
than the discrete scalar product (·, ·). In addition, there is the relation

∑

l ,m ,n

|ψl mn |2 =
N̄

V

∑

o ,p ,q

|Ψo p q |2 (B.10)

between the discrete representation in real and reciprocal space.
Please note, that numerical fast Fourier transforms (FFTs) methods use the following defini-

tion of the Fourier and inverse Fourier transform (in one dimension x )

ψFFT
l =

1

Nx

Nx−1
∑

o=0

e i 2πo l /NxΨFFT
o , ΨFFT

o =
Nx−1
∑

l=0

e −i 2πo l /NxψFFT
l . (B.11)

It is a shifted wavefunction in phase space. J.W. Cooley and J.W. Tukey developed the algorithm
of FFTs [209], based on splitting the sum into one for the even and a second sum for the odd
indices, while C.F. Gauß invented an algorithm similar to the FFT for the computation of the
coefficients of a finite Fourier series [210]. In this way the computational complexity is reduced
from O

�

l 2
�

to O
�

l log l
�

. The discrepancy of the wavefunctions defined by the discrete Fourier
fransform (B.6), (B.7) to that one applying FFTs (B.11), i.e.

Ψo p q =

p
V

N̄
e iπo e iπp e iπqΨFFT

o p q , (B.12)

needs to be kept in mind. More general details to discrete Fourier methods can be found e.g.
in [211] and also more specific in Chapter 7 of the master thesis of Micha Ober [212].

B.1.2 Expectation values

Physically observable expectation values 〈Â〉ψ for pure states |ψ〉, respectively 〈Â〉ρ for mixed
states ρ̂ (3.20), are defined by

〈Â〉ψ =
〈ψ|Â|ψ〉
〈ψ|ψ〉

, 〈Â〉ρ = Tr
�

ρ̂Â
	

=

∑

i pi 〈ψi |Â|ψi 〉
∑

i pi 〈ψi |ψi 〉
=
∑

i

pi 〈Â〉ψi
. (B.13)

Here, the square of the norm ||ψ||=
p

〈ψ|ψ〉 of the wavefunction can be separated into the
population of all internal states |ς〉with

||ψ||2 = 〈ψ|ψ〉=
∑

ς

||ψς||2, ||ψς||2 =
∫

d3r |ψς(r )|2, ψς = 〈ς|ψ〉. (B.14)
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The total energy of the system

〈Ĥ 〉=
〈ψ|Ĥ |ψ〉
〈ψ|ψ〉

=
〈ψ|T̂ |ψ〉
〈ψ|ψ〉

+
〈ψ|V̂ |ψ〉
〈ψ|ψ〉

, (B.15)

contains the potential energy, which can be evaluated in real space

〈ψ|V̂ (t , r )|ψ〉=
∫

d3r ψ∗(r )V̂ (t , r̂ )ψ(r ), (B.16)

and the kinetic energy, using the Fourier transform into the momentum space Ψ(k )

〈ψ|T̂ |ψ〉= 〈ψ| p̂ 2

2M |ψ〉=
ħh 2

2M 〈ψ|k̂
2|ψ〉= ħh

2

2M

∫
d3k k 2|Ψ(k )|2. (B.17)

The position and momentum moments of order s ∈Z+ for a certain direction a ∈ {x , y , z } are
essential. In the continuous case, they read

〈r̂ s
a 〉=

∫
d3r r s

a |ψ(r )|
2

∫
d3r |ψ(r )|2

, 〈k̂ s
a 〉=

∫
d3k k s

a |Ψ(k )|
2

∫
d3k |Ψ(k )|2

, (B.18)

and in the discrete case, exemplary for the x -direction they are

〈r̂ s
x 〉=V

∑

l

r s
l

∑

m ,n

|ψl mn |2 =V
∑

l

r s
l

∑

m ,n

|ψFFT
l mn |

2, (B.19)

〈k̂ s
x 〉= N̄

∑

o

k s
o

∑

p ,q

|Ψo p q |2 =
V

Nx

∑

o

k s
o

∑

p ,q

|ΨFFT, o
o p q |

2, (B.20)

analogue in the remaining directions. In Eq. (B.20) the partial FFT for the x -axis (o ) occurs.

The expectation value 〈k̂ 2〉= 〈k̂ 2
x + k̂ 2

y + k̂ 2
z 〉 required for the kinetic energy is given by

〈k̂ 2〉= N̄
∑

o ,p ,q

(k 2
o +k 2

p +k 2
q )|Ψo p q |2 =

V

N̄

∑

o ,p ,q

(k 2
o +k 2

p +k 2
q )|Ψ

FFT
o p q |

2. (B.21)

B.1.3 Conserved quantities

For closed systems, where no population is lost into unobserved states, consequently the
norm (B.14) is conserved with ||ψ||2 =const. In addition, for time-independent potentials
V̂ (t , r ) = V̂ (0, r ) the total energy of the system (B.15) remains constant 〈Ĥ 〉=const.

