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Abstract

Non-homologous end-joining (NHEJ) and homologous recombination (HR) represent the two main pathways for repairing
DNA double-strand breaks (DSBs). During the G2 phase of the mammalian cell cycle, both processes can operate and
chromatin structure is one important factor which determines DSB repair pathway choice. ATM facilitates the repair of
heterochromatic DSBs by phosphorylating and inactivating the heterochromatin building factor KAP-1, leading to local
chromatin relaxation. Here, we show that ATM accumulation and activity is strongly diminished at DSBs undergoing end-
resection during HR. Such DSBs remain unrepaired in cells devoid of the HR factors BRCA2, XRCC3 or RAD51. Strikingly,
depletion of KAP-1 or expression of phospho-mimic KAP-1 allows repair of resected DSBs in the absence of BRCA2, XRCC3 or
RAD51 by an erroneous PARP-dependent alt-NHEJ process. We suggest that DSBs in heterochromatin elicit initial local
heterochromatin relaxation which is reversed during HR due to the release of ATM from resection break ends. The restored
heterochromatic structure facilitates HR and prevents usage of error-prone alternative processes.
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Introduction

DNA double-strand breaks (DSBs) are among the most

deleterious cellular lesions since they threaten genomic integrity

and cell viability. To counteract cell degeneration and to preserve

genomic integrity, a complex network of DSB repair and signaling

processes has evolved [1–4].

Two main DSB repair pathways exist, canonical non-homol-

ogous end-joining (c-NHEJ) and homologous recombination (HR)

[5,6]. In mammalian cells, c-NHEJ represents the major repair

pathway for ionizing radiation (IR)-induced DSBs [7]. C-NHEJ

repairs unresected break ends without the need for sequence

homologies and can function throughout the cell cycle [8]. The

key factors in c-NHEJ involve the KU70/80 heterodimer, which

binds to the DSB end, and the DNA-dependent protein kinase

catalytic subunit (DNA-PKcs), which, together with KU70/80,

constitutes the DNA-PK holoenzyme. The repair process is

completed by a complex of DNA ligase IV, XRCC4, and XLF/

Cernunnos [5]. In contrast to c-NHEJ, HR is restricted to the S

and G2 phases of the cell cycle where break ends undergo

extensive resection and homologous DNA sequences on the sister

chromatid serve as a template for repair. In addition to the repair

of DSBs, HR functions during the S phase to restart stalled or

collapsed replication forks [9]. HR is initiated by CtIP-dependent

resection to create 39-overhangs at the DSB ends [10,11].

Following extended resection by EXO1 or BLM/DNA2, loading

of RAD51 onto single-stranded DNA (ssDNA) is facilitated by

BRCA2, XRCC2, and XRCC3. RAD54-mediated homology

search then promotes strand exchange and Holliday junction

formation [6]. HR is completed after repair synthesis by Holliday

junction resolution and DNA end ligation. In the absence of c-

NHEJ factors, DSB repair can also occur by an alternative end-

joining mechanism, termed alt-NHEJ [12,13]. In contrast to c-

NHEJ but similar to HR, alt-NHEJ involves CtIP-dependent

resection. The resected break ends are subsequently rejoined by a

process involving micro-homologies and various repair factors

such as poly (ADP-ribose) polymerase (PARP), DNA ligase I or III,

and XRCC1 [14–17]. Although alt-NHEJ can efficiently operate

in cells devoid of c-NHEJ factors, little is known about its ability to

compensate for HR defects.

It has become clear over the last years that higher order

chromatin structure impacts on the response to DSBs [18]. Thus,

IR-induced DSBs in densely compacted heterochromatin (HC) are

more difficult to repair than euchromatic (EC) DSBs and they

require additional structural changes in the surrounding chroma-

tin [19,20]. One example are ATM-mediated chromatin changes

due to KAP-1 phosphorylation [21]. In undamaged cells, KAP-1

forms HC by recruiting HP1, CHD3 and other remodeling factors

[22,23]. DSB-induced KAP-1 phosphorylation leads to release of

CHD3 which locally relaxes HC and facilitates repair [23]. Other

studies involving HP-1 mobilization have observed either a release

from [24] or a recruitment to damaged chromatin [25–27]. These

apparently conflicting findings have led to the suggestion that a

transient release might be followed by an accumulation of HP1 at
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sites of DNA damage [19,28]. However, it is often unclear how the

various processes of chromatin modification impact on DSB repair

and if different repair pathways are differentially affected.

Repair kinetics for IR-induced DSBs are biphasic, exhibiting a

fast and a slow component [29]. The slow component accounts for

the repair of a subset (15–20%) of IR-induced DSBs that are

localized to HC DNA regions, whereas DSBs induced in EC

regions are typically repaired with fast kinetics. In G1 phase, the

fast and the slow component of DSB repair comprise a c-NHEJ

mechanism [29]. ATM-dependent phosphorylation of KAP-1 on

serine 824 (S824) is specifically required for the slow component

[30,31]. In G2 phase, in contrast, c-NHEJ accounts only for the

fast DSB repair process, while the slow ATM-dependent HC

component represents HR [32]. Thus, in G2, defined DSB

populations, EC vs. HC breaks, are repaired by either c-NHEJ or

HR, respectively. Despite the existence of two repair pathways in

G2, a mutation in one of them leads to elevated unrepaired DSBs.

Thus, c-NHEJ and HR cannot compensate for each other which

might be attributed to the fact that c-NHEJ is unable to repair

DSBs which have undergone extensive resection. Consistent with

this notion, c-NHEJ can compensate for HR if resection is

prevented by CtIP depletion [33]. What remains unclear is why

alt-NHEJ, which in principal is able to rejoin resected break ends,

cannot compensate for a loss of down-stream HR factors such as

BRCA2 or RAD51.

In the present study, we analyzed the process of HR at HC

DSBs in G2 phase. We show that the intensity of phosphorylated

ATM at DSBs decreases during the process of resection,

suggesting that ATM initially binds to but is then released from

DSBs which undergo repair by HR. Consistent with this notion,

chemical inhibition of ATM prior to but not after resection causes

a repair defect. Thus, ATM has an early role during HR but is

dispensable for later stages. This contradicts the situation in G1

where continuous ATM activity is required for HC DSB repair by

c-NHEJ [34]. In G1, ATM functions to phosphorylate KAP-1,

leading to its inactivation and local relaxation of the HC structure

[30]. Moreover, depletion of KAP-1 by siRNA overcomes the

requirement for ATM in G1 but leads to reduced HR usage in G2.

