
Holistic Runtime Scheduling for the
Distributed Computing Landscape

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

vorgelegt von
Marcel Blöcher
geboren in Gießen

Tag der Einreichung: 01. Februar 2021
Tag der Disputation: 17. März 2021

Referenten
Prof. Dr. Max Mühlhäuser, TU Darmstadt
Prof. Dr. Patrick Eugster, USI, Schweiz
Prof. Dr. Lin Wang, VU Amsterdam, Niederlande

Holistic Runtime Scheduling for the Distributed Computing Landscape

Genehmigte Dissertation von Marcel Blöcher aus Gießen
Tag der Einreichung: 01. Februar 2021
Tag der Disputation: 17. März 2021

Jahr der Veröffentlichung der Dissertation auf TUprints: 2021
Darmstadt - D 17

1. Gutachten: Prof. Dr. Max Mühlhäuser, TU Darmstadt
2. Gutachten: Prof. Dr. Patrick Eugster, USI, Schweiz
3. Gutachten: Prof. Dr. Lin Wang, VU Amsterdam, Niederlande

Please cite this document as:
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/18576
URN: urn:nbn:de:tuda-tuprints-185766

This document is provided by TUprints, the e-publishing-service of TU Darmstadt.
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives
4.0 International” license.
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://tuprints.ulb.tu-darmstadt.de/id/eprint/18576
http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-185766
https://tuprints.ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

To my friends and family who made this work possible.

Abstract

Internet services have become an indispensable part of our lives, with billions of users
on a daily basis. Example use cases include services for real-time communication and
collaborative editing of documents. Furthermore, there are many hidden—nonetheless
omnipresent—use cases like cashier systems and sensors of industry facilities. Users
expect to use Internet services at any time at low cost with the desired service quality
despite potential load spikes a service might face. A straightforward strategy to provide
services with high availability is to allocate dedicated resources for each service. In
turn, this strategy is likely to lead to over-provisioning and increased operating expenses,
which contradicts offering services at a low price. A solution to this problem is to leverage
resource scheduling to share the underlying resources among many different workloads
and services. Sharing the underlying resources is a key enabler to offer highly scalable
services while keeping operating expenses of each service low.
A wide range of resource scheduling systems for the distributed computing land-

scape has been proposed in the past, covering the application and infrastructure lev-
els. Application-level scheduling focuses on problems such as given a set of resources,
configuring an application to reach high throughput and good service quality. Many
application-level resource scheduling systems lack support for runtime scheduling, often
due to slow or unsuitable algorithms. Without runtime scheduling, resource scheduling
must run in advance for many scenarios and, at best, repeats periodically to update
scheduling decisions. This is likely to result in inefficient resource usage. In contrast
to application-level scheduling, infrastructure-level scheduling is about orchestrating re-
sources and serving resource requests of various applications, aiming at high resource
utilization. Infrastructure-level scheduling leverages generic resource abstractions, e.g .,
containers and virtual machines, to fulfill these properties. These abstractions make
assumptions (e.g ., homogeneity, linear resource consumption) to simplify management,
but ignore the fact that current distributed computing systems have been evolving in the
post-Moore’s law era and many of these assumptions need to be revised. In particular,
the recent trend of new programmable networking devices, ushering in a new area of
in-network computing (INC), overtaxes the generic abstractions of compute containers
running on servers. The ever-growing demand for Internet services in general and increas-
ingly heterogeneous resources combined with the highly varying demand in particular,
require runtime solutions for holistic resource scheduling, covering both the application
and infrastructure levels.
This dissertation presents four novel solutions to holistic runtime scheduling for the

distributed computing landscape. Two solutions cover the application and two the in-
frastructure levels. We start with an analysis of the field of resource scheduling for the
distributed computing landscape and classify involved systems, resources, and abstrac-

v

tions. Based on this, we present a classification of INC which helps to understand the
design space of INC resource scheduling. Next, we discuss two scenarios at the application
level and demonstrate how runtime scheduling improves resource efficiency. As a first
scenario, we consider big data aggregation systems and present ROME, a middleware
system to reduce the total aggregation time. ROME automatically analyzes at runtime
the involved aggregation function’s data stream and optimizes each node’s responsibil-
ities in the aggregation plan. ROME reduces total aggregation time even compared
with manually fine-tuned systems. The second scenario discusses resource scheduling of
distributed service function chains. We present STEAM, the first distributed runtime
scheduler for this problem, that operates at packet-level granularity without requiring
a priori information of traffic estimates and a global view of the systems. Compared
with non-runtime solutions to this problem, STEAM achieves better service quality when
using the same resources and reduces the amount of resources required to serve the same
load.
For the data center infrastructure level, we present two mutually exclusive solutions.

Our first solution is IncSched, a system that retrofits existing data center resource
schedulers for INC. Based on the proposed classification of INC, IncSched presents
a new resource model, translates resource requests to be compliant with the plugged
retrofitted scheduler, and holds the logic for managing INC resources. IncSched makes
existing resource schedulers compatible with INC for the first time, contributing to a broad
acceptance of INC. For a holistic integration of INC in data center resource scheduling,
we propose HIRE, a full-fledged resource scheduling solution for INC. HIRE extends the
resource model of IncSched for automatic augmentation of resource alternatives and
incorporates non-linearity property of INC resource usage. HIRE is the first scheduler
that combines all server and INC resources in the same scheduling problem to attribute
interdependencies on data center level. These novelties make HIRE more successful in
satisfying resource requests with INC, finding better placements concerning locality, and
reducing tail latencies. We evaluate all solutions using extensive simulations, and for
some also using system prototypes and integrated benchmarks.

In summary, this dissertation proposes four novel solutions for holistic runtime resource
scheduling. The contributions foster the importance of runtime resource scheduling for
more efficient resource usage. Our contributions to holistic resource scheduling make
shared INC available on a data center level for the first time.

vi

Zusammenfassung

Internetdienste sind zu einem unverzichtbaren Bestandteil unseres Lebens geworden.
Milliarden von Benutzern nutzen täglich Internetdienste, zum Beispiel zur Echtzeit-Kom-
munikation mit Video und kollaborativen Arbeit an Dokumenten. Darüber hinaus gibt
es auch viele allgegenwärtige—teils versteckte—Internetdienste wie Kassensysteme für
Restaurants und Sensoren in Industrieanlagen. Von Internetdiensten wird erwartet, dass
diese stets in gewünschter Qualität verfügbar sind, auch bei hohem Nutzeraufkommen,
und zu niedrigen Kosten genutzt werden können. Eine direkte Herangehensweise, um hohe
Erreichbarkeit sicherzustellen, besteht in der Bereitstellung dedizierter Infrastruktur für
jeden Dienst. Dieser Lösungsansatz führt wiederum sehr wahrscheinlich zu Überkapazität
und ist mit dem Ziel niedriger Kosten praktisch schwer vereinbar. Eine alternative Lö-
sung besteht darin, die zugrunde liegende Infrastruktur mittels Ressourcenplanung unter
vielen verschiedenen Diensten zu teilen. Durch die gemeinsame Nutzung der Ressour-
cen wird es möglich, Dienste hochgradig skalierbar anzubieten, bei gleichzeitig niedrigen
Betriebskosten für jeden einzelnen Dienst.
Eine breite Palette an Systemen zur Ressourcenplanung ist bereits in der verteilten

Rechenlandschaft im Einsatz, sowohl auf Anwendungsebene als auch auf Infrastrukture-
bene. Die Systeme zur Ressourcenplanung haben das Ziel eine hohe Ressourcenauslastung
bei gleichzeitig guter Servicequalität zu erreichen. Um diese Eigenschaften erreichen zu
können und zur Gewährleistung einer breiten Einsetzbarkeit, basieren solche Systeme
zu großen Teilen auf generischen Ressourcenabstraktionen, wie virtuelle Maschinen oder
Container. Generische Ressourcenabstraktionen greifen auf Annahmen zurück, wie zum
Beispiel Ressourcenhomogenität oder lineare Ressourcennutzung, die die Planung verein-
fachen, jedoch für die jüngsten Entwicklungen verteilter Systeme in der nach-Mooreschen
Ära überarbeitet werden müssen. Insbesondere der jüngste Trend zu programmierba-
ren Netzwerkgeräten, die eine neue Ära des “in-network computing” (INC) einläuten,
passt nicht mehr zur generischen Abstraktion von Containern, die auf Servern ausgeführt
werden. Darüber hinaus fehlt für viele solcher Ressourcenplaner die Möglichkeit zur dyna-
mischen Planung zur Laufzeit, da die zugrunde liegenden Algorithmen zu hohe Laufzeiten
aufweisen oder nicht für einen dynamischen Ansatz konzipiert wurden. Ohne dynamische
Planung muss für viele Szenarien die Ressourcenplanung vorab ausgeführt werden und
kann bestenfalls in regelmäßigen Zeitabständen Korrekturen vornehmen, was letztendlich
zu ineffizienter Nutzung der Ressourcen führt.

Die ständig steigende Nachfrage nach Internetdiensten im Allgemeinen, und die zuneh-
mende Hardware-Heterogenität kombiniert mit der Unbeständigkeit der Anwendungslast
im Speziellen, erfordern dynamische Lösungen zur ganzheitlichen Ressourcenplanung, so-
wohl auf Anwendungsebene als auch auf Infrastrukturebene.

vii

In dieser Dissertation werden vier neue Lösungen vorgestellt, um eine ganzheitliche
dynamische Ressourcenplanung für die verteilte Rechenlandschaft zu realisieren. Zwei
davon auf Anwendungsebene sowie zwei auf Infrastrukturebene. Zunächst wird das For-
schungsfeld der Ressourcenplanung für die verteilte Rechenlandschaft eingegrenzt, indem
die beteiligten Systeme, Ressourcen, Bedarfe und Abstraktionen analysiert und klassi-
fiziert werden. Aufbauend darauf wird eine Klassifizierung für INC vorgestellt um den
Entwurfsraum für die Ressourcenplanung zu erschließen. Die Lösungen auf Anwendungs-
ebene zeigen für zwei Szenarien, wie dynamische Ressourcenplanung zu einer effizienteren
Nutzung der Ressourcen beitragen kann. Als erstes Szenario betrachten wir Big Data Ag-
gregationssysteme und stellen das System ROME vor. ROME analysiert automatisch den
Datenstrom und berechnet zur aktuellen Umgebung die optimale Zusammenschaltung
der verfügbaren Ressourcen, mit dem Ziel, die Aggregation frühestmöglich abzuschließen.
ROME zeigt selbst gegen manuell eingestellte Systeme ein besseres Laufzeitverhalten. Das
zweite Szenario diskutiert die Ressourcenplanung von verteilten Funktionsketten. Wir
präsentieren STEAM, der erste verteilte Ressourcenplaner für dieses Problem, der die
Planung auf Paketebene während der Laufzeit durchführen kann, ohne globales Wissen
und Vorabinformationen zur aufkommen Last zu benötigen. Im Gegensatz zu bisherigen
Arbeiten erzielt STEAM bessere Servicequalität bei gleichen Ressourcen, bzw. reduziert
die benötigten Ressourcen bei gleicher Nutzerlast.
Auf Infrastrukturebene werden zwei alternative Lösungen präsentiert. Zunächst wird

IncSched vorgestellt, ein System welches bestehende Rechenzentren-Ressourcenplaner
für INC nachrüstet. Aufbauend auf der vorgestellten INC Klassifikation, führt IncSched
ein neues Ressourcenmodell ein, übersetzt dieses für bestehende Ressourcenplaner und
kapselt die Logik zur Verwaltung von INC. Dadurch werden existierende Ressourcen-
planer erstmals kompatibel zu INC, was auf breiter Basis die Zugänglichkeit zu INC
in Rechenzentren positiv beeinflussen wird. Um INC noch besser in die Ressourcen-
planung integrieren zu können, wird als letztes HIRE vorgestellt, ein eigenständiger
Rechenzentren-Ressourcenplaner. HIRE erweitert das Ressourcenmodell von IncSched
um automatisch alternative Ressourcen spezifizieren zu können, bildet die Nichtlinearität
von INC-Ressourcen ab und berücksichtigt die wechselseitigen Abhängigkeiten zwischen
Servern und INC. Durch diese Neuerungen bedient HIRE im Vergleich zu IncSched-
Lösungen mehr Anwendungen mit INC, reduziert die maximale Wartezeit, und trifft
darüber hinaus noch qualitativ bessere Entscheidungen zur Auswahl der Ressourcen um
Lokalität zu berücksichtigen. Alle vier Lösungen werden in umfangreichen Simulationen,
zum Teil auch mittels Prototypen sowie integrierter Benchmarks, evaluiert.

Zusammenfassend präsentiert diese Dissertation vier neue Lösungen die zur ganzheitli-
chen dynamischen Ressourcenplanung der verteilten Rechenlandschaft beitragen. Damit
zeigen wir die Relevanz dynamischer Ressourcenplanung und wie mittels ganzheitlicher
Ressourcenplanung gemeinsam genutztes INC auf Rechenzentrumsebene zugänglich wird.

viii

Acknowledgments

Completing this thesis would not have been possible without the continued support of
my supervisors, colleagues, family, and friends. Looking back, I am amazed at how much
I have learned thanks to the people who accompanied me. Here I want to express my
gratitude to them.
I wish to express my gratitude to my supervisor, Patrick Eugster, for his continued

support, optimism, and guidance, which were essential to this dissertation and the whole
process of becoming a researcher. Thanks for creating a work environment that gave
my colleagues and me the freedom to pursue long-standing research ideas and openly
speak our minds. I do not take this for granted. This has contributed to how I scrutinize
problems and conduct research. I wish to express my gratitude to my co-advisor Lin
Wang for his support and guidance to strengthen my methodological foundation and his
insightful comments and feedback and Max Mühlhäuser for his comments and willingness
to act as my co-referee. Thanks to Ramin Kahlili for his collaborative support and for
the many fruitful and welcome discussions we had during this journey. Max Mühlhäuser,
Carsten Binnig, Amr Rizk, and Stefan Schmidt, whom I had the honor of collaborating
with throughout my PhD journey. I would also like to thank Carsten Binnig, Iryna
Gurevych, and Felix Wolf to act as my committee members.
A big thanks to Max Lehn, Christof Leng, and Michael Stein, who inspired me to do

research, Alejandro Buchmann, who recommended joining Patrick Eugster’s group, and
Patrick Jahnke, who, finally, recruited me. Michael Stein, Andreas Rücklé, Malte Viering,
and Ramin Kahlili for proof-reading and providing valuable feedback.

I would like to thank my collaborators and fellow PhD students Malte Viering, Michael
Stein, Andreas Rücklé, Alexander Frömmgen, Patrick Jahnke, Seema Kumar, Matthias
Eichholz, Pascal Weisenburger, Benjamin Hilprecht, Torsten Zimmerman, Bastian Alt,
Tobias Ziegler, Sabrina Klos, Roland Speith, and the whole MAKI group for their support
and many interesting discussions, work related and non-work related.
Last but not least, a big thanks goes to my parents, my sisters, and Heike Gute,

supporting me through the years and being with me during highs and lows.

ix

Contents

1 Introduction 1
1.1 The Demand on Resource Scheduling . 5

1.1.1 Highly Heterogeneous Compute Resources 6
1.1.2 Unpredictable Workloads and Fluctuations 6
1.1.3 Applications with Resource Alternatives 7

1.2 Problem Statement . 8
1.3 Thesis Statement . 10
1.4 Contributions of This Dissertation . 11
1.5 Overview of This Dissertation . 13
1.6 Related Publications . 14

I Background and Analysis 17

2 Distributed Computing Landscape 19
2.1 Servers and Accelerators . 20
2.2 Network Fabric . 21
2.3 Resource Abstractions . 23
2.4 Resource Scheduling . 24
2.5 Summary . 26

3 In-Network Computing 27
3.1 Deployment Targets . 28
3.2 Classification of INC . 29
3.3 Overview of INC Services . 31
3.4 Summary . 33

II Application-Level Resource Scheduling 35

4 ROME: A Middleware System for Optimized Aggregation Overlays 37
4.1 Overview . 38

4.1.1 Design Challenges . 39
4.1.2 Related Work . 40
4.1.3 Contributions . 42

4.2 Model . 43
4.2.1 Problem Definition . 43
4.2.2 Function Requirements . 44
4.2.3 In Perspective . 45

4.3 Optimizing Compute-Aggregate . 47
4.3.1 Optimizing Overlays . 47

xi

4.3.2 Analysis Stage . 48
4.3.3 Overlay Stage . 48
4.3.4 Mapping Stage . 50

4.4 ROME System . 53
4.4.1 System Architecture . 53
4.4.2 API . 55
4.4.3 Fault Tolerance . 56
4.4.4 Integrating ROME . 57

4.5 Overlay Evaluation . 58
4.5.1 Varying Fan-in . 58
4.5.2 Append-only Updates . 59
4.5.3 Input Size and Distribution . 60

4.6 Integrated Evaluation . 60
4.6.1 Longest Common Substring . 61
4.6.2 Top-k Sort . 62
4.6.3 Gradient Descent . 64
4.6.4 Parent-child Colocation and Root Node Bypass 65
4.6.5 Fault Tolerance Overhead . 65

4.7 Conclusions . 66

5 STEAM: Distributed Runtime Scheduling of Service Function Chains 69
5.1 Overview . 70

5.1.1 Design Challenges . 71
5.1.2 Related Work . 73
5.1.3 Contributions . 74

5.2 Model and Problem . 75
5.2.1 System Model . 75
5.2.2 Problem Description . 77

5.3 Optimal Scheduling Policy . 77
5.3.1 Background on SPNs . 78
5.3.2 Reducing SFC Scheduling to SPN Scheduling 78
5.3.3 Integer Allocation Maximum Pressure Policy (IA-MPP) 79

5.4 Distributed Scheduling Policy . 83
5.4.1 STEAM Overview . 83
5.4.2 STEAM Deployment . 85

5.5 Evaluation . 85
5.5.1 Algorithms Compared Against . 85
5.5.2 Setup . 86
5.5.3 Single-site Experiments . 87
5.5.4 Multi-site Experiments . 88
5.5.5 Prototype . 91

5.6 Conclusions . 92

xii

III Infrastructure-Level Resource Scheduling 95

6 IncSched: Towards Cluster Resource Scheduling with INC Support 97
6.1 Overview . 98

6.1.1 Design Challenges . 98
6.1.2 Related Work . 100
6.1.3 Contributions . 102

6.2 INC Challenges and Key Insights . 103
6.2.1 High Heterogeneity . 103
6.2.2 Complex Scheduling Dependencies 104
6.2.3 Many Demand Alternatives . 104

6.3 IncSched Architecture . 105
6.3.1 Overview . 105
6.3.2 Resource Model . 106
6.3.3 Alternative Selection . 107

6.4 Case Studies . 108
6.4.1 Methodology . 108
6.4.2 Queue-based Scheduling Using Best Effort 110
6.4.3 Delay Scheduling Using DRF . 111
6.4.4 Power of Two Choices . 113

6.5 Conclusions . 114

7 HIRE: A Cluster Resource Manager for INC and Server Resources 117
7.1 Overview . 118

7.1.1 Design Challenges . 119
7.1.2 Related Work . 120
7.1.3 Contributions . 120

7.2 Challenges and System Design . 120
7.2.1 Challenges to Data Center Scheduling with INC 121
7.2.2 System Design . 123

7.3 HIRE Resource Model . 124
7.3.1 Composite Templates . 124
7.3.2 Composite Resource Requests . 125
7.3.3 Polymorphic Resource Requests . 127
7.3.4 Model Transformation . 128
7.3.5 Limitations . 129

7.4 HIRE Scheduler . 129
7.4.1 Problem Modeling . 129
7.4.2 Flow-based Scheduling Approach 131
7.4.3 HIRE Flow Network Structure . 132

7.5 HIRE Cost Model . 133
7.6 Evaluation . 138

7.6.1 Retrofitting Existing Schedulers . 139
7.6.2 Methodology . 140

xiii

7.6.3 Satisfying INC Requests (RQ1) . 142
7.6.4 Cluster Resource Efficiency (RQ2) 143
7.6.5 Scheduling Under High INC Heterogeneity (RQ3) 144
7.6.6 Preventing Resource Contention (RQ4) 145
7.6.7 Yarn++ Parameter Stability . 145
7.6.8 MCMF Solver Speed . 146

7.7 Conclusions . 147

IV Epilogue 151

8 Conclusion 153
8.1 Summary . 153
8.2 Future Work . 155

8.2.1 Pushing INC to More Application Scenarios 155
8.2.2 Stateful Service Function Chaining 157
8.2.3 INC Data Center Benchmarks . 157
8.2.4 INC Switch Runtime . 157
8.2.5 Integrating Dynamic INC Availability 158
8.2.6 Coupling INC Demand with Plan-Ahead 158

8.3 Outlook . 159

Bibliography 163

List of Abbreviations 187

List of Figures 191

List of Tables 195

Appendices 197

A Curriculum Vitæ 197

B Erklärung laut Promotionsordnung 199

1
Introduction

Chapter Outline
1.1 The Demand on Resource Scheduling 5

1.2 Problem Statement . 8

1.3 Thesis Statement . 10

1.4 Contributions of This Dissertation . 11

1.5 Overview of This Dissertation . 13

1.6 Related Publications . 14

Internet services have become an indispensable part of our lives, with billions of users
using Internet services on a daily basis. This covers services of different complexities like
distributed back-ends running in cloud data centers and service function chains (SFCs)
spanning multiple (edge) data centers. Example use cases include services for real-time
communication, collaborative editing of documents, and many hidden but omnipresent
use cases like cashier systems and sensors of industry facilities. This vast number of
pervasive Internet services would not have been possible without the availability of com-

1

Chapter 1. Introduction

pute infrastructure on a global scale, constituting the distributed computing landscape.
Users expect to use Internet services at any time at low cost, with the desired service
quality, despite potential load spikes a service might face. A straightforward strategy to
provision services with high availability is to allocate dedicated resources for each service.
In turn, this strategy is likely to lead to over-provisioning and hence high operating
expenses (OPEX), which contradicts offering services at a low price [TJP16; Arm+10].
A standard solution to this problem is to leverage resource scheduling—also called server
consolidation—to share the underlying resources among many different workloads and
services to achieve gains on OPEX [BCH13; JS14; TJP16].

Challenges. Resource scheduling takes a central role in the distributed computing land-
scape. On the application level, applications run their resource scheduling to plan the
processing for available resource shares and actual workloads. Whereas on the infras-
tructure level, resource managers perform resource scheduling to give resource shares to
applications. A wide range of resource scheduling systems for the distributed computing
landscape has been proposed in the past, covering the application and infrastructure
levels. A typical goal of these systems is to achieve at the same time high resource utiliza-
tion and good service quality. Resource scheduling typically leverages generic resource
abstractions, like virtual machines (VMs) and containers, to fulfill these properties and
be compliant with a broad set of services. With the end of Dennard scaling and Moore’s
law, specialization is the way to further improve performance with domain specific ar-
chitectures (DSAs) [HP19]. As a consequence, system heterogeneity becomes a norm
and many assumptions in the distributed computing landscape have to change. Existing
schedulers with generic resource abstractions fall short to accommodate these changes,
e.g ., hardware heterogeneity and resource sharing of DSAs.

Data center resources are becoming increasingly heterogeneous in recent years, with
servers offering accelerators like tensor processing units (TPUs) and graphics processing
units (GPUs). As an example use case, consider an application that trains a machine
learning (ML) model. Such an application benefits from servers with accelerators to
finish the training faster than servers without specialized hardware. Not only servers have
become heterogeneous, but network switches have become increasingly programmable
over the past decades, capable of taking over an application’s processing (and storage), the
beginning of in-network computing (INC). Adding INC to the ML example improves the
training latency by enabling INC aggregation when individual servers send their parameter
updates after each iterative computation [Sap+17]. INC provides new opportunities
for performance optimization of distributed applications if the (typically scarce) INC
resources are used judiciously [Tok+19; Ben19; McC+19a; Kog+19; Jin+18]. While
recent resource scheduling solutions consider server accelerators, INC is beyond the scope
of existing resource scheduling solutions. In particular, the recent trend of INC overtaxes
the widely used generic abstractions of compute containers running on servers.

2

Furthermore, many application-level resource scheduling systems lack support for run-
time scheduling, often due to slow or unsuitable algorithms. Without runtime scheduling,
many scenarios require resource scheduling to run in advance. However, properties re-
quired for scheduling, such as detailed information of the workload, are often available the
earliest at runtime. Missing or inaccurate information required for scheduling is likely to
result in inefficient resource usage [Rza+20; Jyo+16; Kul+17]. At best, without runtime
scheduling, scheduling repeats periodically to update scheduling decisions.
The ever-growing demand for Internet services in general and increasingly

heterogeneous resources like in INC combined with the highly varying de-
mand in particular, require runtime solutions for holistic resource scheduling,
covering the application and infrastructure levels.

This Dissertation. In this dissertation, we present four novel solutions to holistic
runtime scheduling for the distributed computing landscape. Two solutions cover the
application level and two the infrastructure level. Our contributions work towards the
goal of a holistically organized distributed computing landscape. However, the proposed
solutions stand for themselves as individual systems that contribute to this overarching
goal. In more detail, in Section 1.2 we outline the problem statement, in Section 1.3 we
present our hypothesis, and in Section 1.4 we summarize our contributions. At a high
level, these solutions contribute to the following three building blocks:

1. Fitting the application to the resources, for application-specific resource usage that
leads to more efficient and more flexible matching of a distributed application’s
execution plan to the available resources.

2. Rethinking the scheduling problem as a runtime problem to make scheduling inde-
pendent of a priori information, i.e., considering actual demands and available
resources, and potentially allow for more fine-grained scheduling decisions.

3. Proposing a holistic resource model and scheduling logic that cover INC and server
resources jointly and that let users express their applications’ resource demands
with more variety, while abstracting the complexity.

Our solutions at the application level focus on the first two building blocks mentioned
above, whereas the solutions at the infrastructure level cover all building blocks. In
Chapter 2 we provide background information and start with an analysis of the field of
resource scheduling for the distributed computing landscape, and summarize involved
systems, resources, and abstractions. Based on this, in Chapter 3 we present our INC
classification which helps to understand the design space of INC resource scheduling,
which we discuss in Chapter 6 and Chapter 7.

Solutions at the Application Level. First, we discuss the solutions at the application
level in Chapter 4 and Chapter 5. Our first proposed solution covers the scenario of big

3

Chapter 1. Introduction

data aggregation systems. In Chapter 4 we present our runtime systems for optimizing
aggregation overlays for data analytics frameworks, realized in the Robust Aggrega-
tion Overlays Minimizing Execution Time (ROME) system. The dissertation by
William Culhane [Cul15] (see Section 1.4) discusses the theoretical foundation of opti-
mized aggregation overlays and the predecessor system of ROME (see Section 1.4). For
the reader’s convenience, we first give an overview of the existing model for a class of
problems termed compute-aggregate in Chapter 4, and then introduce a framework for
adapting aggregation overlays to near-optimal ones. Then, we introduce ROME, discuss
its architecture and systems optimizations, and explain how ROME integrates into two
well-known frameworks, Spark [Apa14] and Flink [Apa11]. Finally, we discuss the evalua-
tion of ROME using microbenchmarks and integrated benchmarks with Spark and Flink.
ROME reduces total aggregation time for various workloads, including single aggrega-
tion runs and iterative workloads. While supporting manual configurations, ROME is a
fully automatic system for optimizing the aggregation overlay at runtime. In summary,
our proposed system ROME demonstrates the importance of adapting an application’s
execution plan to the available resources at runtime.
Our second solution at the application level focuses on the scenario of SFCs. In

Chapter 5 we introduce two systems, namely IA-MPP and STEAM. The chapter starts
by formally introducing the SFC runtime traffic scheduling problem, i.e., assigning SFC
traffic to available servers at runtime. We then propose a throughput-optimal solution
called integer allocation maximum pressure policy (IA-MPP), which solves the
scheduling problem using global knowledge of the network. Then we introduce multi-
site cooperative IA-MPP (STEAM), a distributed heuristic based on IA-MPP. We
elaborate on the techniques that make STEAM a distributed runtime solution feasible to
run in real-world deployments. The evaluation of IA-MPP and STEAM uses simulations
and a server benchmark. We compare IA-MPP and STEAM with adapted state-of-
the-art solutions for the SFC runtime traffic scheduling problem. Due to STEAM’s
runtime nature, we show that using STEAM helps to utilize the resources more efficiently.
As a result, STEAM reduces the required resources to serve the SFC traffic compared
with state-of-the-art schedulers, including SGH [Kuo+16] and SPH [ZLZ19]. IA-MPP
and STEAM demonstrate the benefit of rethinking an application’s resource scheduling
problem as a runtime scheduling problem.

Solutions at the Infrastructure Level. Next, we discuss our solutions at the infras-
tructure level in Chapter 6 and Chapter 7. Chapter 6 starts with a discussion of the
challenges of INC resource scheduling and presents key insights. Then, we present Inc-
Sched, a resource management framework for INC-aware Scheduling (IncSched).
We discuss its architecture, including the resource model for INC resources and the mech-
anism of selection strategies for selecting resource alternatives. To demonstrate universal
compatibility with existing schedulers, we conduct case studies with three schedulers
combined with IncSched. These case studies cover centralized and fully distributed

4

1.1. The Demand on Resource Scheduling

scheduler architectures and three commonly used scheduler designs, namely queue-based,
dominant resource fairness delay scheduling, and power of two choices. IncSched makes
existing resource schedulers compatible with INC for the first time, contributing to the
overall goal of holistic resource scheduling.

The last main chapter, Chapter 7, introduces Holistic INC-aware Resource man-
agEr (HIRE), which extends the solution of IncSched as follows. First, we elaborate
on the challenges of INC resource scheduling with a more in-depth analysis of what Inc-
Sched considers. This includes non-linear resource usage and locality interdependencies
of servers and switches. Then, we present the extended resource model and HIRE’s
design, including the design of a flow network to model the scheduling problem of joint
INC and server resource scheduling. We evaluate HIRE using trace-driven simulations
with a 4000 machines data center and compare it with retrofitted variants of four existing
schedulers using IncSched. HIRE supersedes IncSched solutions concerning scheduling
performance of satisfied INC resource requests, locality of placement decisions, and tail
latencies.

In summary, this dissertation presents (1) a novel classification of INC, (2) describes
two application-level runtime scheduling solutions, namely ROME and STEAM, (3) and
two holistic runtime scheduling solutions at the infrastructure level, namely IncSched
and HIRE, which make shared data center INC accessible. These solutions contribute to
a holistically organized distributed computing landscape but also stand for themselves.

In the rest of this chapter, we discuss the problem statement (1.2), thesis statement
(1.3), and contributions in detail (1.4). Before this, in the following section we elaborate
on the demand on resource scheduling in the distributed computing landscape and present
general related work, primarily addressing the unfamiliar reader.

1.1 The Demand on Resource Scheduling

This section presents general related work in resource scheduling for the distributed
computing landscape. It discusses why resource scheduling is becoming increasingly
dynamic and complex. Related work specific to each of the contributions is reviewed in
Section 4.1.2, Section 5.1.2, Section 6.1.2, and Section 7.1.2, respectively.

Resource scheduling in the scope of the distributed computing landscape has been a very
active research topic in the recent decade, from both the application- and infrastructure-
level perspectives. We identify three main properties that come with the distributed
computing landscape’s dynamic nature, making efficient resource scheduling challenging.

5

Chapter 1. Introduction

1.1.1 Highly Heterogeneous Compute Resources

Data center resources are becoming increasingly heterogeneous in recent years. The
broad adoption of ML components in data center applications increased the demand for
accelerators attached to servers, including TPUs and GPUs, to boost ML models’ training
and inference times. Recent domain-specific scheduling solutions show the demand for
scheduling heterogeneous server resources, particularly for shared accelerator clusters for
ML workloads [Gu+19; Mah+20; Pen+18; Xia+18; Nar+20].