B.2 N U M B E R O F S I M U L AT I O N T I M E S T E P S

Naturally, the precision of the numerical simulation increases for smaller integration timesteps.
Thus, the number of timesteps needs to be increased, claiming a longer computational time.
Therefore, tools are required to identify a proper number of timesteps, keeping it as small as
reasonable. Specifying a required accuracy of the norm and energy conservation, characterises
a maximal time-step size for the numerical integration. It is worth mentioning, that the energy
conservation is much more sensitive than the norm conservation. The exemplary results of
the quality of energy conservation using symplectic integrators (cf. Sec. 3.1.1) with different
splitting orders are visualised in Fig. 3.1.
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B.3 S C A L I N G O F T H E N U M E R I C A L S I M U L AT I O N S

To consider losses into higher diffraction orders in the quasi-Bragg regime (cf. Part II) a grid size
of Kx ¦ 6kL ≈ 50µm−1 in the propagation direction x of the lasers is required for resonant first-
order diffraction. Therefore, considering additionally a spatial extent in the range of the laser
beamwaist w0 with L ∼w0 ∼mm leads to a giant number of grid points N̄ =Nx ×Ny ×Nz > 230

for simulations in three dimensions. For discrete Fourier transformations, there are fixed
relations between the grid size in the real r - and the reciprocal k -space, as mentioned in App.
B.1. Therefore, with K ∝ 1/L and ∆k ∝ 1/∆x , it is not possible to expand the x - and the
k -size simultaneously without increasing the number of grid points. However, if the diffraction
results can be scaled in the real space, the number of grid points can be kept in a practicable
range. Therefore, large atomic clouds in large laser fields must be approximable with small
atomic clouds in small laser fields, thus the diffraction efficiency must depend only on the ratio
σx /w0, not on the individual values of the laser beamwaist w0 and the size of the atomic cloud
σx . Indeed, this is the case for an appropriate sizeσx with w0 >σx >λL , as demonstrated in
Fig. B.1 and Fig. B.2.

The phase sensitive fidelity F (5.34) depending on the pulse width represents the most
sensible observable. Therefore, the Rabi oscillations of F for rectangular pulses with Laguerre-
Gaussian spatial envelopes (cf. Sec. 2.2.2 and Chap. 7) are compared for different sizes ofσx

and w0 keeping the ratioσx /w0 constant. Different ratiosσx /w0, two-photon Rabi frequen-
cies Ω, momentum widthsσk and atomic initial positions r 0 are considered.

In Fig. B.1 the ratio σx /w0 = 1/25 is studied. The results show, that indeed large atomic
clouds [σx = 16µm (a),σx = 8µm (b)] in large laser fields [w0 = 400µm (a), w0 = 200µm (b)]
can be approximated with small atomic clouds (σx = 2µm) in small laser fields (w0 = 50µm).
Even 2D simulations (simply skipping the third dimension with Nz = 1, z = 0) give exact results
forσk ≤ 0.1 kL , only forσk = 0.2 kL there are small deviations to the simulations in 3D. For (a)
the sizeσx = 16µm is marginal too large for the grid size, causing very little deviations to the
simulations withσx = 2µm especially for long interaction times, larger than the mirror times.
The simulations show, that the larger the momentum width, the shorter is the effectiveπ-pulse
time, deviating from the analytical prediction (6.32) especially for small Rabi frequencies and
large momentum widths. With displacing the initial state transversally the experienced ef-
fective Rabi frequency Ω(r ) is reduced. Therefore, the oscillation periods increases and the
mismatch between the time of maximum population transfer and the analytical effective
π-pulse time (6.32) is more crucial than for centrally located atoms.

In Fig. B.2 a large expansion with the ratioσx /w0 = 1/5 is studied. The results demonstrate
again the spatial scalability of the atomic diffraction. Here, 2D simulations are not exact even
for small momentum widths, but they give approximate predictions. In addition, for small
Rabi frequencies or rather displaced atoms, the mismatch between the time of maximum
population transfer and the analytical effectiveπ-pulse time (6.32) increases further. However,
for moderate effective Rabi frequencies it still gives reliable predictions.
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Figure B.1: Rabi oscillations of the fidelity F (t ) (5.34), for ballistically expanded isotropic Gaussian
wavepackets (5.26) as atomic initial states with a ratioσx /w0 = 1/25, located at r 0 = (0, 0, 0)
(a) and r 0 = (0, w0/2, 0) (b). Different Rabi frequencies Ω, momentum widthsσk and spatial
widthsσx are considered. The analytical mirror times 2τ̃Rπω2r (6.32) are highlighted.
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Figure B.2: Rabi oscillations of the fidelity F (t ) (5.34), for ballistically expanded isotropic Gaussian
wavepackets (5.26) as atomic initial states with a ratioσx /w0 = 1/5, located at r 0 = (0, 0, 0)
(a) and r 0 = (0, w0/2, 0) (b) . Different Rabi frequenciesΩ, momentumσk and spatial widths
σx are considered. The analytical mirror times 2τ̃Rπω2r (6.32) are highlighted.
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The disentangling of the exponential exp
�

−i V̂ τ/ħh
�

belonging to the spin operator algebra
SU(2) represents one key method of the numerical simulations, which are developed and used
within this work. Therefore, its derivation is described here in more detail, taken from [134].