Finally, following KAP-1 siRNA or expression of a phospho-

mimic form of KAP-1, both of which cause HC relaxation,

resected DSBs can be repaired by a PARP-dependent alt-NHEJ

process. Together, these data show that the HC structure

represents a barrier for repair by c-NHEJ and alt-NHEJ but

facilitates usage of HR. ATM, which initially binds to DSBs, is

released from break ends during the process of resection. This

prevents usage of c-NHEJ and alt-NHEJ and commits resected

DSBs to repair by HR.

Results

PhosphoATM (pATM) accumulation and activity is
diminished at resected DSBs

We have previously demonstrated that BRCA2-deficient cells

exhibit elevated cH2AX foci levels at 8 h post irradiation in G2

[1,32]. These unrepaired DSBs have undergone efficient end-

resection as evidenced by RPA loading (Figure 1A) which might

explain why they cannot be repaired by NHEJ. We sought to

further characterize these breaks and observed that the pATM

focal intensity in G2- but not in G1-phase cells is greatly

diminished at 8 h compared with 30 min time points (Figure 1A

and Figure S1A). In contrast, the cH2AX focal signal is equally

intensive at 30 min and 8 h in G1 and G2 (Figure S1B). We also

measured the pATM focal intensity at 2 h post IR, a time point

when resected and unresected DSBs are present in G2-phase cells.

Of note, the pATM focal intensity of RAD51-foci-positive resected

breaks is reduced compared with RAD51-foci-negative unresected

breaks. In contrast, the cH2AX focal intensity is similar or even

slightly increased at resected versus unresected DSBs (Figure 1B).

These findings suggest that the pATM focal intensity decreases

during resection in G2. pATM contributes, together with DNA-

PKcs and ATR, to the phosphorylation of H2AX [35,36]. To test

if the loss of pATM intensity at the break site leads to reduced

ATM activity, we measured the cH2AX focal intensity in cells

with strongly diminished levels of ATR, a kinase which is activated

by ssDNA regions [37]. Significantly, although ATR-deficient cells

show cH2AX focal intensities at unresected DSBs similar to

wildtype (wt) cells, they exhibit greatly diminished intensities at

resected breaks (Figure 1C). Consistent with the notion that ATM

is active at unresected but not at resected DSBs, chemical

inhibition of ATM only affects cH2AX foci intensities at

unresected but not at resected DSBs (Figure 1D and Figure S1C).

We next sought to confirm the immunofluorescence (IF)

measurements by Western blotting. We used A549 tumor cells

which can be efficiently synchronized in G1 by serum starvation

and moderately enriched in G2 by double thymidine blocking

(Figure S2A). The level of chromatin-bound pATM decreases with

time after IR due to ongoing repair in G1 and in G2 but,

importantly, at later times the pATM level per cH2AX level is

smaller in G2-enriched than in G1-synchronized cells (Figure 2A).

We also measured pKAP-1 (S824) levels as a specific read-out for

ATM activity [21] and obtained similar results (Figure 2A). We

next wished to measure pATM bound to DSBs and employed

immunoprecipitation (IP) experiments. For this, we used HeLa

tumor cells which can be efficiently synchronized in G2 (Figure

S2B). Strikingly, pATM bound to cH2AX is readily detected at

30 min but nearly absent at 8 h post IR in G2 (Figure 2B). To

directly show that the diminished pATM activity in G2 is a result

of resection, we inhibited resection by depleting CtIP or BLM [38]

and measured pKAP-1 levels. G2-synchronized HeLa tumor cells

show a strongly reduced pKAP-1 level at 4 h post IR compared

Author Summary

Double-strand breaks (DSBs) are critical DNA lesions
because they can lead to cell death or, which is even
more devastating, the formation of genomic rearrange-
ments. Cells are equipped with two main pathways to
repair such lesions, homologous recombination (HR) and
non-homologous end-joining (NHEJ). HR is an error-free
process and completely restores the genetic information,
whereas NHEJ has the potential to form genomic
rearrangements. We have previously shown that the
structure of the chromatin is one important factor which
determines the choice between these two pathways, such
that DSBs localizing to highly condensed heterochromatic
regions are mainly repaired by HR and breaks in more
open euchromatic DNA undergo repair by NHEJ. Here, we
investigate this aspect of DSB repair pathway choice. We
show that DSB end-resection, which channels DSB repair
into the process of HR, counteracts the profound local
relaxation which initially takes place at the break site and
reconstitutes the heterochromatic structure. Cells which
are genetically modified, such that they cannot reconsti-
tute the heterochromatic structure at resected DSBs, fail to
employ HR and instead repair heterochromatic DSBs by
alternative NHEJ mechanisms. Thus, chromatin modifica-
tions which occur during the process of end-resection
prevent error-prone repair pathways from generating
genomic rearrangements.

Heterochromatin Promotes Homologous Recombination
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with unsynchronized cells which is fully or partly restored after

CtIP or BLM depletion (Figure 2C and Figure S2C). To provide

evidence for the restoration of chromatin condensation at resected

DSBs, we performed IP experiments as in Figure 2B. We observed

that the level of KAP-1 bound to cH2AX continuously increases

with repair time (Figure 2D), possibly due to an enrichment of HC

DSBs at longer times and the recruitment of KAP-1 to damaged

sites as previously reported [25]. Importantly, cH2AX-bound

KAP-1 is substantially phosphorylated at early times post IR but

largely unphosphorylated at later times (Figure 2D). Together,

these biochemical approaches confirm the IF data above and

provide strong evidence that ATM accumulation and activity is

strongly reduced at DSBs which undergo resection. This leads to

KAP-1 dephosphorylation and possibly the restoration of HC.

The observed diminished ATM activity at resected DSBs is

consistent with studies using a human cell extract-based assay in

which ATM is activated by blunt DSB ends and ends with short ss

overhangs but not by extended ssDNA regions which arise during

the process of resection [39].

ATM is dispensable for later stages of HR
ATM has been implicated in early steps of HR [33,40,41]. A

prediction of our findings above is that ATM is no longer required

for HR after resection has occurred. To test this, we inactivated

ATM either before or at 2 h post IR, a time point when resection

has occurred (Figure S1C), and investigated the efficiency of DSB

repair. cH2AX foci numbers at 8 h post IR were substantially

elevated both in G1- and G2-phase cells treated with ATM

inhibitor (ATMi) before IR but only in G1-phase and not in G2-

phase cells if ATMi was added 2 h post IR (Figure 3A). We also

analyzed mitotic chromatid breakage in G2-irradiated cells and

observed substantially elevated break levels if ATMi is adminis-

tered before irradiation but not if it is added 2 h post IR

(Figure 3B). HR in G2 leads to sister chromatid exchanges (SCEs)

[42] which are diminished if ATM is inhibited before but not at

2 h after IR (Figure 3C). Together, these data show that ATM is

dispensable for HR stages that occur after resection has taken

place.

