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Abstract 

The use of artificial intelligence in manufacturing holds a multitude of potentials for improving the 

performance of a company in the dimensions time, quality, and cost. Many companies have recognized 

these possibilities, but only a few have already integrated this technology into their production. A major 

reason for this discrepancy is a lack of knowledge about necessary steps to conduct an AI project in 

order to solve an existing manufacturing problem. In literature, several models exist that provide 

structure and standards for the process of data mining in industrial applications (e.g. CRISP-DM, 

SEMMA, KDD). However, these process models have several shortcomings that prevent the effective 

usage in the manufacturing industry. 

The following paper addresses these shortcomings and proposes a holistic process model that shall serve 

as a standard management model for manufacturing companies to successfully introduce and apply AI 

as a production-related problem-solving tool. All three levels of the process model are presented, namely 

the strategic, tactical, and operational level. On the strategic level, an existing set of production problems 

is evaluated and prioritized concerning their feasibility and suitability for the application of AI. In the 

tactical part of the model, a solution for a selected problem is designed. Therefore, the problem 

understanding is deepened, infrastructural requirements are identified, and a financial evaluation of the 

developed solution is performed. The final, operational level focuses on the implementation of the 

developed solution to a finished AI application by a project team.  
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1. Introduction 

 Recent advances in artificial intelligence (AI) are pushing the boundaries of what machines can 

do in all industries and business sectors [1]. Industrial nations around the world form strategic plans and 

mobilize huge budgets to be at the forefront of AI. The United States of America as the global leader of 

AI developed their first AI strategy in 2016 [2] and invested $973.5 million in fiscal year 2020 with 

further increases planned throughout the following years [3]. China issued a three step plan that shall be 

completed by 2030 with the objective to become world leader in AI with an industry worth 130 billion 

Euro [2, 4]. In 2018 the German government presented the strategy “AI made in Germany” with the 

objective to invest 3 billion Euro until 2025 to become a leading global player  [5]. Especially the 

application of AI in manufacturing is becoming increasingly relevant. Within the last decade, the number 

of scientific articles that address the application of AI in manufacturing increased sharply. Figure 1 

illustrates the number of published articles, proceedings and reviews that were retrieved by a search 

conducted in Web of Science1.  
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Figure 1. Number of papers related to AI in manufacturing (2011-2020) 

The economic potential to apply AI in manufacturing results in an increasing number of companies that 

are trying to use AI in order to gain a competitive advantage or move into new businesses [6]. However, 

a global study conducted by the Boston Consulting Group (BCG) with 1,096 executives, production and 

technology managers revealed that although 87% of the participants plan to implement AI in production 

within the next three years, only 28% do have an implementation plan whereas, among the remaining 

72% that lack actual implementation plans, merely 32% are testing selected use cases [7]. This indicates 

that despite recent advances the adoption of AI in production is still in its development phase and far 

away from being a standard tool for companies. Applying AI in production poses plenty of questions 

and challenges that a company must face, such as:  

• Which problems can be solved using AI?  

• What data should be used?  

• Where does the data come from?  

• What algorithms should be used for which problem?  

• What are the required roles in an AI project? 

To give an answer to these questions, several researchers focussed on the development of process models 

that provide general guidelines and shall support the conduction of AI projects. Existing process models 

such as the widely known CRISP-DM [8] have the advantage that they can be applied independent of 

the respective industry, which is why they in turn lack problem specific tools and guidelines and hence 

are difficult to apply in areas in which the problems show characteristics that are unique for the 

respective field. Due to this shortcoming, several process models have been introduced to provide a 

more problem-specific approach. However, even though some of the presented process models in 

Section 2 focus more on the respective field of application, they are still very high level and do not 

provide proper tools that can be used within a project to provide assistance in conducting AI projects 

successfully. 

Most of the process models presented in our research work use the term “Data Mining” instead of “AI”. 

Data Mining can be considered as the extraction of structures and patterns from large amounts of data 

using specific algorithms [9]. Following the definition of Fayyad et al. [10] we consider Data Mining as 

being a part of the Knowledge Discovery in Databases (KDD) process. Literature is inconsistent in terms 

of the terminology of Data Mining and its relationship to the KDD process. In the work of Gunopulos 

et al. [11] and Mannila [12] as well as in the context of the CRISP-DM process model [8], Data Mining 

is used as a synonym for the KDD process rather than being an element of it. Whereas authors such as 

Buczak and Guven [13] explicitly emphasize that Data Mining is part of the KDD process and that 

methods used in Data Mining and AI have a significant overlap. In fact, the most influential algorithms 
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in Data Mining are  actually AI algorithms [14, 15]. Therefore, we follow the definition of Mannila [12] 

and consider AI and its methods as the tools that are used to fulfil the objective of Data Mining. 