Not only servers have become heterogeneous, but network components like switches and
network interface cards have also become increasingly programmable over the past decades.
More recently, programmable switches can take over application-specific processing [PN19]
“in the network” on the path between communicating parties. This trend has ushered
in a new era of in-network computing (INC). Many application scenarios, including
distributed systems concerns like agreement [Jin+18; Dan+15] and caching [Liu+17;
Jin+17], and even high-level application functionality like machine learning [Sap+19;
XZ19] benefit from offloading application-specific processing to switches. Existing work
on INC focuses mostly on isolated scenarios, where a single INC service uses all switches.
So far, multiplexing of INC services is limited to a single network device [ZBH18; HM16;
Zha+19; Wan+20]. However, supporting INC in a data center context requires resource
scheduling support of sharing switches between users and INC services.

INC overtaxes the “compute on servers” approach simply because INC resources are not
directly attached to servers like other accelerators including GPUs and field-programmable
gate arrays (FPGAs). INC adds compute (and storage) capacity to switches sitting in the
network topology. State-of-the-art data center resource models consider all application
components to run on servers, not partially/jointly on switches. A resource scheduler is
likely to perform suboptimal decisions if the resource model cannot express applications
in a holistic view, i.e., including components running on both servers and switches.

1.1.2 Unpredictable Workloads and Fluctuations

The flexible nature of data center applications introduces challenges to run applications
with an efficient resource configuration. Many properties are hidden for the applica-
tion [Bur+16] or available the earliest at runtime: like exact information on how many
worker nodes are available [Rza+20], their interconnection properties [Bal+11], availabil-
ity of accelerators (and their features) [Fir+18], data locality [Zah+10], and properties
of the workload [Pen+18]. Unpredictable workloads and fluctuations pose challenges, as
we shall detail in the following.

If not exploited for resource planning by the data center scheduler and by the application
itself, each of these runtime properties is a potential source for resource inefficiency. In
case such information is missing, a resource scheduler might struggle to find the best
match of candidate nodes and pending jobs. The application might miss opportunities
for adapting its execution plan to the given resources. For example, when the actual

6

1.1. The Demand on Resource Scheduling

workload differs from the expected workload, an application might be under-provisioned
or over-provisioned.

To further clarify the impact of unpredictable workloads on application-level scheduling
decisions, we discuss big data aggregation systems. Aggregation is common in data
analytics and crucial to distilling information from large datasets. However, current data
analytics frameworks do not fully exploit the potential for optimization in such phases.
Many aggregation functions are associative [YGI09], so a natural choice is to aggregate
results along an overlay (network) such as a tree connecting leaf nodes to a root. It
becomes clear that there are simple customizations to such aggregation trees created
for a broad range of aggregation functions. When deploying a data aggregation system,
not all workload dynamics may be known. For example, a parameterized aggregation
function or unknown data characteristics may lead to inefficient resource configurations.

Next, we discuss the example of service function chain (SFC) deployments. Most
existing works for SFC focus on the placement problem, i.e., which server should run
which function and how many resources each function gets [Coh+15; Add+15; Mar+15;
Mij+15; Wan+16; Kuo+16]. These solutions perform chaining of functions in a mostly
static manner, with pre-runtime configured load-balancing performed among them. Few
non-static solutions exist [QAS16; Era+17; Sat+18; ZLZ19; Anw+15; Pal+15], which
periodically adapt deployment of these functions and their resource assignments to
changes in the network traffic and topology. However, these solutions are still coarse-
grained [Era+17], where the adaptation takes seconds to take effect [Pal+15] or the
scheduling logic is too slow due to its high complexity [ZLZ19] and the involvement of
disruptive service function instances migration [Era+17]. Missing workload information
at the time of deployment (submitting a resource request) and unpredictable workload
dynamics caused by fluctuations make good resource planning challenging.

1.1.3 Applications with Resource Alternatives

There is an ever-growing heterogeneity in data center resources, as discussed in Sec-
tion 1.1.1. Servers provide accelerators like GPUs, FPGAs, and TPUs and INC switches
take over application-specific processing. One side effect of resources of different per-
formance, capabilities, and availability is resource alternatives. Hence, applications end
up having multiple resource requests and application-level execution plans to perform
processing (of the same work).
INC resources are relatively scarce compared to server resources. For example, on-

chip stateful memory is tens of MB on a typical Tofino switch [Wan+20]. Similarly,
server accelerators tend to be scarce or at least not available to all servers in a data
center [Fir+18; Xia+18; Mah+20]. Given this scarcity, requests for INC or accelerator
resources may be unsatisfiable within a non-trivial timeframe.
Fortunately, accelerator-enabled applications can also run without “accelerator re-

sources.” For example, a partition/aggregate job can run without INC, though probably
taking longer or requiring more (not-accelerated) servers to execute in the same time-

7

Chapter 1. Introduction

frame. Similarly, an application performing training on a deep neural network (DNN)
runs faster if it uses an accelerator like a GPU but could also run on server CPUs only.
Nevertheless, some applications might require accelerators, e.g ., because of strict require-
ments on processing latency. Considering the heterogeneity factors mentioned earlier (see
Section 1.1.1), an accelerator-enabled job can be specified by a set of substantially differ-
ent, interchangeable resource demands. Typically with varying performance properties
and multiplexing dependencies. Such flexibility (having alternative job demands) adds
an extra dimension to the scheduling problem: which resource demands to accept for an
accelerator-enabled job.
Domain-specific solutions, that can handle jobs with alternative resource demands,

exist for example for GPU clusters and other accelerators [Gu+19; Mah+20; Pen+18;
Xia+18; Cha+20; Nar+20; Zha+17b; Jeo+19; Pen+19; Le+20]. However, these solutions
often depend on jobs implemented using specific frameworks and require performance
estimates for each job’s resource alternative. Furthermore, none of the existing solutions
offers data center scheduling support for INC resources.

1.2 Problem Statement

Resource scheduling for the distributed computing landscape is becoming increasingly
dynamic and complex. This is likely to disconnect resource scheduling decisions, the
workload, and the underlying resources. In the following we discuss two major problems
in more detail.

1. Application-level planning and scheduling ignores runtime properties
Existing applications and schedulers do not leverage available runtime properties to
the full extent, leading to reduced resource efficiency and reduced delivered service
quality. We identify the following main reasons that cause these effects:

(a) A priori workload information differs from the actual workload
Typically, an application utilizes ahead-of-runtime workload estimates for per-
forming application-level planning and scheduling of resources. However, a
priori workload information is often coarse-grained and may miss important
details, leading to a mismatch between expected and actual workloads. Hence,
an application may plan insufficient resources for a specific task or may in-
tentionally over-provision tasks for budgeting a resource backup. As a result,
resource schedulers allocate available resources inefficiently for serving the
actual demand. Especially for applications with latency-sensitive quality of
service (QoS) requirements, e.g ., in 5G scenarios, the delivered service quality
depends on the quality of application-level scheduling decisions [Sat+18].

(b) Scheduling algorithms designed for coarse-grained or offline decisions
Application-level scheduling often shows characteristics that do not match
the requirements of a runtime scheduler [ZLZ19]. Reasons for this are the

8

1.2. Problem Statement

computational complexity or algorithmic dependencies on information that
is not available (e.g ., all buffer states in a large distributed setup). Another
problem is the level of granularity these scheduling algorithms offer, often
being coarse-grained due to their offline design. As a result, applications run
at configurations that do not match perfectly to the actual demand.

(c) Planning for the generic case to cope with unpredictable workloads
Like the example discussed with data aggregation (see Section 1.1.3), many
applications do application-level planning for the generic case without consid-
ering the actual workload characteristics. Applications perform planning, e.g .,
of the aggregation overlay, ahead of runtime, considering a generic setup and
workload—like a one-size-fits-all approach—to deal with the unpredictable
workload at the time of scheduling. Naturally, the more cases application-level
decisions consider, the better an application performs for a specific situation.
In this example, slower aggregation latency will degrade resource efficiency
and lead to lower service quality delivered.

2. Applications cannot leverage INC resources in a shared data center
Existing data center INC services are not ready for being used in a shared data
center. Data center resource schedulers cannot account for shared INC resources,
leading to unused or statically assigned INC resources. We identify the following
main reasons that cause these effects:

(a) Data center INC is not democratized
Existing data center INC services focus on isolated scenarios, where switches
benefit a single application. So far, multiplexing of different INC services is
limited to a single network device [HM16; Wan+20]. Runtime sharing of INC
is required to treat INC as a first-class member of data centers. INC runtime
sharing would enable applications to access INC switches dynamically and
even maybe share an INC instance.

(b) Resource managers do not account for compute capacity on switches
Existing data center resource schedulers use resource models that consider
computing capacity on servers. Typically, they support additional feature
flags for servers with accelerators (e.g ., GPU, FPGA) and failure domains.
So far, the network is beyond the scope of most existing resource managers,
except for virtual network embedding algorithms specifically used for network
bandwidth reservations [Bal+11; Guo+10; Pop+12; Xie+12]. In particular,
popular cluster resource managers [Vav+13; Bur+16; Cur+19] are completely
agnostic to the status of the network managed by a separate entity, the net-
work controller, thus being unlikely to support INC resources directly. Simply
treating INC switches like servers leaves many questions unresolved, like how
to (i) manage tear-up/-down phases of INC services (which often requires the

9

Chapter 1. Introduction

network controller to be involved), (ii) resolve multi-tenancy on switches which
differs from multi-tenancy on servers, (iii) manage an INC service shared by
several applications, (iv) incorporate network locality of server-switch commu-
nication when INC is used, and many other problems, as we will show.
This raises the question of how to manage INC resources (i.e., INC switches)
next to servers to make INC available via common front ends of data center
resource managers.

1.3 Thesis Statement

In this dissertation, we introduce solutions for holistic runtime scheduling for the dis-
tributed computing landscape to improve distributed systems’ performance and resource
efficiency.

The hypothesis is that by modeling application-level resource planning prob-
lems as runtime scheduling problems, applications require fewer resources to
serve the same workload and achieve higher service quality using the same re-
sources. Furthermore, with a holistic INC-server resource model and schedul-
ing logic, data center resource managers can better account for resource inter-
dependencies, thus serving more INC resource requests at the infrastructure
level.

To support the hypothesis, we discuss two scenarios at the application level, i.e., we
design the resource planning problem as a runtime scheduling problem and evaluate the
performance and resource efficiency. First, we propose ROME, an integrated middleware
system for big data aggregation to automatically reduce aggregation latency by applying
runtime scheduling. Second, we model a runtime solution for the service function chain
scheduling problem and discuss two system implementations. The system IA-MPP for
performing global optimization and the distributed system STEAM with scalability and
real-time constraints in mind.

On the infrastructure level, we validate our hypothesis as follows. We characterize the
INC resource challenges, introduce a holistic resource model and scheduling logic, and
evaluate these compared with retrofitted schedulers. We propose two systems. First, we
propose the framework IncSched, which hides INC complexity and is sufficiently flexible
to extend existing server-only data center schedulers. Second, we extend the IncSched
resource model and propose HIRE, a holistic scheduling approach which considers more
INC specific side-effects and constraints to serve more INC resource requests.

10

1.4. Contributions of This Dissertation

1.4 Contributions of This Dissertation

In this dissertation, we introduce mechanisms and solutions for holistic runtime scheduling
at the application and infrastructure levels to mitigate the above discussed problems.
More specifically, this dissertation describes five principal contributions:

1. Classification of in-network computing (INC). We characterize in-network
computing (INC) by elaborating on the three dimensions we identify an offloaded
processing function must fulfill to belong to the realm of INC. Namely, physical,
semantic, and logical characteristics. Our classification of INC helps to distin-
guish INC from classic network functions. We use the classification as a foundation
in this dissertation when discussing resource scheduling of INC.

2. Runtime planning of application’s aggregation plan. Based on previous
work by Culhane et al. [Cul+14; Cul15; Cul+15] which adapts aggregation overlays
of big data aggregation workloads for reduced processing latency, we make the
following contribution: The ROME system for big data aggregation workloads.
This middleware system acts either as a standalone aggregation system or as an
aggregation orchestrator for other aggregation systems (e.g ., Spark and Flink).
When using the default autodetection mode, ROME automatically chooses the
optimal aggregation plan at runtime to fully leverage all available compute resources
while taking the properties of the actual aggregation function into account.

3. Runtime scheduling of distributed SFCs. We propose to treat the SFC
scheduling problem as a runtime scheduling problem. The contributions of this
is a theoretically optimal solution IA-MPP and a distributed systems so-
lution STEAM for the runtime traffic scheduling problem of SFCs. IA-MPP
transforms the scheduling problem into a stochastic processing network (SPN) and
follows the maximum pressure policy (MPP) by Dai and Lin [DL05]. IA-MPP and
STEAM rethink the SFC scheduling problem as a runtime scheduling problem. Our
solutions are independent of a priori information like traffic estimates and more
efficient in utilizing all available processing capacities. Compared with state-of-the-
art solutions, our proposed systems reduce the required processing capacities to
serve the same workload, and at the same time, achieve better latencies.

4. Democratizing data center INC. We introduce a new resource model for data
center scheduling and a corresponding scheduling framework to democratize INC,
called IncSched. IncSched adds INC resource compatibility to existing data
center schedulers and provides a flexible API to implement strategies for dealing
with resource demands under various load situations. We describe how IncSched
integrates with three existing data center schedulers, each combined with different
strategies for coping with INC.

11

Chapter 1. Introduction

5. Holistic INC and server scheduling. We propose a holistic data center sched-
uler that jointly considers INC and server resources. The HIRE data center
scheduler handles the INC data center scheduling problem without depending on
IncSched. HIRE follows the path of flow-based schedulers [Isa+09; Gog+16] but
introduces a flow network that supports making scheduling decisions for (1) servers
and (2) INC, and (3) fine-granular flavor selection, all within the same flow network
and scheduling round. Furthermore, we propose a cost model that optimizes place-
ment latencies while trying to reach the highest possible success rates in serving
INC resource requests. This holistic INC scheduling enables HIRE to encode global
scheduling goals using the proposed cost model. We also demonstrate that these
extensions to flow-based schedulers have negligible effects on scheduling runtime
performance.

Declaration of Originality. All models, algorithms, and implementation details de-
scribed are the results of my work. I built the IA-MPP, STEAM, IncSched, and HIRE
implementations from scratch. However, colleagues and students have at times assisted
me in extending and evaluating specific prototype components. Furthermore, co-authors
of the involved publications contributed to the models and algorithms during intense
discussions while working on the publications.

In particular, ROME integrates and extends previous work, notably an initial de-
scription of the idea of leveraging aggregation function characteristics for optimizing
corresponding phases [Cul+14] and an exploration of theoretical foundations for such
optimized aggregation [Cul+15]. William Culhane discussed in his PhD thesis [Cul15]
the mathematical model and the system NOAH, the predecessor of ROME. This dis-
sertation presents ROME’s architecture, APIs, and the evaluation of ROME’s perfor-
mance while integrated into well-known frameworks Apache Spark [Apa14] and Apache
Flink [Apa11]. Pascal Kleber contributed a fault tolerance implementation of ROME
under my supervision during his Master’s thesis [Kle17]. Max Herbst contributed to the
Spark implementation of ROME under my supervision during his programming lab in
the DSP group.

The initial ideas for IA-MPP to build on the MPP [DL05] for SPNs came from Ramin
Khalili. Daniel Failing implemented and evaluated STEAM’s DPDK prototype under
my supervision during his Bachelor’s thesis [Fai19].

For IncSched, Marco Micera explored the weaknesses of existing data center schedulers
when adding INC resources and discussed early ideas of IncSched under my supervision
during his Master’s thesis [Mic20]. Furthermore, Marco Micera and Max Schmidt con-
tributed to the implementation of IncSched, HIRE (min-cost max-flow solver and cost
model), Yarn, and CoCo in the simulator under my supervision.

12

1.5. Overview of This Dissertation

Part II

Application Level

Part I

Background and Analysis

R E S O U R C E S

R E S O U R C E

M A N A G E R S

Abstractions

A P P L I C A T I O N S
Chapter 4

Big Data Aggregation
Scheduling

Chapter 5

Distributed Service Function

Chain Scheduling

Part III

Infrastructure Level

Chapter 6

Towards Data Center INC

Resource Scheduling

Chapter 7

Holistic Data Center INC

Resource Scheduling

Chapter 3

INC Classification

C
ha

pt
er

 2

B
ac

kg
ro

un
d

In
fo

rm
at

io
n

ROME
STEAM
IA-MPP

INCSCHED HIRE

Abstractions

C
ha

pt
er

 8

C
on

cl
us

io
n

Part IV

Epilogue

Figure 1.1: This dissertation’s organization: Part I provides an overview of
relevant background information and introduces our classification of INC. Next,
Part II and Part III present our holistic runtime scheduling solutions. Finally,
Part IV concludes this dissertation.

1.5 Overview of This Dissertation

This dissertation is structured as outlined in Figure 1.1:

Part I The first part lays the foundation of all other parts with an overview of resource
scheduling in the distributed computing landscape. Furthermore, we introduce a
classification of INC that contributes to the general discussion of offloaded applica-
tion logic.

Part II The second part discusses two application scenarios and highlights the impor-
tance of runtime resource scheduling for efficient usage of the distributed computing
landscape. Chapter 4 discusses the application scenario of data aggregation of big
data applications and introduces ROME. Then, Chapter 5 presents two runtime
scheduling solutions for the traffic scheduling problem of distributed service function
chains. One variant which uses a global centralized policy (IA-MPP) and a fully
distributed variant (STEAM). This part presents standalone resource scheduling
solutions on the application level. Both scenarios could run with an existing or one
of our proposed (in Part III) data center resource scheduling solutions.

Part III The third part focuses on the infrastructure level and presents two data center
resource scheduling solutions for managing server and INC resources. Chapter 6
presents the resource management framework IncSched with a new resource model

13

Chapter 1. Introduction

and an INC scheduling logic, which can be used jointly with existing data center
resource schedulers to make these for the first time compatible with INC resources.
Lastly, Chapter 7 presents the new resource manager HIRE which supersedes Inc-
Sched. This part presents the first resource scheduling solution for shared INC on
a data center wide level.

Part IV The last part finally concludes the dissertation by summarizing the contribu-
tions and elaborating on directions for future work.

1.6 Related Publications

Parts of this dissertation have been covered in international peer-reviewed publications,
listed below. All publications have joint authorship. Unless otherwise stated at the
beginning of a chapter and in Section 1.4, the material presented in this dissertation is
the author’s contribution.

[Blö+21] Marcel Blöcher, Lin Wang, Patrick Eugster, and Max Schmidt. “Switches
for HIRE: Resource Scheduling for Data Center In-Network Computing”. In: Pro-
ceedings of the 26th Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). ACM, 2021, pp. 268–285. doi: 10.
1145/3445814.3446760

[Blö+20b] Marcel Blöcher, Ramin Khalili, Lin Wang, and Patrick Eugster. “Letting
off STEAM: Distributed Runtime Traffic Scheduling for Service Function Chaining”.
In: Proceedings of the 39th Conference on Computer Communications (INFOCOM).
IEEE, Aug. 2020, pp. 824–833. doi: 10.1109/INFOCOM41043.2020.9155404

Parts of this dissertation are based on manuscripts that are currently under submission,
listed below. All publications have joint authorship. Unless otherwise stated at the
beginning of a chapter and in Section 1.4, the material presented in this dissertation is
the author’s contribution.

[Blö+20a] Marcel Blöcher, Emilio Coppa, Pascal Kleber, Patrick Eugster, William
Culhane, and Masoud Ardekani Saeida. “ROME: All Overlays Lead to Aggregation,
but Some Are Faster than Others”. Submitted for publication. Mar. 2020

I have also authored or co-authored the following publications during my PhD time.
Some of these have impacted the work presented in this dissertation but did not directly
contribute to its contents.

[Blö+19] Marcel Blöcher, Matthias Eichholz, Pascal Weisenburger, Patrick Eugster,
Mira Mezini, and Guido Salvaneschi. “GRASS: Generic Reactive Application-
Specific Scheduling”. In: Proceedings of the 6th SIGPLAN International Workshop
on Reactive and Event-Based Languages and Systems (REBLS). ACM, Oct. 2019,
pp. 21–30. doi: 10.1145/3358503.3361274

14

https://doi.org/10.1145/3445814.3446760
https://doi.org/10.1145/3445814.3446760
https://doi.org/10.1109/INFOCOM41043.2020.9155404
https://doi.org/10.1145/3358503.3361274

1.6. Related Publications

[Heu+18b] Jens Heuschkel, Lin Wang, Erik Fleckstein, Michael Ofenloch, Marcel
Blöcher, Jon Crowcroft, and Max Mühlhäuser. “VirtualStack: Flexible Cross-
layer Optimization via Network Protocol Virtualization”. In: Proceedings of the
43rd Conference on Local Computer Networks (LCN). IEEE, 2018, pp. 519–526.
doi: 10.1109/LCN.2018.8638106

[Heu+18a] Jens Heuschkel, Rick Vogel, Marcel Blöcher, and Max Mühlhäuser. “Blow
up the CPU Chains! OpenCL-assisted Network Protocols”. In: Proceedings of the
43rd Conference on Local Computer Networks (LCN). IEEE, 2018, pp. 657–665.
doi: 10.1109/LCN.2018.8638096

[Blö+18] Marcel Blöcher, Tobias Ziegler, Carsten Binnig, and Patrick Eugster. “Boost-
ing Scalable Data Analytics with Modern Programmable Networks”. In: Proceed-
ings of the 14th International Workshop on Data Management on New Hardware
(DAMON). ACM, 2018, pp. 1–3. doi: 10.1145/3211922.3211923

[Blö+17] Marcel Blöcher, Malte Viering, Stefan Schmid, and Patrick Eugster. “The
Grand CRU Challenge”. In: Proceedings of the Workshop on Hot Topics in Con-
tainer Networking and Networked Systems (HotConNet). ACM, 2017, pp. 7–11.
doi: 10.1145/3094405.3094407

15

https://doi.org/10.1109/LCN.2018.8638106
https://doi.org/10.1109/LCN.2018.8638096
https://doi.org/10.1145/3211922.3211923
https://doi.org/10.1145/3094405.3094407

Part I

Background and Analysis
The first part of the dissertation introduces relevant technical background this disserta-

tion is based on and provides a detailed introduction and analysis of the field of resource
scheduling in the distributed computing landscape, including a classification of INC.

Chapter 2 starts with a discussion of the distributed computing landscape, the involved
server and networking resources, resources abstractions for these, and an overview of data
center resource scheduling. This lays the foundation for all topics following in Part II
and Part III. Finally, this part introduces a classification of in-network computing in
Chapter 3, and gives an overview of recent in-network computing solutions. Thereby
contributing to the general understanding of the requirements for INC resource scheduling
for Part III.

17

2
Distributed Computing Landscape

Chapter Outline
2.1 Servers and Accelerators . 20

2.2 Network Fabric . 21

2.3 Resource Abstractions . 23

2.4 Resource Scheduling . 24

2.5 Summary . 26

This chapter provides technical background that this dissertation is based on. We start
with an overview of the distributed computing landscape. Next, Section 2.1 gives an
overview of server resources, Section 2.2 follows with the network fabric, and Section 2.3
summarizes resource abstractions for server and networking resources. Finally, Section 2.4
gives an overview of data center resource scheduling.
Figure 2.1 shows the distributed computing landscape and depicts locations where

processing () of an Internet service can take place. As we shall detail in the following,
processing can take place—on servers () and switches ()—at various locations in the

19

Chapter 2. Distributed Computing Landscape

CloudEdge

Datacenter

Fog/IoT

End-
Entity
(EE)

End-
Entity

(W)LAN

C
us

to
m

er
 P

re
m

is
es

Eq

ui
pm

en
t (

C
PE

)
C

us
to

m
er

 P
re

m
is

es

Eq
ui

pm
en

t

Po
in

t o
f P

re
se

nc
e

(P
oP

)
Po

in
t o

f P
re

se
nc

e

IXP(s)ISP AS(s) / Data Center(s)

Data Center

ToR

Spine, Core,
Aggregation

Interconnect

DatacenterData Center

ToR

Spine, Core,
Aggregation

Interconnect

ServerServer

Figure 2.1: The distributed computing landscape. Arrows exemplify communica-
tion patterns of applications, and possible locations where processing of an
application can take place: on servers () and switches ()

distributed computing landscape, e.g ., on a server at an edge data center close to an
involved end entity. In this dissertation, we consider edge data centers and cloud data
centers, and discuss resource scheduling solutions for distributed applications (Part II)
and data center resource managers (Part III). This covers all locations highlighted in
Figure 2.1. In the following sections we discuss involved resources and abstraction.

2.1 Servers and Accelerators

In a shared data center, applications use server resources either by “bare-metal” ac-
cess (i.e., dedicated root access), or by using server virtualization techniques like VMs
and containers (e.g ., containerd [CNC19], Docker [Ber14]). If a server virtualization
technique is used, applications typically get (multiplexed) resources with the abstrac-
tion of (shared) CPU cores, dedicated and elastic memory portions, and network access
using bridged mode or Single Root I/O Virtualization (SR-IOV), among other tech-
niques [BCH13]. More recently, shared data centers offer server accelerators including
TPUs, GPUs, SmartNICs, and FPGAs. Various techniques are used for sharing access
to accelerators, depending on how these accelerators are integrated in the data center
infrastructure. For example, an accelerated host networking platform [Fir+18; Fir17],
that uses FPGAs for providing a high performance virtual switch platform, does not
expose the accelerator directly to the application.

Resource Sharing. Dynamically sharing the underlying resource among many different
workloads and frameworks is crucial to achieving high resource utilization for data center
computing [Hin+11; Sch+13]. Resource sharing can be implemented either by

(a) elastic compute approach, i.e., re-allocate resources when latency critical services
face low load or idle times, and delegate spare compute resources to offline workloads

20

2.2. Network Fabric

(b) resource overcommitment, i.e., co-locate workloads on the very same machine and
set priorities to handle overload scenarios

In both resource sharing options, containerization is one of the key enablers for the
powerful and efficient operation of the distributed computing landscape. Containerization
is a technique that encapsulates all software dependencies of an application (component)
into an image, which then could run on a generic container infrastructure running on
commodity servers. These (application) container images are also called “hermetic con-
tainer image” [Bur+16] due to their full encapsulation of all required pieces to run the
software. Containerization brings the benefits of less maintenance workloads introduced
by many different hardware and software versions that need to be supported. “Con-
tainerization transforms the data center from being machine-oriented to being application
oriented [Bur+16].”

There is no universal answer to choosing always elastic compute approach over resource
overcommitment, or vice versa. However, containerization gives both options to the
resource manager. In particular, for small, energy efficient servers (with small resource
capacity) and resource hungry services, the elastic compute approach seem to match
better [Fac18].

2.2 Network Fabric

The data center network fabric is a critical part of the data center infrastructure, and
sets the limitations and capabilities for server communication with respect to latency
and available bandwidth. Beside resources for packet-forwarding, programmable switches
offer resources for in-network computing, which we will discuss in Chapter 3. In the
following, we discuss packet-forwarding resources.

A server rack houses a group of servers and interconnects them with one or multiple so
called top-of-rack (ToR) switches. The ToR switch is also the interconnection of a server
rack to the network fabric using the ToR’s uplink port(s). Figure 2.1 shows at a high level
the typical layers of the network fabric, from servers bottom up, ToR switches connect
to the multi-tier network topology comprising aggregation, core, and spine switches, and
finally the interconnect which connects a data center with the outside world (e.g ., other
data centers).

Typically, the network fabric uses a multi-path topology, to provide better fault toler-
ance, higher total throughput, and lower latency and jitter [BCH13]. Many data center
network topologies are based on the Clos [Clo53] topology [Sin+15], like Fat-Tree [Lei85],
Facebook’s 4-post [FA13], F16 and HGRID [AWE19]. Clos networks have three stages,
each with a number of switches (crossbars) with inputs and outputs. Figure 2.2a shows
an example Clos network. A Clos network is defined by 3 parameters (n,m, r) for setting
the number (n) of sources for each ingress stage crossbar (and outputs of each egress
stage crossbar), the number (r) of ingress (and egress) stage crossbars, and the number
(m) of middle stage crossbars.

21

Chapter 2. Distributed Computing Landscape

1

2

1

2

3

1

2

(a) Strictly nonblocking Clos network
(n,m, r) = (2, 3, 2).

1

2

3

4

1

2

1

2

3

4
fold here for a Fat-Tree
with 8 leafs and 2 spines

(b) Rearrangeable nonblocking Clos network
(n,m, r) = (2, 2, 4).

Figure 2.2: Clos network as a building block for many data center topologies.

Clos networks can easily be used to build networks with more than three stages, by
replacing the middle stage crossbars with Clos networks (i.e., recursively stacking Clos
networks). Figure 2.2 shows two Clos networks, and how to build a Fat-Tree topology
based on a Clos network. When folding the Clos network in Figure 2.2b at the dashed
line, the ingress and egress stage of the Clos network become the leaf layer in a Fat-Tree,
the middle stage becomes the spine layer.

Multi-stage topologies can be classified according to the blocking characteristics [New89,
Chapter 4]. A topology satisfies the non-blocking property, if it can connect any free
input with any free output, regardless of other connections. If existing connections
must be rearranged to be non-blocking, a topology satisfies rearrangeable non-blocking.
Otherwise, a topology belongs to the blocking group. The blocking/non-blocking concept
is applicable for networks exhibiting circuit switching. Data center switches typically1

are packet switched networks, however, blocking/non-blocking becomes important when
considering available link bandwidth. With m ≥ 2n − 1, a Clos network satisfies the
strictly nonblocking property, with m ≥ n it is rearrangeably nonblocking.

Network Resource Sharing. In data centers, servers share the network fabric accord-
ing to a policy, e.g ., best effort routing, strict packet priorities, static reservations, among
others [TJP16; BCH13]. There are two reasons for the demand for resource sharing
policies. First, typically the topology is blocking, i.e., the total link network capacity of
all servers (of a subtree of the topology) exceeds the total aggregated link capacity of the
corresponding subtree switches. This effect is described with network oversubscription.
Oversubscription reduces the size and cost of the network fabric. Second, Incast is an-
other reason for the demand for resource sharing policies. Incast describes a throughput

1 Recent works [Bal+20] on optically-switched architectures emulate packet-by-packet switching by
reconfiguration at nanosecond-timescales.

22

2.3. Resource Abstractions

B

(a) Hose: Aggregated
bandwidth B at a
server.

B
B

B

(b) Virtual cluster:
Bandwidth B for
each server towards
a switch.

B1 B2

(c) Tenant application
graph: Outgoing
(B1) and incoming
(B2) bandwidth for
each server of a
group towards an-
other group.

Figure 2.3: Common data center resource abstractions for network bandwidth
guarantees.

collapse effect (which happens even without oversubscription). A typical cause of incast
is when many network streams arrive at a switch and are all routed to the same output
port, thereby exceeding the capacity of the outgoing port.

2.3 Resource Abstractions

Most data center resource managers use resource abstractions that focus solely on server
resources. A broad set of data center resource managers provide scheduling abstractions
dedicated for server accelerators, often targeting a domain-specific solution like those for
ML workloads [Gu+19; Mah+20; Pen+18; Xia+18; Nar+20]. Some data center resource
managers also consider networking resources, but mostly with respect to the network
link capacities of the involved servers, not the network fabric. Only few data center
resource managers handle networking resources with respect to reserved bandwidth shares
[Bal+11; Guo+10; Pop+12; Xie+12]. Typical abstractions for describing the demand on
networking resources include hose [Duf+99], virtual cluster (VC), virtual oversubscribed
cluster (VOC) [Bal+11], and tenant application graph (TAG) [Lee+13].

Figure 2.3 shows three common resource abstractions. Hose (see Figure 2.3a) describes
the reserved aggregated uplink and download capacity of a server, without considering
possible communication paths. A VC (see Figure 2.3b) is similar, but describes a group of
servers. Each server of a group has a reserved bandwidth share towards a virtual switch.
A VOC consists of a hierarchical group of VCs, optionally with oversubscription of some
of the connections. A TAG (see Figure 2.3c) is a directed graph of groups (servers) and
edges (network links). Each group represents a set of servers each with the same network
bandwidth and server resource demand. Directed edges describe network bandwidth
reservations from any server of a group towards another server group (by using a virtual

23

Chapter 2. Distributed Computing Landscape

switch for specifying the bandwidth reservations). In Figure 2.3c, each server in the left
group has bandwidth B1 (outgoing) and B2 (incoming) for communicating with the right
group.