KAP-1 depletion overcomes the BRCA2 repair defect
It was previously shown that ATM operates in G1 by

continuously phosphorylating KAP-1 at heterochromatic DSBs

and that KAP-1 depletion overcomes the requirement for this

ATM function [34]. Since ATM accumulation and activity is

reduced at resected DSBs, we next asked if KAP-1 depletion might

affect DSB repair in G2. KAP-1 siRNA did not alter cH2AX foci

numbers in wt cells but strikingly rescued the repair defect in

BRCA2 mutants and cells treated with BRCA2 siRNA (Figure 4A

and Figure S3A). The same effect was observed in CHO cells

deficient for the HR factor XRCC3 as well as in RAD51-depleted

CHO cells (Figures S3B and S3C). Moreover, KAP-1 siRNA

reduced the elevated level of chromatid breaks in BRCA2-

deficient cells to that of wt cells (Figure 4A). We also measured the

formation of SCEs and did not observe any IR-induced SCE

formation in BRCA2/KAP-1-depleted cells (Figure S3D). Finally,

we investigated cells containing an integrated HR reporter with

two differentially mutated GFP genes [43]. Expression of the

endonuclease I-SceI generates a DSB in one of the two genes

which can be repaired by HR (gene conversion) with the second

gene copy as a template, resulting in a cell with functional GFP.

HR frequencies assessed by the fraction of GFP-positive cells are

significantly decreased after BRCA2 depletion and dual depletion

of BRCA2 and KAP-1, confirming that the repair events

occurring in BRCA2/KAP-1-depleted cells do not represent HR

(Figure S3E). A pathway switch from HR to c-NHEJ has recently

been demonstrated for heterochromatic DSBs after the inhibition

of resection by CtIP siRNA, consistent with the idea that resection

determines DSB repair pathway choice [33]. Therefore, we asked

if RPA foci formation, as a read-out for resection, is affected by

KAP-1 depletion. Significantly, wt and BRCA2-depleted cells

show the same initial level of RPA foci at 2 h post IR which is

unaffected by KAP-1 siRNA. These RPA foci persist in BRCA2-

depleted cells up to 8 h post IR consistent with their elevated

cH2AX foci level. In contrast, RPA foci numbers decrease with

time due to ongoing repair in wt and BRCA2-depleted cells

treated with KAP-1 siRNA (Figure 4B and Figure S3F). We also

investigated RAD51 loading at resected DSBs and observed

normal RAD51 foci numbers after KAP-1 siRNA in wt but not in

BRCA2-depleted cells (Figure 4B).

The finding that a BRCA2-independent process repairs resected

DSBs after combined BRCA2 and KAP-1 siRNA suggests that the

commitment for HR results from the loss of pATM at resected

DSBs which is overcome by KAP-1 depletion. To consolidate this

finding, we investigated DSB repair in cells treated with KAP-1

siRNA and complemented with siRNA-resistant KAP-1 constructs

which were mutated at the ATM-dependent phosphorylation site

on S824 [30]. The BRCA2 repair defect, which is rescued after

KAP-1 siRNA, is restored after complementation with wt KAP-1

or with KAP-1 rendered unphosphorylatable by mutating serine at

position 824 to alanine (S824A). Significantly, however, KAP-1

mutated to a phospho-mimic aspartate at position 824 (S824D)

fails to restore the BRCA2 repair defect (Figure 4C). Thus, KAP-1

phosphorylation at the established ATM site 824 overcomes the

commitment for HR and DSB repair in the absence of BRCA2

can proceed by an HR-independent process.

Alt-NHEJ can function as a back-up pathway for HR
Next, we wanted to investigate the process which is employed in

BRCA2-deficient cells for the repair of resected DSBs. For this, we

depleted BRCA2 and/or KAP-1 in cells deficient in the c-NHEJ

factor XLF. XLF-defective cells show greatly elevated cH2AX foci

and chromatid breaks consistent with the notion that c-NHEJ

Figure 1. phosphoATM focal intensity decreases at DSBs undergoing resection. (A) A549 tumor cells treated with BRCA2 siRNA were
irradiated with 1 Gy (0.5 h) or 2 Gy (8 h) and immunostained with the indicated antibodies. Using EdU and cell cycle markers to distinguish G1- from
G2-phase cells [32], focal intensities of pATM were measured using ImageJ software (see Figure S1A). BRCA2 siRNA was used in this analysis to
accumulate resected DSBs. (B) 2BN hTert (XLF-deficient) human fibroblasts were analyzed 2 h post IR with 1 Gy. Cells were stained against cH2AX and
RAD51 or pATM and RAD51, and cH2AX or pATM focal intensities were measured at RAD51-foci-positive or RAD51-foci-negative foci. XLF-deficient
cells were used in this analysis to prevent repair of EC DSBs during the time needed for resection of HC DSBs. (C) 82-6 hTert (wt) and F02-98 hTert
(ATR-deficient) human fibroblasts were stained against cH2AX and RAD51 at 2 h post 1 Gy, and cH2AX focal intensities were measured as in (B). (D)
2BN hTert (XLF-deficient) human fibroblasts were stained against cH2AX and RAD51 at 2 h post 1 Gy, and cH2AX focal intensities were measured as
in (B). Since both DNA-PK and ATM can phosphorylate cH2AX, cells were treated with DNA-PK inhibitor under all conditions. Inhibitors were added
1 h post IR, a time sufficient to allow for ATM-dependent resection and RAD51 loading (see Figure S1C). In (A–D), at least 300 foci from 3 independent
experiments were analyzed for each point. Box plots were used with a maximum whisker-length of 1.5-fold the inter-quartile range; the lower and
upper ‘‘x’’ indicates the 1% or 99% margin of the data range, respectively.
doi:10.1371/journal.pgen.1003667.g001
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represents the predominant repair pathway in G2 [32]. Interestingly,

depletion of BRCA2 leads to a similar increase in cH2AX foci/

chromatid break numbers in wt cells and XLF mutants, demon-

strating additivity of the two major repair pathways in G2, c-NHEJ

and HR (Figure 5A). But most importantly in the present context,

dual depletion of BRCA2 and KAP-1 did not affect cH2AX foci/

chromatid break numbers in XLF mutants, demonstrating that the

HR defect is rescued by KAP-1 depletion even in the absence of the

c-NHEJ factor XLF (Figure 5A). The same effect was observed in

CHO cells deficient in the c-NHEJ factor KU80 (Figure S4A).