The goal of this paper is to present a new process model that overcomes the shortcomings of existing 

ones and shall serve as a standard procedure for manufacturing companies to successfully introduce and 

apply AI as a production-related problem-solving tool. More precisely, it shall be established as the 

baseline of an AI project and provide a holistic step by step guideline that will eventually result in a 

working AI solution. The contributions of this paper are as follows: 

• Identification of the operational, tactical, and strategical elements in the development and 

implementation of AI projects in manufacturing companies 

• Definition of a new holistic, standardized, and structured process model for the introduction of 

AI in manufacturing, starting with the selection of an existing production problem up to the 

integration of the developed solution  

• Development of tools and support for the implementation of AI projects in production in the 

areas of problem selection, solution development and implementation 

The remainder of the paper is structured as follows: Section 2 provides a literature review of the most 

common process models that are used to conduct AI projects. In Section 3 the AI Management Model 

for the Manufacturing Industry (AIMM) is introduced and derived based on the identified shortcomings 

of existing AI process models. The conclusion and future research agenda are combined in Section 4. 

2. Literature Review  

In literature, several models exist that provide structure and standards for Data Mining in industrial 

applications. In general, these models divide the Data Mining process into sequential steps that guide 

the user through parts of the Data Mining application lifecycle. This section provides an overview of the 

most popular models. A 2014 poll [16] showed KDD, SEMMA and CRISP-DM to be the most used 

models for conducting Data Mining projects. We additionally reference ASUM-DM and DMME as they 

are specific extensions to CRISP-DM that are of relevance to our proposed model. 

The Knowledge Discovery in Databases (KDD) process was developed by Fayyad et al. at Microsoft 

Research in 1996 and describes methods to assist in extracting knowledge from the growing repositories 

of data available in organizations. The KDD process has five sequential stages: Selection, Preprocessing, 

Transformation, Data Mining, and Interpretation/Evaluation [10]. KDD is less of a framework as it is 

an overview and systematic snapshot of the state-of-the-art in Data Mining. In contrast to explicit 

frameworks such as CRISP-DM, KDD offers technical explanations and examples of various algorithms 

as well as common challenges and problems when dealing with Data Mining problems. CRISP-DM, 

SEMMA, [17] ASUM-DM as well as DMME can be seen as framework implementations of KDD. 

Sample, Explore, Modify, Model, Assess (SEMMA) is a process model for the implementation of Data 

Mining applications [17] which consists of the five steps that form the acronym. SEMMA was developed 

by the SAS Institute and forms the basis of their proprietary Data Mining tool “SAS Enterprise Miner” 

but is often considered to be a general Data Mining methodology [18]. As SEMMA is designed to guide 

the Data Mining process using the tools offered by SAS, it does not cover business/strategic aspects of 

Data Mining projects [19]. 

The Cross Industry Standard Process for Data Mining (CRISP-DM) is an open standard process model 

for executing Data Mining projects. The CRISP-DM process model was presented in 1999 by a 

consortium of ISL, Teradata, Daimler AG, NCR and OHRA as the result of a funding initiative of the 

European Union. CRISP-DM splits the lifecycle of a Data Mining project into six phases starting with 

Business Understanding and ending with the Deployment of the model. Within the phases, CRISP-DM 

provides structure and guidance for implementation. The six phases of CRISP-DM are the highest level 

of abstraction within the hierarchical process model. Lower levels of abstraction within CRISP-DM 



define more specific tasks and process instances relating to the phases [8]. While CRISP-DM is often 

cited as the leading methodology used by Data Mining experts across industries [16], its generality does 

not come without limitations. As CRISP-DM is not specific to any industry or problem category, the 

guidance provided is rather abstract even at the lowest, most specific hierarchy level of the model. 

Besides, CRISP-DM does not provide technical guidance, e.g., in the selection of a suitable algorithm 

for a given type of problem or the data acquisition phase. Further, CRISP-DM is an operative process 

model and thus focusses on the implementation of a specific Data Mining project and does not assist in 

the selection of suitable problems that may be solved by applying Data Mining.  

The Analytics Solutions Unified Method for Data Mining (ASUM-DM) is a revision and extension to 

CRISP-DM and was released by IBM in 2015. ASUM-DM specifically targets IBM Analytics 

consulting projects but is free and publicly available [20]. ASUM-DM defines five phases that build 

upon the CRISP-DM process model, with templates and guidelines that are supervised by a project 

management team. In contrast to CRISP-DM, the phases are partially designed for agile project 

management with iterative prototyping and development. Further, ASUM-DM adds information and 

templates for collaborative work, versioning, and compliance. 