All described resource models for networking resources focus on bandwidth reservations,
and differ mostly in the level of detail for supporting nested bandwidth constraints, and
how pair-wise bandwidth reservations are considered.

2.4 Resource Scheduling

Data center resource scheduling is about assigning compute resources (e.g ., CPU, memory)
to jobs in a way reaching some set requirements on resource efficiency, task placement
latency, and scalability, among others [SB18]. Data center resource scheduling falls into
three layers [Zha+15]:

1. Application (Software) Layer providing the Software as a Service stack. Schedul-
ing of application components onto virtual resources (i.e., VMs).

2. Virtualization (Platform) Layer providing the Platform as a Service stack.
Scheduling of virtual resource (i.e., VMs) onto physical resources (i.e., servers).

3. Deployment (Infrastructure) Layer providing the Infrastructure as a Service
stack. Scheduling focuses on topics like data routing and multi data center man-
agement.

In this dissertation we focus on the distributed computing landscape, which concerns
all layers mentioned above, but most dominantly the Software as a Service (in Part II)
and Platform as a Service (in Part III) layers. We discuss resource scheduling for the
distributed computing landscape from the perspective of the resource abstractions of the
involved parties, rather than a strict separation by using the classification of the three
layers.

Both single-resource [Ous+13; Gog+16] and multi-resource [Gho+11; Gra+14; Cho+16]
scheduling have been well studied. Most related work in this area focuses on containers
(and the corresponding jobs/tasks) as the unit of scheduling and serves resources among
multiple applications/frameworks (e.g ., Spark, Flink, and TensorFlow) [Hin+11; Ver+15].
To cope with this sharing, resource managers exist with a variety of architectures (e.g .,
centralized and distributed) and scheduler designs (e.g ., queue-based and graph-based).

Architectures. Figure 2.4 shows four common generic architectures for data center
resource managers, as outlined by Schwarzkopf [Sch15]. The centralized monolithic sched-
uler manages all data center resources from a centralized perspective (Figure 2.4a), i.e.,
users send their resource requests to the centralized manager, which in turn runs a global
policy for scheduling. A variant of the centralized architecture is the statically partitioned
architecture, which partitions the data center resources and assign each partition to a

24

2.4. Resource Scheduling

JJJ

Scheduler

J JJ

(a) Centralized

S

Scheduler

S S

J J J J J

(b) Two-Level

S S S

J J J J J

transactions

(c) Shared-State

S

S

J

J J

J

J

S

(d) Fully Distributed

Figure 2.4: Data center resource management architectures.

single sub-scheduler. Hadoop [Zah+10], Quincy [Isa+09], and Firmament [Gog+16] are
examples of centralized or statically-partitioned centralized schedulers

The two-level approach (Figure 2.4b), also called pessimistic concurrency [Sch+13],
splits the resource allocation problem into two parts: the data center resource manager
acts as a central coordinator which decides how many resources each sub-cluster gets.
Each sub-cluster is controlled by another sub-scheduler, often an application framework
specific scheduler. Mesos [Hin+11] is a well-known example of this architecture using
resource offers.

Next, the partially distributed shared-state architecture (Figure 2.4c), also called op-
timistic concurrency [Sch+13], uses multiple scheduler instances each with full access
to all data center resources. This architecture requires concurrency control to resolve
potential resource allocation clashes (conflict resolution). Omega [Sch+13] is a shared-
state scheduler which uses a transaction like interface for applying resource allocations to
the global cluster state. Apollo [Bou+14] is another shared-state scheduler performing
conflict resolution at the level of server queues.

Finally, the fully distributed architecture (Figure 2.4d) uses a scheduler design which
allows to run the scheduling logic in a fully distributed manner. Sparrow [Ous+13] is a
well-known example, which applies a variant of power of two choices [Mit01] to sample
candidate machines for each resource request. Each machine in turn manages a queue of
pending resource requests, and eventually probes the requesting job in the event of local
resource availability.

None of these generic scheduling architectures strictly surpasses every other architec-
ture, each shows advantages for certain domain-specific problems. Furthermore, many
resource schedulers use an architecture that combines multiple of these generic architec-
tural design principles.

25

Chapter 2. Distributed Computing Landscape

2.5 Summary

In this chapter, we discussed basic concepts and related work that is required for this
dissertation. We started with an overview on data center resources and resource ab-
stractions. Server resources are typically shared among different workloads using elastic
compute approach or resource overcommitment. Existing server resource abstractions
often use the abstraction of containers with optional feature flags and a multi dimensional
resource demand vector. Existing abstractions for networking resources focus on network
bandwidth, e.g ., to set strict routing priorities and to statically reserve bandwidth. Next,
we introduced data center resource scheduling, and discussed typical architectural de-
sign options for resource managers, namely centralized, two-level, shared-state, and fully
distributed.

In Part II, we present application-level schedulers, using a centralized and a distributed
architecture with statically partitioned sub-clusters. Followed by Part III, which presents
two data center resource scheduling solutions: A resource management framework (Chap-
ter 6) with a centralized architecture that works in tandem with other scheduler architec-
tures outlined in this chapter and a standalone centralized scheduler (Chapter 7). Before
we present our scheduling solutions in the following parts, the next chapter introduces
our classification of in-network computing.

26

3
In-Network Computing

Chapter Outline
3.1 Deployment Targets . 28

3.2 Classification of INC . 29

3.3 Overview of INC Services . 31

3.4 Summary . 33

This chapter presents a classification of in-network computing (INC). Even though
many INC services have been published recently, there is not yet a classification of INC
which distinguishes INC from related concepts like network function virtualization (NFV)
and classic network functions in general. This chapter closes this gap and introduces a
classification of INC, which is used to distill the requirements for a resource management
solution for INC in Chapter 6 and Chapter 7.

27

Chapter 3. In-Network Computing

3.1 Deployment Targets

Before going into the detail of our classification, this section gives an overview on the
enabling technologies to push application processing from servers to locations “in the
network.” We consider not all of these deployment targets as valid instances of what we
consider to belong to the realm of INC.

Software Network Functions. Network function virtualization (NFV) is a technique
that uses software implementations on top of commodity hardware instead of using ex-
pensive, specialized hardware middleboxes. This decouples the network function from the
underlying hardware, i.e., NFV uses virtualization techniques to install software network
functions on any matching hardware. Example use cases include network address trans-
lation (NAT), deep packet inspection (DPI), and firewalling. A popular NFV platform is
ClickOS [Mar+14]. Flick [Ali+16] and In-Net [Sto+15] are two example solutions based
on NFV which term their solution as in-network processing.

Programmable NICs. SmartNICs are programmable network interface cards (NICs)
that can be used to offload application processing, e.g ., for reducing CPU load on
networking-intensive tasks. Typical architectures of SmartNICs include pipelined de-
signs [Fir+18], many-core designs1, and reconfigurable match tables (RMT) designs
[Kau+16; Pon+19]. The latter is also the typical design of a programmable switch. A
popular use case of SmartNICs is AccelNet [Fir+18], an accelerated host networking
platform which is deployed on a data center level in Azure cloud. IncBricks [Liu+17] and
NICached [SB17] are two examples that use SmartNICs and call their approaches INC.
IncBricks uses a co-design of SmartNICs and switches for the prototypical implementation
for doing INC, whereas NICached proposes to use solely SmartNICs for doing INC.

Programmable Switches. Programmable switches offer programming abstractions
originally intended to serve as prototyping or deployment methods for more flexible and
novel network(-wide) services and protocols, e.g ., HULA [Kat+16b]. These solutions used
the programming abstractions mainly for accessing packet headers, but not for perform-
ing application-level processing. With the recent advances on programmable switches,
the programming abstractions became more expressive and the hardware more powerful,
enabling new use cases. Data plane programming languages such as P4 [Bos+14] and
frameworks like µP4 [Son+20] and Lyra [Gao+20a] provide programming abstractions
for the network data plane, allowing network devices to be customized for application-
specific computation. Various hardware architectures are used for programmable switches,
but most dominantly application-specific integrated circuits (ASICs) with an RMT de-
sign [Bos+13]. Recent work on program synthesis for programmable switches provides
an extensive overview of hardware architectures [Gao+19; Gao+20b; Jos+15].

1 https://www.netronome.com/products/smartnic/overview/

28

https://www.netronome.com/products/smartnic/overview/

3.2. Classification of INC

3.2 Classification of INC

No exiting work provides a classification of INC that is sufficient to differentiate INC
from related techniques such as NFV, NIC offloading, and classic network functions (e.g .,
NAT).

Inconsistent Naming. Existing definitions of INC are indefinite, e.g ., “In-network
processing, where data is processed by special-purpose devices as it passes over the net-
work, ...” [Mus+19]. Furthermore, no consistent naming is used by recent work in this
area. We observe three naming conventions used dominantly, namely: in-network pro-
cessing [Mai+14; Anw+15; Sto+15; Ist+16; Ali+16; Jin+17; Blö+18; Mus+19; PN19;
Alo+19; Zen+20; Blö+17], in-network computing/compute [Sap+17; Liu+17; Liu+19;
Ben19; PN19; TMZ18; Zhu+19; Kog+19; Blö+21], and in-network X or in-switch
X, where X can be caching [Jin+17; Ren+14; Liu+19; Li+16b], aggregation [KB20],
database acceleration [Ler+19; Blö+18], replication protocol [Zen+20], network sequenc-
ing [Li+16a; LMP17], among others.
Previous work use the same term for different types of offloading techniques and for

different target devices. Flick [Ali+16] and In-Net [Sto+15] are two example solutions
based on NFV which term their solution as in-network processing. IncBricks [Liu+17] uses
a co-design of SmartNICs and switches for the prototypical implementation, however,
conceptually IncBricks considers programmable switches for their offloading solutions.
NICached [SB17] proposes to use SmartNICs for doing in-network processing.

Ports and Nelson [PN19] introduce a taxonomy which helps to identify which data
center application can benefit from offloading computation to programmable networking
devices. This taxonomy considers three dimensions, namely (a) number of operations per
packet, (b) state per packet, and (c) packet gain, i.e., how many packets a networking
device sends when receiving a packet. For each of these dimensions, the authors consider
the asymptotic behavior, e.g ., for packet gain the cases O(1) (same number of input and
output packets), O(r) (output to r replicas), and O(1/r) (output a single aggregate result
from r replicas). Based on this taxonomy, the authors discuss best deployment targets
for an in-network solution. Possible deployment targets include middleboxes, FPGAs,
network processing units (NPUs), SmartNICs, and switches. Furthermore, for each of the
three dimensions, they identify examples where the dimension is the dominant resource
bottleneck of a deployment. Their classification of INC includes deployment targets that
are located at the servers, e.g ., FPGAs with network ports directly connected to the
fabric. However, we do not consider accelerated host networking as belonging to INC.

Benson [Ben19] introduces another taxonomy of INC, focusing on the functionality of
deployed INC services. Benson defines INC as the “shift of network functions that act
at layer-7 for the purpose of pure networking, to include computing functionality.” The
introduced taxonomy with two dimensions classifies the type of the offloaded application

29

Chapter 3. In-Network Computing

Sender ReceiverForwarder

Data
Transmission

INC T1

T2

T3

Application

Figure 3.1: Logical representation of communicating parties and the abstract tier
they work at.

functionality to be INC or pure networking functions, and the mode dimension identifies if
the mode of operation is offloaded or transparent. The offloaded mode requires to rewrite
server applications, while the transparent mode is defined as when the functionality is
unattached to the application. This classification depends on the blurring of the definition
of computing. For example, a load balancer could be a classic network infrastructure
function, e.g ., ECMP [Hop00], but also a solution with computing functionality, e.g .,
R2P2 [Kog+19], that we consider to belong to INC.

In the following, we present our INC classification based on three characteristics that
must be fulfilled by an offloaded processing function for being classified as INC.

Physical Characterization. The first characteristic we set for INC refers to one of its
main intuitions, i.e., INC processing takes places somehow on a device in the network. An
INC device could be either en route between communicating parties (e.g ., two servers),
or the INC device could be itself one of the end-to-end communicating parties in the
network (e.g ., when a single server communicates with an INC device).
Definition 3.1 characterizes offloading approaches as not belonging to INC, if the

approach uses a device whose primary intent is not to forward network packets. For
example, a middlebox is an “intermediary box performing functions apart from normal,
standard functions of an IP router on the data path between a source host and destination
host” [CB02], which classifies all NFV based approaches as not belonging to the realm
of INC. Furthermore, this definition excludes approaches that offload processing on a
SmartNIC attached to a server (e.g ., [SB17])—we consider this to belong to accelerated
host networking.

Definition 3.1. INC processing takes place on a device in the network, whose primarily
intent is to forward network packets, ideally at line rate.

Semantic Characterization. The second characteristic of an offloading approach
potentially qualifying as INC is on the kind of processing that the offloaded component
is performing. The main purpose of the offloaded function must be connected to an
application running on communication parties connected to the network. A function that

30

3.3. Overview of INC Services

is deployed on a network wide level, which is required to operate the network, does not
belong to the realm of INC.

Definition 3.2. The duty of INC processing exceeds sole data transmission purpose
to operate the network, and is strictly intertwined with specific applications running on
connected servers.

Logical Characterization. The third characteristic of INC covers the logical aspect of
what the offloaded processing function is acting with. Figure 3.1 depicts communicating
parties and abstract tiers (T1 - T3) the processing of each device is accessing. Data
transmission belongs to tier T3, INC operates at tier T2, and the application’s sender and
receiver at tier T1. An INC node may be itself the sender or receiver. Tier T1 and tier
T2 might refer to the same logical abstraction. A classic networking device involved in
forwarding network packets along the path works solely on logical abstractions intended
for data transmission (T3).
A counter example to INC is DPI, if it is deployed on a network wide level. Such a

DPI solution might access information from abstract tier T2, which fulfills the logical
characteristic (Definition 3.3), but its pure purpose is to keep the network operating, i.e.,
it contradicts with the semantic characteristic (Definition 3.2).

Definition 3.3. INC denotes processing which operates on logical layer not part of data
transmission abstractions.

Summary. In this dissertation, we use the term INC as described below in Definition 3.4,
which combines the three characteristics we set in Definition 3.1, Definition 3.2, and
Definition 3.3.

Definition 3.4. In-network computing (INC) denotes the general concept of offload-
ing processing (and/or storage) to programmable networking devices, which fulfills the
following three criteria:

1. INC processing takes place on a device in the network, whose primarily intent is to
forward network packets, ideally at line rate.

2. The duty of INC processing exceeds sole data transmission purpose, and is strictly
intertwined with specific applications running on servers connected to the network.

3. INC denotes processing which operates on logical layer not part of data transmission
abstractions.

3.3 Overview of INC Services

INC has been explored for various scenarios including data aggregation, caching, and
coordination, among others. All these approaches share a common goal of achieving gains

31

Chapter 3. In-Network Computing

on performance [PN19] and/or energy efficiency [Tok+19]. In the following, we explain
some INC services in more detail.

Data Aggregation. A straightforward candidate for INC is data aggregation since
many data center jobs (e.g ., SQL joins, MapReduce, graph processing, and machine
learning) involve partition/aggregate patterns, and network traffic can be significantly
reduced by in-network aggregation [Sap+17; Blö+18; Gra+16a; Jep+18; Ler+19]. Even
though they share a similar goal, they differ in the hardware that is used, the integration
into the software stack running at the servers, and the way an application deploys its
configuration to use the INC devices.

A typical approach for in-network aggregation is to base the data plane on P4 and have
the software defined network (SDN) controller build aggregation trees [Sap+17; Sap+19].
The controller sets up an aggregation overlay consisting of a list of INC switches that
need to be configured. Each of the involved switches maintains a list of identifiers of
active aggregation overlays, hence an INC switch performs aggregation when receiving
data from a predecessor node, either an INC switch or a server. Switches can also be
configured through direct interactions with the involved servers, in place of the SDN
controller in some designs [Gra+16a].

SHArP [Gra+16a] is another solution to in-network aggregation and requires switches
with a custom designed ASIC. SHArP proposes a Scalable Hierarchical Aggregation Pro-
tocol which allows to offload a subset of MPI [WD96] and OpenSHMEM [Cha+10] to
SHArP enabled switches. The SHArP Aggregation Manager hands over the list of in-
volved INC switches to the involved servers. After receiving the INC resource descriptors,
the servers interact with the INC switches on their own. SHArP supports simple single
switch aggregation overlays and also large tree setups.

Caching. Another representative application scenario for INC is caching. Essentially, it
offloads key-value pairs with high access counts to INC switches, which reduces the load
of the servers and improves latency at the same time [Jin+17; Liu+17; Liu+19]. The
main idea is as follows: When a server wants to access a key either with write or read
access, it sends a query which passes involved INC switches. In case of a write access,
each INC switch checks if it has to prune a cached entry, and forwards the query towards
the server holding the specific key. When a server answers with a specific key-value pair,
the INC switches check whether they should cache the key-value pair for the next query
while forwarding the reply. The SDN controller retrieves access statistics and decides on
updating the list of hot items for each of the INC switches.

In addition to rack-scale implementations such as NetCache [Jin+17], global data center
solutions have also been proposed [Liu+17; Liu+19], where an SDN controller is used
to set up INC switches for a specific key-value store and to steer corresponding queries
through all involved INC switches.

32

3.4. Summary

Coordination. Another application for INC commonly described in literature [Jin+18;
Dan+15; LMP17; Dan+16; Yu+20] is coordination. While serving a different purpose,
in-network coordination can also be based on a distributed fault-tolerant key-value store
(or log) at its core, making the deployment of in-network coordination solutions similar to
that of in-network caching, despite maintaining consensus on the involved switches. An
SDN controller usually serves to configure the INC switches and handle requests [Jin+18].

In NetChain [Jin+18], when a client wants to use the INC service, a server’s NetChain
client translates the API requests to NetChain’s own protocol, addressing the chain’s tail
or head switch, for read or write requests, respectively. The head switch processes write
requests and sends them to the next INC switch of the chain. Finally, the tail switch
replies to the NetChain client. The NetChain client is aware of all involved INC switches
of a chain, which was set up by the SDN controller beforehand. The underlying key-value
store uses consistent hashing and maps each key to a key ring using a replication of f + 1

for each ring segment, to allow up to f switch failures.
Typically, using the example of NetChain [Jin+18], an INC service provides high-

level configuration parameters, that directly affect the deployment and configuration
properties of the involved INC switches. NetChain provides configuration parameters
like key length (bytes), value length (bytes), and replication factor (chain length). When
the high-level configuration parameters and the target switches are known, the exact
resource requirements (e.g ., allocated stages of the RMT on a switch) can be determined,
sometimes with the involvement of SDN or INC specific deployment tools [Jos+15].

3.4 Summary

This chapter discussed possible deployment targets for offloading application processing
and introduced a classification of in-network computing (INC). This classification defines
three characteristics that offloaded processing functions must fulfill to belong to the realm
of INC. Definition 3.4 summarizes the three characteristics, namely physical, semantic,
and logical.

In Part III we will present two scheduling solutions for data center resource scheduling,
that offer resource scheduling of server and INC resources simultaneously.

33

Part II

Application-Level
Resource Scheduling

The second part of this dissertation presents two solutions to runtime resource schedul-
ing at the application level, covering two scenarios: big data aggregation and distributed
service function chains. These solutions demonstrate the advantage of using runtime
resource scheduling solutions at the application level, by the example of two application
scenarios.
Chapter 4 presents ROME, a system for resource planning of big data aggregation

systems. ROME automatically adapts the aggregation overlay to the aggregation function
to reduce total aggregation time. Then, Chapter 5 introduces our solutions IA-MPP and
STEAM for runtime traffic scheduling of distributed service function chains.

35

4
ROME: A Middleware System for
Optimized Aggregation Overlays

Chapter Outline
4.1 Overview . 38

4.2 Model . 43

4.3 Optimizing Compute-Aggregate . 47

4.4 ROME System . 53

4.5 Overlay Evaluation . 58

4.6 Integrated Evaluation . 60

4.7 Conclusions . 66

This chapter introduces ROME, an application-level aggregation system for use within
data analytics frameworks like Spark and Flink or standalone. ROME uses a set of novel
heuristics based primarily on basic knowledge of aggregation functions combined with
deployment constraints to efficiently aggregate results from computations performed on

37

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

individual data subsets across nodes (e.g ., merging sorted lists resulting from top-k). The
user can either provide minimal information which allows our heuristics to be applied
directly, or ROME can autodetect the relevant information at little cost. We integrated
ROME as a subsystem into the Spark and Flink data analytics frameworks. We use real
world data to experimentally demonstrate speedups up to 3× over single level aggregation
overlays, up to 21% over other multi-level overlays, and 50% for iterative algorithms like
gradient descent at 100 iterations.

With the exception of portions of Section 4.7, the contents of this chapter are
reprinted, with permission, from Marcel Blöcher, Emilio Coppa, Pascal Kleber,
Patrick Eugster, William Culhane, and Masoud Ardekani Saeida. “ROME: All
Overlays Lead to Aggregation, but Some Are Faster than Others”. Submitted for
publication. Mar. 2020 [Blö+20a].

This chapter extends previous work by Culhane et al. [Cul+14; Cul+15; Cul15]
as described in detail in Section 1.4. Section 4.1, Section 4.2, Section 4.3, and
Section 4.5 are predominantly based on previous work.

4.1 Overview

Data analytics systems typically split data across nodes and compute information from
subsets of the data, then aggregate the partial results.

Many aggregation functions are associative [YGI09], so a natural choice is to aggregate
results along an overlay (network) such as a tree connecting leaf nodes (where original
computations occur) to a root (where the final result will be available). It becomes clear
that there are simple customizations to such aggregation trees created for a broad range of
aggregation functions. Exactly which customizations are applicable—most prominently
affecting fan-in of the tree—depends on the characteristics of the aggregation function
which affect the size of the data (more details in Section 4.2).

We propose to automatically tailor aggregation overlays to specific problems, using the
ratio R of the output size of the aggregation function at hand to its input size, which is
easy to find or estimate for many aggregation functions. For example, a top-k aggregate
(simply top-k for short) overlay reports the k groups according to a selection criteria on
the group’s score [IBS08]. If all data belonging to a group resides on a single partition, so
that each group’s score is computed based on a single partition, the aggregation function
produces output of size k—a ratio of R = 1 (i.e., k/k). If some group’s data is spread
across all partitions, on the other hand, the output is larger than any individual input,
similar to merging sets. Table 4.1 shows common aggregation problems grouped by rele-
vant ratios.

38

4.1. Overview

Common problems R = |Output|
|Input|

Production jobs at Facebook, Yahoo! [Che+11],
Google [DG08]; sieve and deduplication algorithms

< 1

Top-k on pre-partitioned data, k-means clustering,
square matrix multiplication, word count with fixed dictionary

= 1

Top-k or word count on arbitrary data, sort > 1

Table 4.1: Some common aggregation functions and their size ratios of output to
one input (|a| means the size of a).

In this chapter, we present a novel holistic approach for optimizing aggregation imple-
mented in a system called ROME (Robust Aggregation Overlays Minimizing Execution
Time). In short, our approach is threefold:

1. an Analysis stage obtains relevant constraints from applications, based on which,

2. an Overlay stage determines theoretically (near-)optimal overlay trees for idealized
settings; finally,

3. a Mapping stage applies several heuristics to tailor these overlays to real-world
(non-ideal) deployment constraints at hand.

Like most currently popular systems for data analytics [Zah+12; Ale+14; Ven+13],
ROME works in-memory to significantly reduce latency and unpredictable timings. It is
designed for easy integration into existing data analytics systems.

4.1.1 Design Challenges

ROME faces three design challenges, which we discuss in this chapter:

Compatibility and Application Transparency. A deployment of ROME should be
transparent to the application and support a broad range of existing applications and
workloads for performing data aggregation. Not only the functional compatibility of the
provided API is important, but also the operational behavior of the system, e.g ., fault
tolerance, plays an important role. This ensures easy integration into existing applications
and frameworks with minimal efforts, which fosters an easy integration into many existing
systems.
To achieve this, ROME provides an API for total aggregation problems which fits to many
typical problems in the compute-aggregate area. We provide a standalone implementation
of ROME, but also an integration into Apache Spark [Apa14] and Apache Flink [Apa11].
For all implementations, ROME provides a set of features to integrate transparently into
many application deployments, including fault tolerance features and operation modes
for incremental computations (i.e., append-only updates and infrequent updates).

39

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

Automatic Configuration. In order to use an optimal aggregation overlay with ROME,
the system needs to know the optimal configuration for setting up the aggregation overlay.
A system that requires a user to configure all parameters manually, is likely to face low
adoption/acceptance rate and the system may not run at the best performance for several
reasons. The user may choose wrong parameters, or some of the required information
may not be available at the time when the user configured the system.
The intended way of using ROME is to max out its capabilities of its autodetection
system. When running in autodetection mode, ROME runs a partial aggregation to infer
the required information, and continues the remaining aggregation using the detected
system behavior. However, ROME also provides APIs for fine-tuned manual configuration,
which allows to invoke ROME’s aggregation overlay with a self-configured setup, but still
using ROME’s configuration system to prevent mis-configured setups (e.g ., prevent cases
where nodes do not get any predecessor data).

Fast Processing and Minimal Overhead. ROME’s purpose is to provide better
latency for aggregation phases, compared with default or manually configured aggregation
overlays. Consequently, ROME, when running combined with Spark and Flink, should
not induce noticeable performance overhead when running in the automatic configuration
mode, compared with a perfectly manually configured counterpart of Spark or Flink
running without ROME.

To achieve this, ROME implements performance optimization techniques including co-
location of aggregation nodes, root-node bypass, and tree balancing mechanisms. These
techniques make ROME run fast by minimizing latency of the slowest aggregation branch
and reducing redundant “write-out read-in” network transfers.

4.1.2 Related Work

Research which underscores the importance of minimal aggregation latency largely ig-
nores the impact of overlays [Ke+15; Kum+16]; existing big data analytics frameworks
mostly use one-size-fits-all overlays, leading to unnecessarily high latency for distributed
data aggregation. When customizable overlays are available in a framework, users must
manually configure them properly for a particular problem. Such static optimization
might become simply impossible with non-trivial aggregation functions (e.g ., composed
functions) and jobs, or when the same code/code portion is executed on several distinct
datasets with different data skewness.
The data analytics systems discussed in Section 4.2.3 are popular in part because of

their power to adapt to current processing needs. Data analytics has quickly outgrown
many early attempts at aggregation which required special architecture, such as pro-
cessors in tree networks and fully parallelizable functions [CR90; KJL96]. Aggregation
is so fundamental to data analytics that the MapReduce framework has been modified
to include aggregation more than once. Incoop [Bha+11] exploits Combiners to aggre-
gate between the map and reduce phases, and Map-Reduce-Merge [Yan+07] implements

40

4.1. Overview

aggregation after the reduce phase. Yu et al. [YGI09] also attempt to optimize aggre-
gation between phases. All these approaches attempt to add the necessary aggregation
functionality to MapReduce, but do not consider the effect of topology.

Morozov and Weber [MW13] integrate efficient aggregation into their design of merge
trees, an abstraction for aggregating large structured datasets. Their system monitors
data attributes in different branches and recomputes more efficient trees for the prevailing
network status. This system allows to deal well with changing network conditions rather
than optimizing an overlay upfront as with our heuristics.

Kumar et al. [Kum+16] consider the need for an aggregation overlay to respond with
the most accurate result available within a deadline. The proposed solution determines
the probability of a child node providing additional results within a given timeframe, then
decides to wait or forward the current known results in order for the parent node to meet
its deadline. This work is complimentary to our focus on overlays. Astrolabe [Van+02]
and STAR [Jai+07] use a holistic data management approach, and optimize aggregation
within their given hierarchies. Astrolabe uses gossip protocols for large-scale data prop-
agation. STAR, extending the work of SDIMS [YD04] to build on top of distributed
hash tables, has more flexible and configurable aggregation options, but tries to use its
topology rather than a prescribed fan-in. SDIMS allows the user to specify an aggrega-
tion precision with the understanding that very low latency is sometimes a priority over
perfect answers. Kumar et al. [Kum+16] also consider the ability to selectively drop data
during processing to minimize latency for applications which need very fast aggregation.
PIER [Hue+03] is another system built on DHTs to distribute workload, this time for
database use. The overlays are once again restricted by the underlying framework, but
the system itself efficiently aggregates results to respond to queries.

While not specific to aggregation, Kim et al. [KJL96] extend the work by Cheng
and Robertazzi [CR90] to optimize load distribution on processors connected by a tree
network. The newer work maximizes parallelization for fastest completion because there
is no computation to aggregate results from each processor. Work with sensors optimizes
overlays for power consumption while conforming to the routing restrictions imposed by
the location and communication capabilities of sensors [CT00; TK03]. TinyDB [Mad+05]
furthers this in determining when to sample, which is equivalent to local computation.
Valerio et al. [Val+12] consider aggregation when servers span multiple administration
domains that do not trust each other. Their auditing system detects if a server may
bias the aggregation result when manipulating the aggregation overlay. We assume
all nodes are within the same administration domain. Morozov and Weber [MW13]
consider merge trees for distributed computations, an abstraction for combining subsets
of large structured datasets. Their system monitors data traits in different branches and
recomputes a better tree. It does not optimize for aggregation functions or extrapolate
to find optima. Naiad [Mur+13] considers aggregation as part of iterative or cyclic
computations. It allows distributed data access and updates to be interleaved, and is not
aggregation-specific. Like resilient distributed datasets put forth by Zaharia et al. for

41

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

Spark [Zah+12], Naiad relies on data retained in memory. This offers latencies which
can be orders of magnitude better than with disk accesses. This addresses the problem
raised by Venkataraman et al. [Ven+13] that data access is a significant bottleneck for
iterative calculations on many distributed frameworks.
While users may be able to use our heuristics to manually configure aggregation in

in-memory distributed data analytics systems like Spark [Zah+12] and Presto [Ven+13],
as mentioned, this approach may fail when datasets are yet unknown, which is commonly
the case with non-initial computation phases. One work which does explicitly consider
topology is CamCube [Abu+10], which allows users with full environmental control to
define neighbor nodes which bypass traditional network routing to minimize latency. Each
machine is limited to 6 such neighbors, but the configuration has been shown to decrease
latency in some jobs using a MapReduce style framework with built-in aggregation called
Camdoop [Cos+12].

Chuprikov et al. [Chu+17; Chu+18] investigate compute-aggregate problems in setups
where network links have different capacities/costs and “hard” topological constraints
(e.g ., compute nodes may not aggregate) focusing on hardness of optimal distribution,
and lower bounds.

The initial intuition of using the R ratio for optimizing the execution of basic compute-
aggregate tasks was presented at a workshop by Culhane et al. [Cul+14], however without
thorough consideration of dealing with real-world (discrete) settings, or implementation
experience. The formal aspects of the problem were studied subsequently [Cul+15], again
in an idealized setting without considering implementation, further adding focus on the
case of data streaming.

4.1.3 Contributions

In this chapter, we make the following contributions:

• We introduce ROME, a full-featured system implementing our heuristics. We
describe its architecture and API. We then integrate ROME as a subsystem into
two common data analytics frameworks, Apache Flink [Apa11] and Apache Spark
[Apa14], to increase the efficiency of end-to-end data analytics (Section 4.4).

• We evaluate ROME through Flink and Spark. Within real world systems, job
execution time shrink by a factor of up to 3 over systems using single level aggre-
gation overlays like reduce in Flink [Apa11] and Spark [Apa14], by 21% over the
treeReduce in Spark, and 16% if using Spark’s feature to manually configure an
overlay. When running an iterative algorithm like gradient descent, total runtime
improves by %50 at 100 iterations over Spark’s Mllib implementation, which also
uses a multi-level aggregation overlay (Section 4.6).

42

4.2. Model

4.2 Model

This section outlines the compute-aggregate family of problems considered, and how it
fits into the landscape of data analytics.