We then tested if an alt-NHEJ pathway repairs DSBs in

BRCA2/KAP-1-depleted cells and employed chemical inhibition

Figure 2. phosphoATM activity is diminished at resected DSBs. (A) G1-synchronized and G2-enriched A549 tumor cells were irradiated with
10 Gy and harvested at indicated time points. Fractionated chromatin (chromatin) was immunoblotted (left panel), and pATM, pKAP-1 and cH2AX
levels of the chromatin fraction from the same blot were quantified using ImageJ. The right panels show the ratio of pATM or pKAP-1 relative to
cH2AX for G1 and G2 cells at various time points. The data for G2 was normalized to G1 which was set to 100% (mean 6 SEM from $2 experiments).
(B) G2-synchronized HeLa tumor cells were irradiated with 30 Gy, harvested at the indicated time points, immunoprecipitated (IP) with cH2AX
antibody and analyzed by immunoblotting. In G2 cells, pATM is co-immuno-precipitated with cH2AX at 30 min but not at 8 h post IR. The depicted
FACs distributions in panels (A) and (B) represent the cell populations at the time of irradiation. How these populations change during repair
incubation is shown in Figure S2. (C) HeLa tumor cells were treated with siRNA, synchronized in G2, and whole cell extracts were analyzed by
immunoblotting 4 h post 10 Gy. pKAP-1 is detected in unsynchronized but not in G2-synchronized cells unless either CtIP or BLM is depleted.
Depletion of CtIP or BLM did not affect the cell cycle distribution (see Figure S2C). (D) G2-synchronized HeLa tumor cells were irradiated with 30 Gy,
harvested at the indicated time points, immunoprecipitated (IP) with cH2AX antibody and analyzed by immunoblotting. The level of KAP-1 co-
immuno-precipitated with cH2AX increases with increasing repair time post IR. KAP-1 is substantially phosphorylated at early but not at later times.
doi:10.1371/journal.pgen.1003667.g002
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of PARP (PARPi), a factor which has been implicated in alt-NHEJ

[14,17]. cH2AX foci and chromatid breaks were not significantly

affected in wt cells treated with PARPi, demonstrating that alt-

NHEJ processes do not contribute substantially to IR-induced

DSB repair in normal cells. However, the elevated level of cH2AX

foci/chromatid breaks in BRCA2-deficient cells, which is rescued

after KAP-1 siRNA, is restored by PARPi (Figures 5B and 5C).

Thus, PARPi precluded the repair events which arose in BRCA2-

deficient cells after KAP-1 siRNA, demonstrating that a PARP-

dependent process can function as a back-up pathway for HR. We

also investigated other factors which have been described to

function in alt-NHEJ. In CHO mutants deficient in XRCC1 as

well as in cells deficient for DNA ligase I and III, KAP-1 failed to

rescue the elevated cH2AX foci level which is conferred by a

deficiency in BRCA2 or RAD51 (Figure 5D and Figure S4B).

Consistent with the notion that alt-NHEJ can function as a back-up

pathway for HR, we observed greatly increased levels of chromatid

fusions in BRCA2/KAP-1-depleted cells (Figure 5E). To charac-

terize the nature of these chromatid fusion events, we employed

fluorescence-in-situ-hybridization (FISH) analysis with chromosome-

specific probes. In one set of experiments, we used probes for

chromosomes 1, 2 and 4 and observed that all fusion events (,40

fusions from the analysis of ,800 cells) occurred between

heterologous chromosomes, that is, between a stained and an

unstained chromosome or between two differently stained chromo-

somes (Figure 5F). Further, we employed probes for chromosome 19

Figure 3. ATM is not required for later stages of HR. (A) cH2AX foci were analyzed in G1- and G2-irradiated A549 tumor cells as previously
described [32]. Cells were treated with ATMi 0.5 h prior to or 2 h post IR to investigate the impact of ATM inactivation at various stages during repair.
Background foci numbers were subtracted. At least 40 cells were analyzed per data point and experiment (mean 6 SEM from $3 experiments). (B–C)
Chromatid breaks (B) and SCEs (C) were analyzed in mitotic HeLa tumor cells at 8 h post 2 Gy. Cells were treated with caffeine and colcemid at 5 h
post IR to abolish the G2 checkpoint and collect cells in mitosis. The addition of caffeine does not affect homologous recombination levels as
assessed by SCE formation [42]. Cells were labeled with EdU, and only EdU-negative cells (i.e. cells in G2 at the time of irradiation) were included in
the analysis. Cells were treated with ATMi as in (A). At least 40 metaphases were analyzed per data point and experiment (mean 6 SEM from $3
experiments). Example of a DAPI-stained metaphase spread with an enlarged SCE (left panel) and chromatid break (right panel). P values were
obtained by t-test and represent a comparison of all cells analyzed in the indicated cell populations (***: p,0.001).
doi:10.1371/journal.pgen.1003667.g003
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which is exceptionally rich in KAP-1 binding sites and for the

similar-sized chromosome 18 which is largely devoid of these sites

[44]. Following BRCA2 depletion, we observed significantly higher

breakage levels in chromosome 19 compared with chromosome 18,

confirming that HR in G2 occurs mainly in KAP-1-dependent HC

(Figure 5G). Importantly, following dual depletion of BRCA2 and

KAP-1, chromosome fusions occur more often in chromosome 19

than in chromosome 18 confirming the notion that they arise from

the misrejoining of chromatid breaks in KAP-1-dependent HC

(Figure 5G).

HR requires KAP-1-dependent heterochromatin
The data above show that KAP-1 depletion allows heterochro-

matic DSBs to be repaired by an alt-NHEJ pathway in the absence

of BRCA2, XRCC3 or RAD51. It is, however, unclear how the

efficiency of HR in wt cells is affected by KAP-1-mediated

chromatin changes. As shown above, cH2AX foci and chromatid

breaks are repaired with similar kinetics with and without KAP-1

siRNA (see Figure 4A) but it is not known if repair after KAP-1

siRNA involves HR or, as in the case of HR mutants, an alt-NHEJ

pathway. To address this question, we investigated the formation

of SCEs in mitotic cells and observed greatly diminished SCE

levels after KAP-1 siRNA in wt cells (Figure 6A). We also

employed the HR reporter assay described above (Figure S3E) and

observed strongly reduced HR levels following KAP-1 depletion

(Figure 6B). Thus, KAP-1-depleted cells do not employ HR

although repair occurs efficiently. We also analyzed chromatid

fusion events as a read-out for incorrect end-joining. Strikingly,

KAP-1-depleted cells show elevated chromosomal fusions, sug-

gesting that the DSBs are repaired by an error-prone alt-NHEJ

pathway (Figure 6C). This notion is consolidated by the

observation that PARPi increases cH2AX foci and chromatid

break numbers in cells depleted for KAP-1 or complemented with

phospho-mimic KAP-1 (S824D) (Figures 6D and 6E). Further,

cells deficient in DNA ligase I and III or in XRCC1 show elevated

cH2AX foci levels following KAP-1 depletion (Figures 6F and

6G). Taken together, this data shows that HR is efficiently used in

cells with unphosphorylatable KAP-1 and cannot occur if KAP-1

is depleted.