In general, the disentangled expansion of an exponential of a sum of non-commutative
operators X̂ i is finite if all X̂ i belong to a finite-dimensional Lie algebra generated by X̂1, . . . X̂n ,
n ∈Z+, leading to

e θ
∑n

i=1αi X̂ i = e f1(θ )X̂ i ... e fn (θ )X̂n , fi (0) = 0. (C.1)

The Pauli spin operators couple the ground |g 〉 and the excited |e 〉 state of a two-level system

σ̂= |g 〉〈e |, σ̂† = |e 〉〈g |, 1= |g 〉〈g |+ |e 〉〈e |, (C.2)

σ̂x = σ̂+ σ̂
†, σ̂y = i (σ̂− σ̂†), σ̂z = |e 〉〈e | − |g 〉〈g |. (C.3)

They obey the commutator relation [σ̂i ,σ̂ j ] = 2iεi j k σ̂k , and in a standard matrix representa-
tion they read

σx =

�

0 1
1 0

�

, σy =

�

0 −i
i 0

�

, σz =

�

1 0
0 −1

�

, σ† =

�

0 1
0 0

�

, σ=

�

0 0
1 0

�

. (C.4)

The imaginary multiples i σ̂ j , j ∈ {x , y , z } are elements of the SU (2) algebra, therefore the
achievements for the disentangling of an exponential for the SU (2) algebra derived in [134] is
applicable. Thus, the matrix exponential with arbitrary complex factors, possibly with spatial
but no temporal dependency, α±, αz , can be entangled with

e iτ
�

α+σ̂
†+αz σ̂z+α−σ̂

�

= e f+(τ)σ̂†
e fz (τ)σ̂z e f−(τ)σ̂. (C.5)

The determination of the complex functions f± and fz works as follows: Differentiating equa-
tion (C.5) with respect to τ and the subsequent multiplication with the inverse of equation
(C.5) leads to

i
�

α+σ̂
†+αz σ̂z +α−σ̂

�

= ḟ+σ̂
† + ḟz e f+σ̂

†
σ̂z e − f+σ̂

†

︸ ︷︷ ︸

A

+ ḟ−e f+σ̂
†

e fz σ̂z σ̂e − fz σ̂z
︸ ︷︷ ︸

B

e − f+σ̂
†
. (C.6)

Using following relations derived from the commutator relations of the SU (2) algebra

e
iθ
2 σ̂σ̂z e −

iθ
2 σ̂ = σ̂z + iθ σ̂, e

iθ
2 σ̂z σ̂e −

iθ
2 σ̂z = e −iθ σ̂, (C.7)

e
iθ
2 σ̂

†
σ̂z e −

iθ
2 σ̂

†
= σ̂z − iθ σ̂†, e

iθ
2 σ̂z σ̂†e −

iθ
2 σ̂z = e iθ σ̂†, (C.8)
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the marked sandwich terms simplify to

A ≡ e f+σ̂
†
σ̂z e − f+σ̂

†
= σ̂z −2 f+σ̂

†, B ≡ e fz σ̂z σ̂− fz σ̂z = e −2 fz σ̂. (C.9)

With inserting this into the full equation

i
�

α+σ̂
†+αz σ̂z +α−σ̂

�

= ḟ+σ̂
† + ḟz σ̂z −2 f+ ḟz σ̂

†+ ḟ−e −2 fz e f+σ̂
†
σ̂e − f+σ̂

†

︸ ︷︷ ︸

C

, (C.10)

one last sandwich term C needs to be determined. Applying the similarity transformation

Â(θ )≡ e −θ P̂ Âe θ P̂ = Â−θ [P̂ , Â] +
θ 2

2!
[P̂ , [P̂ , Â]] +

θ 3

3!
[P̂ , [P̂ , [P̂ , Â]]] + . . . , (C.11)

C reads

C ≡ e f+σ̂
†
σ̂e − f+σ̂

†
= σ̂+ f+[σ̂

†,σ̂] +
f 2
+

2!
[σ̂†, [σ̂†,σ̂]]−

f 3
+

3!
[σ̂†, [σ̂†, [σ̂†,σ̂]]] + . . . (C.12)

Taking advantage of the commutator relations [σ̂†,σ̂] = σ̂z , [σ̂z ,σ̂] = 2σ̂ and [σ̂z ,σ̂†] = 2σ̂†

the finitude of this expansion becomes apparent with

[σ̂†, [σ̂†,σ̂]] = [σ̂†,σ̂z ] =−2σ̂†, (C.13)

[σ̂†, [σ̂†, [σ̂†,σ̂]]] = [σ̂†, [σ̂†,σ̂z ]] =−2[σ̂†,σ̂†] = 0. (C.14)