The Data Mining Methodology for Engineering Applications (DMME) is an extension to the CRISP-

DM process model that targets domain specific difficulties of Data Mining projects in the engineering 

context. DMME extends the original six phases of the CRISP-DM process model by three additional 

phases: The Technical Understanding phase emphasises a deep understanding of the technical system 

structure and related physical effects to transform the business goals into measurable technical goals. 

The Technical Realization phase focuses on planning and executing controlled experiments for data 

acquisition. Lastly, the hardware and software infrastructure is developed for long-term deployment of 

the model and corresponding data acquisition system in the Technical Implementation phase. The 

provided use case examples focus on the manufacturing domain [21]. 

Analysing the characteristics of existing AI process models, we identify several shortcomings that 

prevent the effective and holistic usage of these models in the manufacturing industry. First, the 

described models lack detailed and concrete toolsets. While this feature can also be interpreted as a 

strength in terms of generalizability, it limits the support gained by using the models since they do not 

provide specific guidance. Secondly, existing models do not provide holistic support during the 

complete AI lifecycle as they do not cover the process of selecting a problem and deciding whether a 

problem should be solved with AI. Lastly, existing models do not consider the specific requirements of 

manufacturing environments. We address the identified shortcomings in our proposed model which is 

introduced in Section 3. 

3.  AI Management Model for the Manufacturing Industry 

The proposed AIMM provides a systematic process for the identification and resolution of AI problems 

in the manufacturing domain. We define an AI problem as a data-based problem within the 

manufacturing domain which is economically relevant and cannot be solved by a model- or knowledge-

based solution. An AI problem may be solved using a mathematical model which is trained on data 

specific to the problem. The performance of the corresponding model can be quantified. The individual 

phases and contents of the model are presented in the following section. 

 

3.1 Model Overview 

A conceptual overview of the proposed model is shown in Figure 2. The process resembles a funnel, 

which starts with a project team as well as potential AI problems and consequently outputs an AI solution 

for a specific problem. It has three main phases: Problem Selection, Solution Design and Solution 



Development. Notably, the process model is designed to fail fast: Drop-out gates at the intersection of 

phases check whether a problem can be solved by using AI technology as well as if it is financially 

sustainable to do so. If this is the case, the process can be run again with a different problem or the 

solution design can be adjusted accordingly. Thus, the waste of resources will be prevented early in the 

process. 

According to their chronological arrangement in the model, the three phases can be assigned to the areas 

of strategic, tactical, and operational management. The strategic phase of the model, which is 

represented by the Problem Selection, is characterized by a high level of uncertainty and insufficient 

information availability. During the Solution Design, which is the tactical phase of the model, the 

existing information deficit is reduced, and certainty is increased. The final, operational phase of the 

model, which is represented by the Solution Development, is characterized by a high level of 

information availability with only a low remaining level of uncertainty. The considerations at the 

beginning of the management process encompass the entire company’s production and show a high level 

of abstraction, more detailed and complete investigations of specific use cases take place in later phases 

(see [22, 23]).  

 

 

Figure 2. Conceptual overview of the proposed model 

The inputs for the model are the AI project team and the manufacturing-related problems. The 

motivation for defining a project team is the need to identify suitable personnel and to emphasize the 

responsibilities that each member has in the course of the project [24]. The following roles are 

distinguished here: The project sponsor, the domain expert, the data scientist, and the software engineer. 

The project sponsor ensures that the project has sufficient resources and visibility within the organization 

and ensures that it is in line with the organization's strategy. Because of the expertise and decision-

making power required, he should be part of top management [25]. The domain expert is an employee 

who works close to production and is familiar with the operation, processes, and the use case. He is 

responsible for explaining the use case and identifying relevant data sources. He also ensures that the 

data for analysis is reliable and error-free. He can estimate what type of data can be generated and which 

findings will provide the greatest benefit. Case studies in which domain knowledge was used in the AI 

project emphasize its importance for validating and improving the results of the analysis [26]. 

Ultimately, the domain expert brings the hypotheses about relationships between the problem and the 

process into the project, allowing the data scientist to proceed in a more targeted way. The data scientist 

can examine data for business decisions and knows data analysis methods and their possible 

applications. He knows the implementation of algorithms, is up to date with the latest research and can 

implement ideas from academic publications. The software engineer is familiar with the company's IT 

infrastructure and is responsible for the operationalization of the AI model. The AI team is present 



throughout the three phases of the model however in the last phase, i.e., the Solution Development 

Process, the data scientist and the software engineer have central roles. 