Discussion

HR involves resection of DSB ends. Here, we investigated the

process of HR at HC DSBs in G2 and showed that pATM, which

initially binds to DSB ends, is released from the break sites during

the process of resection. This leads to diminished KAP-1

phosphorylation at HC breaks and a commitment to repair such

resected DSBs by HR. If the loss of KAP-1 phosphorylation is

overcome by KAP-1 depletion or expression of phospho-mimic

KAP-1, both of which are known to cause local HC relaxation,

this commitment to HR is abolished and resected DSBs are

repaired by an alt-NHEJ process. Thus, KAP-1-dependent HC

facilitates later stages of HR whereas c-NHEJ and alt-NHEJ both

require continuous HC relaxation due to ATM-dependent KAP-1

phosphorylation (see Figure 6H).

ATM is released from resected DSBs
ATM binding and activation at DSB ends occurs within

minutes after damage induction and is important for the initiation

of various signaling processes [45]. Concomitant with the

induction of signaling pathways, a variety of chromatin remod-

eling processes are initiated. This involves modifications which

either relax or condense the chromatin structure in the surround-

ing of DSBs. However, it is currently unclear how these changes

are chronologically orchestrated and how they differentially affect

different DSB repair pathways in different chromatin compart-

ments. Therefore, we focused our investigation on chromatin

modifications which occur in HC regions due to the process of

resection in order to specifically investigate how such chromatin

changes impact on later stages of HR. We did not examine

chromatin remodeling processes at early times which affect the

decision to initiate resection.

We have previously shown that ATM is dispensable for the

majority of DSB repair in G1 but that HC breaks strictly require

ATM [30]. ATM’s function during HC DSB repair in G1 involves

continuous KAP-1 phosphorylation which leads to local HC

relaxation [23]. Our finding that ATM is released from resected

DSBs in G2 was therefore unexpected. However, there is

precedence in the literature that ATM changes binding properties

upon resection of DSBs. First, ATM’s binding affinity to break

ends has been reported to be attenuated with the progressive

presence of ssDNA at resected DSBs [39]. This ATM attenuation

is accompanied by increasing ATR activity [39], consistent with

our result that H2AX phosphorylation at RAD51-foci-positive

DSBs requires ATR. Second, 53BP1, a damage response factor

which localizes to and facilitates pATM accumulation at DSB sites

[34], has been reported to show reduced occupancy at resected

DSBs in G2 [46]. Although the reported reduction of ATM

accumulation and activity at resected breaks is consistent with

published data, the functional consequence of this finding was

hitherto unclear.

ATM release at resected DSBs commits to HR
In G2 phase, DSB repair can be performed by NHEJ and HR.

It is therefore remarkable that cells with mutations in BRCA2,

XRCC3 or RAD51 exhibit unrejoined DSBs, which obviously are

refractory to repair by NHEJ. Thus, it has been suggested that the

process of resection commits DSB repair to HR and prevents

usage of NHEJ [33]. Here, we provide mechanistic insight into the

processes determining pathway usage upon resection. Since ATM

is released from resected DSBs we reasoned that the concomitant

reduction in KAP-1 phosphorylation prevents repair of resected

breaks by NHEJ. Indeed, if loss of ATM-dependent KAP-1

phosphorylation is overcome by KAP-1 depletion or expression of

phospho-mimic KAP-1, BRCA2-, XRCC3- or RAD51-deficient

cells exhibit normal repair kinetics. Thus, it is not the resection per

Figure 4. KAP-1 depletion allows HC DSB repair in the absence of BRCA2. (A) cH2AX foci and PCC analysis in G2-irradiated 82-6 hTert (wt)
and HSC62 hTert (BRCA2-deficient) human fibroblasts. (B) RPA and RAD51 foci analysis in G2-irradiated A549 tumor cells. (C) Endogenous KAP-1 and
BRCA2 was depleted in HeLa tumor cells by siRNA, and cells were transfected with GFP-tagged and siRNA-resistant empty (GFP), wt or mutated
(phospho-mutant S824A or phospho-mimic S824D) KAP-1 plasmids. cH2AX foci were analyzed in GFP-positive G2-irradiated cells. EdU and cell cycle
markers were used to distinguish G2- from S- and G1-phase cells [32]. In (A), (B) and (C), foci numbers or PCC breaks from unirradiated cells were
subtracted. At least 40 cells or PCC spreads were analyzed per data point and experiment (mean 6 SEM from $3 experiments). KAP-1 and BRCA2
depletion in this and subsequent experiments was highly efficient (.90% as assessed by Western blotting). P values were obtained by t-test and
represent a comparison of all cells analyzed in the indicated cell populations (***: p,0.001).
doi:10.1371/journal.pgen.1003667.g004
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Figure 5. Alt-NHEJ can function as a back-up pathway for HR. (A) cH2AX foci and PCC analysis in G2-irradiated 82-6 hTert (wt) and 2BN hTert
(XLF-deficient) human fibroblasts. (B) cH2AX foci and PCC analysis in G2-irradiated 82-6 hTert (wt) human fibroblasts treated with PARPi 0.5 h prior to
IR. (C) PCC analysis from G2-irradiated HSC62 hTert (BRCA2-deficient) human fibroblasts treated with PARPi as in (B). (D) cH2AX foci analysis in G2-
irradiated 82-6 hTert (wt) and HSC62 hTert (BRCA2-deficient) human fibroblasts. (E–G) Chromatid fusions and breaks in G2-irradiated mitotic HeLa
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se but the loss of ATM activity at resected breaks which commits

repair to HR.

Alt-NHEJ can function as a back-up pathway for HR
HC DSBs which remain unrepaired in BRCA2-, XRCC3- or

RAD51-deficient cells can be repaired if HC relaxation is provided

by KAP-1 depletion or expression of phospho-mimic KAP-1.