Comparing the pre-factors of σ̂, σ̂† and σ̂z in the final expression

i
�

α+σ̂
†+αz σ̂z +α−σ̂

�

= ḟ+σ̂
† + ḟz σ̂z −2 f+ ḟz σ̂

†+ ḟ−e −2 fz
�

σ̂+ f+σ̂z − f 2
+ σ̂

†
�

, (C.15)

results in non-linear differential equations, defining f±, fz with

iα+ = ḟ+−2 ḟz f+− ḟ− f 2
+ e −2 fz , (C.16)

iαz = ḟz + ḟ− f+e −2 fz , (C.17)

iα− = ḟ−e −2 fz . (C.18)

Inserting (C.18) into (C.16), (C.17) and eliminating ḟz afterwards, yields the Riccati [213]
equation

0= i ḟ++2αz f+− f 2
+α−+α+, (C.19)

which can be solved with

f± =
iα±
Γ1

sin(Γ1τ)
Fz

, fz =− ln(Fz ), Fz = cos(Γ1τ)−
iαz

Γ1
sin(Γ1τ), Γ 2

1 =α+α−+α
2
z , (C.20)

where f− and fz are calculated with the solution f+ in combination with (C.17), (C.18). With
these solutions the disentangled exponential (C.5) is completely defined and can be written
in matrix representation, applying the matrix representations of the Pauli spin operators (C.4).
With σ̂2 = (σ̂†)2 = 01 the Taylor expansions exp

�

f−σ̂
�

= 1+ f−σ̂ and equivalently exp
�

f+σ̂
†
�

=
1+ f+σ̂

† are exact and because σ̂z is diagonal the exponential of the diagonal elements can
be directly taken, leading to

e f+σ̂
†
e fz σ̂z e f−σ̂ = (1+ f+σ̂

†)e fz σ̂z (1+ f−σ̂) =

�

1+
�

0 f+
0 0

���

e fz 0
0 e − fz

��

1+
�

0 0
f− 0

��

=

�

e fz + f+ f−e − fz f+e − fz

f−e − fz e − fz

�

=

�

F −1
z + f+ f−Fz f+Fz

f−Fz Fz

�

.

(C.21)

1 The excited state cannot be excited further and the ground state cannot be further lowered.
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D.1 K AT O M O D E L

The Kato model rectifies the Pendellösung (6.11) for the Bragg diffraction of plane laser waves
with rectangular pulse shapes with contributions from higher order diffraction (cf. Sec. 6.2.2).
The full solution of the Schrödinger equation with the Kato Hamiltonian (6.15) results in (6.27)

g K (τ) =
g̃ K (τ)
|g̃ K (τ)|

, g̃ K (τ) =
∑

i={1,3}

∑

j={+,−}
ci , j e −iωi , j (τ−τi )vi , j . (D.1)

The eigenvaluesωi , j are given by the Eqs. (6.23), (6.25) and the normalised eigenvectors by

vi , j =
Piν

(0)
i , j

|Piν
(0)
i , j |

, ν(0)1, j =
�

0,
�

v(0)1, j

�

1
,
�

v(0)1, j

�

2
, 0
�

, ν(0)3, j =
�

�

v(0)3, j

�

1
, 0, 0,

�

v(0)3, j

�

2

�

, (D.2)

with the projections Pi (6.26) and eigenvectors of the reduced 2×2 systems v(0)i , j (6.23), (6.25).
The integration constants ci , j with c ≡ (c1,+, c1,−, c3,+, c3,−) are defined by the initial condition
g̃ K (τi ) = (0, 1, 0, 0) via

c = A−1.g̃ K (τi ), A = (v1,+, v1,−, v3,+, v3,−)
T . (D.3)

D.2 D E M K O V- K U N I K E M O D E L

The full Demkov-Kunike propagator G∓ (6.40), for the Bragg diffraction of plane laser waves
with sech-pulse shapes (cf. Sec. 6.3) results in bulky expressions. Especially for the extended
DK-model (6.51), (6.52) it is useful to simplify G∓ approximately as follows.

D.2.1 Demkov-Kunike propagator

With a = ΩτS/2, b = −a and c = (1 + i κτS )/2 the hypergeometric differential equation
simplifies to

z (1− z )γ′′+ (c − z )γ′+a 2γ= 0, (D.4)

and its solution reads

g−1(z ) = γ(z ) = A 2F1[−a , a ; c , z ] +B (−1)1−c z 1−c
2F1[α+,α−; 2− c , z ], (D.5)

with α± = 1±a − c = (1+ΩτS − i κτS )/2. The solution of g+1 is given by the time derivation
(6.35), which transforms in the z -domain to

g+1(z ) =
i

a

p

z (1− z )g ′−1(z ), (D.6)
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resulting in

g+1(z ) =−Ai
a
p

z (1− z )
c 2F1[1−a , 1+a ; 1+ c , z ]

−B i

p

z (1− z )
a

(−1)−c z−c
�

(1− c ) 2F1[α−,α+, 2− c , z ] (D.7)

+ z
(1+a − c )(a + c −1)

c −2 2F1[1+α−, 1+α+; 3− c , z ]
�

.