Aggregation tree

Computation at local nodes

· · ·

· · ·

· · · · · · · · ·

Figure 4.1: Visual representation of the computation and aggregation phases.

4.2.1 Problem Definition

Intuitively, compute-aggregate problems consist of two phases (see Figure 4.1): a (i) com-
pute phase processes distributed subsets of input in parallel; a subsequent (ii) aggregation
phase combines the results of the first phase to obtain a final output.
More formally, using the notation summarized in Table 4.2:

Definition 4.1. A compute-aggregate task produces output h (z) from input z = z1, . . . , zn
where h (z) is decomposable into computations on partial inputs, f (z1) , . . . , f (zn), and
an aggregation function g () such that h (z) ≡ g (x1, . . . , xn) with ∀i ∈ [1..n] xi = f (zi).

Intuitively, each computation node contains some subset of the intial data. After
computation (i), a system aggregates (ii) the results along an aggregation tree (henceforth
simply tree) communication structure to create the final output. With the exception
of passing the results of the computation to the aggregation tree the two phases are
independent from each other. The two phases are visually represented in Figure 4.1.

We consider optimizing the aggregation phase. Optimizing computation requires knowl-
edge about the data, data structures, and computation for each specific problem. We
show optimizing the tree often only requires knowing very basic information about the
aggregation function.

Aggregation can be triggered by the completion of the computation phase or run peri-
odically on the current state of the data, as long as the data is formatted for aggregation.
Aggregation applies some function g to all of the outputs of the computation nodes,
g (f (z1) , . . . , f (zn)). This does not have to be done in a single step. Aggregation can
be applied to the results of previous aggregation. When aggregation begins, each output
from a leaf is sent to a single aggregation node. The aggregation is applied to all inputs
received at the node, and the node outputs the aggregated result. The outputs from
those nodes, if there are indeed multiple such nodes, are in turn aggregated. The final
aggregate result contains exactly one path to each leaf, so each computation output is

43

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

included exactly once, resulting in an explicit tree structure. Figure 4.2 shows how 16
leaf nodes can be placed in four different trees that only differ in their fan-ins.

(a) Fan-in = 2 (b) Fan-in = 4

(c) Fan-in = 16 (d) Fan-in = 2/8

Figure 4.2: Four aggregation trees with 16 leaves.

4.2.2 Function Requirements

We consider aggregation functions which take x = x1 . . . xm and output an aggregate
x1..m, i.e. x1..m = g (x). Functions must be able to handle any number of inputs in order
for the increased fan-in to be effective, as there is no advantage to having multiple inputs
available it they cannot be used.

Functions are cumulative, commutative, and associative. This essentially means inputs
may be aggregated in any order with any group of inputs, including those which are
outputs of non-root nodes of the tree. Definition 4.2, Definition 4.3, and Definition 4.4
capture the properties more precisely. Definitions require equivalency (≡), not necessarily
identical output. For example, if a system is supposed to output the single word with the

Token Meaning
n Number of computation/leaf nodes.
f () Initial computation function.
g () Aggregation function.
h () (Composed) function to compute and aggregate.
z Data formatted for input/computation.
x Data formatted for aggregation.
F Fan-in of the tree, making the height O(logF n).
g (x) The aggregation function for a set of inputs x.
gt (x) Returns the time taken for g (x) (with communication).
t Time per unit of data for linear gt (x); gt (∅) = 0.
x0 Output from one computation node.
R Ratio of the final aggregate output size to |x0|.
R1 Ratio of output sizes of individual levels.

Table 4.2: List of notation used.

44

4.2. Model

System Fan-in In-mem Aggregation types
MapReduce [DG08] Manually configurable By partition
Flink [Apa11] Manually configurable X By partition
Spark [Apa14] Manually configurable

or tree template by
height

X By partition or total
aggregation or add-only

semantics
ROME Adaptive or

self-adaptive
X Total aggregation

Table 4.3: System comparison.

maximum number of occurrences (word count) and two words are tied for that distinction,
either word may be returned.

Definition 4.2 (Cumulative Aggregation). g (g (x) , g (x′)) ≡ g (x, x′)

Definition 4.3 (Commutative Aggregation). g (x′, x) ≡ g (x, x′)

Definition 4.4 (Associative Aggregation). g (g (x, x′) , x′′) ≡ g (x, g (x′, x′′)) ≡ g (x, x′, x′′)

4.2.3 In Perspective

Before detailing how we optimize aggregation, we put it in the perspective of state-of-
the-art data analytics systems which can natively aggregate data (see Table 4.3).
Aggregation in many big data analytics frameworks follows the MapReduce [DG08]

approach, and map data to disjoint processing partitions. This aggregation by partition
model still inspires a significant portion of data analytics. It works well for problems like
word count where aggregation can be partitioned. We show this is inefficient for problems
such as top-k in Section 4.4.

For total aggregation jobs where all data must be compared (e.g ., top-k, sort), at least
transitively, to each other to find a global result, aggregation by partition must use only
a single partition. That is, users must either create a single reducer (fan-in of n) or
run iterations of the problem to prune data at the cost of remapping at each iteration.
While Flink [Apa11] addresses some issues with MapReduce (e.g ., processing in-memory
for lower latency), it still suffers from similar aggregation limitations. Aggregation by
partition and total aggregation are disjoint in the big data problem space, as shown in
Figure 4.3, even if the tools for one may be applied to the other.

Spark [Apa14] also uses an in-memory model. Additionally, it adds an extra aggregator
functionality to the MapReduce model, allowing aggregation to be distributed across mul-
tiple reducers. These aggregators require “add-only” semantics, which require monotonic
and non-transitive operators. This is insufficient for a wide range of problems like top-k
sorting, which rely on score comparisons across nodes to be transitive. Consequently, for

45

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

Big Data

Partitioned Data

Compute-Aggregate

Aggregation
By Partition

Total
Aggregation

Figure 4.3: Compute-aggregate and total aggregation in the data analytics prob-
lem space.

aggregation methods more complex than a monotonically increasing counter, Spark must
use its reduce operator, effectively limiting the deployment to a fan-in of n.

The treeReduce functionality (added 2015) in Spark enables user-specified aggregation
topologies, however with several drawbacks. Firstly, the topology in treeReduce is defined
by height rather than fan-in using a scale factor internally

scale := max(2, dpartitions1/heighte).

When a user calls treeReduce , Spark runs partial aggregation rounds a long as

remaining partitions > scale+ dremaining partitions/scalee

evaluates positively, and updates

remaining partitions := remaining partitions/scale

accordingly. As a consequence, the user sets only an upper bound of the total height of
the aggregation tree. Hence, Spark is forced to fit the aggregation overlay to the number
of partitions, workers, and given (max) height, which ignores the actual aggregation
function.

Secondly, Spark does not provide guidance on how to pick an appropriate value. Simply
setting height, i.e. the upper bound, to a very large value will cause Spark to build up
aggregation trees of maximum height, always enforcing a fan-in of 2. Informed users may
use our heuristics presented shortly based on the ratio R of final output to one input, and
the number n of nodes across which data is originally distributed, to manually determine
a height. However, one must recalculate the height when the application is deployed with
a different number of worker nodes or workload. Even then resulting overlays may be
skewed by the greedy hash partitioner Spark uses to form an aggregation tree based on
a rough fan-in derived from the provided height.

Clearly, manual calculation of an aggregation overlay requires that R and n are known
before the application is deployed which can be hard. Thus, the ability of ROME to

46

4.3. Optimizing Compute-Aggregate

Analysis (§ 4.3.2) Mapping (§ 4.3.4)Overlay (§ 4.3.3)

Balancing,
Colocation,

Root Node Bypass

Autodetection

R-ratio

Static Analysis

Aggregation Plan fan-in

Incremental
Aggregation

Execution (§ 4.4.4)

C
om

pute-Aggregate Task (§ 4.4.2)

Optimal  
Fan-In

Figure 4.4: ROME’s three-staged approach.

autodetect R, as we shall detail in Section 4.3.2, and use a properly determined topology
based on fan-in at execution time is a more applicable way and leads to lower job latency.

4.3 Optimizing Compute-Aggregate

While the aggregation function g() is fixed for a given problem, the overlay over which to
apply it is configurable. Our goal is thus to find an aggregation overlay yielding minimal
latency, using the set of available resource to its best. This section discusses our threefold
approach towards that goal.

4.3.1 Optimizing Overlays

To optimize aggregation overlays ROME applies a three-stage approach as shown in
Figure 4.4 to an aggregation job submitted by an application. In short:

1. The Analysis stage obtains relevant constraints for the job. This consists first and
foremost in the mentioned characteristic R-ratio between the aggregation function
output and a single input (see Table 4.2).

2. An Overlay stage uses R to determine the fan-in of a (nearly) optimal overlay tree
for an idealized setting.

3. A Mapping stage applies several heuristics to tailor such an overlay to the real-world
deployment constraints at hand; this includes catering for workload rebalancing,
trees with non-fractional height, limited resources of on-path aggregation nodes,
and strategic reuse of resources.

The job is then executed by ROME. In case the job was submitted through a data
analytics framework that ROME is integrated into, this execution happens in a concerted
manner with the framework as we shall elaborate on shortly.
Next we discuss the three phases in more detail.

47

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

4.3.2 Analysis Stage

The first stage is concerned with obtaining characteristic information from jobs that allow
the necessary aggregation to be optimized. Chiefly this consists in the R-ratio. Other
parameters used in later stages such as for incremental aggregation (see Figure 4.4) are
(currently) obtained explicitly as parameters of the job.

Static analysis. R-ratios are well-known for a number of aggregation scenarios such as
the ones presented in Table 4.1. ROME can thus perform a simple static analysis
of aggregation jobs passed to it to determine if they consist in/use any of these
functions directly. Depending on the integration of ROME into a larger framework,
that framework can share a map with ROME that outlines any of the framework’s
own known/pre-defined aggregation functions and their corresponding R-values
(or correspondences to ROME’s pre-defined ones). Simple embeddings of these
functions inside composite functions, e.g ., inside loops, allow for automatic inference
of R in a good number of cases.

Autodetecting R. The static inference of R from a complex aggregation function g ()

is not always possible. For the very same reason, one cannot automatically extract
or synthesize an aggregation function g () from a function f () naïvely applied to
an entire dataset, in order to allow for automatic breakdown of h () into compute
and aggregation functions f () and g () and corresponding distributed multi-phase
execution (see [Mor+09; LHM11]).

For these cases, ROME supports automatic runtime detection of R. ROME then
builds the first level of aggregation with a fan-in of 2. Once nodes at this level
complete their local aggregation, R is locally computed and sent to the controller,
which builds the heuristic tree for the average computed value of R and the n

2

results already computed. We use a fan-in of 2 for initiation as it allows estimating
R very quickly while also preserving as much aggregation as possible for the optimal
overlay calculated.

User-provided. To avoid autodetection of R and its overheads (or to bypass static
analysis), a user can always submit a job with an explicit value for R. As a matter
of fact, internally in ROME, a negative R value represents the absence of such
a pre-defined value. We will elaborate on this later in the context of the ROME
system and its API (see Section 4.4.2).

4.3.3 Overlay Stage

Our goal is thus to find an aggregation overlay with minimal latency for a given aggre-
gation function. Figure 4.2 shows four overlays created with different fan-ins, yielding
equivalent results for compute-aggregate tasks. Smaller fan-ins like that in Figure 4.2a
yield higher parallelism at the lowest levels. Figure 4.2c instead obtains all input at

48

4.3. Optimizing Compute-Aggregate

R Optimal fan-in ROME fan-in
R < 1 2 2
R = 1 e 3

1 < R < n min
(
n, (1− lognR)

− logR n
)

min
(
n, d(1− lognR)

− logR ne
)
, see Section 4.3.4

R ≥ n n n

Table 4.4: Optimal value for F to minimize the latency of a single input block,
and values ROME chooses.

the first level of aggregation. That level will thus take longer than a single level in
Figure 4.2a, but there are fewer levels to run. Consider the aggregation of occurrences
of words in a word count job. Each word is considered at each level. More branching
increases parallelism, but at the cost of redundancy at multiple levels. To determine the
best trade-off between parallelism and redundancy, we need to reason on the factors that
impact the latency when using an aggregation overlay.

Optimal Fan-In. The aggregation time at a level—composed of the time to receive
input from the level just beneath it and the time to create the output for the level—
depends on the size of the input, some set of partial results x. We use gt (x) to denote
the time required by g (x) to aggregate input of size |x|, including communication time.
Aggregation on the same level of the overlay happens in parallel, so only the time of a
single branch is modeled.
The optimal fan-in for an aggregation tree can intuitively be derived from the given

aggregation function g () deployed by considering two measures of function complex-
ity [Cul15]:

(a) a measure of space complexity in the form of the R-ratio

(b) the time complexity based on gt ()

The next section focuses on proving optimal values for R for minimizing aggregation time
in several scenarios of (b). However, somewhat skipping forward and maintaining the
bigger picture, these proofs will be based on an idealized setting in order to stay tractable.
We thus have to adapt these heuristics in several ways for application in ROME (see
Table 4.4).

Fractions. The first consideration removes fractional fan-ins. The equations in the
theoretical model assumes all variables are continuous; however aggregation must use
discrete inputs in real-world. Hence, in practice, a system as to round up (or down)
the fan-in F derived from the model, e.g ., considering the ceiling dF e. For instance,
applications such as top-k sorting on pre-partitioned data which output the same size as
one input, i.e. R = 1, use a fan-in of 3, whilst the theory would insist on a fan-in of e.

49

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

Values in the range 1 < R < n are likewise rounded to the smallest fan-in with the same
height as the suggested ideal. We round up because rounding down might increase the
height of the overlay.

Time Complexity. We also omit the time complexities of aggregation functions (sub-
linear, linear, or super-linear) given that these variables, while necessary for mathematical
rigor, do not sensibly impact the calculated fan-in for any of the scenarios with proven
optimal values; for unproven cases we observe that similarly the time complexity of
practical aggregation functions have no sensible effect in practice.

4.3.4 Mapping Stage

Further heuristics are required in practice to deal with a non-ideal setting, e.g ., to deal
with non-full trees, and to effectively map a conceptual overlay to an actual application
topology.

Balancing Mechanism. A theoretical model can easily assume that overlay trees are
perfectly balanced using continuous variables. This often requires fractional tree heights.
Applying fan-ins obtained after rounding blindly creates trees where some nodes have
more children than others; thus the coarse-grained heuristics usually result in unbalanced
trees which can be tuned further.

(a) Unbalanced overlay (b) Balanced overlay

Figure 4.5: The effect of the balancing mechanism.

(a) Logical overlay (b) Physical overlay

Figure 4.6: Reusing workers to reduce resources and latency.

Figure 4.5 shows a simple example of imbalance skewing performance. In Figure 4.5a,
the model chooses a fan-in of 4 and expects the height of the overlay to be log4 9 ≈ 1.58.
The actual height of the associated overlay is 2. There are also nodes with fewer than 4
children, creating a performance skew between branches. Figure 4.5b also has a height of

50

4.3. Optimizing Compute-Aggregate

2. However, the lowest level of the longest branch has a fan-in of 3 instead of 4. Because
the input size is reduced the corresponding node will run faster, and there is no increase
in height to offset this. Thus the latency of the slowest branch is decreased.

To analyze this more formally, let us consider an aggregation function g (x1 . . . xα). Let
c be the amount of time to process one input to the aggregation. If g (x1 . . . xα) is linear
on the size of its combined inputs, the latency of a single run of the function is simply c α.
For an unbalanced tree using a heuristic fan-in α, we model the branch with the highest
latency, i.e. with most input. This branch has ε levels using α, and (dlogα ne)− ε levels
with a fan-in of no more than α − 1. Consequently, a total time for the branch can be
estimated as follows:

ε∑
k=0

Rkcα+

dlogα ne−1∑
k=ε+1

Rkc (α− 1) .

Note that aggregation only makes sense for α ≥ 2, which implies this formulation holds
for R ≥ 1. When R > 1, the formulation simplifies to

c

(
α
Rε+1 − 1

R− 1
+ (α− 1)

(
Rdlogα ne −Rε+1

R− 1

))
.

Also, when R = 1, it simplifies to

c (ε+ 1 + dlogα (n)e (α− 1)) .

These equations are minimal when ε is minimized, i.e. when the entire path uses the
smaller fan-in.

As long as imbalance remains, we can apply this logic inductively to decrease the fan-in
of a node on whichever is the highest latency branch until there are no nodes which have a
different number of children than other nodes at the same height. This inductive process
creates as balanced an aggregation overlay as possible for a given height and number of
leaf nodes.
ROME thus implements an explicit balancing mechanism. The system first finds the

non-fractional height of a tree using the heuristic. For a heuristically determined fan-in α,
this is simply dlogα ne. By our inductive reasoning, ROME finds the smallest fan-in which
creates an overlay with the same height as the heuristic. Thus the balancing mechanism
uses the equation d log n/dlogα nee as the practical fan-in where α is the value returned
by the original heuristic. Observe that this only affects 1 ≤ R < n; there is no fan-in less
than 2, and any fan-in less than n results in greater tree height.

Colocation. Data-intensive aggregations can spend a significant amount of time just
sending serialized objects over the network. A natural heuristic for ROME is to colocate
distinct aggregation nodes which communicate with each other at the same worker as
long as this does not create resource contention. For example, consider the aggregation

51

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

tree with 4 leaves and fan-in of 2 in Figure 4.6a. Since aggregation at different levels
does not run concurrently, workers can host nodes along a single branch without resource
contention. Nodes of the same color can be harmlessly colocated on the same worker
machine. In addition to reducing the number of workers required for an overlay, using
RAM for intra-worker communication (dashed lines) instead of the network as for inter-
worker communications (solid lines) reduces communication latency. Figure 4.6b shows an
optimized physical overlay where boxes represent physical machines. Such optimization
reduces the communication time of each parent by a factor of F−1F .

Root Node Bypass. When ROME is integrated into a third-party system we can
improve latency by running the final aggregation in that system instead of in ROME.
The aggregation is the same, in fan-in and result, yet we save one overlay level and thus
networking.

Get

(a) Traditional overlay

Get Get

(b) Optimized overlay

Figure 4.7: Final aggregation in ROME vs a third-party system. Black nodes
produce data. Uncolored nodes are ROME workers. Gray nodes are third-party
system workers storing results.

Figure 4.7 shows an aggregation performed in this manner. The ROME nodes run
most of the aggregation. The results from the level beneath the root are sent to a
component of the third-party system which acts as the root of the overlay and completes
the aggregation. Note that in the case of R ≥ n, which means a fan-in of n, the ROME
workers are not used at all. In this case the overlay contains no ROME nodes, and the
entire aggregation is completed in the third-party system.

(a) Append-only update (b) Infrequent updates

Figure 4.8: Minimizing reaggregation. Gray nodes have new or updated data.
Black nodes perform (re-) aggregations. Results from boxed nodes are obtained
from caches.

52

4.4. ROME System

Incremental Computations. Many big data applications deal with dynamic datasets,
meaning that new partitions may be added, or existing partitions may have their data
changed. Aggregating from scratch upon changes in these cases is not necessary, and
highly inefficient. ROME thus allows users to specify two ways for efficiently handling
incremental data:

Append-only updates: Append-only data is the norm for some applications and filesys-
tems [GGL03; Shv+10]. In this case, new data is aggregated directly with the results
cached at the root of the original overlay. Figure 4.8a illustrates it. The new data
in the gray node is aggregated with the result from the unshaded nodes, stored
in the black node. This is no more work than the black node would have done
during reaggregation anyway, and the rest of the overlay is not needed, freeing up
resources and reducing latency. This refined approach can be naturally extended
to adding multiple new nodes at once, creating a new overlay where one leaf is the
old root node and other leaves compute the new incoming data.

Infrequent updates: In this scenario, some existing partitions of the dataset change
over time. In this case, the overlay will be kept alive by ROME after the final
aggregation, and partial results remain in an in-memory cache managed by each
worker. When a new version of a partition reaches a worker, only the aggregation
along the path to the root is rerun, since other results are unaffected. Figure 4.8b
shows an example where only a single partition (gray node) is changed: only black
nodes perform reaggregation.

Table 4.4 summarizes the parameters of the aggregation overlay ROME uses when
running with autodetection. Next we discuss optimality of these parameters.

4.4 ROME System

We present our ROME system for optimized compute-aggregate task processing leveraging
the heuristics presented in the previous sections. We focus on its architecture, API, fault
tolerance support, and integration into general-purpose data analytics frameworks.

4.4.1 System Architecture

Figure 4.9 shows the architecture of ROME, which is implemented 6K lines of Java code.
There are two core components inside ROME: (i) workers that are deployed on all nodes,
and (ii) a controller that coordinates workers. A full processing environment also requires
an invoker, a set of producers, and a consumer. These can be implemented inside ROME,
but will typically reside in a third-party framework. More precisely the complete set of
components/component types in ROME with their respective duties is as follows:

53

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

(5) result

(1) create
overlay

input

output

…
Leaf nodes (producers)

Root node (consumer)

ROME
workers

…

R
O

M
E

co
nt

ro
lle

r

setup

(3) send

(4) get

Fr
am

ew
or

k
M

an
ag

er
e.

g.
, S

pa
rk

 d
riv

er

Framework workers
e.g., Spark workers

Framework workers
e.g., Spark workers

ROME
Invoker

(2) reply auto-R

Figure 4.9: Architecture of ROME.

Workers: aggregate data received from other nodes and send the results to their parent
in the aggregation tree. If requested, results are stored inside an in-memory cache
to avoid repetitive aggregations.

Controller: directs the workers in creating and maintaining the overlay, tracks the status
of each worker, and repairs any active aggregation overlay and restarts aggregation
as needed if a worker leaves the system (or fails, see Section 4.4.3).

Invoker: a client which interacts with the ROME controller to initialize the overlay, and
relays relevant data between a third-party analytics system and ROME. This role
is typically played by the “job manager” of the former system.

Producers: feed the data into the leaf nodes of the aggregation overlay. The data may
be read directly from a local or distributed file system, but typically producers are
worker components of a third-party system.

Consumer: receives the final aggregation result. This role is typically played by a worker
of the third-party system.

interface Accumulator<T> extends Externalizable {
T get();
void add(List<Accumulator<T>> list);

}

Listing 4.1: Accumulator interface (public visibility).

54

4.4. ROME System

4.4.2 API

Because we assume aggregation is associative we need a standard interface to link up the
aggregating nodes. The Accumulator interface is shown in Listing 4.1. There are only
two necessary functions.

1. add() simply allows an input to be added or replaced. When a producer or worker
lower in the overlay calls add() the data is placed in the worker. If data already
exists for that child the existing data is replaced. If after the call there is data from
every child available aggregation at that worker begins.

2. get() retrieves the result. A communication manager on each worker thus fetches
(“get()s”) results from its node and sends them to its parent.

Each aggregation requires a separate Accumulator implementation. We implemented
several types of Accumulator s during our experimentation. Table 4.5 shows how little
implementation complexity they require. The entire implementation of an Accumulator
is often less than 100 lines of code.

Accumulator Description Lines of code R
MergeLists Merge sorted lists into a

list of all elements in
sorted order.

79 n

TopKSort Output a sorted list of the
k highest scoring elements

from sorted input.

71 1 on
pre-partitioned, ≥ 1
on arbitrary data

LCS Output longest substring,
which is contained in all

sequences.

62 (without
generalized suffix

tree)

< 1

WordCount Take mappings of
key 7→int and combine
the counts of same keys.

114 ≥ 1

SVM+SGD Iterative gradient descent
on mini-batches.

118 1

Table 4.5: Examples of Accumulator implementations.

Table 4.6 outlines our simple API, and Figure 4.9 shows where in the workflow the API
calls occur. An invoker calls initialize () with a list of nodes ROME can use for the
workers and controller. To start a new aggregation, the invoker calls the createOverlay ()
procedure (step 1 in Figure 4.9) with an ID to uniquely identify the overlay. This function
sends R and a number of leaf nodes to the controller. A flag specifies whether to enable
incremental computations (see Section 4.3.4). If there are not enough available nodes,
the controller returns an error; otherwise it sets up an overlay and replies (step 2) to
the invoker with a list of ROME workers where producers should send their data and
the worker which is the overlay root. The overlay is maintained until the invoker calls

55

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

releaseOverlay (). At that point workers drop their connections and release any cached
partial results.

A leaf node forwards its local compute results to the assigned ROME worker by calling
the send() procedure (step 3). Each ROME worker independently merges the received
Accumulators from its children and then sends the result to its parent in the aggregation
tree.
The node which receives the final result of the aggregation (the consumer) invokes

get() (step 4). When the aggregation is completed by the root, the result is returned
(step 5).

Note that to request autodetection of R, when calling createOverlay (), an invoker
simply specifies a negative R. Since ROME will not build the full aggregation tree, the
reply received by the invoker from the controller will contain an invalid root node. When
the consumer invokes get(), our framework transparently retrieves the actual root from
the controller to obtain the aggregation result.

Signature Action Return value
initialize (nodes) Setup –
createOverlay (id, R, n, flags) Overlay configured List of nodes to send

data and root node
send(id, Accumulator , node) Accumulator sent to node –
get(id, root) Get result from root Aggregation result
releaseOverlay (id) Overlay dissolved –

Table 4.6: Core ROME API.

4.4.3 Fault Tolerance

Our fault recovery strategy [Kle17] is similar to that of Spark [Zah+12]. We maintain
data from unaffected portions of the overlay and only recompute what was lost. For some
component recoveries, we rely on the fault tolerance mechanism of the third-party system
without hampering safety or liveness. Below we discuss the process for each component:

Controller: Zookeeper [Hun+10] can maintain the controller’s state and make it fault
tolerant. Heartbeats from workers can be rerouted with techniques similar as in
Heron [Kul+15] to further reduce load if scalability is an issue. In our deployments,
the controller load was low enough that this was not necessary.

Invoker: If a failure happens during createOverlay (), the controller aborts the overlay.
Otherwise, the new instance of the invoker can recover details about a previously
created overlay using the unique overlay identifier used in creation.

Producer: The responsibility for producers remains with the invoking system. If a pro-
ducer fails after calling send(), it is presumably restarted, and calls send() again.

56

4.4. ROME System

The second call is ignored unless the overlay is configured to accept incremental
changes. If so, the new send() is treated like new data and data is reaggregated
along that branch.

Consumer: Likewise the third-party system is responsible for recovering consumers.
Any consumer wishing to receive the aggregation result can invoke get(). This
can be done multiple times (it is idempotent) by different consumers as long as
releaseOverlay () has not been invoked.

Worker: Workers send heartbeat messages to the controller. They also notify the con-
troller if another worker is not responding to attempts to send data along the
overlay. Upon suspecting a worker failure, the controller creates a new worker at
an unused node. It also notifies the failed worker’s parent and children, and sends
them the address of the new worker. If a worker fails after it sends all its results to
its parent, the new worker (and its children) do not need to perform any additional
task for recovery. Otherwise, the children need to (re)send their results to the new
worker. Observe that if a child of a failed worker misses a portion of the result
in its memory, it needs to recursively ask for the corresponding portions from its
own children. ROME has no direct hooks into third-party systems. Thus in the
case of producers part of such a failure, ROME kills the processes at the end of the
associated branches. This forces them to restart and re-send() their data. If no
unused nodes are available, ROME returns an error to the invoker.

4.4.4 Integrating ROME

We designed ROME to be easy to integrate with popular more generic data analytics
systems. Developers should be able to accelerate their system when performing aggre-
gations with minimal implementation effort. In this section, we describe how we have
integrated ROME in Apache Spark [Apa14] 2.4 and Apache Flink [Apa11] 1.1. We chose
a more stable version of Flink in favor of some benchmarks, however, we adapted a recent
version of Spark to benefit from recent updates on treeReduce . For both systems, 5k
lines of Java code were needed for successful integration.

Spark. We extend Spark’s API with a reduceWithROME () operator. Besides the aggre-
gation function, the user can also provide the output to input ratio R. If R is unknown
to the user, a negative value can be passed in its stead.
As discussed in Section 4.4.2, aggregators in ROME implement the Accumulator in-

terface. Our class SparkAccumulator wraps the aggregation function provided by a user
and transparently reuses several utilities supplied by Spark (e.g ., serializers). To execute
reduceWithROME (), the following changes to Spark were also required: (i) during the
submission of a job using reduceWithROME (), the Spark driver invokes createOverlay ();
(ii) upon executing the job, each Spark worker wraps the local data and the aggregation
function into a SparkAccumulator and sends it to ROME; (iii) the Spark driver invokes

57

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

get() as many times as needed to get the partial results from ROME and then does the
final aggregation.

Flink. We implement a reduceWithROME () method to extend the ReduceFunction
interface. The method is parameterized by the ratio R. Again, a negative value can be
passed to indicate an unknown R. We also support a variant of ReduceFunction called
GroupReduceFunction , that runs an aggregation over an object list instead of a single
pair.
As with Spark, integrating ROME with Flink requires little effort. We provide a

FlinkAccumulator to wrap the ReduceFunction provided by the user and some Flink-
specific utilities. The following changes are also made to Flink: (i) the Flink job manager
calls the createOverlay () procedure if reduceWithROME () is used; (ii) each Flink worker
forwards a FlinkAccumulator object with the results of local computation on its data
partition to ROME using the send() procedure; (iii) the Flink worker elected by the job
manager for performing the final aggregation retrieves the partial results from ROME
via get().

4.5 Overlay Evaluation

First we evaluated the accuracy of our heuristics against one-size-fits-all overlays with
simulated workloads on m3.medium nodes started from a single image. All nodes were
provided on demand, so no network location or locality information was available. For
the overlay evaluation we measured aggregation latency in isolation from computation.
To that end aggregation was delayed until all leaves completed computation. The con-
troller then initiated aggregation and timed from that point until the root node reported
completion.

0 5 10 15 20 25 30 35
0

5

10

15

ROME

Spark/Flink

Aggregation tree fan-in

A
gg

re
ga

tio
n

tim
e

(s
)

Original Heuristic
Balanced Overlay

(a) Varying fan-ins, R = 1
n

0 5 10 15 20 25 30 35

6

8

10

ROME

Spark/Flink

Aggregation tree fan-in

A
gg

re
ga

tio
n

tim
e

(s
)

Original Heuristic
Balanced Overlay

(b) Varying fan-ins, R =
√
n

0 5 10 15 20 25 30 35

10

15

ROME

Spark/Flink

Aggregation tree fan-in

A
gg

re
ga

tio
n

tim
e

(s
)

Original Heuristic
Balanced Overlay

(c) Varying fan-ins, R = n

Figure 4.10: Overlay comparison for various values of R.

4.5.1 Varying Fan-in

Our first experiments verified our heuristics and balancing mechanism using 32 leaf nodes.
The compute phase generated a set number of random integers. Aggregators generated

58

4.5. Overlay Evaluation

a list of random numbers proportional to the size of their inputs and pruned the list as
necessary for multiple values of R. We show both balanced and naïve versions of the
heuristic. The overlays using the original heuristics assigned children to an aggregator
until the prescribed fan-in was met, then continued with the next node in a left-to-right
fashion. Our balanced overlays apply the balancing formula to the given fan-in to get a
fan-in which balances the overlay, then construct the appropriate overlay. This means
there were often large jumps in performance when the chosen fan-in crosses a threshold
changing the height of the overlay.

Figure 4.10 shows the average results from this experiment over 25 runs. We circle the
performance of two overlays in each graph to highlight the comparison of our performance
to the overlay of fan-in n commonly seen in practice. The second overlay is unavoidable
for total aggregation problems when aggregating by partition, such as with Spark without
treeReduce or Flink as described in Section 4.2.3.
For both R = 1

n (Figure 4.10a) and R = n (Figure 4.10c) ROME’s heuristics correctly
chose the fastest aggregation overlay. This is especially visible with R = 1

n as the fastest
overlay outperformed the slowest overlay of a single aggregation, used in frameworks
aggregating by partition, by 86%.
When R =

√
n (Figure 4.10b) there was an overlay outperforming our chosen one

by 6%. This very small difference happened in one overlay adjacent to the chosen one,
suggesting the heuristics are successful at finding a nearly optimal overlay.
The difference between the balanced and unbalanced overlays is most obvious in the

range of [7, 31], where the unbalanced overlays become significantly more skewed. In
this range all the unbalanced overlays diverged from the balanced ones. This is most
notable in the case of R = n, when the idealized model [Cul+15] monotonically decreases
because it allows fractional overlay height. Given that the trend increases in that range
in practice and that the balanced overlays thus outperformed the unbalanced ones we
can assert that our balancing mechanism effectively improves performance.