Interestingly, these DSBs undergo resection as evidenced by

normal RPA foci formation. Thus, HC repair occurring in the

absence of BRCA2, XRCC3 or RAD51 must involve a pathway

which is capable of dealing with resected breaks. Consistent with

the notion that alt-NHEJ can repair resected DSBs, we showed

that the HC repair events occurring in the absence of BRCA2,

XRCC3 or RAD51 require PARP, XRCC1 and DNA ligase I/

III. We also observed that HC repair in the absence of BRCA2 has

a significant propensity to lead to chromatid exchanges in G2-

irradiated cells. Because alt-NHEJ has been implicated in the

formation of genomic exchanges [47–50], this finding supports our

contention that HC repair in the absence of BRCA2, XRCC3 or

RAD51 involves alt-NHEJ.

KAP-1-dependent heterochromatin facilitates HR
Perhaps surprisingly, we observed that the process of HR is

nearly abolished in cells with depleted KAP-1, even in the

presence of functional HR factors. This suggests that DSB repair

pathway usage is significantly affected by chromatin modifications,

favoring HR in condensed genomic regions. This notion is further

supported by the observation that PARP inhibition or the loss of

XRCC1 or DNA ligase I and III leads to elevated unrepaired

breaks in KAP-1-depleted cells, which not only demonstrates that

cells use alt-NHEJ but also, that they cannot employ HR in the

absence of KAP-1-dependent HC. In summary, these findings

establish that KAP-1-dependent HC is not only a barrier to repair

by c-NHEJ or alt-NHEJ but, unexpectedly, also facilitates the

process of HR.

Consistent with our results, depletion of HP1a or KAP-1

strongly reduces gene conversion frequencies in a I-SceI-based HR

assay [25]. Furthermore, HP1a and KAP-1 is recruited to

chromatin damaged by laser- or X-irradiation [26,27] and

depletion of HP1a diminishes SCE formation after treatment

with camptothecin [51]. One explanation of how HC might

promote HR is that a reduced spatial distance between sister

chromatids in HC regions facilitates homology search [52]. In

support of this idea, we have recently obtained preliminary

evidence that the average distance between sister chromatids,

measured by FISH analysis with locus-specific probes, is substan-

tially larger in EC versus HC regions (Geuting et al., unpublished

data). A similar mechanism has been suggested for cohesin

proteins which might promote HR by providing the required

proximity of sister chromatids in G2 phase [53]. Another

explanation of how HC might facilitate HR is by suppressing

alt-NHEJ processes. Although it is well established that the

presence of KU70/80 at DSB ends prevents repair by alt-NHEJ,

KU70/80 is likely released from resected DSB ends. Chromatin

condensation occurring due to ATM release at resected DSBs

might represent an alternative mechanism to keep error-prone alt-

NHEJ processes in check.

Conclusion
In conclusion, our study provides mechanistic insight into

sequential events determining DSB repair pathway usage. First, we

demonstrate that ATM activity is diminished at DSBs which

undergo resection during the process of HR. Second, the

concomitant loss of pKAP-1 at resected DSBs leads to local

reconstitution of the HC superstructure and prevents repair of

resected DSBs by alt-NHEJ. Thus, our study links two seemingly

unrelated findings by showing how modifications at DSBs

undergoing resection affect chromatin remodeling processes and

DSB repair pathway usage.

Material and Methods

Cell lines and cell culture
Immortalized and transformed cell lines were 82-6 hTert (wt),

HSC62 hTert (BRCA2-deficient, kindly provided by Dr. M.

Digweed), 2BN hTert (XLF-deficient, kindly provided by Dr. P.

Jeggo) and F02-98 hTert (ATR-deficient, kindly provided by Dr.

P. Jeggo) human fibroblasts, HeLa-S3, HeLa pGC (kindly

provided by Dr. J. Dahm-Daphi) and A549 human tumor cells,

and CHO-AA8 (wt), IRS1SF (XRCC3-deficient; kindly provided

by Dr. L. Thompson), CHO-K1 (wt), XRS6 (KU80-deficient,

kindly provided by Dr. P. Jeggo), CHO-9 (wt) and EMC11

(XRCC1-deficient, kindly provided by Dr. B. Kaina) hamster cells.

HeLa-S3 and A549 tumor cells were cultured in DMEM with

10% FCS and 1% NEAA; HeLa pGC cells additionally in 0.3 mg/

ml puromycin. Human fibroblasts and CHO cells were cultured in

MEM with 20% FCS, 1% NEAA. All cells were maintained at

37uC in a 5% CO2 incubator.

RNA interference and plasmid transfection
SiRNA transfection was carried out with HiPerFect Transfec-

tion Reagent (Qiagen) following the manufacturer’s instructions.

siRNAs used in the experiments were: BLM (50 nM), Control

(10 nM), CtIP (20 nM), KAP-1 (25 nM), RAD51 (20 nM), Lig I

(20 nM), Lig III (20 nM) (Qiagen), and BRCA2 (25 nM) (Smart-

Pool, Dharmacon). SiRNA sequences were: BLM (AAG CUA

GGA GUC UGC GUG CGA), BRCA2 (GAA ACG GAC UUG

CUA UUU A; GUA AAG AAA UGC AGA AUU C; GGU AUC

AGA UGC UUC AUU A; GAA GAA UGC AGG UUU AAU

A), Control (AAU UCU CCG AAC GUG UCA CGU), CtIP

(UCC ACA ACA UAA UCC UAA UUU), KAP-1_A (CAG UGC

UGC ACU AGC UGU GAG), KAP-1_B (CAU GAA CCC CUU

GUG CUG UUU), RAD51 (AAG GGA AUU AGU GAA GCC

AAA), Lig I (AAG GCA UGA UCC UGA AGC AGA), Lig III

(AAC CAC AAA AAA AAU CGA GGA). Experiments were

performed 48 h following siRNA transfection. For GFP-tagged

siRNA-resistant KAP-1 plasmid transfection, HeLa tumor cells

were incubated with KAP-1_B or KAP-1_B and BRCA2 siRNA

and, 8 h later, transfected with 1 mg plasmid DNA using

Lipofectamine LTX Transfection Reagent (Life Technologies).

tumor cells at 8 h post 2 Gy. Cells were treated with caffeine and colcemid at 5 h post IR to abolish the G2 checkpoint and collected in mitosis.
Chromosomes were stained with Giemsa (panel E) or analyzed by FISH with probes specific for chromosomes 1 (red), 2 (green) and 4 (yellow) (panel
F) or to chromosomes 18 and 19 (panel G). Foci numbers, chromatid breaks and fusions from unirradiated cells were subtracted. For panels A–E, at
least 40 cells or 40 PCC/mitotic spreads were analyzed per data point and experiment (mean 6 SEM from $3 experiments). For panel G, 50 mitotic
spreads were analyzed per data point and experiment (mean 6 SEM from $2 experiments). N.d. indicates that no chromatid fusions were observed
under these conditions. P values were obtained by t-test and represent a comparison of all cells analyzed in the indicated cell populations
(***: p,0.001).
doi:10.1371/journal.pgen.1003667.g005
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Cells were irradiated with 2 Gy, fixed and stained for cH2AX,

EdU and GFP. Only GFP-positive cells were analyzed.