The integration constants A and B are defined by the initial conditions g±1,0 = g±(zi ) with
zi = z (τi ). Using the limit limτi→−∞ z (τi ) = 0 of a pulse beginning in the remote past, one can
identify g−1(z = 0) = A = g−1,0. Unfortunately, g+1(z = 0) = 0 is independent of B . However,
evaluating g−1(z ) on resonance for c (κ = 0) = 1/2, and g+1(z )with using again Eq. (D.6), the
relation g+1(z = 0; c = 1/2) = −B/(2a ) can be found, wherefore B (κ = 0) = −2a g+1,0. For
arbitrary κ the actual initial time τi needs to be considered, for solving g+1(zi ) = g+1,0 to
separate B (g−1,0, g+1,0) = ,g−1,0+Υg+1,0ג with the two contributions

zi)ג ) =
(−1)1+c a 2z c

i

c
2F1[1−a , 1+a ; 1+ c , zi ]

a 2F1[α−,α+; 2− c , zi ] +α− 2F1[1+α−,α+; 2− c , zi ]
, (D.8)

Υ (zi ) =
i (−1)c a z c

i
p

zi (1− zi )

1

a 2F1[α−,α+; 2− c , zi ] +α− 2F1[1+α−,α+; 2− c , zi ]
. (D.9)

To fulfil the condition f (τi )≈ 0, it is required n ¦ 3 for τi =−nτG = nτS

p

2/π. Then the limit
of infinite boundaries (n→∞) is appropriate and again profitable, because limzi→0 =ג 0. In
addition, using the identity 2F1[a , b ; c , 0] = 1, it can be simplified

Υ (zi )≈
i (−1)c a z c

i

(1− c )
p

zi (1− zi )
⇒ Υ (τi ) = Υ (z (τi )) =

i a 21−c

1− c
cosh

�

τi

τs

��

−1+ tanh
�

τi

τs

��c

, (D.10)

where in the time domain the facts τi < 0 and τS > 0 are applied. Transforming back into the
z -domain, results finally in

Υ (zi ) =
2i a (−zi )c

(1− c )
p

1− (1−2zi )2
. (D.11)

For c (κ= 0) = 1/2 this reduces to Υ (zi ; c = 1/2) = −2a/
p

1− zi , verifying in the limit zi → 0
the previous finding B (κ= 0) =−2a g+1,0. In general c = (1+ i κτS )/2, why Υ depends strongly
on the actual initial datum zi , respectively τi∝τS .

Now, with the integration constants A = g−1,0 and B ≈ Υg+1,0 the time-dependent DK-
Pendellösung is defined by the simplified Demkov-Kunike G̃-matrix

g (τ) = G̃(z (τ))g (τi ), (D.12)

with the matrix elements G̃i j in the z -domain

G̃11 = 2F1 [a ,−a ; c , z ] , (D.13)

G̃12 = Υ (−1)1−c z 1−c
2F1 [α−,α+; 2− c , z ] , (D.14)

G̃21 =−i
a

c

p

z (1− z ) 2F1 [1−a , 1+a ; 1+ c , z ] , (D.15)

G̃22 =−iΥ
(−1)−c z−c

p

z (1− z )
a

¦

a 2F1[α−,α+; 2− c , z ]

+α− 2F1[1+α−,α+; 2− c , z ]
©

.

(D.16)
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Please keep in mind, that this is only applicable for |τi |¦ 3τG and that G̃12 and G̃22 depend
strongly on τi , because they are proportional to Υ . However, for initially g (τi ) = (1,0), one
obtains Eqs. (6.42), which are independent of Υ .

D.2.2 Extended Demkov-Kunike model

Losses into higher diffraction orders can be taken into account with a time-dependent pertur-
bation theory. Therefore, the integrals of the propagator G (τ,τi )≡G0+G1+G2 (6.52) need
to be solved. The most important loss channels are the neighboring states µ = ±3. In the
quasi-Bragg regime the losses into even higher orders µ=±5 can be neglected approximately.
The integrals of G1 and G2 can be solved analytically, with approximating the matrix elements
G̃i j (z )with a weighted sum of a power series and Puiseux series (Taylor series in (z − z0)1/p )
expansions at the interval limits z0 = 0 and z0 = 1

G̃i j (z )≈ (1− z )
∑

n

cn z n + z
∑

i

ci (1− z )αi . (D.17)

At these boundaries the series expansions describe the full solution very well and with the
weighted sum they are suitably continued to the centre z (τ= 0) = 1/2.