4.5.2 Append-only Updates

Next, we tested our append-only update technique by appending a single node to an
existing 25-node overlay. Figure 4.11a shows the difference between creating a new overlay
with 26 leaves vs aggregating the prior output with the new data.

Complete reaggregation took slightly longer than the original aggregation. Aggregating
the previous results with the new data was faster in all cases, although the amount of
savings depended on R, i.e. on the size of the output of the previous data. With R = 1

n ,
aggregating the prior output with the new data directly was 85% faster than using a new
overlay. With R = n the benefit was a 15% speed-up.
If the overlay was reused each time, the second approach would require time equal to

the original aggregation time plus the time to aggregate those new results with the data
from the new node. In all cases that combined time was greater than the cost of using a
new overlay. Thus it makes sense to use this approach only for append-only data.

59

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

R = 1
n

R = 1 R =
√
n R = n

0

20

40

60

A
gg

re
ga

tio
n

tim
e

(s
)

Original aggregation
Total reaggregation
Append to root

(a) Strategies for new data.

0 50 100 150 200
0

50

100

Elements in initial input/1000

A
gg

re
ga

tio
n

tim
e

(s
)

R = 1/n R = 1

R =
√
n R = n

(b) Varying input size.

0 5 10 15 20 25 30
0

20

40

60

n

A
gg

re
ga

tio
n

tim
e

(s
)

R = 1/n R = 1

R =
√
n R = n

(c) Varying leaf node #.

Figure 4.11: Aggregation latency when changing input data or number of leaf
nodes.

4.5.3 Input Size and Distribution

In order to fully understand the performance of ROME, we next considered the effects of
the number of leaf nodes and the input data size. These are environmental parameters
imposed by the user and problem, and are thus not configurable by ROME. Nonetheless,
both of course significantly affect performance. For each of the chosen values of R, we
varied the number of leaves n from 3 to 30 and, independently, the input size from 25000
elements per leaf to 200000.
Figure 4.11b shows the effect of changing the input size across 25 nodes using the

same R values as the earlier experiments. The final two points for R = n are omitted
as memory requirements at the root exceeded the available RAM, and latency increases
dramatically with disk accesses. With the exception of the omitted points, latency is
very predictably correlated with the input size.

Figure 4.11c shows how the number of leaves affects the latency, with the input size
per leaf remaining the same. Thus a cluster with 20 leaves is processing twice the total
amount of input data as a cluster of 10 leaves. Observe that smaller values of R, which
have smaller fan-ins and thus higher parallelism, are less sensitive to changes in the
number of nodes. The latency increased in a sublinear fashion relative to the number of
leaves, suggesting that the job should be parallelized to a larger degree when possible.
For R = n, the relationship is predictably linear. This is not surprising given that

all aggregation takes place at a single node, which means that we were increasing the
workload of a single machine by a factor equal to the change in fan-in.

4.6 Integrated Evaluation

In this section we evaluate compare performance of unmodified versions of Spark and
Flink to versions integrated with ROME. In the unmodified systems, each worker node
was placed on a separate AWS instance and used the whole available main memory.

In the case of Spark+ROME (respectively Flink+ROME), a ROME node is colocated
with a Spark (or Flink) worker node, and uses half of the instance’s memory. We differ-

60

4.6. Integrated Evaluation

16 Seq.
(Agg)

16 Seq.
(Comp-Agg)

1

2

3

4

N
or

m
al

iz
ed

Ti
m

e
Flink +ROME-auto +ROME-manual

Figure 4.12: LCS with Flink.

16 Seq.
(Comp-Agg)

32 Seq.
(Comp-Agg)

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

Ti
m

e

Spark +treeReduce(2)
+treeReduce(4) 16 Seq./(5) 32 Seq. +ROME-auto
+ROME-manual

Figure 4.13: LCS with Spark.

entiate between ROME-manual and ROME-auto. The first represents a user providing
the correct value of R, while the second represents a user providing a negative value,
meaning our system autodetects R with a single layer of aggregation (see Section 4.3.2).
Flink and Spark use a fixed fan-in of the number of worker nodes. We also compared

with Spark using treeReduce to specify tree depth. Since treeReduce uses a depth of 2
as default, but takes a user-provided depth as an upper bound, we show results for both
treeReduce with default depth and treeReduce (d) with d equivalent to the optimal (but
unbalanced) overlay of ROME.
We chose three experiments exploring behavior in different ranges of R. The first

experiment considers a longest common substring problem where R < 1. The second
experiment considers a top-k sort on not pre-partitioned data comprising two aggregation
phases, with n ≥ R ≥ 1 and R = 1 respectively. The third experiment runs an iterative
algorithm—a gradient descent with mini-batches with the goal of learning a classification
problem. Each iteration runs an aggregation phase with R = 1.
We run each experiment 10 times and report the average and standard deviations as

error bars.

4.6.1 Longest Common Substring

We ran the longest common substring (LCS) problem on a DNA dataset [The]. Worker
nodes were assigned unique DNA sequences from a section of the genome. Each worker
built an suffix tree containing all the substrings contained within its sequence. This data
structure was then compared with those from other workers to remove substrings which
are not contained in all sequences. Since the output size was smaller than the input, the
fan-in for ROME is 2.

Because of the amount of computing power and the memory requirement to aggregate
at a single node with Flink and Spark, we chose m3.2xlarge nodes on AWS, which have 8
virtual CPUs, 30GB of RAM, and 2 SSDs for permanent storage. Since the suffix trees
necessary for aggregation are about 700MB per sequence, Flink is unable to process the

61

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

results from 32 sequences, even with 30GB of RAM. We thus run Flink with 16 sequences,
but Spark with 16 and 32 sequences.
We run three variants of this test. The first, labeled “16 Seq. (Agg)”, reads the

precomputed data structures from disk. The time to read 700MB from an SSD is
minimal, so this essentially isolates the aggregation phase for sequences without needing
to modify Flink or Spark with a stopping mechanism between compute and aggregate
to synchronize a timer. The second test, “16 Seq. (Comp-Agg)”, represents the entire
compute-aggregate workload for 16 sequences including building the LCS structures
online from the DNA sequence. Similarly we have a “32 Seq. (Comp-Agg)” test which
runs the entire compute-aggregate job with 32 sequences on 32 nodes. The Comp-Agg
variants show how much effect the improvement on aggregation time has on the total job
latency. The times in Figure 4.12 and Figure 4.13 are all normalized to the time that
ROME-manual (fastest system) takes.
Figure 4.12 shows the results when running Flink. Flink+ROME improves latency

by a factor of 3.68 over Flink when reading the precomputed data structures (“16 Seq.
Agg”). Computing the 16 LCS structures online increases job latency, which lowers the
benefit of running Flink+ROME—a speedup of 2.42 over Flink when considering the
entire compute-aggregate workload for 16 sequences (“16 Seq. Comp-Agg”). We see that
if a user provides R to Flink+ROME brings almost no benefit over ROME to autodetect
R, since autodetection uses the optimal R anyway during the probing phase.

Figure 4.13 shows the LCS problem using Spark with 16 and 32 DNA sequences. The
32 Seq. (Comp-Agg) test taxes the standard Spark system. In part because the memory
requirement at the aggregating node is very close to the total allotment, the execution
takes 260% of the time of the comp-agg job on 16 sequences. The fastest configuration is
Spark+ROME when R is provided, reducing total time for the entire compute-workload
by a speedup of 21% and 80% over vanilla Spark when working on 16 and 32 sequences,
respectively. The overhead of automatically detecting R is less than 1%, simply because
autodetection runs the initial aggregation phase with the optimal R.
Using treeReduce for the 16 sequences with the manually calculated ideal height

(4) shows same performance as ROME when running with autodetection. However,
treeReduce becomes less efficient when running the problem of 32 sequences (using
optimal height 5), adding an overhead of almost 5% compared with ROME with au-
todetection. Spark treeReduce with the default configuration (height 2) shows similar
performance for the small problem of 16 sequences, but adds an penalty of 11% over
ROME with autodetection when running the problem of 32 sequences.
The sublinear relationship between latency and the number of machines matches the

earlier results and shows ideal overlays are more important as data sizes grow.

4.6.2 Top-k Sort

Next we analyzed Wikipedia page accesses [Wik] to find the top-k most visited pages.
We distributed 35.6GB of relevant data, part of a much larger dataset available for more

62

4.6. Integrated Evaluation

0.1% 0.2% 0.5%

1

1.5

2

2.5

k

N
or

m
al

iz
ed

Ti
m

e
Flink +ROME-auto +ROME-manual

Figure 4.14: Top-k with Flink.

3

3.2

N
or

m
al

iz
ed

Ti
m

e

0.1% 0.5% 1%

1

1.2

1.4

k

Spark +treeReduce(2) +treeReduce(5)
+ROME-auto +ROME-manual

Figure 4.15: Top-k with Spark.

expressive querying, across 32 i3.large workers. The benchmark calculated each page’s
score in a first aggregation phase (R-ratio s.t. n ≥ R ≥ 1). Then, in a second aggregation
phase each compute task found the k most visited pages in its partition. Aggregation
involved finding the k highest scoring pages from all those, so the R-ratio of the second
phase is 1. This benchmark stresses the R autodetection of ROME since ROME uses a
non-optimal temporary fan-in while running the first intermediate aggregation.
Figure 4.14 shows the completion time for 3 different values of k. We normalize the

values in this graph to the time Flink+ROME takes when R is provided to determine
the pages with the top k% most accessed pages. When k is 0.1%, autodetecting R adds
less than 3% overhead. Running vanilla Flink requires almost 2 times as long as running
Flink+ROME.

Increasing k to 0.2% minimally impacts the compute phase, but doubles the aggregation
load. As a result, the Flink vanilla deployment adds a slowdown of factor 2.3 compared
with Flink+ROME with manual configured R. Flink+ROME autodetection overhead
grows to 7%.

When we increase k to 0.5%, garbage collection comprises a third of the resulting run-
time for vanilla Flink. In contrast, garbage collection does not affect either Flink+ROME
setup despite the reduced RAM allocation to each workers. As a result ROME shows a
speedup of almost 2.7 over vanilla Flink, with only 9% overhead to autodetect R.
Figure 4.15 shows the Top-K sort problem when using Spark with different configura-

tions for k. Spark shows more efficient resource usage compared with Flink, so we run
the problem with larger values of k. We normalized the values in this graph to the time
ROME takes with manual configured R.

For the smallest k (0.1) all systems perform similarly (Spark vanilla adds a penalty of
4% over ROME), since the aggregation load is very small. Increasing k to 0.5% leads
to five times higher aggregation load, which unveils differences in performance. ROME
with autodetection adds 1.9% overhead compared with manual configuration of ROME,
but Spark vanilla needs 43% more time. With Spark’s default depth of 2 treeReduce is
11% slower than ROME; using treeReduce with the same depth as ROME is 6% slower.

63

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

When k was increased to 1% the aggregation overlay became even more important.
Autodetection of ROME adds 6% overhead compared with a manually configured ROME.
treeReduce with manually set optimal tree depth (same as ROME) adds 16%, whilst
default treeReduce adds 21%. Vanilla Spark took 3× more than ROME.

This experiment also showed a worst case scenario for ROME-auto during the first
experiment phase with n ≥ R ≥ 1. When R is autodetected there must be a level of
aggregation to learn R, adding overhead in this case.

4.6.3 Gradient Descent

Gradient descent (GD) is an iterative method for optimizing a differentiable objective
function, by updating the parameters of the function in the opposite direction of the
gradient of the function. GDs are widely used by many data-intensive machine learning
tasks including training of neural networks [Rec+11]. Mini-batch GD is a variant which
uses a small (randomly sampled) subset of the data to perform the GD update (instead
of the complete dataset in each iteration). Spark MLlib1 provides a GD implementation
supporting mini-batching. In each iteration, a mini-batch uses an aggregation task with
a treeAggregate overlay (used internally by treeReduce) for computing and summing
up the subgradients, hence an aggregation with R=1.

In this benchmark we trained a Support Vector Machine (SVM) using Spark’s MLlib
(SVMWithSGD) to perform binary classification. We used a 21.4 GB large data set from
KDD Cup 2012 [SIG], which holds feature vectors and corresponding classification; in
total 55 million binary features [Jua+16].

We compare Spark using the default implementation of MLlib’s SVMWithSGD (using
treeAggregate) and a modified version using ROME as an aggregation overlay using 32
i3.xlarge workers. The ROME aggregation function uses the same logic as the default
SVMWithSGD function, hence only 118 lines of code were changed for integrating the
ROME overlay (mostly accounting for wrapping/boilerplate code). We set the number of
iterations (from 1 to 100) used by SVM to learn and ignore earlier convergence, so that
all iterations run. Using ROME for aggregation does not change PR/ROC (quality) so
we focus again on total running time.

Figure 4.16 shows the time for varying number of iterations and Figure 4.17 the savings
of ROME over Spark. We normalized the values in this graph to the time ROME needs
for 1 iteration. When running a single iteration, Spark is 11% slower than ROME, even
though ROME needs to set up a larger aggregation overlay. With increasing number of
iterations, the advantage of ROME over Spark increases. At 10 iterations ROME runs
28% faster, at 20 iterations 40% faster, and at 100 iterations 50% faster than Spark. The
trend indicates higher savings with more iterations.

1 https://spark.apache.org/mllib/

64

https://spark.apache.org/mllib/

4.6. Integrated Evaluation

1 25 50 75 100
1
5

10

20

30

Iterations

N
or

m
al

iz
ed

Ti
m

e

Spark ROME-auto

Figure 4.16: Gradient descent
with Spark.

1 25 50 75 100
1

10

20

30

40

50

Iterations

S
av

in
gs

[%
]

ROME-auto

Figure 4.17: Gradient descent
time savings.

Table 4.7: Network optimizations. Average and standard deviation in seconds.

No colocation Colocation
No root bypass 166.4± 5.1 158.3± 3.5
Root bypass 160.5± 4.1 154.2± 2.6

4.6.4 Parent-child Colocation and Root Node Bypass

Our next tests were for the two location-based optimizations. Since both the root node
bypass and node colocation optimizations were targeted at reducing network latency by
decreasing the amount of traffic, we reran the top-k experiment with k = 1%. With its
slightly higher network component, this test was best suited to see small but significant
network latency savings. We reran the test using four configurations of Spark+ROME
– with and without root node bypass, with and without parent-child colocation (see
Table 4.7). The time taken with both mechanisms applied was 7.3% faster than when
neither was applied. Applying only colocation or root node bypass only saved 4.9% or
3.5% respectively. The combined savings was less than the sum of the two because we
could not colocate the final parent in the case of root bypass.

4.6.5 Fault Tolerance Overhead

This experiment used the top-k most visited pages of Wikipedia, and was run 31 times
[Kle17]. ROME used a fan-in of 3 (see Figure 4.18). We ran the experiment on i3.large
spot instances. Each of the 32 nodes contained a Spark worker and a ROME worker. The
controller node ran Spark’s cluster manager and ROME controller. We also deployed a
Spark driver on a separate instance.
We first evaluated the overhead of providing fault tolerance in ROME as shown in

Figure 4.19. This was the only experiment which ran ROME without fault tolerance.
Because this experiment was solely testing ROME internal functions we show only the
results with Spark. The mean execution time was around 44 seconds with and without

65

Chapter 4. ROME: A Middleware System for Optimized Aggregation Overlays

fault tolerance. The standard deviation was around 2 seconds for both cases. This shows
that ROME’s fault tolerance has negligible impact.
To evaluate the recovery time under failure, we put a tier two ROME worker node

along with its parent and one of its children on the same worker node, and crashed that
worker node at different stages of computation, and before the second tier node finished
its computation (black node in Figure 4.18). We observed that upon failure the latency
increased by 50%.

Figure 4.18: Failure affecting
multiple tree levels.

no
failures

injecting
failures

1

1.5

2

N
or

m
al

iz
ed

Ti
m

e

ROME-auto w/o FT
ROME-auto

Figure 4.19: ROME fault tolerance.

4.7 Conclusions

This chapter introduced an aggregation system with runtime resource scheduling for
use within data analytics frameworks or in isolation. We present ROME to construct
and maintain low latency aggregation overlays. ROME chooses an overlay based on the
ratio of aggregation output to one input—a ratio highly characteristic of performance
of distributed overlay-based aggregation—which we call R. Our targeted reuse of nodes
further decreases latency and resource requirements. We empirically show our overlays
are nearly, if not actually, optimal.

We propose that R is easy to find in most practical scenarios, at least to the granularity
of the ranges R < 1, R = 1, and R ≥ n identified by our heuristics. If such estimation is
not possible the user can inform our system to compute R on-the-fly via partial aggrega-
tion with low overhead: only by 9% in the worst case in our experiments.
We integrate ROME into Flink and Spark and validate the effects of the overlay in end-
to-end distributed data analytics with real world data and problems. ROME decreases
latency by a factor of up to 3 over unmodified systems that do not use tree overlays
for aggregation, and up to 21% and 16% over a Spark deployment using treeReduce
with default and manually tuned configurations, respectively. When running iterative
algorithms with many aggregation phases, ROME decreases total runtime, e.g ., by 50%
over the fastest Spark configuration after 100 iterations of gradient descent. These im-

66

4.7. Conclusions

provements are despite sharing the RAM allocation between ROME and Spark/Flink.
We demonstrated in this chapter that fitting the application to the resources at runtime
helps making distributed applications more efficient and flexible to fit to available deploy-
ment targets. ROME performs runtime adaption of an application’s aggregation plan to
fit available resources and actual workload characteristics, with the overall goal of lower
aggregation latency and higher resource efficiency. This enables aggregation systems to
leverage most of the set of available resources, instead being pre-configured for a specific
presumed resource setup. Using ROME makes big data aggregation system ready for
a dynamic data center environment, especially for cases where spare resources are not
always available.
In Chapter 6 and Chapter 7, we will discuss why runtime adaption of application to

available resources is essential, especially in the presence of INC resources. With the
example of INC data aggregation [Sap+17; Gra+16a; Mai+14], INC switches (required
for performing INC aggregation) may not be available for all jobs, hence an application
must react at runtime to the set of available resources. The next chapter discusses
the second scenario of application-level scheduling, the problem of traffic scheduling of
distributed service function chains.

67

5
STEAM: Distributed Runtime
Scheduling of Service Function

Chains

Chapter Outline
5.1 Overview . 70

5.2 Model and Problem . 75

5.3 Optimal Scheduling Policy . 77

5.4 Distributed Scheduling Policy . 83

5.5 Evaluation . 85

5.6 Conclusions . 92

This chapter discusses the second scenario of application-level scheduling, the prob-
lem of traffic scheduling of distributed service function chains, and introduces two so-
lutions called IA-MPP and STEAM, a throughput-optimal solution (IA-MPP) and a

69

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

distributed heuristic (STEAM), respectively. STEAM closely matches IA-MPP in terms
of throughput, and significantly outperforms (possible adaptations of) existing static or
coarse-grained dynamic solutions, requiring 30%-60% less server capacity for similar or
better service quality. This reduces the amount of resources in the network that need to
be allocated to provide a target quality of service guarantee for serving SFCs.
The solutions in this chapter are examples for rethinking a scheduling problem as a

runtime problem, to make the scheduling solution become independent of a priori infor-
mation. As we will show with this scenario, runtime scheduling solutions are likely to
perform more fine-grained scheduling decisions and are more easily capable to incorporate
actual demands and available resources.

With the exception of portions of Section 5.1 and Section 5.6, the contents of this
chapter are © 2020 IEEE. Reprinted, with permission, from Marcel Blöcher,
Ramin Khalili, Lin Wang, and Patrick Eugster. “Letting off STEAM: Distributed
Runtime Traffic Scheduling for Service Function Chaining”. In: Proceedings of the
39th Conference on Computer Communications (INFOCOM). IEEE, Aug. 2020,
pp. 824–833. doi: 10.1109/INFOCOM41043.2020.9155404 [Blö+20b].

5.1 Overview

The dynamic multi-service network architecture for 5G and beyond bears a demand
for SFCs provisioning mechanisms [Nat18; ZLZ19; Sat+18] that are capable of creating
SFC instances and scheduling traffic through them on the fly [Nat18]. This requires
making decisions on both (1) placement of service function instances (SFIs) and (2)
scheduling of traffic through them [HP15].
Most existing works focus on the placement problem (1), deciding where SFIs should

be deployed (e.g ., on which server) and how many resources (e.g ., CPU shares) should
be assigned to each of them [Coh+15; Add+15; Mar+15; Mij+15; Wan+16; Kuo+16].
Figure 5.1 shows how state-of-the-art solutions tackle the SFC resource provisioning
problem. These solutions perform chaining of service functions (SFs) in a mostly static
manner, where traffic is steered through deployed SFIs in the network with load-balancing
performed among them. Few dynamic solutions are discussed [QAS16; Era+17; Sat+18;
ZLZ19; Anw+15; Pal+15], in which the deployment of these SFIs and their resource as-
signments are periodically adapted to changes in network traffic and topology, as required
for future carrier networks. However, these solutions are still coarse-grained [Era+17]
(e.g ., based on peak hour interval traffic demand), where the adaptation takes seconds to
take effect [Pal+15], or cannot be applied in real-time due to its high complexity [ZLZ19]
and the involvement of disruptive SFIs migration [Era+17]. Therefore, these proposals
are not able to explore and exploit the resources that become available on the fly as
a result of real-time, sudden, changes in network traffic. Yet, as we shall show, such

70

https://doi.org/10.1109/INFOCOM41043.2020.9155404

5.1. Overview

Figure 5.1: SFC resource provisioning of state-of-the-art solutions.

a fine-grained approach based on per-packet scheduling is required for achieving high
resource utilization under high traffic dynamics.

Differently from previous work, IA-MPP and STEAM treat the SFC traffic scheduling
problem as a runtime scheduling problem, as shown in Figure 5.2. The goal is to
dynamically assign packets with specific processing requests, to active SFIs in the network.
We assume that SFIs are already deployed on servers using any of the existing algorithms
(see Section 5.1.2). However, these SFIs are not pre-assigned any resources or traffic.
Our goal is to select an appropriate SFI for each packet and to decide on the amount of
resources that should be assigned to each SFI at runtime.

5.1.1 Design Challenges

IA-MPP and STEAM face three design challenges, which we discuss in this chapter:

No a Priori Knowledge of Traffic Distribution. The major challenge is to quickly
react to dynamic traffic conditions, without any a priori knowledge of traffic distribution.
We characterize the SFC traffic scheduling problem with a stochastic model and show that
this problem can be reduced to the scheduling problem in an SPN [Wil16]. We propose the
IA-MPP for SFC scheduling, a derivation of MPP, which we show is throughput-optimal.
It is also asymptotically optimal for minimizing a cost function of buffer occupancy levels
in the network, providing approximate guarantees on latency. Importantly, IA-MPP and
STEAM require no a priori information about network traffic patterns.

71

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

Figure 5.2: Tackling the SFC resource provisioning problem as a runtime schedul-
ing problem.

Scheduling Without Global View of the System. In large SFC deployments, a
scheduler does not have access to a global view of the system (with up to date information
of all queues, buffers, and link and server load). Based on practical constraints in large
deployments, we present a novel distributed variant of IA-MPP called STEAM. With
STEAM, a scheduler instance is running at each SFC deployment site using only site-local
state, performing site local optimal scheduling. In order to consider the global view when
performing distributed scheduling in STEAM, STEAM has a component called SALVE
which helps to perform cooperative distributed scheduling. SALVE forwards traffic to
other sites before its local site gets overloaded.

Low Runtime Overhead for Packet-level Scheduling Decisions. The goal of IA-
MPP and STEAM is to perform packet-level scheduling decisions without adding signifi-
cant runtime latency overhead. A fine-grained approach based on per-packet scheduling
is required for achieving high resource utilization under high traffic dynamics. IA-MPP’s
scheduling logic acts on packet level granularity. Furthermore, we show that the time
complexity of IA-MPP is bounded by a linear term on the number of sites in the net-
work. Our practical system’s solution STEAM applies further optimizations, and provides
mechanisms to adapt scheduling granularity from single packet-level to batches of packets.
Beside our theoretical discussion of the runtime complexity, we present measurements
of our STEAM prototype which achieves 106 to 4 ∗ 106 scheduling decisions per second
(using 1 CPU core) when running in per-packet scheduling mode.

72

5.1. Overview

5.1.2 Related Work

In short, our work differs from all previous works related to virtualized network function
(VNF) placement/scheduling in one or more of following aspects: (1) We consider runtime
traffic scheduling without a priori knowledge of traffic distribution. (2) We target global
optimization as a distributed scheduling problem, assuming no complete view of the
system. (3) Scheduling decisions are made at packet-level vs. flow-level, making our
solution more adaptive to traffic dynamics.

Some recent works [Kul+17; Kat+18; Men+18; Kat+16a] consider optimizations and
scheduling at the level of a single server or CPU core. In particular, NFVnice is a
VNF framework for CPUs that aims for fair and efficient resource allocation of chains,
considering the impact of different VNFs on resource usage. Katsikas et al. [Kat+18]
propose an intertwined setup of network devices and servers, allowing to reduce inter-core
transfers of packets on the server and by this improving single-server VNFs throughput.
Meng et al. [Men+18] split an SFC into smaller semantically equivalent VNFs, enabling
reuse of parts of an SFC across others.

Many research efforts have recently targeted network-wide VNF scheduling, inside a
single data center or across multiple data centers. Nevertheless, most of them consider
centralized SFC/VNF scheduling, assuming a scheduler with global knowledge of the net-
work and often statistical information on traffic distribution. Mechtri et al. [MGZ16]
consider joint placement and scheduling of SFCs for infrastructures mapping to undi-
rected graphs, using a priori knowledge of the required static bandwidth of each network
flow. Similar problems are investigated by others [Coh+15; Add+15; Mar+15; Mij+15;
Wan+16; Kuo+16; Anw+15]. Assuming perfect knowledge about traffic volumes, these
placement/scheduling solutions can be applied only offline, or take decisions ahead of
flow arrival. Qu et al. [QAS16] consider dynamic flow demands, but allow a server to run
only one SF instance and a link to forward only traffic from one flow at a time. Eramo
et al. [Era+17] allow traffic to change while being processed, but still require knowledge
of flows’ nominal and maximum traffic volumes. Anwer et al. [Anw+15] use the input
and output traffic volume of all SFIs in the system to dynamically update the routing of
SFC.

Different optimization objectives have been considered for VNF placement and schedul-
ing [MK16; LRS18; Fei+18; Sat+18; Xia+19]. Marotta et al. [MK16] tackle energy-
efficiency in SFCs placement and scheduling, minimizing the number of involved switches
and servers. Caggiani et al. [LRS18] focus on internal switching of VNFs on a server
to reduce the total switching overhead of an SFC. However, networking cost (e.g ., la-
tency) is neglected. Fei et al. [Fei+18] consider demand prediction for VNFs, based on
which VNFs are scaled up by adding new instances and traffic is split among instances,
with the objective of minimizing prediction error and system configuration cost. Yikai
et al. [Xia+19] uses deep learning to reduce the cost of involved servers, but employs
coarse-grained scheduling per SF.

73

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

Some earlier work related to fair queuing is also relevant here. Bennet and Zhang [BZ97]
propose hierarchical fair queuing to provide network load balancing by scheduling packet
flows over available paths. The proposed solution requires a priori knowledge of each flow
type’s share of assigned resources and arrival rates. Stoica et al. [SSZ98] use predictions
of arrival rates of flow types to decide on the share of resources which should be assigned
to each flow type and the corresponding link that a packet should be scheduled over.
These solutions therefore fall into the same category as the other proposals mentioned
above. Besides, they do not consider any chaining of SFs.
The works most closely related to ours are those of (1) Bhamara et al. [Bha+17]

and (2) Satyam et al. [Sat+18]. (1) applies queuing models for servers and links in a
multi-cloud environment to minimize inter-cloud traffic and response time. (2) studies
VNF placement and CPU allocation for co-located VNFs in 5G networks to minimize
end-to-end traffic latency. Both (1) and (2) assume a priori knowledge of packet arrival
rates.

5.1.3 Contributions

In this chapter, we make the following contributions:

1. We introduce a model of SFC provisioning infrastructure based on the SFC RFC
7665 [HP15], and formulate the SFC runtime scheduling problem (Section 5.2).

2. We present a throughput-optimal solution called integer allocation maximum pressure
policy (IA-MPP). IA-MPP transforms the SFC runtime scheduling problem to the
scheduling problem in an SPN. The proposed solutions has linear time complex-
ity (in the number of sites), where schedulers have access to each other’s state
(Section 5.3).

3. We introduce a distributed heuristic called multi-site cooperative IA-MPP (STEAM),
where schedulers have access only to their local state and scheduling costs are amor-
tized over batches. For cooperative scheduling among sites, STEAM provides an
admission control policy called STEAM T-valve (SALVE), which helps to forward
traffic to other sites before a local site gets overloaded (Section 5.4).

We evaluate our solutions (Section 5.5) based on a discrete-event packet-level simulator,
showing that our solutions significantly outperform dynamic variants of existing solutions:
(i) STEAM reduces the required amount of resources by 30%-60% compared with the
baselines, while providing similar or even better service quality; (ii) STEAM’s scheduling
quality does not suffer from small batch sizes (≤ 64), making runtime scheduling feasible
in practice. Furthermore, we describe a prototype implementation of STEAM and show
the feasibility of running STEAM in real-time, achieving 106 to 4∗106 scheduling decisions
per second (1 CPU core).

74

5.2. Model and Problem

5.2 Model and Problem

In this section we introduce a comprehensive model for the runtime traffic scheduling
problem for SFC. We use calligraphic fonts for sets (e.g ., S), capital letters to refer to
members of a set (e.g ., S ∈ S), lower-case letters to refer to variables (e.g ., v), and letters
with arrows, such as ~z, to refer to vectors. For two vectors ~x, ~y of the same size, ~x× ~y
denotes the cross product of the vectors and ~x · ~y denotes their dot product. Table 5.1
summarizes major notation used.

5.2.1 System Model

Infrastructure. We consider an architecture similar to the one proposed in RFC
7665 [HP15]. Our network consists of geographically distributed sites, each of which
holds servers for running SFIs as depicted in Figure 5.3. Attached to each site is a set
of service function forwarders (SFFs), which are responsible for forwarding traffic within
their site and among sites. We model the network of SFFs across sites with a directed
graph G = (V, E), with V the set of SFFs and E the set of links interconnecting SFFs. For
any link E ∈ E , dE(l) denotes the l-th packet propagation latency, where {dE(l), l ≥ 1}
is assumed to be a sequence of i.i.d. random variables, with an average noted d̄E and a
finite variance. We thus consider that this propagation latency is time-varying. Moreover,
we assume that network planning, as discussed in [Cis; NN10] for different use cases, is
performed beforehand, as a result of which enough capacity is assigned to transmission
links among SFFs.

Symbol Description
V Set of SFFs in the network
d̄E Average network delay of link E ∈ E
S Set of servers
cS Processing capacity of server S ∈ S
F Set of SFs
µF Processing rate of SF F using one resource unit
I, IS Set of all SFIs and of those running on server S
wI Resource share of SFI I at a server
B Set of all buffers at all SFFs
~z Vector of buffer utilization levels
A Set of all activities for the corresponding SPN
H(t) Set of all feasible allocations at time t
R Input-output matrix of the network
θl, θh Thresholds used by SALVE
φb, φw,S Batch size and threshold of s ∈ S used by STEAM

Table 5.1: List of notation used for IA-MPP and STEAM.