 

 

3.2 Problem Selection  

The Problem Selection (PS) represents the strategical part of the model and consists of two phases. It 

starts with a selection of manufacturing problems that may be solved by AI and consequently filters 

them to a single problem. In the first stage, the portfolio matrix, the existing production problems are 

evaluated and ranked in terms of their relationship between complexity and business impact. In the 

downstream AI problem check it is analysed, whether a selected problem may be solved using AI. The 

individual stages are explained in detail below. 

Portfolio Matrix 

In the first step of the PS, a pre-selection of possible problems is made, which could potentially be solved 

in an AI project. Thus, existing manufacturing-related problems of the company are evaluated and 

classified according to their complexity and business impact. In the context of our model, complexity is 

defined as the totality of all possibilities to solve a production problem. Key influencing factors are the 

number of actors and objects involved and their relationships to each other as well as the required 

interdisciplinarity [27]. The business impact, on the other hand, is defined as the influence on the key 

performance indicators of a company (e.g. Overall Equipment Effectiveness (OEE), Yield) that are 

critical to success. Since only superficial information is available at the time of the evaluation, methods 

such as the paired comparison or the Analytic Hierarchy Process are particularly suitable for determining 

the two key figures (see [28, 29]).  

When the enumerated problems are evaluated in terms of their complexity and business impact, they are 

classified in a Portfolio Matrix, see Figure 3. The ordinate of the matrix shows the complexity of the 

problem, while the abscissa shows the business impact. Based on their placement in the Portfolio Matrix, 

the problems are prioritized for further assessment. Problems located in the lower right-hand quadrant 

are described as “AI Stars” and promise a high business impact with low problem complexity and should 

be selected first. On the other hand, the problems in the upper left quadrant, which are referred to as 

"AI Wasters", should only be carried out in exceptional cases, as the necessary project expenditure often 

exceeds the resulting business impact. The selection of other problems depends on the individual 

preferences and know-how of the company in the decision-making process. Thus, prioritizing problems 

with high business impact and high complexity (right, upper quadrant) is just as conceivable as the 

selection of problems with low complexity and low business impact (left, lower quadrant). While the 

problems in the lower left quadrant known as "AI Starters" should be used as a starting point by 

companies that have used little or no AI to date, problems in the upper right quadrant known as 

"AI Excellence" should only be tackled by companies with sufficient previous experience. 

 



 

Figure 3. Portfolio Matrix used in the PS 

 

AI Problem Check 

The pre-selected problems are consequently evaluated in a Problem Check regarding their suitability for 

being solved through AI technologies. This evaluation makes use of criteria divided into three 

categories: problem context, data orientation and alternative solutions that do not involve AI. The 

problem context category examines whether basic organizational, legal, and statistical requirements are 

met to successfully apply AI to solve the given problem. The questions on data orientation are used to 

determine whether the technical and infrastructural requirements for the application of AI are met. The 

final category, Alternative Solutions, evaluates whether the given problem can be solved using 

approaches other than AI (e.g., statistical, or organizational). An overview of the AI problem check with 

exemplary questions is provided in Figure 4. 

Figure 4. AI Problem Check 
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• "Process Standardization" is used to verify whether a standardized process for reporting is 

available and whether a Continuous Improvement Process has been established in the respective 

business area. In the context of the model, a lack of process standardization is considered a 

knock-out criterion for the application of AI. Many problems in manufacturing companies can 

already be remedied by achieving sufficient process standardization. Furthermore, a lack of 

process standardization makes the sustainable operation of AI applications more difficult. 

 

• The criterion "Legal Aspects" examines whether the existing legal situation has restrictions 

regarding the use and analysis of data. This aspect depends on the location of the company and 

possibly other involved parties since the legal situation often differs. It should be noted that 

knock-out criteria often arise from a legal perspective when using personal data. Due to a lack 

of legal certainty in dealing with company data, the necessity of contractual agreements must 

be considered. 

 

• The criterion "Frequency of Occurrence of the Problem" checks how regularly the described 

problem occurs in the process. If a problem occurs regularly and with a recognizable pattern, 

there is an increased probability of solving it using AI methods. If it occurs very rarely or even 

singularly, there is an increased probability that the effort of implementing the AI solution is 

not in proportion to the expected benefit, for instance due to the lack of required data. 

 

• The criterion "Possibility of data collection" is used to check whether data collection is basically 

possible in the problem context. Especially in the production environment there are often 

technical or organizational hurdles that make the use of necessary sensor technology difficult 

or impossible. In the context of the model, a lack of data collection capability is considered a 

knock-out criterion for the use of AI, since corresponding models cannot be developed and 

operated without the necessary input of problem-specific data.  