With the second order approximation of G (τ,τi ) (6.52) the losses into µ= ±3 are overes-
timated within G1. This would be compensated with taking the next two iterations G3 and
G4 into account. However, it can be found that a simple scaling of the µ=±3 contributions,
using G (τ,τi )≈G0+0.77G1+G2 is sufficient to approximate this compensation. Due to the
additional couplings in H1 the solution g =G (τ,τi )g (τi ) needs to be normalised to achieve
a final analytical expression for g = (g−3, g−1, g+1, g+3).

Series expansion of the Demkov-Kunike Pendellösung

The matrix elements G̃i j (z ) (D.13) are approximated with

G̃11 ≈ (1− z )

�

1−
a 2

c
z

�

+
z

sin(cπ)

�

πΓ (c )[1− c −a 2(1− z )]
Γ (2− c )Γ−Γ+

+
a

c
sin(aπ)(1− z )c

�

, (D.18a)

G̃12 ≈ (−1)−2c zΥ

�

(−1)c+1(1− z )z−c + [i + cot(cπ)] (D.18b)

�

7π(1− z )c [c +1(c 2−a 2)(1− z )]Γ [2− c ]
8Γ (α−)Γ (α+)Γ (2+ c )

+
[c −1+a 2(1− z )]sin(aπ)

a

��

,

G̃21 ≈−i
a

c
(1− z )

p
z +

i z
p

1− z

2 sin(cπ)

�

aπ[4−2a 2(1− z )− c (1+ z )]Γ (c )
Γ (3− c )Γ−Γ+

(D.18c)

+
e −i cπ(−1+ z )c−1 sin(aπ)

c
[(2c 2−2a 2)(1− z )+ c (1+ z )]

�

,

G̃22 ≈ (1− z )
(−1)−cΥ

a

�

z
1
2−c

�

T

8
p

2π3/2
− i (1− c )

�

+ z
3
2−c i [2a 2−1+ (3−2c )c ]

2

�

(D.18d)

− zΥ [1+ i cot(cπ)]
�

−
p

1− z sin(aπ)+ (1− z )−
1
2+c πΓ (2− c )

a Γ (α−)Γ (α+)Γ (c )

�

,

with Γ± = Γ (c ± a ), α± = 1± a − c and a = ΩτS/2, c = (1+ i κτS )/2. These approximations
approach the matrix elements (D.13) very well, as visualised exemplary for G̃11 in Fig. D.1.
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Here, also the single expansions around z0 = 0 and z0 = 1 are shown. For κ = 0, obviously the
approximation is dominated by the expansion at z0 = 1, with c (κ = 0) = 1/2 resulting in

G̃11(κ = 0)≈ 2a sin(aπ)
p

1− z + cos(aπ)[1−2a 2(1− z )]. (D.19)

However, for κ 6= 0 the expansion at z = 0 needs to be considered.
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Figure D.1: Time-dependence (top: z (τ) (6.37), bottom: τ) of the matrix element G̃11 of the time evolu-
tion matrix of the Demkov-Kunike Pendellösung (D.12). The approximation (D.18a) (solid),
composed of the expansions at z0 = 0 (dotted) and z0 = 1 (dash-dotted), is compared to
the exact solution (D.13) (dashed). Two different momentum detunings κ = 0 (left) and
κ= 0.5 kL (right) are depicted for Ω= 5ωr and total interaction time∆τ= 8τGπ.
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E.1 V E R I F I C AT I O N O F T H E D E M K O V- K U N I K E M O D E L

E.1.1 Expansion of the thermal cloud

Time-of-flight (TOF) measurements of a free expanding thermal cloud provide informations
about their momentum distributions via the expansion velocity. For partially condensed
clouds, as present in the experiment (cf. Sec. 6.6.1), a bimodal function (2.90) is fitted to
the spatial one-dimensional density distributions as mentioned in Section 2.3.7. In Fig. E.1
the time-dependent widths of the quantum depletion are depicted for the experimentally
accessible directions x and z . Linear fits of σ2(t 2) = σ2(0) +σ2

v t 2 result with Eq. (2.89) in
momentum widthsσt

kx
= (1.91±0.12)µm−1 = (0.237±0.015)kL andσt

kz
= (1.34±0.14)µm−1 =

(0.166±0.017)kL , related to the temperatures Tx = (20.4±2.5)nK and Tz = (10.0±1.9)nK. The
uncertainties are given by the confidence interval to the convidence level 0.95. The resulting
one-dimensional momentum distribution of the quantum depletion in x -direction is depicted
in Fig. 6.12.
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Figure E.1: Time-of-flight measurements [1] of the time-dependent widthσ(t ) of the doubly-integrated
density of the quantum depletion in x - (left) and z -direction (right).