75

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

3 SFs (F1: F2: F3:) SFF-SFI binding

SFF
1 SFF

2

SFF
3

S2 S3 S4 S5S1

Figure 5.3: Small scenario with two sites, three SFFs, five servers, and three SFs
with multiple SFIs of each.

Attached to each SFF, we have a set of servers each running SFIs. S denotes the set of
all servers in the system. Each server S ∈ S has a total processing capacity of cS (cS > 0),
and hosts at least one SFI. In addition, each SFI belongs to one of the SFFs at the same
site, which means that this respective SFF considers the SFI for scheduling purposes.
Servers and SFFs in a site are interconnected by a high-throughput low-latency network.
For the sake of tractability, our optimal solution (Section 5.3) assumes no latency and
bandwidth constraints for communication within a site. This assumption is relatively
realistic as modern data center networks can provide ultra-low latency and full bisection
bandwidth between any pair of servers [Gho+17; Han+17]. We relax the assumptions in
Section 5.4.

Service Function Instances (SFIs). An SF is a piece (type) of processing logic applied
to network packets, while an SFI is an instantiation of an SF deployed on a server. For
simplicity, we focus on stateless SFIs, where packets from the same flow can be scheduled
separately. (Stateful SFIs can be built on top of stateless SFIs using a distributed data
layer [Kab+17; ARI+18].) We denote by F the set of all SFs in the system. Multiple
SFIs of the same SF F ∈ F might be deployed in the network (see Figure 5.3 as an
example). We denote by I the set of all running SFIs of all SFs in the network and by
IS the set of SFIs running on server S.

We consider that SFIs are already deployed in the network, by using any of the solutions
proposed in the literature (e.g ., [Coh+15; Mar+15]; see also Section 5.1.2). Differently
from these studies, however, the SFIs are not pre-assigned any resources or traffic. The
scheduler dynamically decides where to send a packet and how many resources to assign
to each SFI. Without loss of generality [Har00; DL05; DL08; Kat+18], we assume that
all SFIs of the same type in the system have the same processing rate when given equal
resources. We denote by µF the processing rate of SF F ∈ F when provided one resource
unit. Thus, k · µF is the processing rate of an SFI of type F using k units of resources.
Moreover, we assume that the processing capacity of a server is shared among all co-
located SFIs according to some given policy. Under such a policy, an SFI I ∈ IS receives
a share of wI of the total capacity of server S ∈ S and the total capacity of the server
is constrained by enforcing

∑
I∈IS wI ≤ 1. Furthermore, we assume that each SFI holds

a local buffer to store incoming packets and applies non-preemptive execution of the

76

5.3. Optimal Scheduling Policy

corresponding SF. The assumptions indicated above are not restrictive, representing
many real-world use cases [LeB10].

Network Traffic. Each SFF V ∈ V runs a classifier and a scheduler and also behaves
as both ingress and egress for the network traffic. We assume that the network traffic is
composed of many flows originating from different users connected to the network. The
set of ingress and egress nodes of a flow, which are SFFs in V, is determined using the
source and destination addresses of the flow. We assume that there are buffers at each
SFF, which store incoming packets (new packets arriving to the site via this SFF, or
packets forwarded by other SFFs) before scheduling over the available resources.

Like in RFC 7665 [HP15], we assume that the classification of packets in the network
is known. This classification is performed at the ingress node of the flow and the classi-
fication information can be embedded in the header of each packet of the flow, e.g ., by
using network service headers (NSHs) [QEP18]. Each packet, after classification, will be
assigned an SFC that the packet has to go through. The packet header maintains the
processing stage of the packet, specifying by which SF in its SFC it is to be processed
next. An SFC in the system is specified by an ordered set of SFs that a flow packet should
be processed through, i.e. C = (F1, ..., Fk), F1, ..., Fk ∈ F , where k is the number of SFs
on the SFC. In addition, each SFC C is given a set of QoS metrics that the handling of
packets undergoing C has to conform to, which in our considered scenarios contains the
end-to-end delay. (F1, F2) ∈ C denotes that both F1 and F2 are part of C and that F1

precedes F2 in C. An SF in C can be handled by any of its corresponding SFIs deployed
in the network.

5.2.2 Problem Description

We now describe the SFC runtime traffic scheduling problem (in short, SFC schedul-
ing problem). A packet class defines a set of packets in the network (1) to which the
same SFC needs to be applied and (2) which are at the same processing stage within
that SFC. At each SFF, we maintain a set of buffers, each holding packets falling into a
same packet class. The SFC scheduling problem consists in deciding at runtime how to
assign packets from buffers to the corresponding SFIs and how to allocate the resources
to SFIs. For each packet, the end-to-end delay is the sum of the delays at SFFs, SFIs, and
propagation delays between SFFs. Our objective is to maximize the system’s processing
throughput, while constraining the average delay experienced by packets.

5.3 Optimal Scheduling Policy

We show that the SFC scheduling problem is reducible to the scheduling problem in
stochastic processing networks (SPNs) [Har00], and propose a scheduling policy achieving
the above objectives (Section 5.2.2) with SFFs accessing each other’s state.

77

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

5.3.1 Background on SPNs

SPNs are a general class of network models that have been used to characterize a wide
range of application fields [Wil16], including manufacturing systems and cross-training
of workers at a call center. The key elements of an SPN include a set of buffers, a set of
processors, and a set of activities. Each buffer holds jobs that await service. Each activity
takes job(s) from at least one of the buffers and requires at least one processor available
to process the job(s). A job departing after service from a buffer will next be routed to
another buffer, or leave the network, with probabilities depending on the activity taken.

5.3.2 Reducing SFC Scheduling to SPN Scheduling

With an ideal setting, the SFC scheduling problem can be reduced to a variant of the
scheduling problem in an SPN.

Buffer. According to our system model, each SFF in the network holds a number of
buffers which are used to store packets. All incoming packets of the same packet class
at an SFF are stored in the same buffer. We denote by B the total set of buffers in
the system. A packet’s class can be determined at an SFF by extracting information
encapsulated in the packet header. When an SFF receives a packet, it determines the
packet’s class and pushes it into the corresponding buffer. Packets in the same buffer are
processed in FIFO order.

Processor. Each server in our model corresponds to a processor in an SPN. Each server
can process packets belonging to the packet classes handled by its SFIs, regardless of its
location. As there can be multiple SFIs for the same SF, multiple servers can process
packets from the same buffer.

Activity. We define an activity as the processing of a packet from a buffer B ∈ B by
an eligible server, i.e. a server in S which contains an SFI of the required SF. The total
set of activities can be expressed by A = {B 7→ S | B ∈ B ∧ S ∈ SB}, where SB ⊆ S
is the set of eligible servers for packets in buffer B. B 7→ S denotes an activity which
processes packets from a buffer B over a server S. We denote by AB the set of activities
connected to buffer B and by AS the set of activities connected to server S. Associated
with each activity A ∈ A is a processing rate µA that determines the rate at which a
packet will be processed by this activity. The processing rate depends on the relation
of the server, buffer, and SFF. If the server and the buffer are under the control of the
same SFF, the processing rate is given by the service rate of the corresponding SFI, i.e.
µA = µF where F is the SF of the SFI; otherwise, the processing rate of the activity is
given by a function g(·) of the latency between the corresponding SFFs and the SFI’s
service rate, i.e. µA = g(µF , d̄E) where E is the link between the SFF holding the buffer
and the SFF controlling the SFI.

78

5.3. Optimal Scheduling Policy

Routing. Each packet from a buffer B, once being served by an activity A, changes its
packet class and gets injected into buffer B′ or leaves the network. We define by pABB′

the probability that a packet from buffer B is injected into buffer B′. Consequently,
1−∑B′∈B p

A
BB′ is the probability that the packet leaves the network. The packet’s class

transitions as its processing stage is advanced by one SF after being served by the activity.
In our model, pABB′ has a very simple form. If a buffer B holds packets at the last stage
within their SFC, then pABB′ = 0 for all B′ ∈ B. For any other B ∈ B, there always exists
one B′ ∈ B such that pABB′ = 1, else pABB′ = 0.

Example. To further clarify the above mappings, we take the example in Figure 5.3 and
consider two SFCs: C1 = (F1, F2, F3) and C2 = (F2). We have four packet classes: (1)
packets with SFC C1 at their first processing stage (to be processed by F1); (2) packets
with SFC C1 at their second stage (to be processed by F2); (3) packets with SFC C1

at their last stage (to be processed by F3); (4) packets with SFC C2 to be processed by
F2. As we have 3 SFFs, we would have a total of 12 buffers as depicted in Figure 5.4.
Activities A1, A2, and A3 connect buffer B1 to S1, S3, and S4, respectively. µA1 , the
processing rate of A1, is µF1 – the processing rate of SFI of type F1; µA2 = g(µF1 , d̄E1),
where E1 is the link between SFF1 and SFF2; and µA3 = g(µF1 , d̄E2), with E2 being
the link between SFF1 and SFF3. When a packet in buffer B1 is served by any of the
connected activities, it changes its class and is injected into the corresponding next buffer
– B2 if it is served by A1, B6 if served by A2, B10 if served by A3 etc.

Reduction to SPN. Knowing the topology of G, the set of servers S, the set of SFCs,
and the set of SFIs I, we can determine B, S, A, and pABB′ . In the ideal case, we assume
that at any time t, all schedulers in the network are aware of the state of all buffers, i.e.
the buffer utilization level which is given by ~z(t), a vector of size |B|, and also of the state
of every S ∈ S, qS(t) = {0, 1}, where qS(t) = 0 if S is idle, else 1. Our SFC scheduling
problem is then reducible to the SPN scheduling problem [DL08], aiming at designing
a control policy for the activities such that the SPN’s throughput is maximized, while
ensuring that all the buffers are stabilized.

5.3.3 Integer Allocation Maximum Pressure Policy (IA-MPP)

Dai and Lin [DL08] show that the optimal scheduling can be obtained for SPNs by
following the maximum pressure policy (MPP). We prove that a simplified version of
MPP, IA-MPP can be applied to the SFC scheduling problem. IA-MPP also achieves
optimality, but with much less computation than MPP.

The essential decision we have to make immediately is on the amount of resources
allocated to each of the activities at a server when it becomes idle. We denote by a vector
~h of size |A| an allocation. A feasible allocation has to satisfy 0 ≤ hA ≤ 1, A ∈ A. If an
activity performs at level hA, it consumes a fraction of hA resources of the corresponding

79

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

C2C1

Buffers

SFF
1

Activities

Processors

S2 S3 S4 S5S1

B1 B2 B3 B4

A1 A2 A3 A5A4

C2C1
B5 B6 B7 B8

C2C1
B9 B10 B11 B12

SFF
2

SFF
3

Figure 5.4: An SPN representation of the scenario in Figure 5.3 with two SFCs
C1 = (F1, F2, F3), C2 = (F2). Showing only A1-A5.

server. Note that
∑

A∈AS hA = 1, ∀S ∈ S. Let H(t) be the set of all feasible allocations
in the network at time t. For each buffer B ∈ B and each activity A ∈ A, we define

rBA =


µA A ∈ AB,
−µA A ∈ AB′ and pAB′B = 1,

0 otherwise.

(5.1)

R = (rBA) is called the input-output matrix of the network. It captures the average
processing rates of packets from buffer B consumed by activity A, as introduced in
[Har00]. Given a weight vector ~α of size |B|, we define by Φ~α(~h, ~z(t)) = (~α× ~z(t)) ·R~h

the network pressure at time t with parameter ~α under allocation ~h ∈ H(t) and buffer
utilization level ~z(t). MPP aims to maximize network pressure by picking suitable
allocations:

~h∗ ∈ argmax~h∈H(t)
Φ~α(~h, ~z(t)). (5.2)

Note that H(t) is bounded and convex. As Φ~α(~h, ~z(t)) is linear in ~h, the maximum of
Φ~α(~h, ~z(t)) will be achieved at one of the extreme points. We can prove that the existence
of an extreme allocation for maximum network pressure is ensured.

Lemma 5.1. For any buffer level ~z(t) (zB(t) ≥ 0,∀B ∈ B), there exists an extreme
allocation ~h∗ ∈ H(t) that maximizes the network pressure Φ(~h, ~z(t)) such that for each
constituent buffer B of ~h∗, the buffer level zB(t) is positive.

Proof. The network we consider is strict Leontief [BW03] as each activity is associated
with exactly one buffer. The lemma follows directly if we consider preemptive schedul-
ing [DL08]. With non-preemption, the lemma holds when the network is reversed Leontief.
This is (also) the case here as in our model each activity needs exactly one processor to
be active.

Lemma 5.2. The extreme allocation ~h∗ for maximum network pressure is an integer
allocation.

80

5.3. Optimal Scheduling Policy

Proof. An allocation A is called an integer allocation if it satisfies hA ∈ {0, 1},∀A ∈ A.
We assume that when the processor is idle, it takes on a dummy activity A0. Thus,

processor S will be able to take any of the activities in A0
S = A0∪AS . We now prove the

lemma by contradiction. Suppose we are given an extreme allocation ~h where ∃Ã ∈ A
such that hÃ ∈ (0, 1). Let S̃ be the processor that holds activity Ã. Note that activity
Ã requires only one processor due to the fact that our network is reversed Leontief.
For each A ∈ A0

S̃
, we define a new allocation ~h′(A) by modifying ~h in the following

way: We process A with hA = 1 at processor S̃ and keep the allocation on other servers
unchanged. It is easy to check that ~h′(A) is a feasible allocation.
It follows that

~h =
∑
A∈A0

S̃

hA~h
′(A),

where we set
hA0 = 1−

∑
A∈A0

S̃
,A 6=A0

hA.

Since ∑
A∈A0

S̃

hA = 1, Ã ∈ A0
S̃
, and hÃ < 1,

the summation contains at least two terms. As a result, ~h is a linear combination of at
least two feasible allocations and thus, it cannot be an extreme allocation, contradicting
the assumption. Hence any extreme allocation must be integer.

This shows that the allocation produced by MPP in our SFC scheduling problem never
splits the processing capacity of a processor. We thus refer to this version of MPP as
IA-MPP. This property gives us the following network stability result.

Theorem 5.1. The network operating under a non-preemptive IA-MPP can be stabilized
if ever possible.

Proof. To prove this, we first introduce an auxiliary linear program called static planning
problem defined by Harrison [Har00]:

min ρ s.t. R ~x = 0;
∑
A∈AS

xA ≤ ρ,∀S ∈ S;xA > 0,∀A ∈ A.

Here ~x is a column vector of size |A| representing the long-run fraction of time during
which each activity is used. The above problem indicates that the long-run input rate to
the buffer is equal to the long-run output rate from the buffer. According to Theorem 1
proposed in [DL05], the static planning problem has a feasible solution with ρ ≤ 1 if the
network is stable under some service policy. On the other hand, applying Theorem 9
of the same work [DL05], we can prove that the non-preemptive non-processor-splitting

81

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

IA-MPP can stabilize the network if the static planning problem has a feasible solution
with ρ ≤ 1 considering the fact that our network is reversed Leontief.

Corollary 5.1. For any ~α > 0, IA-MPP with parameter ~α is asymptotically optimal
with respect to network throughput.

Proof. Lemma 5.1 implies that our network model and assumptions satisfy the extreme-
allocation-available (EAA) condition. Combined with Theorem 5.1, IA-MPP with pa-
rameter ~α is asymptotically efficient according to Theorem 1 in [DL08].

Theorem 5.2. For any given ε > 0, there exists an IA-MPP ~h∗ that is asymptotically
optimal for a quadratic cost function of the buffer level ~z(t), i.e.

∑
B∈B αB(zB(t))2.

The proof of the above theorem follows from the fact that our network model and
assumptions satisfy Assumptions 1-4 in [DL08]. Thus, the same result on asymptotic
optimality of quadratic holding cost in Theorem 3 from [DL08] applies here. This result
basically provides a theoretical estimation of the buffer level and thus, implies a rough
guarantee on network latency since queuing latency is usually the dominant factor dur-
ing the entire packet processing. We will further validate end-to-end latency for packet
processing in the network in Section 5.5.

Following Lemma 5.2, IA-MPP can be simplified as follows. For any S ∈ S, and any
activity A ∈ AS , we define

ΦAS =
∑

B∈B αBrBAzB(t). (5.3)

If processor S is in idle state at time t, the scheduler selects

A∗ ∈ argmaxA∈ASΦAS (5.4)

to be served over the server. When more than one allocation attains the maximum, a
tie-breaking rule will be applied. Note that the solution space for Equation 5.4 is much
smaller than that for Equation 5.2, requiring much less computation as a consequence.

Lemma 5.3. The IA-MPP scheduler has a time complexity of O(|V|), with |V| the total
number of SFFs in the network.

Proof. To find optimal allocation, and for a given S ∈ S, we need to perform the
calculation in Equation 5.3 for all A ∈ AS and then apply Equation 5.4. Note that rBA
under the summation has nonzero values for only one or two B ∈ B (refer to Equation 5.1).
The calculation in Equation 5.3 can be reduced to summation of two terms, and hence has
O(1) complexity. The IA-MPP calculation thus has complexity of O(|B|) as |AS | ≤ |B|.
Furthermore, we have |B| = k|V| where k is the total number of packet classes which is
a constant for a given network.

82

5.4. Distributed Scheduling Policy

This lemma indicates that time complexity of IA-MPP scales with the number of SFFs,
which we expect to be much smaller than the number of servers or the number of SFIs.

5.4 Distributed Scheduling Policy

While scheduling optimally, IA-MPP assumes that schedulers can access each other’s
state. This can become problematic in distributed, multi-site, setups, when such accesses
cannot be synchronized instantly. In this section we thus propose a distributed variant
of IA-MPP which takes into account the constraints of a deployable scheduler, disabling
cross-scheduler accesses and considering link latencies for scheduling.

5.4.1 STEAM Overview

We now propose multi-site cooperative IA-MPP (STEAM), which is an adaptation of IA-
MPP to a distributed setting. In short, with STEAM, each SFF runs its own scheduler
using only site-local state, together with an admission control policy (ACP) module.
Furthermore scheduling is performed on batches.

Local State. We consider a multi-site setting where a scheduler instance running at
SFF V ∈ V has only site-local information: the state of (1) buffers at V (e.g ., buffer
occupancy levels), (2) SFIs of V (e.g ., workload), and (3) servers running these SFIs
(e.g ., busy or idle). Topological information (e.g ., where SFIs of other SFFs are running)
is static and thus pertains to global information known to all scheduler instances.

Admission Control Policy. For the distributed scheduling problem, an SFF decides
whether to serve a packet by an own local SFI, or by a remote SFI. This decision is
performed by an ACP module called STEAM T-valve (SALVE). If no SFI of the
required SF is available locally, the packet must be forwarded to another SFF. SALVE
balances load among SFFs by forwarding packets when local traffic load is too high.

To measure traffic load, SALVE estimates the arrival rates and the service rates for
each SF the SFF has SFIs for, using an exponentially weighted moving average estimator
with a fixed history length, taking also into account traffic bursts [Ali+14]. Using these
estimations, SALVE applies a threshold-based mechanism to decide whether to serve a
packet locally or by other SFFs. Specifically, we use a pair of thresholds θl ≤ θh. We
define the traffic load tl as the ratio of the rate estimator of the packets arriving, and the
rate estimator of the corresponding service rate. For each incoming packet, SALVE checks
the tl of the SF related to the packet’s next step and performs the following: if tl < θl,
the packet is processed locally; if θl ≤ tl ≤ θh, it is processed locally with probability
1− load−θl

θh−θl and forwarded to other SFFs otherwise; if tl > θh, it is forwarded to other SFFs.
Note that SALVE updates its arrival rate estimation only when handing off a packet
to STEAM. To prevent forwarding loops, SALVE keeps track of each packet’s detour

83

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

count, and drops a packet if this number is above a threshold. We thus use the TTL
header of NSH, which is intended for loop detection of SFCs and comes at no additional
cost [QEP18].

When SALVE decides to detour a packet, it applies a weighted round-robin mechanism
to choose among all SFFs which have at least one matching SFI to serve this packet.
We use the total processing capacity of each SFF’s servers (with matching SFIs) to set
the weights. Note that server capacities are static, hence SALVE calculates the weights
offline.

Scheduler. STEAM takes the scheduling logic from IA-MPP, but considers the network
to consist only of the buffers at the local SFF, local server state, and the activities
assigning these buffers to these servers. Whenever a local server is idle, STEAM decides
the next activity using a modified Equation 5.3:

ΦAS =
∑

B∈B αB r̂BAẑB(t). Here ~̂z(t) is the local buffer utilization level and R̂ = (r̂BA)

is the local input-output matrix, with values ~z(t) and R for buffers and activities that
are local and zero otherwise.

Batch Scheduling. IA-MPP schedules a packet over a server when the server is idle.
However, per-packet runtime scheduling may not fit well with large deployable systems
mainly for two reasons: (1) Per-packet runtime scheduling introduces a runtime overhead
for each packet, resulting in high system load at the SFF even if the scheduling logic is
lightweight. (2) Taking a server into account for scheduling only if the server is idle is
optimal in theory when link delays are negligible compared with processing delays at the
servers. This might however not always be the case in practice.
STEAM thus uses a packet threshold φw,S for each of its servers and applies batch

scheduling with batch size φb. The batch size φb specifies the (maximum) number of
packets STEAM sends over to a server at each scheduling round. More precisely, STEAM
uses for each of its servers S ∈ S a threshold φw,S equaling the number of packets the
fastest SFI of server S is able to process within the expected round-trip time (RTT)
between the server and the SFF. If there are less than φw,S packets on the way or queued
at a server, STEAM considers this server to be available for taking a scheduling decision,
sending up to φb packets from the selected buffer to this server.

Using φb and φw,S reduces the scheduling granularity to one decision per batch and also
reduce the effect of link delays. However, the larger the batches, the fewer possibilities
STEAM has for choosing the “best” scheduling decision. Section 5.5.5 investigates the
effects of choosing φb.
Note that with IA-MPP there is no need for a separate resource sharing policy at

the server since the share each SFI receives is inherently dictated by the scheduling
decision. When batch scheduling is enabled, we employ a round-robin policy at each

84

5.5. Evaluation

server. Since φw,S and φb are very small in general, the impact of such a round-robin
policy is considered negligible.

5.4.2 STEAM Deployment

While focusing on the theoretical design and concepts of STEAM, we consider practical
constraints of an implementation as well. Following Eiffel [Sae+19], which shows feasi-
bility of software packet schedulers running at high packet rates, we implement [Fai19]
our STEAM prototype as a software scheduler and show its feasibility in Section 5.5.5.
Besides using a software scheduler, we consider white-box switches [Nel+16] and servers
with SmartNICs [Fir+18] as possible deployment targets.

5.5 Evaluation

We conducted performance evaluation with large-scale simulations as well as a prototype
implementation. Our packet-level discrete event simulator (9K lines of Python code)
simulates scenarios in compliance with RFC 7665 [HP15], comprising the network topology
including link latencies, packet handling at SFFs, SFIs, and servers, the processing of the
SFIs running on servers, and the schedulers.

5.5.1 Algorithms Compared Against

We compare IA-MPP and STEAM with the following two variants of existing static or
coarse-grained dynamic algorithms.

OSPP: As a variant of [Sat+18; Fei+18], the offline static planning policy (OSPP)
performs offline planning ahead of traffic arrival, but applies runtime load balancing
to react to sudden traffic changes. Similarly to these solutions, if multiple SFIs of
the same SF are available, OSPP distributes the traffic using service rate of SFIs
as weights, while also considering latency between SFFs – favoring higher-capacity
SFIs closer to a packet’s egress.

SGHP: The second scheduler, shortened greedy heuristic policy (SGHP), adapts the
most recent existing heuristics SGH [Kuo+16] and SPH [ZLZ19] which do not
require any a priori information like arrival rate or resource demand of a request.
Upon receiving a packet, SGHP extends the routing path iteratively and selects the
next SFI among all possible site-local ones which is likely to provide the shortest
delay to serve the packet based on link latency and queue state information. If the
load of the local site is too high or if there is no matching local SFI, SGHP starts
forwarding to other sites using SALVE.

85

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

(a) Success rate over server capacity (b) Service quality over server capacity

(c) Required capacity over target success rate

Figure 5.5: Single site scenario, running centralized scheduling IA-MPP vs base-
lines. Varying server capacity cS to reach full success rate. cS normalized to
IA-MPP’s cS at 100% success rate.

5.5.2 Setup

Unless stated otherwise, STEAM uses θl = 0.1, θh = 1.3, φb = 1. We measure the
performance of the schedulers when running the servers at a certain capacity cs. Sweeping
cs allows to draw conclusions of how effectively the schedulers are able to leverage all
available processing power. All scenarios use link latencies following a Poisson distribution
with 700µs for SFI-SFF links and 3000µs for SFF-SFF links [Guo+15; Cog]. We repeat
each experiment with five different seeds.

Metrics. We study two performance metrics: Success rate is the ratio of successfully
served packets to the total number of arrivals. Service quality is one minus the total
latency (ingress-egress) of a packet normalized to the QoS deadline of its SFC, also called
“average response latency” [ZLZ19]. The higher the values for these metrics, the better
the solution.

86

5.5. Evaluation

Figure 5.6: From centralized to distributed scheduling, varying #sites. Normal-
ized to IA-MPP.

Workload. Unless stated otherwise, the experiments use a configuration as follows.
The flow arrivals are time-varying and bursty. We use a Markov modulated process
(MMP) [FM93] to simulate flow arrivals, which is a widely used model [Nee09; Wan+15;
Pac+11], with two states – “low” and “high”. λl and λh are the flow arrival rates in these
respective states, pl is the probability of transition from low to high state, and ph the
opposite. We use pl = 0.56, ph = 0.4, λh = 1/240µs, λl = 1/24µs. We consider the
packet arrival process within a flow to be random and independent from other flows,
following a Poisson distribution (λf = 1/800µs). Flow sizes are also random, following
a Poisson distribution (λs = 150µs). Each flow randomly selects an existing SFC and
a pair of ingress/egress SFFs. Each SFC has a QoS deadline, set as a function of the
service rates of involved SFs, which specifies the maximum allowed latency observed by
a packet (typically � 100ms). We consider the SFI processing rates to be similar to the
numbers reported for NFVs [Fei+18; Gha+15; Kab+17], in particular to values in the
range of 1s/82µs - 1s/200µs per resource unit (see Section 5.2).

5.5.3 Single-site Experiments

We first consider a single-site topology with 1 SFF, 36 servers, 5 SFs and 80 SFIs.
There are five SFCs: C1 = (F1, F2), C2 = (F1, F3, F5), C3 = (F2, F4), C4 = (F5), and
C5 = (F3, F4) with QoS deadlines {56, 100, 44.4, 28, 56.4}ms.
Figure 5.5 shows the results for IA-MPP and the two competing heuristics running a single
site, so all schedulers have access to all state, making comparison fair. We normalized
server capacities to the capacity required by IA-MPP to achieve full success. We observe
that IA-MPP outperforms the baselines, even in a non-distributed scenario. Specifically,
we observe from Figure 5.5a and Figure 5.5b that IA-MPP provides the best success rate
and quality of service, given a server capacity, while OSPP shows the worst performance.
Figure 5.5c depicts the required capacity to achieve success rates above 80%. To achieve 0
packet drops, an OSPP solution needs twice the capacity(!), and SGHP 25% more server

87

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

(a) Success rate over server capacity (b) Service quality over server capacity

(c) Required capacity over target success rate

Figure 5.7: 50 sites running distributed scheduling: STEAM vs baselines. Varying
server capacity cS to reach full success rate. cS normalized to STEAM’s cS at
100% success rate.

capacity. These results illustrate that using IA-MPP reduces required server capacity to
achieve a target success rate, while also providing better packet latency.

5.5.4 Multi-site Experiments

IA-MPP vs STEAM. First we study the effect of distributing the scheduling decisions
per SFF. We sweep the number of sites from 4 to 128 (and traffic load accordingly),
and use for each site the same configuration as in Section 5.5.3. Figure 5.6 compares
the required server capacity to reach 90% and 100% success rate running STEAM vs
IA-MPP. The values are normalized within each site to the capacity required by IA-MPP
to achieve full success. Note that each STEAM instance uses only site-local state. We
observe that the performance gap between STEAM and IA-MPP increases as we increase
the size of the network or the required success rate target. For smallest topology, the
two perform almost identically, but the gap increases to 40% when using a 32 times

88

5.5. Evaluation

Figure 5.8: 50 sites, varying #SFs, using cS within 50%-100% of STEAM’s cS
with full success.

larger topology, hence this gap grows slower compared with the topology size increase.
Nevertheless, STEAM shows great performance, considering the fact that IA-MPP runs
global optimization.

Performance at Scale. Next we consider a topology in the image of publicly available
information on data center locations of an Internet service provider (ISP) [Cog]. The
topology comprises 50 sites, each with one SFF and 6 to 12 servers. There are 10 SFs
in the network with a total of 1600 SFIs across all sites and 30 SFCs each with up to
four SFs. We compare STEAM with baseline solutions, all using only site-local state.
Figure 5.7 depicts the results. STEAM shows best performance, reaching full success
with 50 − 70% less server capacity. This is as STEAM, driven by our optimal solution,
tries to maximize the resource multiplexing in the network and hence can efficiently use
available resources. Furthermore, better service quality signals better packet latency with
STEAM.

Complexity Increases. Next we vary the number of SFs in order to make the scheduling
problem more challenging. The more SFs in the network, the more complex the problem
becomes for STEAM, hence scheduling decisions might be negatively affected. We use
again the ISP setup with 50 sites and set the number of total SFIs to 20 times the number
of SFs, and create 3 times as many SFCs as SFs available. Figure 5.8 shows the average
success rates when running servers at capacities between 50% to 100% of the capacity
level which STEAM needs to achieve full success. We see that STEAM’s gain in success
rate over baselines remains always above 20% - 35%.

Trace-driven Workload. In this experiment we use real-world trace files of a related
scenario capturing, end-to-end voice and video Skype calls with a total of 484 nodes [TNG].
We consider a topology of 10 sites, 5 SFs, 5 SFCs, 100 SFIs in total, and 4 servers per
site, so that each SFF receives the traffic from ∼ 48 Skype nodes. For each seed we

89

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

(a) Success rate over server capacity (b) Service quality over server capacity

(c) Required capacity over target success rate

Figure 5.9: Pcap workload: STEAM vs baselines. Varying server capacity cS to
reach full success rate. cS normalized to STEAM’s cS at 100% success rate.

take a 10min slice from the trace, which we consider to be a reasonable period between
two offline planning phases. We consider packets with same source and destination
addresses to belong to the same flow and apply the same SFC. Figure 5.9 shows similar
results as when running the MMP-based workload. STEAM shows best success rates
and service quality at all shown server capacities. Using STEAM reduces the amount of
server resources needed for full success by 30% - 70% compared with the baselines. These
results indicate that gains are not due to specific tuning of the traffic model, but hold
across different traffic patterns.

Batch Scheduling. Finally, we study the effect of batch size φb on STEAM’s perfor-
mance. Batch scheduling lowers time complexity, but might negatively affect overall
scheduling decisions. We study the trade-off. Figure 5.10 shows the required capacity to
achieve 90% and 100% success rate when varying φb of STEAM. Values are normalized
to the server capacity required when running STEAM with φb = 1 (no batching) and
reaching full success. Up to φb = 64, there is no significant drawback to batching. With

90

5.5. Evaluation

Figure 5.10: Performance effect on success rate of varying batch size running
STEAM.

φb of 128 or 256, 90% target success rate requires slightly more server capacity; to reach
full success, we require 50% - 60% more server capacity. Next we show how batching
makes runtime scheduling feasible.