 

• The criterion "Availability & Quantity of data" is used to check whether and to what extent data 

is already collected and processed in production. Particular attention is paid to the technical 

infrastructure for the collection, storage and processing of data arising in the company. In the 

context of the model, a missing or inadequate digital infrastructure is not considered a knock-

out criterion, as corresponding deficits can be compensated by investments. These necessary 

initial expenditures must be considered in a later financial evaluation of the possible AI project.    

 

• The criterion "Dependency of Data & Problem" is used to check whether there is a connection 

between data already collected and the problem under consideration. If the data has only a low 

relevance for the given context, there is a high chance that the resulting model can only make 

inaccurate statements. If there is a lack of problem-relevant data, it should be checked whether 

it is possible to collect data at other, more promising parts of the considered process. 

 

• The criterion "Non AI Solutions" is used to check whether a problem can be solved using 

methods other than AI. In many cases, problems in production can be improved or eliminated 

by simple technical and organizational adjustments. Likewise, classical and established 

statistical methods can also lead to sufficient knowledge gains. The existence of alternative 

solutions is not necessarily a knock-out criterion. A comparison with the application of AI 

regarding effectiveness and economy should always be considered.  

 

The evaluation during the AI problem check is done using a quantitative model. A possible method here 

is the evaluation of Likert-scaled response options [30, 31]. Based on the resulting continuous 

evaluation, it can be decided whether the problem should be pursued further or discarded. While a high 

score value leads to a high probability that the application of AI will lead to a solution of the problem, 

this probability decreases with a decreasing score value. Problems that do not exceed a company-specific 

threshold or violate a knock-out criterion are not pursued further and the process is run through again 

with a different problem setting.  



 

3.3 Solution Design  

Having completed the PS, a problem that can potentially be solved with AI has been identified and can 

now be further processed within the Solution Design (SD). The SD represents the tactical model and 

follows a three-step procedure to find the solution requirements systematically. The three steps involved 

in the SD are Problem Understanding, Current State Map and Target State Map. The problem 

understanding step involves a deeper analysis of the problem to achieve a more comprehensive 

understanding. It provides the foundation for the identification of the AI-solution’s functional and 

infrastructural requirements. The Current State Map depicts the status of the underlying process in which 

the problem is situated in terms of data flow, interfaces, and resources. Based on the Current State Map 

and the information gathered within the Problem Understanding step, the Target State Map can be 

developed. It serves as a conceptual visualisation of the future process and mainly addresses the 

identification of infrastructural requirements. Having elaborated the functional and infrastructural 

requirements of the solution, the SD ends with a financial evaluation to contrast the expected financial 

benefit with the expected costs and to decide whether the problem will move on to the next phase. Figure 

5 illustrates the SD together with its components. The following paragraphs will provide a more detailed 

explanation of the three-step procedure. 

 

 

Figure 5. Solution Design  

 

Problem Understanding 

The foundation for the identification of the functional and infrastructural requirements are laid in the 

problem understanding step. In this step, the AI team works through a visualization tool, that has been 

derived from the Business Model Canvas [32], the so called problem canvas, to structure the problem 

across several dimensions. The dimensions used in the AIMM are problem facts, customers, domain 

specific KPI, key resources and value generation. Within each dimension, the AI team answers questions 

to concretize the solution’s requirements. The problem canvas provides a colour coding scheme to help 

differentiate between functional and infrastructural requirements. Dimensions that address functional 

requirements are marked in light grey, whereas the key resource dimension is marked dark grey and 

accounts for infrastructural requirements. The problem facts dimension is marked white as the purpose 

of this dimension is neither functional nor infrastructural, but rather descriptive in terms of a better 

problem definition. Figure 6 illustrates the problem canvas of the problem understanding step. 

  



 

Figure 6. Problem Canvas with exemplary question 

The Problem Facts aim at retrieving descriptive information about the problem. In this dimension, 

questions are used to deepen the understanding of the underlying problem such as: What is the problem? 

What kind of problem is one confronted with? What is the impact of the problem? When does the 

problem occur?  

The dimension Value Generation addresses the financial impact of a possible AI solution in terms of 

development costs as well as expected financial benefits. In addition to that, this dimension focusses on 

functional requirements for the problem’s solution. Here, questions should be formulated in the 

following manner: How should the problem be solved? What are the expected benefits? What are the 

costs involving the development of a solution? 

The next dimension, Customers, is used to determine functional requirements based on the end-users 

that are supposed to use and work with the solution. Depending on the end-user, the system needs to 

encompass different functionalities such as enhanced visualization tools, ease of interpretability etc. In 

this dimension, the AI team should ask questions like: Who are the customers? What functionality is 

needed? What do our customers require? 

The Domain Specific KPI dimension is used to define KPIs that are required to evaluate the solution’s 

effectiveness i.e., whether it fulfils functional and infrastructural requirements in a quantitative manner. 