E.1.2 Location of the atoms

The location of the atoms r 0 is given by the experimental setup, depicted in Fig. E.2. In the
propagation direction x of the lasers, the atoms are located at x0 ≈ 0 and the lasers at ± x̀ /2.
However, these positions are approximately irrelevant, because the lasers are collimated
with w (x )≈w0�λL . In contrast, a displacement of the atoms in the transverse %-direction
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Figure E.2: Two counterpropagating, col-
limated Laguerre-Gaussian laser beams
(magenta) build the intensity pattern of
a standing wave. The atoms (green) are
located at r 0 ≈ (0,0, z0). The distance be-
tween the two beamwaists w0 is x̀ . How-
ever, for collimated beams w0�λL this is
approximately irrelevant with w (x )≈w0.

x

w (x ) w0w0

− x̀
2

0

z

r0

x̀
2

y

zT

affects, according to the Gaussian envelope of the lasers (2.24), tremendously the effective
local two-photon Rabi frequency

Ω(r 0)≈Ωu (r 0)
2, u (r 0)

2 = exp
�

−2%2
0/w 2

0

�

. (E.1)

The transversal displacement is %0 =
q

y 2
0 + z 2

0 . While y0 ≈ 0, z0 is defined by the distance
between the trap zT and the laser symmetry axis z = 0 and the time-of-flight (TOF) before the
beamsplitter pulses, during which the atoms fall into the interaction region

z0(TOF) = zT − 1
2 g TOF2, (E.2)

with the gravitational acceleration g and assuming no initial velocity in the z -direction.

Without knowing the exact value of zT , nevertheless z0 can be estimated. Therefore, it
is assumed that the trap and laser positions do not change and additionally the TOF stays
constant and can be measured very precisely resulting in a well-defined z0.

From the Rabi oscillations of the diffraction efficiency (6.56) for different total laser powers
P , depicted in Fig. 6.13, one can read out the experimental mirror pulse widths τπ(P ) as time
of the first maxima. Together with the analytical relations |Ω(r 0)|= π/2τRπ for rectangular
pulses and |Ω(r 0)|=

p

π/2/τGπ for Gaussian pulses in the deep-Bragg regime [cf. Eq. (6.8)],
one finds a linear dependency P =m |Ω(r 0;τπ)|, as depicted in Fig. E.3. In addition, the local
two-photon Rabi frequency is also proportional to the laser power |Ω(r 0)|=µu (r 0)2P [cf. Eqs.
(2.13), (5.43), (E.1)]. Together, the slopes m and µ define the location of the atoms with

u (r 0)
2 =

1

mµ
,

%2
0

w 2
0

=
1

2
ln
�

mµ
�

; (E.3)

for x0 = y0 = 0 one gets z0 = (0.84±0.04)w0 = (1165±50)µm. Therefore, a power uncertainty
∆P = 0.1 P was estimated and the fit in Fig. E.3 results in m = (12.4±1.5)mW/ωr , where the
0.95-confidence interval is taken as uncertainty of m .

Figure E.3: Laser power P versus
local two-photon Rabi frequency
|Ω(r 0;τπ)|, which is derived via Eq.
(6.8) from the π-pulse width τRπ of
rectangular pulses [P = {5,10}mW]
and τGπ of Gaussian pulses [P =
{20, 30}mW].
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It is worth mentioning that the approximations (6.8) for theπ-pulse widths are less exact the
smaller the Rabi frequencies and the larger the momentum widthsσk (cf. Fig. B.1). However,
for the experimental parameters (cf. Table 6.1), the deviations are still small and therefore
covered by the large uncertainty limit∆m .

There is an additional experimental method providing information about the location of the
atoms, for experiments on ground and an experimental setup as depicted in Fig. E.2. Varying
the TOF, the atoms scan the transversal beam profile according to Eq. (E.2), which is apparent
in the diffraction efficiency of subsequent diffraction pulses, where the interaction time as well
as the laser power are kept constant. This position dependent diffraction efficiency is depicted
in Fig. E.4. Here, the number of maxima is defined by the maximum pulse area θ j=R ,G ,... (6.55).
For θ j ≤ π there can be only one maxima at z = 0 and for (n − 1)π < θ j ≤ nπ there are n
local maxima. The central extremum defines the origin z = 0, due to the reflection symmetry
η(%0) =η(−%0), motivated by the analytical model (6.72). With Eq. (E.2) this defines the trap
position zT . The experimental measurements indicate zT = 1.77 mm resulting in an atomic
initial position z TOF

0 = z (TOF = 10 ms) = 0.92w0 = 1.28mm at the beginning of the diffraction
pulses analysed in Section 6.6. This is similar to the results z0 = (0.84±0.04)w0 achieved from
the Rabi oscillation measurements. However, the TOF-measurements are less precise due
to the lower data points, which furthermore for unknown reasons do not show the expected
symmetrical behaviour η(%0) =η(−%0). Therefore, for the evaluation of the experimental data
in Section 6.6.3 the result z0 = (0.84±0.04)w0 is used.
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Figure E.4: Diffraction efficiency η̄+− (6.56) versus transversal atomic initial position %0 =
Æ

y 2
0 + z 2

0 .
Left: theoretical expectation for two pulse areas θG using model (6.72). Right: experimental
results [1].
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E.2 L A S E R M I S A L I G N M E N T