Cell synchronization, X-irradiation and chemical
treatment

A549 tumor cells were used for G1 synchronization and G2

enrichment. HeLa tumor cells were only used for G2 enrichment.

G1 synchronization was carried out by 48 h serum starvation in

DMEM without FCS and NEAA. 0.5 h before irradiation,

medium was replaced by DMEM with FCS and NEAA. For G2

enrichment, a double thymidine blocking was used. Cells were

blocked 16 h with 2 mM thymidine (Sigma), released in fresh

medium for 9 h, blocked again with 2 mM thymidine for 16 h and

released in fresh medium for 7–8 h. Synchronization was

controlled by FACs analysis as described previously [54]. X-

irradiation was performed at 90 kV and 19 mA with an aluminum

filter (dose rate: 2 Gy/min). Chemical inhibitors were added 0.5 h

prior to IR and maintained during repair incubation. The ATM

inhibitor (Tocris KU 60019), the DNA-PK inhibitor Nu7441

(Tocris NU7026) and the PARP inhibitor PJ34 (Calbiochem

PARP inhibitor VIII PJ34) were used at concentrations of 5 mM,

10 mM and 20 mM, respectively. Repair incubation was limited to

time periods which provided that the majority of G2-irradiated

cells remained in G2 (controlled by FACs analysis).

Immunofluorescence
Cells were grown on glass coverslips. EdU (10 mM) was added

0.5 h prior to IR to discriminate between S- and G2-phase cells. In

experiments analyzing G1-phase cells, nocodazol (100 ng/ml) was

added 0.5 h prior to IR to prevent G2-phase cells progressing into

G1 during repair incubation [55]. Cells were fixed and stained as

described [56] and additionally stained with Click-it EdU (Life

technologies). Antibodies used were: mouse-a-cH2AX at 1:2000

(Millipore); rabbit-a-cH2AX at 1:2000 (Abcam), mouse-a-pATM

at 1:1000 (Biomol), rabbit-a-RAD51 at 1:15000 (Abcam), mouse-

a-RPA at 1:2000 (Neomarkers) and mouse-a-GFP at 1:200

(Roche). Cells were analyzed with a Zeiss microscope and Metafer

software (Metasystems). Samples were evaluated in a blinded

manner. Foci intensities were analyzed using ImageJ software (see

Figure S1A).

HR reporter assay
HeLa pGC cells were incubated with siRNA and, 24 h later,

transfected with 3 mg pBL464-pCBASce plasmid DNA using

MaTra transfection (IBA). After 24 h, cells were again siRNA

treated and, 48 h later, fixed and stained. 10000 cells per sample

were analyzed with a Zeiss microscope and Metafer software

(Metasystems).

Protein extracts, chromatin fractionation and chromatin
immunoprecipitation

Whole cell extracts were prepared as described [56]. For

chromatin fractionation, cells were resuspended two times in NP-

40 buffer (10 mM Tris/HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2,

30 mM sucrose, 0.5% NP-40, 0.2 mM sodiumvanadate, 0.5 mM

PMSF) and centrifuged for 10 min at 15006 g. Cell pellet was

resuspended in Glycerol buffer (20 mM Tris/HCl pH 7.9,

100 mM KCl, 0.2 mM EDTA, 20% glycerol, 0.2 mM sodiumva-

nadate, 0.5 mM PMSF) and incubated 10 min on ice. After

centrifugation (10 min, 15006g) chromatin fraction was lysed and

sonicated in RIPA buffer (50 mM Tris/HCl pH 8, 150 mM

NaCl, 0.5 Na-deoxycholate, 1% Triton, 0.1% SDS). For

immunoprecipitation, cells were fixed with 3% paraformaldehyd

containing 2% sucrose for 5 min at 4uC, immediately washed with

PBS, scraped in medium and centrifuged for 10 min at 4006 g.

Cells were resuspended two times in NP-40 buffer containing

15 mM caffeine and centrifuged for 10 min at 15006g. Cell pellet

was resuspended in equal volume Nuclease buffer (10 mM

HEPES pH 7.5, 10 mM KCl, 1 mM CaCl2, 1.5 mM MgCl2,

0.34 M sucrose, 10% glycerol, 0.1% Triton-X-100, 0.2 mM

sodiumvanadate, 0.5 mM PMSF, 15 mM caffeine), micrococcal

nuclease (500 U/ml) was added and suspension was incubated for

45 min at 37uC. Equal volume of Solubilization buffer (2% NP-40,

2% Triton-X-100, 600 mM NaCl in Nuclease buffer) was added

before mixing, brief sonication and clearifing for 10 min at 80006
g. Dynabead Protein G (Invitrogen) were blocked 1 h with

100 mg/ml salmon sperm DNA in 0.1% BSA/PBS and antibodies

(4 mg) were linked to the beads, washed two times in 0.1% BSA/

PBS and then incubated with the cell extract at 4uC over night.

Beads were washed three times in Wash buffer (equal volume of

Nuclease buffer and Solubilization buffer) and boiled in 26
Laemmli buffer for 5 min at 95uC.

Immunoblotting
Western blotting was carried out at 300 mA for 1 h or at 80 mA

over night. Nitrocellulose membrane (Roth) was blocked for 1 h in

5% low fat milk or 5% BSA in TBS/0.1% Tween20. Antibody

incubation was carried out in TBS/0.1% Tween20/1% low fat

milk or 5% BSA over night at 4uC, followed by HRP-conjugated

secondary antibody incubation in PBS/0.1% Tween20/1% low

fat milk or 5% BSA for 1 h. Immunoblots were developed using

ECL (Roche). Signal detection was carried out with a chemi-

smart-system (Vilber Lourmat). Primary antibodies used were:

rabbit-a-pATM at 1:1000 (Epitomics); rabbit-a-pKAP-1 (S824) at

1:10000 (Epitomics); rabbit-a-KAP-1 at 1:1000 (abcam); mouse-a-

BRCA2 at 1:1000 (Cell signaling); rabbit-a-GAPDH at 1:1000

(Santa Cruz); mouse-a-cH2AX at 1:1000 (Millipore); mouse-a-H3

Figure 6. HR requires KAP-1-dependent heterochromatin. (A) SCEs in G2-irradiated mitotic HeLa tumor cells at 8 h post 2 Gy. Cells were
treated with caffeine and colcemid at 5 h post IR to abolish the G2 checkpoint and collected in mitosis. (B) HR frequencies (gene conversion) after I-
SceI expression in HeLa pGC cells carrying an integrated GFP reporter system. (C) Chromatid fusions analyzed from cells in panel A. (D) cH2AX foci
and PCC analysis in G2-irradiated 82-6 hTert (wt) human fibroblasts. Cells were treated with PARPi 0.5 h prior to IR. (E) Endogenous KAP-1 was
depleted in HeLa tumor cells by siRNA, and cells were transfected with GFP-tagged and siRNA-resistant phospho-mimic (S824D) KAP-1 plasmid.
cH2AX foci were analyzed in GFP-positive G2-irradiated HeLa tumor cells treated with PARPi 0.5 h prior to IR. (F) cH2AX foci analysis in G2-irradiated
82-6 hTert (wt) human fibroblasts. (G) cH2AX foci analysis in G2-irradiated CHO9 (wt) and EMC11 (XRCC1-deficient) hamster cells. In (C–G), foci
numbers, PCC breaks or chromatid fusions from unirradiated cells were subtracted. At least 40 cells or 40 PCC/mitotic spreads were analyzed per data
point and experiment (mean 6 SEM from $3 experiments). (H) Model of heterochromatic IR-induced DSB repair. In wt cells, ATM activates CtIP to
initiate resection and phosphorylates KAP-1 to facilitate chromatin decondensation. Following extended resection, ATM is released from chromatin
and KAP-1 is dephosphorylated, which likely results in restoration of condensed chromatin and a commitment to HR (left). In the case of
decondensed chromatin due to KAP-1 depletion or expression of phospho-mimic KAP-1 (KAP-1 S824D), repair of resected DSBs occurs by alt-NHEJ,
which is suppressed by chromatin condensation (right). P values were obtained by t-test and represent a comparison of all cells analyzed in the
indicated cell populations (***: p,0.001).
doi:10.1371/journal.pgen.1003667.g006
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at 1:1000 (abcam); mouse-a-RPA2 at 1:1000 (Calbiochem); rabbit-

a-pRPA2 (S4/8) at 1:10000 (Bethyl).

Chromosomal analysis
EdU (10 mM) was added 0.5 h prior to IR and maintained to

discriminate between S- and G2-phase cells. PCCs were harvested

at 8 h, mitotic cells for SCE or FISH analysis between 5–8 h after

IR as described [32]. Microscope slides were stained with DAPI

(0.2 mg/ml) and Click-it EdU. For FISH analysis, whole chromo-

some probes for chromosomes 1, 2, and 4 or for chromosomes 18

and 19 were used (Metasystems). Chromosome spreads were

recorded by Metafer software (Metasystems). Only EdU-negative

chromosome spreads were analyzed.

Supporting Information

Figure S1 (A) Measurement of foci and background intensities in

a maximum intensity projection of a cell. Foci were identified by

eye and foci shapes were defined by a region of interest (ROI)

which was kept constant for all foci of the same experiment (upper

panels on the left). The average pixel intensity (grey value) inside

an ROI was taken to represent the focus intensity. The

background was measured for each cell individually (cell shapes

were determined by DAPI staining). For this, the most frequent

(modal) grey value of the respective cell was determined which

provided nearly identical results to the average grey value of the

region without foci (see histogram on the right). The foci intensities

were then normalized to the background intensity of the respective

cell to account for variations in staining efficiency between

different cells and samples. (B) A549 tumor cells treated with

BRCA2 siRNA were irradiated with 1 Gy (0.5 h) or 2 Gy (8 h),

immuno-stained as in Figure 1A, and focal intensities of cH2AX

were measured using ImageJ software. (C) RAD51 foci were

analyzed in G2-irradiated A549 tumor cells. Cells were treated

with ATMi 0.5 h prior to or 1 h post IR. Foci numbers from

unirradiated cells were subtracted. At least 40 cells were analyzed

per data point and experiment (mean 6 SEM from $3

experiments). P values were obtained by t-test and represent a

comparison of all cells analyzed in the indicated cell populations

(***: p,0.001).

(PDF)

Figure S2 (A) Cell cycle distributions of A549 tumor cells after

synchronization in G1-phase by serum starvation (upper panels) or

enrichment in G2 phase by double thymidine blocking (lower

panels). (B) Cell cycle distributions of HeLa tumor cells after

synchronization in G2 phase by double thymidine blocking (upper

panels) or without synchronization (lower panels). (C) Cell cycle

distributions of HeLa tumor cells after treatment with either CtIP

or BLM siRNA and synchronization in G2 phase by double

thymidine blocking.

(PDF)

Figure S3 (A) cH2AX foci were analyzed in G2-irradiated A549

tumor cells. (B, C) cH2AX foci were analyzed in G2-irradiated

AA8 (wt) and IRS1SF (XRCC3-deficient) (panel B) or K1 (wt)

(panel C) CHO cells. In samples treated with RAD51 siRNA, only

RAD51-foci-negative cells were analyzed. (D) SCEs in G2-

irradiated mitotic HeLa tumor cells at 8 h post 2 Gy. Cells were

treated with caffeine and colcemid at 5 h post IR to abolish the G2

checkpoint and collected in mitosis. (E) HR frequencies (gene

conversion) after I-SceI expression in HeLa pGC cells carrying an

integrated GFP reporter system. (F) RPA foci were analyzed in

G2-irradiated 82-6 hTert (wt) human fibroblasts. Foci numbers

from unirradiated cells were subtracted. At least 40 cells were

analyzed per data point and experiment (mean 6 SEM from $3

experiments). P values were obtained by t-test and represent a

comparison of all cells analyzed in the indicated cell populations

(***: p,0.001).

(PDF)

Figure S4 (A) cH2AX foci were analyzed in G2-irradiated

XRS6 (KU80-deficient) CHO cells. (B) cH2AX foci were

analyzed in G2-irradiated CHO9 (wt) and EMC11 (XRCC1-

deficient) CHO cells. In samples treated with RAD51 siRNA, only

RAD51-foci-negative cells were analyzed. Foci numbers from

unirradiated cells were subtracted. At least 40 cells were analyzed

per data point and experiment (mean 6 SEM from $3

experiments). P values were obtained by t-test and represent a

comparison of all cells analyzed in the indicated cell populations

(***: p,0.001).

(PDF)
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