This dimension is thus crucial to the Problem Understanding step, since the KPIs that are determined in 

this dimension serve as a comparison baseline to find the best matching solution among all possible 

solutions for the problem. There exists many performance metrics in the AI literature that are commonly 

used to compare AI models. Metrics that can be used as a good starting point include among others: F1-

score, classification accuracy, confusion matrix, area under curve (AUC), mean absolute error (MAE) 

and mean square error (MSE). However, since the solution to the AI problem shall be deployed in a 

real-life process, not only KPIs that address the performance of the model itself should be defined but 

also KPIs that focus on the economic aspect of the solution such as return on investment (ROI), net 

present value etc. Furthermore, production related KPIs such as OEE should be used to project the 

effects of the solution on the respective process. Thus, a suitable question for this dimension is: How 

can the model’s performance be measured from the perspectives of the model itself, economically and 

based on the effects on the process? 



The last dimension Key Resources addresses the infrastructural requirements. Here, the AI team should 

answer the following questions: What resources are required? What data are required and should be 

generated by the resources? How and where are the data stored? What interfaces are required? By 

answering these questions, the AI team can infer the most basic requirements and gather a better 

understanding of the overall AI solution.  

Depending on the complexity of the underlying process it can be difficult and error prone to derive all 

the infrastructural and functional requirements upfront without a detailed knowledge about the current 

infrastructure and available resources. Thus, the problem canvas cannot be filled out entirely within the 

problem understanding phase of the SD but will be completed throughout the subsequent phases i.e., 

Current State Map and Target State Map. Hence, the Problem Understanding phase should be considered 

as a brainstorming phase in which the first thoughts towards a solution of the problem are collected and 

refined.  

Current State Map 

The problem understanding step provides the baseline for functional and infrastructural requirements. 

However, given the possible complexity of the problem and the underlying process a further analysis is 

needed to determine additional requirements to complete the problem canvas and to proceed to the 

operative model. 

The objective of the Current State Map (CSM) is to create a schematic overview of the process and to 

get a better understanding of the existing infrastructure. It serves as the foundation for the development 

of the target state map. The CSM depicts the present workflow of the process and uses a set of 

standardized symbols to visualize data storage, resources, interfaces, customers, dataflow, and system 

borders. The standardized symbols to construct the CSM can be found in Figure 7. Initially, the existing 

resources should be drawn inside the map. We consider a resource to be any physical or virtual instance 

that generates or processes data. Followed by the resources, existing data storages and customers are 

drawn in the map. The next step involves adding the data flow by connecting resources, data storage 

and customer with the respective direction of the data flow. Lastly, the existing interfaces are added to 

the map. It is important to note that the purpose of the CSM is to increase the awareness of how the 

process operates from a perspective of solving the problem in order to develop a better understanding 

for additional requirements. The CSM should provide an illustration that is as simple as possible while 

simultaneously being as complex as necessary to reveal further requirements for solving the problem. 

Figure 8 illustrates an example for a CSM.  

 

Figure 7. Standardized symbols for State Maps 

 



 

Figure 8. Current State Map – example 

 

Target State Map 

Having created the CSM to get a more comprehensive understanding of the process, the next step 

involves the design of the Target State Map (TSM). The objective in this step is to design the target state 

for the AI solution based on the CSM and the initial requirements gathered in the Problem Understanding 

phase. By contrasting the CSM with the TSM, the AI team can infer additional functional and 

infrastructural requirements that were not visible beforehand and thus complete the Problem Canvas. 

The design of the TSM follows the same principles as the CSM. The AI team must consider which 

components are necessary to meet the functional and infrastructural requirements derived in the problem 

understanding phase. Thus, data storage, resources, interfaces, customers, dataflow, and system borders 

must be altered, deleted, or added. Figure 9 shows an example of a TSM based on the CSM in the 

previous section. One can observe the difference between both maps immediately and see what changes 

are required to transit from the current state to the target state. 

 

Figure 9. Target State Map - example 

The visualization provided by the TSM allows to break down the solution’s complexity. Especially when 

the process at hand is complex and shares resources with other processes, the AI team gets an overview 



of the extension of the required changes to reach the target state. It should be noted that there could be 

more than one possible TSM, among which the AI team would have to choose the one that fits best to 

the problem at hand and the given circumstances. With this information, the problem canvas can be 

completed and transit to the Financial Evaluation gate. 