E.2.1 Expansion of the thermal cloud

For the misalignment experiment (cf. Sec. 7.5.3) the results of the TOF-measurements reveal
the momentum spread of the thermal cloud (cf. App. E.1.1) and are depicted in Fig. E.5. Linear
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Figure E.5: Time-of-flight measurements [1] of the time-dependent widthσ(t ) of the doubly-integrated
density of the quantum depletion in x - (left) and z -direction (right).

fits determine momentum widths σt
kx
= (1.10±0.03)µm−1 = (0.137± 0.003)kL and σt

kz
=

(0.93±0.02)µm−1 = (0.116± 0.003)kL , related to the temperatures Tx = (6.81±0.33)nK and
Tz = (4.87±0.24)nK. The uncertainties are given by the confidence interval to the convidence
level 0.95. The resulting one-dimensional momentum distribution of the quantum depletion
in x -direction is depicted in Fig. 7.16. In total, the momentum width is significantly smaller
(almost half) than for the experiment to verify the Demkov-Kunike model (cf. App. E.1.1).

E.2.2 Location of the atoms

The location of the atoms r 0 is given by the experimental setup, depicted in Fig. E.2, like for
the verification of the DK-model (cf. App. E.1.2). However, for the misalignment experiment,
only the TOF-scans are available, where the atoms scan the transversal beam profile according
to Eq. (E.2). The position dependent diffraction efficiency for Gaussian pulses [P1 = P2 =
(8.2±0.8)mW] is depicted in Fig. E.6.

Applying the local two-photon Rabi frequency Ωe −2(z0/w0)2 to the analytical model (6.72)
determines the trap position to zT = (1747±48)µm= (1.26±0.03)w0. Therefore, the atoms
are displaced to z0 = (1040±48)µm = (0.75± 0.03)w0 for TOF = 12 ms, respectively almost
perfectly centred with z0 = (−24±48)µm= (−0.02±0.03)w0 for TOF = 19 ms. For the fit the
experimentally given parameters (cf. Sec. 7.5.3) p c = 0.58, σc

k = 0.095, κ̄ = κ̄S = 0.46kL and
tG =τG /ω2r = 200µs are applied, yielding the trap position zT as well as the Rabi frequency
Ω= (1.05±0.04)ωr .

Figure E.6: Diffraction efficiency
η̄+− (6.56) versus transversal atomic
initial position z0. The experimental
data [1] are modelled with Eq. (6.56)
using a local two-photon Rabi
frequency Ω→Ωe −2(z0/w0)2 .
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R A M A N V E L O C I T Y F I LT E R

F.1 P E R T U R B AT I V E M E TA S TA B L E S TAT E P O P U L AT I O N

The Laplace transform of the metastable state’s population provides insights on the popu-
lation generating processes. Therefore, the OBEs are solved perturbatively, using Laplace
transformations and following the linkage pattern depicted in Fig. 11.1. The whole population
starts in the ground state with ρg g (t = 0) = 1. Therefore, initially, the time derivation

ρ̇g g = Γe gρe e + i
�

Ω1

2
ρg e −

Ω∗1
2
ρe g

�

(F.1)

vanishes in perturbation theory and the Laplace transform of the ground-state population
%̃g g , considering only the initial processes results from

s%g g −ρg g (0) = 0 ⇒ %̃g g (s ) =
1

s
+O(Ω1) =Gg g . (F.2)

Equivalently, the following processes in the linkage pattern can be calculated. With initially
ρi j (0) = 0, they result in

ρ̇e g = (i∆1− Γe g )ρe g + i
Ω1

2
(ρe e −ρg g )−

Ω2

2
ρmg , (F.3)
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Finally, for the population of the metastable state, it follows

ρ̇mm = Γe mρe e − i
Ω∗2
2
ρe m + i
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2
ρme , (F.11)
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achieving the result (11.13)
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F.2 F U L L S O L U T I O N O F T H E P O P U L AT I O N T R A N S F E R V I A T H E R A -
M A N T R A N S I T I O N

The analytic approximation for the velocity- and time-dependent population of the metastable
state, transferred via the Raman transition, results in a rather complicated expression (12.19)

mR(t , v ) =
1

2
+ e −ϑt [A cos(θ t )+B sin(θ t )]− e 2(ϑ−γ)t C . (F.14)

The complex, time-independent but velocity-dependent damping rate and frequency read
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12
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4
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, (F.15)

and the also complex and velocity-dependent coefficients are
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These include further coefficients

m =
p

3(x 4−4y 2), n =
p

3(y − x 2)[x (x −4)+ y ], (F.17)

o = (x 2− y )2, p = 4x y (x −1)− y 2+ x 2[8(1+9δ2/γ2)− x (4+ x )]. (F.18)

Finally, the physical parameters within δ and ΩR are contained in
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The corresponding width in the velocity space of mR(t , v ) can be approximated analytically
for t = tπ resulting in (12.22)

∆vR(tπ) =
2
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Here, the following coefficients are introduced
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depending on x , y from (F.19).
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