5.5.5 Prototype

As described in Section 5.4.2, we have implemented a prototype of STEAM based on
DPDK1, including the NSH protocol [QEP18] to check feasibility running on a standard
server with varying bucket sizes φb. We use two servers (each 2× E5-2630, 128GB

memory, Intel X520-2 10G SFP+; Linux 4.15.0-48-generic; DPDK 18.11.1) connected via
a switch. One of the servers runs our packet generator (a FastClick [BSM15] module),
and the other runs STEAM. STEAM uses one core for receiving packets and running
SALVE (we set θl = θh = ∞, to force all packets going to STEAM), and one core for
running STEAM’s scheduler sending packets back to the packet generator (intentionally
to the SFIs). For each SFF buffer we use a DPDK ring buffer of up to 2048 packets. The
system uses 16 hugepages of 1GB each, shared among the ring buffers. Note that we
did not configure special optimizations, e.g ., distributing the buffers across multiple Rx
cores.
We run experiments with packets of size 64B and 128B, which corresponds to packet

rates of ∼ 14.88 ∗ 106/s and ∼ 8.45 ∗ 106/s, respectively. The packet generator sends
packets at line rate to STEAM and receives packets from STEAM after each scheduling
decision. We report the rate at which the traffic generator receives packets from STEAM.
To test the effect of scheduling complexity, we run the experiments with 4 and 16 SFIs
per server. Figure 5.11 shows the packet rate STEAM can uphold, v.s. the (theoretical)
hardware limit of the NIC (red). STEAM reaches almost line rate starting from a batch
size of 8, which translates to 2 ∗ 106/s up to 3.8 ∗ 106/s scheduling decisions combined

1 https://www.dpdk.org

91

https://www.dpdk.org

Chapter 5. STEAM: Distributed Runtime Scheduling of Service Function Chains

(a) Goodput at 64B packets workload (b) Goodput at 128B packets workload

Figure 5.11: STEAM prototype scheduling performance; varying φb.

with batching, STEAM hits almost 15 ∗ 106/s packets. For packets of size 64B, we do
not hit the NIC limit, as we did not apply all possible micro-optimizations.

5.6 Conclusions

This chapter introduced a queuing-based system model to characterize the runtime traffic
scheduling problem for service function chaining. We presented a throughput-optimal
scheduling policy, called IA-MPP. IA-MPP transforms the SFC traffic scheduling prob-
lem to an SPN and follows the MPP. When using IA-MPP, no a priori knowledge of
traffic distribution is required, which enables fast response to sudden traffic changes. We
demonstrated the benefits of IA-MPP over state-of-the-art solutions, especially the ad-
vantages of performing scheduling decisions with packet-level granularity. Using IA-MPP
reduces required server capacity to achieve a target success rate while also providing
better packet latency compared with state-of-the-art approaches. However, IA-MPP is a
solution that performs global optimization with considering runtime state information of
all sites.
We further extended IA-MPP and presented STEAM, a distributed runtime SFC

scheduling policy. STEAM inherits the scheduling properties of IA-MPP with respect to
local site scheduling, but performs cooperative scheduling among all sites in the system.
This makes STEAM independent of global runtime state information of all sites, enabling
STEAM deployments of large-scale. We demonstrated the small performance gap of
STEAM compared with IA-MPP by running a scale out benchmark with the goal of
pedantically 0 packet drops. When increasing the size of the network in the benchmarks
by a factor of 32, STEAM requires only 40% more server capacity compared with the
global optimum solution of IA-MPP, to achieve 0 packet drops.
STEAM provides mechanisms to vary the scheduling granularity from packet-level to

batches of packets, and applies further optimizations to reach the goal of low runtime

92

5.6. Conclusions

overhead for scheduling decisions. We presented measurements of our STEAM prototype
implementation which achieves 106 to 4∗106 scheduling decisions per second (with 1 CPU
core) when running in per-packet scheduling mode. We demonstrated in this chapter
that runtime scheduling of SFC traffic is superior to existing, static or coarse-grained
dynamic solutions, which shows the benefit of runtime scheduling solutions that leverage
runtime environment information.

93

Part III

Infrastructure-Level
Resource Scheduling

This part focuses on the infrastructure level and presents two alternative solutions to
the INC resource scheduling problem for data center resource managers.

Chapter 6 starts with our solution IncSched, which extends existing resource managers
to be compatible with INC. IncSched acts as a mediator between the users submitting
resource requests, and the plugged scheduler, whereas all INC related logic is handled by
IncSched.
Finally, Chapter 7 presents HIRE, a new resource manager for joint server and INC

resource management. HIRE extends the introduced concepts of IncSched and presents
a new scheduling logic for holistic server and INC scheduling. These advances make
HIRE more successful in delivering INC resources to requesting jobs.

95

6
IncSched: Towards Cluster Resource

Scheduling with INC Support

Chapter Outline
6.1 Overview . 98

6.2 INC Challenges and Key Insights . 103

6.3 IncSched Architecture . 105

6.4 Case Studies . 108

6.5 Conclusions . 114

This chapter introduces IncSched, a resource management framework for INC-aware
Scheduling. IncSched introduces a novel flexible resource model to address heterogeneity,
dependencies, and alternatives specific to the INC scheduling problem. We discuss
how IncSched can be easily used to plug in existing scheduling policies making them
applicable for INC resource scheduling. This democratizes the use of INC switches in
data center applications.

97

Chapter 6. IncSched: Towards Cluster Resource Scheduling with INC Support

Portions of this chapter, most dominantly Section 6.1.1, Section 6.1.2, and Sec-
tion 6.2 are © 2021 ACM. Reprinted, with permission, fromMarcel Blöcher, Lin
Wang, Patrick Eugster, and Max Schmidt. “Switches for HIRE: Resource Schedul-
ing for Data Center In-Network Computing”. In: Proceedings of the 26th Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 2021, pp. 268–285. doi: 10.1145/3445814.3446760 [Blö+21].

6.1 Overview

Over the past decades data center network devices have become increasingly programmable
(see Chapter 3). Originally targeting the prototyping and deployment of more flexible
and novel network(-wide) services and protocols (e.g ., routing), this trend has been more
recently exploited for benefiting more specific services and applications. By supporting
specific computations through primitives [PN19] “in the network” on the path between
data sources and sinks, distributed systems concerns like agreement [Jin+18; Dan+15]
or caching [Liu+17; Jin+17] and even high-level application functionality like machine
learning [Sap+19; XZ19] can be dealt with in a much accelerated fashion. This trend has
ushered in a new era of INC.
As outlined in Chapter 2 and in the following sections, resource management for

shared data center INC is missing. IncSched closes this gap with the overarching goal
of democratizing the use of switches for INC in a multitenant data center. As its core,
IncSched introduces a novel resource model that enables users to submit jobs with server
and INC resources, by referring to a data center wide INC store that shows available
INC services. A submitted job may contain multiple variants (resource alternatives),
for which the user specifies constraints on how these variants can be considered. Inc-
Sched translates the submitted jobs to resource requests that can be handled by existing
scheduling policies, hiding all INC specific configuration and deployment details. For this
purpose, IncSched keeps tracks of all data center resources and provides a set of APIs
to ease server and INC scheduling for the plugged scheduling policy.

6.1.1 Design Challenges

IncSched faces three design challenges, which we discuss in this chapter:

Democratize INC in a Multitenant Cluster. If INC is to establish itself as a
paradigm, it is to be expected that INC-enabled applications, or even just several users
of such applications, will compete over resources on network devices, which are clearly
limited in clusters. Existing works focus mostly on isolated scenarios, where network
devices are instrumented for benefiting a single application, and evaluations focus on
workloads for that application. Some attempts have been made on multiplexing different

98

https://doi.org/10.1145/3445814.3446760

6.1. Overview

INC primitives, but the results are limited to a single network device [ZBH18; HM16;
Zha+19; Wan+20]. Considering that an INC primitive usually consists of multiple
components (e.g ., NetChain [Jin+18] involves a chain of switches) to be deployed on
several network devices, there is still a big gap between single-device and network-wide
multitenancy.

Existing INC applications typically rely on the network controller for both coordinating
the use of INC resources and configuring switches for INC primitives [Jin+18; Liu+17].
We argue that this practice violates the general “single-responsibility principle” [Mar02]
and the network controller should stay agnostic to the logic of the INC-enabled applica-
tions including their resource demands.
IncSched resolves this issue and consolidates resource management of servers and

INC, but leaves INC specific configuration details to the network controller. IncSched
democratizes data center INC resources by an analysis of the differences of scheduling
INC/server tasks and resources, which builds the foundation for the design of IncSched.
For this purpose, IncSched introduces a new resource model, that allows to express
server and INC resource demands within a single job request. Furthermore, in order
to handle the matching dilemma of request and available resources, the new resource
model supports to specify resource alternative, hence IncSched delegates the alternative
selection to the plugged scheduling logic.

Match INC Resources. INC does not fit to the generic resource container abstraction
running on servers. As modern clusters already run resource managers for allocating server
resources [Bur+16], a natural idea is to treat INC switches as additional resource type(s)
and let the resource manager deal with their allocation. This handover of responsibility
brings clear benefits as resource managers typically already have a global view of server
resources, thus enabling holistic decisions for joint server and INC resource allocation
supporting properties like data locality and load balancing.

However, management of server resources in clusters without taking into account INC
is already a non-trivial problem which has been investigated by many works over the
past years [Gog+16; Cur+14; Isa+09; Tum+16; Bou+14; Ous+13; Ver+15; Del+18],
some also involving GPUs and other accelerators [Gu+19; Mah+20; Pen+18; Xia+18;
Cha+20] (see Chapter 2). Throwing INC resources into the mix adds new challenges
and significantly exacerbates existing ones. This raises the question for an appropriate
resource model that encodes all INC specific properties.

IncSched introduces the concept of INC templates with an INC template store, which
encapsulates the logic of INC primitives. Users submit jobs by composing INC templates
with server resources. This approach hides the complex resource sharing constraints of
INC tasks, and gives the user a perspective of isolated compute containers.

Enable Existing Data Center Schedulers for INC. Unfortunately, developing and
testing new data center schedulers (and policies) from scratch is non-trivial. This raises

99

Chapter 6. IncSched: Towards Cluster Resource Scheduling with INC Support

the question how to adapt existing data centers schedulers to make them ready for INC
resource scheduling.
Existing data center schedulers often provide interfaces for customization, allowing

the data center operator to fit a scheduler to its personal preferences. Most domi-
nantly, typical schedulers enable data center resource sharing among multiple frameworks
by framework-level customizations [Vav+13; Sch+13; Hin+11], or even supporting cus-
tomized sub-cluster scheduling policies [Cur+19]. However, exiting schedulers have in
common the generic resource abstraction of compute containers running on servers (op-
tionally with feature flags like GPU accelerators). Throwing INC into the scheduling
responsibility challenges the schedulers, and raises the question how existing scheduling
solutions can be made aware of INC resource scheduling.
IncSched acts as a mediator between the users, who submit jobs by using our new

resources model (INC templates with an INC template store), and the plugged scheduling
logic of existing resource management frameworks. For this purpose, IncSched internally
creates as many (partially overlapping) sub groups of resource nodes as required, in order
to encode compatibility constraints of INC and server tasks, but hiding the resource
complexity for the plugged scheduler. The plugged schedulers use the provided API to
retrieve a list of potential resources nodes (servers or switches) for a specific pending task.
This encapsulates all interdependencies of server and INC resources within IncSched.

6.1.2 Related Work

Since Chapter 7 builds on this chapter, we discuss in the following related work relevant
for Chapter 6 and Chapter 7. Related works mainly fall into following categories:

Individual INC Services. As mentioned, many individual INC services have been pro-
posed for facilitating networking [Kim+16; Bas+20; Li+19] and other [Jin+18; Jin+17;
Liu+19; Yu+20] tasks leveraging the high performance and programmability of network
appliances. However, all these efforts focus on single use cases, leaving aside the prob-
lem of coordinating usage of potentially scarce and heterogeneous resources on network
appliances among multiple INC scenarios, applications, and users.

Multitenancy for Network Appliances. Some recent works [HM16; Wan+20] have
explored the potential of enabling multitenancy support on a single network appliance,
e.g ., a P4 [Bos+14] switch or a smart network interface controller. However, such efforts
are limited to device-level sharing, i.e., co-locating multiple INC services on the same
network appliance. None of them have considered how to coordinate the use of INC
resources on network appliances at a network-global level.

Data Center Resource Models. As discussed in Section 2.3, existing data center
resource managers focus mainly on server resources (e.g ., CPU, memory). Very few also
consider bandwidth reservations between servers [JS14]. These approaches use either

100

6.1. Overview

a simple list of requested VM resources, or a more complex request model based on,
e.g ., VCs, VOCs, TAGs, or virtual data centers. All these resource models focus on
server resources and bandwidth demands between a group of VMs. As seen in Chap-
ter 2, an resource manager for INC needs to manage not only server resources, but also
INC resources, making these models unsuitable. Harmony [Ben19] discusses early ideas
to extend the TAG [Bal+11] to encode relative placement constraints of switches to
pre-allocated servers. However, Harmony does not consider resource alternatives and
automatic translation of topologies and resource demands as IncSched and HIRE do.

Data Center Resource Management. While various aspects of data center resource
management have been explored over the last years (centralized vs. distributed, or
prediction-based vs. runtime-agnostic) [JS14], none of the existing approaches tackle
the problem of resource management for application requests including INC. The major-
ity of resource management frameworks focus on the scheduler architecture of server-local
resource management [Sch+13; Hin+11; Del+15; Ver+15; Vav+13; Cur+19; Wan+19].
Others focus on scheduling policy design [Gho+11; Ous+13; Del+18; ZWY19; Gra+16c;
Tum+16; Gra+16b]. Quincy [Isa+09], Firmament [Gog+16], and Aladdin [Wu+19b] use
a network flow model for considering data locality of jobs, which allows to consider shared
resources of consecutive jobs. HyperSched focuses on machine learning training workloads
and enables the automatic exploration of the optimal tradeoff between hyper-parameter
configurations and training deadline guarantees [Lia+19]. Decima proposes to use rein-
forcement learning to generate scheduling decisions from experience [Mao+19]. Besides
server-local resources, some approaches consider the scheduling task as a virtual network
embedding problem with the goal of providing bandwidth guarantees [Fue+18; Bal+11;
Lee+13; Guo+10] between the servers of a job. However, no approach considers the
requirements laid out in Section 6.2 and Section 7.2 for INC-aware resource management.

GPU scheduling. With widespread adoption of GPUs for accelerating deep learning,
a variety of domain-specific schedulers for GPU clusters have been proposed [Zha+17b;
Mah+20; Xia+18; Jeo+19; Gu+19; Pen+18; Pen+19]. These intend to replace general-
purpose cluster schedulers by exploiting characteristics of deep learning workloads. In
response to the challenge of gang scheduling and tradeoff between locality and GPU
utilization, several techniques including trading of locality for waiting time and migrating
jobs have been developed [Jeo+19]. Gandiva employs time-slicing and job migration/-
packing on GPUs for more fine-grained scheduling [Xia+18]. Allox discusses the task
scheduling problem when CPU and GPU resources are interchangeable [Le+20]. INC
scheduling is yet more complex due to high heterogeneity, fine-grained locality, and
on-device resource sharing.
So far, the network is beyond the scope of most existing resource management frame-

works, except for virtual network embedding algorithms specifically used for network
bandwidth reservations [Bal+11; Guo+10; Pop+12; Xie+12]. In particular, popular clus-

101

Chapter 6. IncSched: Towards Cluster Resource Scheduling with INC Support

ter resource managers [Vav+13; Bur+16; Cur+19] are completely agnostic to the status
of the network managed by a separate entity – the network controller, thus being unlikely
to support INC resources directly.

All these resource models focus on server resources and bandwidth demands between
a group of VMs. As we will seen in Section 6.2, an resource management framework for
INC needs to manage not only server resources, but also INC resources, making these
models unsuitable. In short, our work differs from all previous related work to data
center resource scheduling, that IncSched is the first-of-its-kind INC-aware resource
management framework, with the first resource model that captures both INC and server
resources.

6.1.3 Contributions

In this chapter, we make the following contributions:

1. We identify the main challenges in resource management for INC-enabled data centers.
In particular, we identify the following three main challenges in achieving efficient
INC-aware resource scheduling in a multitenant cluster: (a) INC resources have high
heterogeneity in terms of both programming models/interfaces and resource avail-
abilities. (b) INC primitives have complex scheduling dependencies due to their
multiplexing constraints on different network devices combined with dependencies to
server resources. (c) INC-enabled applications impose many demand alternatives,
bringing in a new dimension for scheduling decision-making (Section 6.2).

2. We introduce a novel resource abstraction using INC templates with an INC template
store. Our INC templates encapsulate the logic of INC primitives, each exposing
interfaces for users to specify their resource demands at a high level. Users submit
jobs by composing INC templates with server resources, which will be automatically
transformed (using combinatorial constraints given in the request) into actual materi-
alized requests (MatReqs), each treated as a scheduling alternative. Based on the INC
templates, we propose the first-of-its-kind INC-aware resource management framework,
called IncSched. Our framework allows existing scheduling policies to be plugged in
with minimal changes through a simple API (Section 6.3).

3. We discuss the proposed resource management framework design (IncSched) by
adapting various popular scheduling policies each in a case study, including queue-
based (best effort) [Bur+16], dominant resource fairness delay scheduling [Zah+10;
Apa19], and power of two choices [Ous+13]. For each case study, we discuss required
modifications of the original policy to fit well to the scheduling problem of server and
INC resources (Section 6.4).

We evaluate each case study (Section 6.4) based on a discrete-event simulator with
a real-world cluster trace. For resource alternative selection, we implement multiple

102

6.2. INC Challenges and Key Insights

alternative selection strategies and discuss their compatibility and performance with each
of the plugged scheduler logic. Our results show the potential effectiveness of our resource
management framework in making retrofitted schedulers INC-aware.

6.2 INC Challenges and Key Insights

Multitenancy support for a single programmable network device has been shown re-
cently [ZBH18; HM16; Zha+19; Wan+20]. Considering that an INC primitive usually
consists of multiple components (e.g ., NetChain [Jin+18] involves a chain of switches)
to be deployed on several network devices, there is still a big gap between single-device
and network-wide multitenancy. Additional research is clearly required to ultimately
democratize the use of INC switches in cluster applications. Below we identify three main
challenges towards achieving INC-aware resource management, and present insights for
tackling them.

6.2.1 High Heterogeneity

Programmable network devices are highly heterogeneous with respect to both program-
ming models and resource availabilities. To enable programmability, emerging switches
(e.g ., Intel1 Tofino [Int18] and Intel FlexPipe [Int13]) and network accelerators (e.g .,
Netronome NFP-6000 [Net18] and FlexNIC [Kau+16]) are equipped with reconfigurable
hardware spanning programmable ASICs, NPUs, FPGAs, and general-purpose CPUs.
Several of these hardware platforms come with limited programming models and inter-
faces; i.e. programmable network devices exhibit different levels of “programmability”, in
contrast to servers which are expected to support general Turing-complete computations.
Given the hardware diversity, an INC primitive may be implemented with different pro-
gramming models targeting different types of devices. With different program synthesis
or compilation configurations, the resource demands and performance characteristics of
INC primitives can differ significantly. Moreover, resources capacities can largely differ
between network devices. For example, programmable ASIC-based switches may have
different specifications for processing pipeline stages, SRAMs or TCAMs, and stateful
memory (e.g ., registers, counters). The high degree of heterogeneity of INC resources
makes the cluster resource scheduling problem complex.

To handle such complexities, we introduce a new resource model for INC primitives
based on the concept of INC templates maintained in an INC template store. INC
templates abstract the specifications of INC primitives, providing tunable knobs for
customization, and encapsulating information like setup constraints. Users can submit
requests using such high-level INC templates, inheriting their properties. Our resource
management framework takes care of the transformation of INC templates to actual jobs
that can be tackled by the resource scheduler.

1 former Barefoot Tofino

103

Chapter 6. IncSched: Towards Cluster Resource Scheduling with INC Support

6.2.2 Complex Scheduling Dependencies

Taking a scheduling decision for a specific server or switch can strongly impact the value of
all other resource candidates. Furthermore, INC primitives can have complex multiplexing
dependencies on switches, i.e. the scheduling decision for one INC primitive may affect
that for others. This can be caused by both runtime environment conflicts of different INC
primitives and resource constraints on switches. For instance, a switch running P414 can
multiplex different INC primitives implemented in P414, e.g ., running NetChain [Jin+18]
and R2P2 [Kog+19] on the same switch concurrently [HM16; Wan+20], but it may face
compatibility issues with an INC primitive in P416. The number of INC primitives that
can be scheduled on a switch is determined by the amount of total switch resources and
the INC primitive types. In addition, some switches may not support multitenancy at all,
or only to a certain degree. Thus, a switch may have to be locked for one INC primitive(s)
throughout the lifetime of the corresponding job(s) once scheduled, even if the switch
has extra resources.

Our solution to this issue is to introduce a state manager to track dependencies
in the resource management framework and expose such information to the scheduling
policy so dependencies can be respected.

6.2.3 Many Demand Alternatives

INC resources are relatively scarce in comparison to server resources, e.g ., the criti-
cal resource of on-chip stateful memory is limited to tens of MB on a typical Tofino
switch [Wan+20]. Given this scarcity, one must be prepared for many requests for INC
resources to be unsatisfiable within a non-trivial timeframe. Fortunately, INC-accelerated
applications can by definition also be accomplished without INC resources. e.g ., a par-
tition/aggregate job can run without INC, though probably taking longer, or requiring
more servers to execute in the same timeframe. Considering also the aforementioned
heterogeneity and dependency factors, an INC-enabled job can be specified by a set
of substantially different, interchangeable resource demands with varying performance
properties and multiplexing dependencies. Such flexibility adds an extra dimension to
the scheduling problem: which resource demand to accept for an INC-enabled job.

Without considering the dependencies challenge, and when runtime estimates of job
alternatives are known, previous work has proposed solutions for the plan-ahead schedul-
ing problem [Tum+16]. Recently, a similar concept has been adopted, but it is limited to
substituting GPUs with CPUs in job scheduling based on performance samples [Le+20].

We propose to augment existing scheduling policies with an alternative-selection
strategy. In default, the decision for the mutually exclusive alternatives is made first,
based on some preferences, before the tasks from the finally chosen alternative are sched-
uled following the original scheduling policy.

104

6.3. IncSched Architecture

INCSCHED RMF
state- / logic-proxy

Jobs

Scheduling
policy

INC template store

1a

1b

State
manager

S
ch

ed
ul

er

2a

2b

5a

5b

3a

4a

3b

Alternative
Selection
Alternative

selection strategy

3d

4b

Network controller

Switches

Servers

N
et

w
or

k

3c

Jo
b

API
API

API

Figure 6.1: Architecture of IncSched.

6.3 IncSched Architecture

We sketch the design of our IncSched resource management framework for INC-aware
resource scheduling.

6.3.1 Overview

IncSched (see Figure 6.1) acts as a proxy for state and logic to make existing schedulers
applicable for INC resource scheduling by integrating all INC-specific logic into the
resource management framework abstractions. A job’s life-cycle comprises the following
steps:

Step 1: Users submit jobs (1a) to IncSched using its resource model (Section 6.3.2),
referring to INC templates. IncSched translates (1b) each job via the INC
template store and creates as many MatReqs (materialized requests) as needed to
capture all requested demand alternatives.

Step 2: The alternative selection logic (Section 6.3.3) runs for each arriving MatReq
of a job (2a) using the up-to-date INC load information provided by the state
manager. As a result, MatReqs that are mutually exclusive to the selected one will
be withdrawn or temporarily disabled. IncSched records its alternative selection
decision in the state manager, and forwards all enabled MatReqs to the scheduling
logic (2b).

Step 3: The plugged scheduling policy uses the APIs outlined in Listing 6.2 to check
for possible task allocations. It informs IncSched of task allocations (resource
claims) or ended/terminated tasks (3a). IncSched checks each task allocation
update for possible consequences on its job’s alternative selection and updates the
state manager accordingly (3b). For all allocation updates IncSched informs the
network controller (INC virtualization subsystem, 3c), which accordingly configures
INC on switches (3d).

105

Chapter 6. IncSched: Towards Cluster Resource Scheduling with INC Support

Step 4: After IncSched receives the deployment status of the network controller, the
scheduling logic receives a callback for each performed task allocation (4a), and
further continues its allocation logic as desired (4b).

Step 5: Eventually, each job requires an alternative selection. Depending on the actual
alternative selection logic, a timeout might kick in (5a), which updates the MatReqs
of a job. The scheduling policy receives MatReq updates accordingly (5b), which
might trigger further updates on taken allocations (going back to 3).

6.3.2 Resource Model

The IncSched resource model defines the JSON user interface (to submit job requests),
the INC template store (with all INC templates), the state manager, and MatReqs.

Job Requests. A job request is a list of task groups derived from INC templates.
Listing 6.1 shows an example job request. Each task group is associated with a set of
resource demands following the configuration keys specified in the target INC template (for
INC task groups). A request’s alternatives field specifies the combinatorial constraints
of the given task groups by a set of conditions which all must hold, using & (and), | (or),
ˆ (xor), and ! (not).

INC Template Store. IncSched holds all available INC templates in the INC template
store. The INC template store serves as a resource matching reference for IncSched,
and as a setup reference for the network controller. Each template in the INC template
store defines resource demand interfaces and encodes resource constraints (e.g ., P414).
When a getMachineCandidates API call is issued, IncSched checks the involved INC
templates for dependency information.

MatReq. IncSched converts each submitted job request to a set of materialized requests
(MatReqs), each representing one (mutually exclusive) alternative of the job, by utilizing
transformation rules of the INC template store. A MatReq is a combination of the task
groups in a job request, which satisfies all expressions given in the alternatives field.
The example in Listing 6.1 results in two MatReqs.

{id: 17, ..., taskGroups : [
{id: tg1, type: server, count: 4, core: 2, ...},
{id: tg2, type: inc, primitiveType : netchainV1 ,

cfg: { keySize : 16B, keys: 8000, replication : 3}},
{id: tg3, type: server, count: 6, core: 2, ...}],

alternatives : [’tg1’, ’tg2ˆtg3’]}

Listing 6.1: Example job request (in JSON) of a user.

106

6.3. IncSched Architecture

State Manager. IncSched encapsulates all INC related information and stores state/load
information in the state manager, so that a plugged scheduling policy sees the scheduling
problem of INC resources like just another server resource scheduling problem. For each
INC primitive, the state manager keeps track of the total resource capacity and resource
reservations on switches with jobs involving the INC primitive. e.g ., when a new INC
primitive gets “activated” on a switch (3a), the state manager updates both the total
capacity and reservation information for the new INC primitive and the reservation in-
formation for all other INC primitives running on that switch. Furthermore, the state
manager keeps track of the number of switches which have free resources to activate new
INC primitives. Listing 6.2 shows the API calls to access these cluster-wide INC load
estimates.

// retrieve load/state information
getIncLoad(IncPrimitive) : Double
getIncActivation(IncPrimitive) : Double
getTotalIncActivation : Double

// check resource compatibility
getMachineCandidates(TaskGroup) : List[MachineId]
getMaxContainer(TaskGroup) : TaskCount

// update state manager
claimResources(TaskGroup , MachineId , TaskCount)
freeResources(TaskGroup , MachineId , TaskCount)
rejectRequest(MatReq)

Listing 6.2: The IncSched scheduler API (in Scala).

6.3.3 Alternative Selection

Each job refers to one or multiple (mutually exclusive) MatReqs, but the plugged schedul-
ing policy may expect only one MatReq per job. The alternative selection strategy in
IncSched is in charge to coordinate the set of enabled/disabled MatReqs. We propose
the following strategies:

Concurrent lets the plugged scheduling policy take a decision, so IncSched passes it
all MatReqs. Upon each allocation (3b), IncSched checks whether the pending
allocation belongs to (i) a newly selected MatReq, or (ii) an already chosen one.
With (i), the state manager remembers the newly selected MatReq for this job and
IncSched disables all other MatReqs of the same job (5b).

Cluster load selects a MatReq based on the cluster-wide load estimates (2a) for each new
job (see Listing 6.2). Using these metrics the strategy applies a threshold-based

107

Chapter 6. IncSched: Towards Cluster Resource Scheduling with INC Support

selection (we use 98%), choosing the INC MatReq showing the lowest maximum
load of the affected INC primitives, considering all switch resource dimensions. If
any of the affected resource dimensions of all INC MatReqs is above the threshold,
the strategy selects a server-based MatReq.

Timeout allows the user to take a decision by submitting a job without alternatives, i.e.
the alternative expression of the request allows only one MatReq. Intentionally,
the user submits the preferred alternative. When the requested INC resources are
not available within an acceptable time period (we use 10% of a job’s runtime), the
user triggers a fallback and submits a job request with fewer or no INC resources.

Starvation Prevention. In some cases a strategy might take a wrong alternative
selection—the load of the affected (INC) resources increases—leading to unfulfilled job
requests and starvation. In such cases the strategy triggers a check (5a) of the necessity
of a fallback for the alternative selection.

6.4 Case Studies

This section studies how three existing scheduler designs fit the INC resource scheduling
problem using IncSched.

6.4.1 Methodology

Due to the lack of a multi-tenant/shared data center testbed for INC, we perform large-
scale simulations. We built a cluster scheduling simulator (7K lines of Scala code) similar
to that of Omega [Sch+13], but with support for the IncSched components shown in
Figure 6.1, INC resources, and multi-path network topologies. Each case study runs
the same scheduling problem focusing on one plugged scheduler logic, and reports the
following metrics to test how well the three selection strategies of Section 6.3.3 perform
to meet the design goals:

Satisfied INC jobs represents the ratio of MatReqs scheduled with INC out of the
total number of jobs with INC.

Preempted tasks is the ratio of the number of tasks preempted to the total number of
tasks started.

Placement latency is the time between job requests and tasks start processing on a
machine. We report both median and tail (95th percentile) placement latencies.

We replay 48 hours of a public production workload trace from a 4000 machine Alibaba
cluster [Gro18], which contains jobs of two priority classes. To best fit the 4000 servers
we use a Fat-Tree (see Section 2.2) topology with k = 26, holding 4394 servers and
845 switches. For the switches we define three resource dimensions, namely reserved

108

6.4. Case Studies

recirculation capacity, stages (48), and SRAM (22MB), in order to roughly estimate INC
resource demands referring to INC processing overhead, program complexity, and storage,
respectively [Jos+15].

Name |Switches| Requirements

SHArP [Gra+16a] dlog |G|e SHArP ASIC
IncBricks [Liu+17] max(3, dlog |G|e) OpenFlow + Accelerator
NetCache [Jin+17] max(3, dlog |G|e) P414
DistCache [Liu+19] max(3, dlog |G|e) P414
NetChain [Jin+18] max(3, 3|G|/103) P414
Harmonia [Zhu+19] d|G|/9000e P414
HovercRaft [KB20] d|G|/9000e P414
R2P2 (JBSQ) [Kog+19] d|G|/9000e P414

Table 6.1: Resource constraints for INC approaches used in evaluation.

Name Recirculation capacity Stages SRAM (MB)

SHArP [Gra+16a] / / [1, 8] MB
IncBricks [Liu+17] [0, 40]% [4, 8] [3, 12] MB
NetCache [Jin+17] [0, 10]% [0, 8] [6, 12] MB
DistCache [Liu+19] [0, 10]% [0, 8] [6, 12] MB
NetChain [Jin+18] [0, 10]% [0, 8] [6, 12] MB
Harmonia [Zhu+19] 0 [0, 3] [768, 2048] KB
HovercRaft [KB20] [0, 10] [0, 18] [0, 128] KB
R2P2 (JBSQ) [Kog+19] [0, 30]% [0, |G|] [1, 64] KB

Table 6.2: INC approaches used in evaluation. Each column gives resource
demand per switch.

Table 6.1 lists 8 INC primitives we add to the INC template store: NetChain [Jin+18],
SHArP [Gra+16a], IncBricks [Liu+17], NetCache [Jin+17], DistCache [Liu+19], Harmo-
nia [Zhu+19], HovercRaft [KB20], and R2P2 [Kog+19]. We set resource demand ranges
according to numbers reported, and communicated to us, by the authors. Table 6.2 shows
the required resources for each INC primitive as a constant or range. In the latter case,
the simulator draws a random configuration for each task group.

To discuss the limitations of INC multiplexing we run two setups, limiting the number
of active INC primitive types per switch to 1 and 3. Each experiment sets the target ratio
µ of jobs with INC requests, thus randomly selecting jobs of the trace and applying, for
1/4th of a selected job’s task groups, any of the INC primitives to create a job alternative
(adding entries to the alternative field of a request). To capture savings of required

109

Chapter 6. IncSched: Towards Cluster Resource Scheduling with INC Support

servers and reduced processing time of a job using INC, we reduce both by 10%.