Financial Evaluation 

As mentioned in previous sections, the AIMM is designed to fail fast to minimize the consumption of 

resources and to increase the probability of a successful project the further it moves down the funnel 

presented in Figure 2. The Financial Evaluation serves as the second drop-out gate of our model since 

it is located at the intersection between the tactical and the operative models. The objective of this drop-

out gate is to determine whether the problem can be solved in a financially sustainable way. Based on 

the Problem Canvas and the TSM, the AI team can determine the expected costs as well as the expected 

benefits of solving the problem. With the help of the KPIs defined in the Problem Canvas, measures 

such as ROI and net present value are used to get an understanding of whether the investment that is 

required to develop and implement the solution is reasonable in contrast to the expected benefits. In 

addition to rather traditional financial metrics, we suggest a new illustration that contrasts cost and 

benefits of a solution. By providing pessimistic and optimistic estimates for the cost and benefits 

respectively both the financial cost range and financial benefit range can be visualized as seen in Figure 

10.  

 

Figure 10. Financial Evaluation 

We define two simple metrics, the pessimistic profit margin (ppm) and the optimistic profit margin 

(opm) that can be used as additional evaluation criteria and visualization of this phase:  

ppm := min(benefit) – max(cost) 

opm := max(benefit) – min(cost) 

By defining these two metrics one can distinguish between three scenarios that can be used as decision 

support as seen in Table 1. 



Table 1. Financial Evaluation Scenarios 

 

Scenario 1 and 2 provide a clear tendency in terms of whether the solution will move on to the operative 

model. If ppm > 0 and opm ≥ 0 the solution can be expected to be profitable given all the available 

information that could have been retrieved throughout the project. Conversely, if ppm < 0 and opm ≤ 0 

the solution should rather be dismissed since one can expect at best zero profit given the available 

information. However, given Scenario 3 it is difficult to determine whether to keep or to dismiss the 

project. Here, the AI team must rule out a tendency as to which event is more likely to occur and decide 

in favour of the most likely event. In case the AI team decides to dismiss a solution there is the possibility 

to reiterate within the SD and try to adjust the current solution in such a way that it will pass the financial 

evaluation. If the dismissal is inevitable, the AI team has to return to the PS and choose a new problem 

based on the portfolio matrix since the initial AI problem cannot be reasonably solved given the current 

circumstances.  

Having conducted the Financial Evaluation, the SD is completed, and the AI team has determined all 

necessary functional and infrastructural requirements within the problem canvas. When the solution of 

the problem passes the evaluation, the project will move on to the operational model.  

Figure 11 illustrates an example of the problem canvas after the AI team has worked through each 

individual dimension. 

 

 

 

Figure 11. Completed problem canvas after SD 

 

ppm opm Visualization

Scenario1 < 0 ≤ 0

Scenario2 ≥ 0 > 0

Scenario3 < 0 > 0



3.4 Solution Development  

The Solution Development (DEV) represents the operative model and provides step-by-step guidance 

to achieve the target state and to fulfil the requirements defined in the SD. The DEV, illustrated in Figure 

12, encompasses an initial Project Definition, the Data Acquisition and Understanding, the Prototyping, 

and the Deployment phases.  

 

Figure 12. Solution Development  

The DEV starts with planning and defining project milestones in the Project Definition phase. The 

project team, more specifically the domain expert, the software engineer, and the data scientist, assign 

the requirements based on the problem canvas to the project milestones. The first milestone is the project 

kick-off. The second milestone is reached when data is acquired, datasets are generated, and process 

dependencies are clear. The third milestone is reached when the model fulfils the defined KPIs. And 

finally, the fourth milestone is reached when the model is deployed into production. Figure 13 provides 

an example of requirements allocated to each project milestone.  



 

Figure 13. Planning Phase 

The Data Acquisition and Understanding phase encompasses the domain understanding, the data 

collection, and the Explorative Data Analysis (EDA). In the domain understanding, the domain experts 

explain the process, the data sources, and dependencies to the data scientists. Once the project team 

defines the data sources and prepares the IT infrastructure, the data collection can take place. The EDA 

provides the first insights about the data and its quality. The dataset(s) are summarized, the data 

distribution visualized, outliers identified and treated. At the end of this phase, the project team should 

have a good understanding of the data and derive the first model characteristics to start the prototyping 

phase. 

The Prototyping phase has as goal the proof of concept, which determines if the available data and 

developed models are able to solve the problem as desired. First, the data scientist pre-selects algorithms 

suited for the use case. For example, in case of regression and depending on the amount of available 

data, a linear regression, a Random Forest, a Support Vector Regression, or a Neural Network can be 

pre-selected. Each algorithm expects a specific format and features as input. The data preparation is 

consequently conducted. In the modelling phase, the selected algorithms are tested and evaluated based 

on the KPIs defined in the SD. It is common to start with a simpler model to establish a baseline for 

comparison. At the end of the Prototyping phase, the best model is selected according to the evaluation 

metric and other factors such as computing time and latency. Finally, the model which is developed, 

trained, tested, and validated in the offline environment is prepared for the Deployment. 

The agile project management approach is recommended for the Prototyping phase. This management 

approach suits the development of an AI product for two main reasons. First, the short iteration cycles 

and clearly defined deliverables help minimize risks and foresees multiple solution paths. Second, the 

direct communication with internal partners (such as domain experts) saves time of project 

documentation and allows the team to adapt quickly to changing requirements [33]. As Figure 14 

depicts, the agile project management makes use of frequent iterations or short, defined, repeated periods 

of time (also called sprints, that usually last two weeks) to break long development projects [34]. The 

main components of agile project management according to [35] are:  



• Sprint planning meeting: at the beginning of each new iteration, the team defines the goals and 

tasks for the sprint. 

• Daily stand-up meetings: during each iteration, the team meets daily to review what was done, 

define what should be done in the day and solve problems. 

• Demo: at the end of each iteration solution increments are demonstrated and validated with 

stakeholders. 

• Retrospective meeting: at the end of each iteration, the project team meets to evaluate what was 

achieved and find improvement potentials. 

The project management tools are key resources to the agile methodology. The project backlog, where 

product features developed in each sprint are listed, is derived from the planning phase, portrayed in 

Figure 14. The Kanban board is used to organize tasks in three categories: what must be done, what is 

being done and what was done [35]. The data preparation phase benefits equally from the faster iteration 

cycles and validation with stakeholders. 

 

 

Figure 14. Agile project management in the prototyping phase 

The model’s Deployment begins with its integration into the IT infrastructure. The integration is solution 

specific, depending on whether the model will operate for example in a virtual machine on the 

company’s local server or in an embedded microcontroller. The integrated model is tested and run in 

parallel without being used for decision making. The testing phase is completed when the model receives 

new, unseen data and its results are as good as the ones produced in the Prototyping phase. Once the 

model satisfies the requirements, the monitoring and updating starts. Significant changes in the data and 

unexpected events can potentially render the model unfunctional. The monitoring and updating are tasks 

that need to be conducted continuously during the productive usage of the model. 

4. Conclusion and future research agenda 

This paper introduces the AIMM that provides a guideline and tools for the development of an AI 

solution from problem selection to project execution. The model specifically targets manufacturing 

enterprises and their production-related use cases. By providing not only a guideline but also the 

necessary tools to conduct each phase, this model addresses the gap of existing Data Mining 

methodologies and makes the AI solution development tangible. The project team initially lists the 

existing problems and evaluates them regarding their business impact and complexity. The problems 

are organized into the four quadrants of the Portfolio Matrix. Problems which show a low complexity 

and low business impact are potential problems for pilot projects, while problems with low complexity 

and high business impact are the most promising. According to the company’s preferences, the problems 

are prioritized and consequently selected to move past the first drop-out gate, the AI Problem Check. In 

this drop-out gate, a checklist with knock-out criteria is used to evaluate whether the problem can 

potentially be solved with AI technology. If the problem fulfils the criteria, it passes on to the SD. Here, 

we provide the tools for further analysis of the problem using the Problem Canvas as well as identifying 

functional and infrastructural requirements for the AI solution in the CSM and TSM respectively. The 



second drop-out gate embodies the Financial Evaluation. This evaluation utilizes the information from 

the TSM and the Problem Canvas to assess the solution’s feasibility and potential gains in financial 

terms. If the solution is proved to be economically advantageous, the project team can start the DEV, 

which is divided into four sequential phases: Project Definition, Data Acquisition & Understanding, 

Prototyping and Deployment. Here, we provide guidance and best-practices for the technical aspects of 

AI development and deployment as well as the organization of the development process using agile 

principles.  

The main contributions of this work are as follows: First, the operational, tactical, and strategical 

elements in the development and implementation of AI solutions are identified. Second, a new holistic, 

standardized, and structured process model for the introduction of AI solutions is presented. And third, 

a set of practical tools to support the realization of AI projects is suggested. Summarizing, the results of 

this paper provide the means for manufacturing companies to implement AI solutions targeted to solve 

production-related problems.  

The presented model has limitations that need to be addressed by future research. One limitation is 

the need of a more technical guidance for the monitoring and updating of a completed AI model. The 

deployment of AI solutions poses big challenges for keeping the model updated and ensuring the results’ 

reliability. In future work this aspect should be taken into consideration and become part of the process 

model. The same consideration is made for the DEV, where a more detailed guidance is needed when 

selecting and evaluating algorithms for the AI solution. The future research agenda comprises the 

model’s validation with new use cases from industry partners and potential improvements derived from 

it. A second publication follows containing more detailed explanation of the presented tools and how 

the project team should use them.  
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