The schedulers use algorithms of different runtime complexity, hence they have different
think times for solving the same scheduling problem. For queue-based schedulers, typical
reported numbers [Sch+13; Tir+20; Cur+19] are in the range 0.4− 7.2 ms per allocation.
For fair comparison we set each scheduler’s think time to match these numbers for an
idle cluster state.

We run each experiment—characterized by plugged scheduler, alternative selection, µ,
INC multiplexing—with 3 seed.

6.4.2 Queue-based Scheduling Using Best Effort

We first study a common [Bur+16] scheduler design using queues to hold pending jobs, and
a two-part scheduling policy performing I. feasibility checking and II. scoring. Consider
Kubernetes (K8): put simply, it schedules at the granularity of pods and uses priority
queues for active, back-off, and unschedulable pods. Before scheduling the next pod, K8
checks whether back-off pods must be pushed to active queues. If all active queues are
empty, K8 also checks the unschedulable queue. Similarly to Omega and Borg [Bur+16],
K8 (I.) iterates over all machines in a round-robin fashion to find at least 10% of all
machines (5% for ≥ 5000 machines) which are capable to serve the current pod. Then,
K8 (II.) scores the candidates to find the best machine for serving the pod. When
considering the next pod, I. resumes at the position where it stopped before. K8 pushes
a pod to the back-off queue with an increasing pause time if no machine is found, or to
the unschedulable queue after several failed attempts.

K8++. IncSched+K8 (K8++) is a K8-inspired scheduling logic plugged into Inc-
Sched using K8’s multi-dimensional resource model. Each pending pod in K8++ holds
a reference to its MatReq. Our API (Listing 6.2) makes K8++ aware of INC resources
with few changes. For the strategies Concurrent and Cluster load, K8++ needs a server
fallback trigger, similar to the 5a trigger, for cases when the INC MatReq decision “turns
out to be bad”. Before pushing an INC pod to the back-off queue, K8++ checks whether
the MatReq decision could be reverted without performing task preemptions of the given
job—if no task of this MatReq is started yet—and invokes the API. When an INC pod
would be pushed to the unschedulable queue, K8++ always invokes rejectRequest.

Results. Figure 6.2 (a-f) shows the results when running K8++ with INC multiplexing.
The highest success rate of delivering INC resources is achieved with the Cluster load policy,
whereas Concurrent performs worst, staying almost constant at 65%. Only the Timeout
policy triggers many preemptions (Figure 6.2b). As a consequence, as seen in Figure 6.2d,
only that policy retains low tail latency (at the cost of more preemptions).
We also show the results for no INC multiplexing in Figure 6.2e for K8++, as it is

the only case study whose performance trends differ when running without multiplexing—

110

6.4. Case Studies

25 50 75 100
Jobs with INC, µ [%]

60

70

80

90

100

Sa
tis

fie
d

IN
C

jo
bs

 [%
]

(a) Satisfied INC jobs

25 50 75 100
Jobs with INC, µ [%]

0

5

10

15

20

Pr
ee

m
pt

ed
 ta

sk
s [

%
]

(b) Preempted tasks

25 50 75 100
Jobs with INC, µ [%]

20

30

40

Pl
ac

em
en

t l
at

en
cy

m
ed

ia
n

[m
s]

(c) Placement latency, median

25 50 75 100
Jobs with INC, µ [%]

102

103

104

105

106

Pl
ac

em
en

t l
at

en
cy

95
th

 [m
s;

 lo
g 1

0]

(d) Placement latency, 95th

25 50 75 100
Jobs with INC, µ [%]

20

25

30

Pl
ac

em
en

t l
at

en
cy

m
ed

ia
n

[m
s]

25 50 75 100
Jobs with INC, µ [%]

102

103

104

105

106

Pl
ac

em
en

t l
at

en
cy

95
th

 [m
s;

 lo
g 1

0]

(e) Placement latency with disabled multiplexing of INC primitives

Figure 6.2: K8++ scheduling performance with INC multiplexing (a-d) and
without (e), as function of µ (INC demand).

revealing better performance of the Cluster load policy in that case. We interpret this
result as a hint that the INC cluster load estimates (Listing 6.2) require more details for
scenarios with multiplexing.

6.4.3 Delay Scheduling Using DRF

Next we investigate a queue-based delay scheduler [Zah+10] inspired by the Yarn [Vav+13]
capacity scheduler [Apa19]. The main difference to the previously discussed scheduler
design is that the scheduling logic only selects a new candidate machine for a task group
if several re-checks fail to start a task.

111

Chapter 6. IncSched: Towards Cluster Resource Scheduling with INC Support

25 50 75 100
Jobs with INC, µ [%]

20

40

60

80

Sa
tis

fie
d

IN
C

jo
bs

 [%
]

(a) Satisfied INC jobs

25 50 75 100
Jobs with INC, µ [%]

0

5

10

Pr
ee

m
pt

ed
 ta

sk
s [

%
]

(b) Preempted tasks

50 100
Jobs with INC, µ [%]

6000

8000

10000

Pl
ac

em
en

t l
at

en
cy

m
ed

ia
n

[m
s]

(c) Placement latency, median

25 50 75 100
Jobs with INC, µ [%]

104

105

Pl
ac

em
en

t l
at

en
cy

95
th

 [m
s;

 lo
g 1

0]

(d) Placement latency, 95th

Figure 6.3: Yarn++ scheduling performance with INC multiplexing, as function
of µ (INC demand).

Yarn++. IncSched+Yarn (Yarn++) applies dominant resource fairness (DRF) for
ranking machine candidates. We set re-check delay to 50ms, and the machine candidate
selection delay to 100ms. For the strategies Concurrent and Cluster load, Yarn++ uses a
timeout of 60s when no candidate machine is found to select a fallback MatReq using
the API.

Results. Figure 6.3 shows results not only for the 3 strategies, but also with two
additional Timeout policies with fixed timeouts (10s and 60s). Differently from the results
of K8++, Yarn++ shows lower success rates of delivering INC resources which are
almost unaffected by the demands of requesting jobs. However, increasing the number of
requesting jobs still negatively affects placement latency and task preemptions. The two
additional policies with custom timeouts show potential for achieving higher INC success
rates, but at the cost of more preemptions. Taking placement latency into account shows
that delay scheduling is very sensitive to this approach of selecting alternative MatReqs,
because the scheduling logic needs some queuing time for proper scheduling.

112

6.4. Case Studies

25 50 75 100
Jobs with INC, µ [%]

20

40

60

80
Sa

tis
fie

d
IN

C
jo

bs
 [%

]

(a) Satisfied INC jobs

25 50 75 100
Jobs with INC, µ [%]

0

5

10

15

Pr
ee

m
pt

ed
 ta

sk
s [

%
]

(b) Preempted tasks

25 50 75 100
Jobs with INC, µ [%]

0

1000

2000

3000

Pl
ac

em
en

t l
at

en
cy

m
ed

ia
n

[m
s]

(c) Placement latency, median

25 50 75 100
Jobs with INC, µ [%]

104

105

Pl
ac

em
en

t l
at

en
cy

95
th

 [m
s;

 lo
g 1

0]

(d) Placement latency, 95th

Figure 6.4: Sparrow++ scheduling performance with INC multiplexing, as func-
tion of µ (INC demand).

6.4.4 Power of Two Choices

The last case study is based on Sparrow [Ous+13], a scheduler using a variant of power
of two choices [Mit01] with batch sampling and late binding. For each pending job with
some unscheduled tasks, Sparrow draws 2×m machines randomly for m pending tasks
and enqueues the tasks to the service- or batch queue of the machines. Each time a
machine has enough spare resources, it pops the next task to start locally, if this task
was not already started on another machine.

Sparrow++. IncSched+Sparrow (Sparrow++) uses a similar approach, but adds a re-
check timer for all not fully allocated MatReq. We observed very high placement latency
(almost starvation), especially for INC MatReqs, when switches hit their multiplexing
limit, and for task groups with few tasks only (which leads to very few machine samples).
The re-check timer of Sparrow++ kicks in for every MatReq and checks whether its
number of samples is below a threshold. If so, Sparrow++ adds another round of samples.
We observed stable results for re-check of 200ms and a 50% threshold.

Results. Figure 6.4 shows placement latency is not negatively affected for the Concurrent
and Cluster load policies, which also show stable success rates for delivering INC resources.

113

Chapter 6. IncSched: Towards Cluster Resource Scheduling with INC Support

These results are achieved by Sparrow++ at the cost of task preemptions, and high
RPC/API call load. However, the results also show that Sparrow++ does not fit well the
Timeout policy, achieving lowest success rate in delivering INC resources as the number
of requesting MatReqs increases, with highest preemption rates and placement latency
among all policies.

6.5 Conclusions

This chapter showed how to make existing cluster scheduler designs ready for the INC
resource scheduling problem, by proposing an resource management framework called
IncSched. Our simulations indicate that using IncSched with existing scheduling
policies tackles the scheduling problem in a satisfactory way, achieving high success rates
of serving INC job requests, while keeping placement latency low. Some limitations
remain, which motivate several challenging research directions.

Scheduling Logic. Our case study evaluation shows great performance for most combi-
nations of plugged scheduling policies and alternative selection strategies. Queuing-based
policies (K8++, Yarn++) seem to be overall more sensitive to chosen parameters for
specific setups. K8++ shows drastically different placement latency when INC multi-
plexing enters the picture, and Yarn++ unveils the problem of using delay scheduling
for a timeout-driven MatReq decision strategy. Optimistic Concurrent scheduling policies
like Sparrow++ seem to better fit INC scheduling, but only as long as IncSched takes
care of choosing the MatReq. We see further avenues for improvement on the Concurrent
selection strategy, especially how the load estimates (through the API) are integrated
into the plugged schedulers, e.g ., scoring of machine candidates, or by using scheduling
policies acting as global optimizations [Tum+16; Le+20; Gog+16].

Complex Multiplexing. It is an open question how the INC scheduling problem
changes with more templates added to the INC template store. Furthermore, future work
on INC virtualization techniques might introduce more constraints on INC multiplex-
ing, which might require the network controller to be in the loop when checking these
constraints.

Complex INC Templates. Thus far we considered all INC templates without their
communication patterns, e.g ., Net-Chain [Jin+18] is treated similarly to Daiet [Sap+17]
(except for switch resource constraints). Intuitively, a scheduler should be able to take
better decisions when considering how INC tasks communicate. Yet, considering the INC
scheduling problem as a classic virtual network embedding problem is likely to impose
algorithms of high complexity.

114

6.5. Conclusions

INC Resource Sharing. IncSched acts as a mediator between jobs with INC resource
demand and existing scheduling policies that do not consider INC resources. A limitation
of this approach is the way how IncSched translates INC tasks and resources, in order
to make them applicable for the plugged scheduler: INC tasks and resources are yet
another (isolated) group of server tasks and resources. This restricts expressiveness and
heterogeneity that can be encoded for INC scheduling. Most dominantly, the non linear
resource usage of INC tasks which we will discuss in the following chapter.

The next chapter presents HIRE, a full-fledged resource scheduler solution. HIRE
addresses several open challenges mentioned above.

115

7
HIRE: A Cluster Resource Manager

for INC and Server Resources

Chapter Outline
7.1 Overview . 118

7.2 Challenges and System Design . 120

7.3 HIRE Resource Model . 124

7.4 HIRE Scheduler . 129

7.5 HIRE Cost Model . 133

7.6 Evaluation . 138

7.7 Conclusions . 147

This chapter introduces HIRE, a new data center scheduler for holistic INC and server
resource management. HIRE extends the resource model introduced by IncSched (Chap-
ter 6) to enable automatic resource alternative mappings and to support non-linear re-
source usage of INC services. Furthermore, HIRE considers all resource alternative of

117

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

all jobs for server and INC resources in its scheduling logic for holistic scheduling goals.
These techniques enable HIRE to perform scheduling with INC in mind, resulting in
better placement decisions and higher INC serving rates than state-of-the-art solutions
backed by IncSched.

With the exception of portions of Section 7.1, Section 7.5, Section 7.6.7, and
Section 7.7, the contents of this chapter are © 2021 ACM. Reprinted, with per-
mission, from Marcel Blöcher, Lin Wang, Patrick Eugster, and Max Schmidt.
“Switches for HIRE: Resource Scheduling for Data Center In-Network Computing”.
In: Proceedings of the 26th Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2021, pp. 268–285. doi:
10.1145/3445814.3446760 [Blö+21].

7.1 Overview

The previous chapter discussed the gap of resource managers and INC. To summarize,
despite the proliferation of exciting INC applications, running multiple INC applications
on the same network, or even having multiple tenants using the same INC application
remains under-explored. Existing works focus mostly on isolated scenarios, where net-
work devices are instrumented for benefiting a single application, and evaluations focus
on workloads for that application.

This chapter presents HIRE, a Holistic INC-aware Resource managEr supporting INC-
enabled applications. HIRE features novel designs aiming at addressing the aforemen-
tioned challenges. More specifically, HIRE introduces a novel resource model with which
jobs are described by composite requests specifying both server and INC resource demands.
The new resource model also allows for expressing scheduling alternatives that will be
scheduled mutually exclusively at runtime. HIRE then uses a set of transformation rules
to “translate” the composite request of every job into a new form called polymorphic re-
quest, based on a notion of composite templates capturing different target INC platforms
accessible to the resource management framework. The polymorphic resource request
can also be updated quantitatively at a later time to allow for resource request updates
in long-lasting deployments.

HIRE proposes a novel flow-based scheduler to achieve efficient resource allocation
leveraging its resource model. Our scheduler features a set of unique designs for the
flow network and the cost model. In particular, the flow network incorporates a shadow
network in addition to the physical network topology to encode both the server and INC
resources in the same network, with locality constraints respected through the propagation
of the cost model on the network. In addition, the flow network introduces several types

118

https://doi.org/10.1145/3445814.3446760

7.1. Overview

of shortcut edges to support the selection of scheduling alternatives. The cost model
takes into account the non-linear resource sharing behavior and ensures it is respected
in the scheduling process. Despite these new features, our scheduler maintains the same
scheduling complexity as other flow-based schedulers.

7.1.1 Design Challenges

HIRE builds on IncSched and faces three design challenges, which we discuss in this
chapter:

Adopt IncSched Properties. First of all, since HIRE builds on IncSched (Chap-
ter 6), HIRE implicitly tackles all challenges IncSched considers. IncSched presented
a new resource model which covers INC and server resources. This was developed with
the design goal of being compatible with existing scheduling policies. Even though this
has the advantage of easily plugging existing scheduling policies, it has decisive draw-
backs (see Section 6.5), most dominantly: (1) an alternative selection strategy that is
separated from the plugged scheduling logic, (2) very coarse-grained resource alternatives
(job level), and (3) isolated scheduling of each group of resources.
In this chapter, HIRE mitigates these limitations. HIRE is a new scheduler with a
scheduling logic that directly integrates server and INC resources, resource alternatives
at the level of task groups, and the alternative selection strategy. HIRE follows the path
of flow-based schedulers [Isa+09; Gog+16], but with extensions to the flow network, the
cost model, and the update mechanisms to support this set of features.

Incorporate all INC Characteristics. Throwing INC resources into the mix adds
new challenges and significantly exacerbates existing ones, as already identified and dis-
cussed in the previous chapter (Section 6.2) with respect to heterogeneity, dependencies,
and alternatives. We now look into the dependency challenge and do a further break
down, with a total of four challenges: (1) INC resources such as programmable ASICs
and NPUs are highly heterogeneous [het] in terms of not only processing power, but
also programming models [Gao+20a; Son+20]; (2) INC resources are relatively scarce
compared with server resources, demanding interchangeable resources [alt] as fallbacks;
(3) INC-enabled jobs impose fine-grained locality [loc] constraints regarding the under-
lying network topology, with dependencies between servers and INC appliances; (4) INC
resources exhibit non-linear sharing [nol], as contrary to “complete” isolation on servers,
partial INC resources may be shared by multiple tenants or INC service(s) [Wan+20].
These new challenges, especially [nol], render the existing resource management frame-
works inapplicable, including IncSched, motivating a new resource management frame-
work design for INC-enabled data centers. HIRE tackles these challenges by making the
CompStore (an extension of the IncSched INC template store) aware of non-linear usage
of resources. HIRE leverages this information in its scheduling logic for feasibility match-

119

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

ing and scoring of potential resource mappings. This enables HIRE to target holistic
scheduling goals.

Automatic Resource Alternatives. IncSched introduced a resource model for com-
bined server and INC resources, with job requests that combine resources with alternatives.
This gives users a tool to encode resource alternatives, however, IncSched requires the
user to identify potential alternatives. Furthermore, the way how IncSched translates
alternatives, to be compatible with existing schedulers, limits the flexibility of scheduling
decisions, making resource alternatives coarse-grained and likely to be not effective.
HIRE extends the IncSched INC template store, to make INC templates become com-
posite templates (with intertwined server and INC parts), that define resource alternatives
along other properties. A user optionally restricts potential resource alternatives selec-
tions, but HIRE takes care of automatically transforming jobs into fine-grained alternative
descriptions.

7.1.2 Related Work

So far, no work (except IncSched, see Chapter 6) has studied the resource management
problem for INC on a data center wide level. We refer to Section 6.1.2 for general related
work, and to Section 7.2.1 for a detailed comparison of HIRE’s features with related work.

7.1.3 Contributions

In this chapter, we make the following contributions:

1. We present the design of HIRE (Section 7.2.2), including its novel model of resources
and corresponding interfaces for applications to interact with it (Section 7.3).

2. We introduce HIRE’s novel scheduler following the flow-based approach and our
unique designs for the flow network (Section 7.4) and the cost model (Section 7.5).

3. We evaluate HIRE through large-scale simulations with real-world workload traces
(Section 7.6). In short, compared with retrofitted state-of-the-art schedulers, HIRE
makes better use of INC resources by serving 8 − 30% more INC requests, while
at the same time reducing network detours by 20%, and reducing tail placement
latency by 50-60%.

7.2 Challenges and System Design

In this section, we first identify the specific challenges to data center scheduling with INC
and present our system design.

120

7.2. Challenges and System Design

Approach [het] [alt] [loc] [nol]

HIRE 3 3 3 3

Heterogeneity-aware resource managers
Gavel [Nar+20] (3)P (3)E,S

AlloX [Le+20] (3)P (3)E,S

Gandiva [Xia+18] (3)P (3)E,S

Themis [Mah+20] (3)P (3)E,S (3)A
Tetrished [Tum+16] (3)P (3)S (3)A

Generic resource managers
Hydra [Cur+19] (3)A
Omega [Sch+13] (3)A
Mesos [Hin+11] (3)A
Yarn [Vav+13] (3)A

INC switch management
µP4 [Son+20] (3)S
INC on demand [Tok+19] (3)D,S

Table 7.1: How existing schedulers cope with INC challenges.
P performance heterogeneity, but not late binding of exact task resource de-
mands with respect to a target device; E domain-specific solution focusing on
performance estimates of alternatives; S static alternatives, i.e., alternatives
specified in the resource request, not induced by the resource manager; D sin-
gle device; A few discrete levels or (anti-)affinity constraints, but no built-in
support e.g ., for requesting a tree or a chain of devices.

7.2.1 Challenges to Data Center Scheduling with INC

Presence of INC resources fundamentally changes data center scheduling, further compli-
cating the scheduling problem in four ways. Table 7.1 summarizes how existing schedulers
cope with these.

Heterogeneity [het]. Existing resource managers consider single- or multi-resources
with feature flags [Ous+13; Sch+13; Cur+19], and recently server-accelerators like GPUs
[Le+20; Xia+18; Nar+20] with performance heterogeneity. INC resources extend per-
formance heterogeneity: Programmable network appliances are composed of various
reconfigurable hardware components, e.g ., programmable ASICs, FPGAs, NPUs, in
addition to general-purpose CPUs. Several of these components come with limited pro-
gramming models and interfaces [Son+20; Gao+20a]. Programmable network appliances
hence exhibit different levels of “programmability”, in contrast to servers which are ex-
pected to support general Turing-complete computations. An INC service may thus
be implemented following different programming models targeting different appliances.
Changing compilation/program synthesis approach can considerably alter resource re-

121

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

quirements and performance characteristics of INC services [Jos+15; Gao+19; Gao+20b;
Son+20; Gao+20a]. Upon service requests the resource manager needs to interact with
the toolchain of a potential target INC switch to determine resource demands like RMT
stages (not statically pre-determinable because of non-linear sharing). This makes the
scheduling of heterogeneous resources, discussed more broadly in the light of related
work (see Section 7.1.2), even more complex.

Alternatives [alt]. Heterogeneity leads to interchangeable resources pending deci-
sions at runtime. Given the scarcity and diversity of INC resources compared with
server resources (e.g ., the critical resource of on-chip stateful memory is limited to tens
of MB on a Tofino switch [Jin+17]), one must be prepared for many requests for INC
resources to be unsatisfiable within a non-trivial timeframe. Fortunately, INC-enabled
applications by definition can also be accomplished without INC resources. For example,
a partition/aggregate job can go without INC, but will probably run longer, or need
more servers to run in the same timeframe. More generally, an INC-enabled job can
be specified by a set of substantially different, interchangeable resource demands with
varying performance properties [Le+20]. Such flexibility adds an extra dimension to
the scheduling problem: which resource demand to accept for each INC-enabled job at
runtime. Existing domain-specific resource managers consider interchangeable resources
requiring job runtime estimation [Le+20; Xia+18; Nar+20], single device decisions tar-
geting energy efficiency [Tok+19], and time-sliced allocations [Son+20] with pre-specified
alternatives—none considers resource manager-induced alternatives at runtime. Straight-
forwardly encoding all combinations in existing models yields prohibitive complexity.

Locality [loc]. Most INC services come with locality constraints concerning the un-
derlying network topology, e.g ., sticking to ToR switches [Jin+17] or using a chain/tree
of switches [Jin+18; Sap+17]. Taking a decision for a specific server or switch strongly
impacts the value of all other choices. Furthermore, most benefits in INC scenarios have
been shown when INC resources are exploited on communication paths between commu-
nicating end points [Sap+17; Jin+17]. Adding extra “detours” via specific appliances may
cancel benefits or even worsen performance. In short, INC services possess more fine-
grained locality requirements than those for pure server jobs where locality is typically
described simply with a few discrete levels or (anti-)affinity constraints [Tum+16; Ous+13;
Mah+20]. Harmony [Ben19] also discusses INC and server placement constraints, but is
limited to relative placement constraints of switches to pre-allocated servers.

Non-linearity [nol]. In server-centric resource management framework solutions, the
underlying assumptions are that all resource requests can be easily made piece-meal, en-
tirely separated from others, and corresponding resources can be easily (de-)commissioned.
This may not hold straightforwardly with INC, as the sharing of INC resources often
exhibits non-linear behavior [Wan+20]. That is, the runtime resource usage of an INC ser-

122

7.2. Challenges and System Design

vice may depend on a switch’s state: if another tenant is using the switch for the same INC
service, some INC runtime resources (e.g ., RMT stages [Bos+13] in NetCache [Jin+17]
and HovercRaft [KB20]) can be shared among tenants. This means that the first tenant
to use an INC service on a switch has to consume extra resources for registering the
shared runtime resources for the service. Meanwhile, each tenant still consumes other
resources (e.g ., SRAM for tenant-specific key-value pairs in NetCache) separately.
These constraints make it hard to adapt existing resource management frameworks

and corresponding schedulers to include INC resources.

7.2.2 System Design

Aiming to address all the above challenges, we propose a novel data center scheduler
design named HIRE.

CompReq

Model
Transformer

CompStore

Flow Network Manager

MCMF SolverCost Model

Resource Model Scheduler

MCMF

Server Resource
Status

Jobs

PolyReq

❶

❷ ❸

❹

Servers Network

Task Schedule
Network

Controller

INC Resource
Status

Figure 7.1: HIRE system architecture.

Overview. A high-level overview of the HIRE architecture is shown in Figure 7.1. Ten-
ants 1 describe their jobs with HIRE’s APIs and submit each job as a composite resource
request (CompReq). A CompReq is a directed graph of composites (see Listing 7.1 for an
example). Once a job is submitted, it goes through the model transformer module which
2 transforms the CompReq into a polymorphic resource request (PolyReq) automatically.
The HIRE scheduler takes all the PolyReqs as input and 3 generates a flow network
embedding all the scheduling constraints and objectives. HIRE then 4 solves an min-
cost max-flow (MCMF) problem instance with the flow network and produces the final
scheduling decisions. HIRE also supports incremental submissions of jobs. In particu-
lar, tenants can submit a CompReq request and indicate its association to a previously
submitted one. The scheduler will consider this association and respect the (locality)
constraints in scheduling.

HIRE Resource Model (§7.3). HIRE features a novel resource model where tenants
describe and submit their jobs as CompReqs. A CompReq consists in a set of composites
derived from the composite templates (addressing [het]) pre-configured in the composite

123

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

template store (CompStore). Using HIRE APIs, tenants can specify the configuration
for each of the composites in a CompReq, and the way composites for a same job are
interconnected ([loc]). Once submitted, CompReqs are transformed into PolyReqs by the
model transformer module. A PolyReq considers the different implementation options
for the CompReq’s composites and provides more detailed resource demands of the job,
incorporating resource alternatives ([alt]) and non-linear resource usage ([nol]).

HIRE Scheduler (§7.4). HIRE includes a scheduler to find the mapping of PolyReqs
to physical resources. The scheduling problem differs from the traditional problem chiefly
through the alternatives ([alt]) and non-linear resource sharing ([nol]) in the PolyReq.
The HIRE scheduler takes all the PolyReqs as input and applies a flow-based scheduling
policy. At each scheduling cycle, all newly submitted PolyReqs are aggregated and the
scheduler generates a flow network by following a carefully designed cost model defining
how to translate current data center resource status, resource demands in PolyReqs, and
the scheduling objectives into a flow network with costs on arcs. The challenge is to
design a cost model that represents not only the scheduling constraints but also the
alternatives and non-linearity in PolyReq on the flow network. We boil the scheduling
problem down to a standard MCMF problem for which HIRE employs an efficient MCMF
solver, similar to Firmament [Gog+16]. In the evaluation (Figure 7.12) we test how the
modified flow network impacts MCMF solver speed.

7.3 HIRE Resource Model

HIRE introduces a new resource model to unify server and INC resources and address
[het] and [alt]. In particular, HIRE introduces the key concept of composite, which
is defined as functional unit with a mix of candidate INC and server implementations.
HIRE provides composite templates together with their implementation details in the
CompStore, which masks complexity caused by [het]. In addition, composites allow
tenants to specify implementation alternatives to be scheduled at runtime, addressing the
[alt] challenge. For the sake of simplicity, we chose three resource dimensions for INC
switches, namely recirculation capacity, RMT stages, and SRAM (see Section 7.6) and
two dimensions for servers (CPU and memory). Note that this can be configured by the
user and HIRE is not thusly limited, e.g ., ALUs and crossbar units could be considered.
Table 7.2 summarizes all notation introduced in the following sections.

7.3.1 Composite Templates

The composite template yields the foundation for tenants to construct the different func-
tionalities required by a job. For a target functionality, a composite template provides
the APIs for tenants to specify candidate implementations and their requirements. For
example, using the coordinator composite template a tenant can specify coordination
functionality with either or both of the two candidate implementations: INC-based (e.g .,

124

7.3. HIRE Resource Model

Symbol Description

Resource model Section 7.3.3
J Job request
T Task
Ms and Mn Server and INC node
Gs and Gn Server and INC task group
~fG Flavor vector of task group G

Problem modeling Section 7.4.1
~xJ Active flavor vector of job J
Z Task group type
~dG Resource demand vector of task group G
~eZ,M Aggregated resource demands of

↪→ task groups of type Z on M
aT ,M Allocation of task T on node M
sG Flavor selector for task group G
~rM Available resource vector of node M
~qZ Sharing degree vector of a task group type Z
yJ Scheduling decision for job J

Table 7.2: Notation for HIRE.

NetChain) and server-based. Each of the implementations in a composite template pro-
vides an API in the form of a configuration map which the tenant can use to specify
the required hardware and software properties. For INC-based implementations, the
composite template also holds the semantics as well as the performance profiles of the
implementation. This way, tenants can specify the properties for an INC-based implemen-
tation at a high level (e.g ., throughput of 50MQPS in NetChain), and without having to
understand the (usually complex) internals of the implementation to configure it properly
in a heterogeneous environment ([het]). Server-based implementations, however, allow
the tenant to provide a detailed configuration map with specific resource demands.

Composite templates are hosted in the CompStore (see Figure 7.3a). In addition
to pre-configured composites, tenants can expand default and custom-p4 templates for
customized ones.

7.3.2 Composite Resource Requests

Tenants submit jobs in the form of composite resource requests (CompReqs). A CompReq is
a directed graph of composites specified using HIRE APIs (see Listing 7.1 for an example).
Each composite in the CompReq is derived from a composite template in the CompStore.
The directed edges connecting the composites in the CompReq indicate their dependencies
and serve as input for setting up the inter-composite routing policy.

125

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

Cache

Web Web Web

Load Balancer

DB DB DB

Coordinator

NetCache

NetChain

R2P2

(a) Typical web applica-
tion [QCB18].

Worker Worker Worker

Aggregator

DB DB DB

Coordinator NetChain

SwitchML

(b) Machine learning train-
ing [Li+14; Sap+19].

Figure 7.2: Example applications with potential INC-enabled components high-
lighted in blue.

def setupSendCompositeRequest() {
val c4 = Composite(’c4’, CompStore.lookup(’Server’,

properties=’{cpu:16, mem:8.5, instances:12}’))
val coordi = CompStore.lookup(’Coordinator’,

filterImpl=None, properties=’{tp:50MQPS, ft:2}’)
coordi.impl.foreach(impl => { /* custom modify req. */})
val c5 = Composite(’c5’, coordi)
val composites = c4 :: c5 :: /* ... */ :: Nil
val connections = Connect(c4, c5, Connect.Bidi) :: Nil
val prio = Priority(requestPriority)
ComReq(prio, composites, connections)

}

Listing 7.1: API for an application master to send a CompReq.

Figure 7.3b shows a CompReq with 5 composites for the typical web application shown
in Figure 7.2. As an example, the composite c5 (see the code snippet) is derived from
the coordinator template in the CompStore and two implementations are specified by
the tenant. The implementation netchain is specified with the following configuration
map: {p4v:14,tp:50MQPS,ft:2} which instructs the requirements that the INC nodes
for netchain have to support P414, the throughput has to be at least 50MQPS, and
the setup should be able to tolerate up to 2 concurrent node failures. In addition, lo-
cality constraints (e.g ., locality :tor) can also be specified with the configuration map.
For the implementation server , a configuration map with detailed resource demands is
specified by the tenant as 6 servers (e.g ., containers) each equipped with 16 CPU cores
and 32GB of RAM. HIRE also allows tenants to specify multiple versions for the same
implementation in a composite template by supplying different configuration maps.

126

7.3. HIRE Resource Model

Aggregator

SHArP

Coordinator

NetChain

Custom P4

P414 P416

Cache

IncBricks

DistCache

Default

Server

Load Balancer

R2P2

Composite template Implementation

Server

Server

Server

Server Server

(a) CompStore

INC-enabled composite Server-based composite

conn: (c4,c5,"all-to-
one","bidirectional")

Custom P4

Default (Web)

Cache

Coordinator

Default (DB)

id: c5,
template: coordinator,
impls: {
 netchain: {
 p4v: 14, tp: 50MQPS, ft: 2},
 server: {
 num: 6, cpu: 16, ram: 32GB}}

(b) CompReq

DistCache

id: gn-c5-netchain,
topology: chain,
resources:{
 num: 3,
 rmt-stages: 2 (sharable),
 sram: 5MB}

Cache Coordinator
NetChainServer

Network task group Server task group

“spine” “leaf”
<chain>

(c) PolyReq

Figure 7.3: HIRE resource model for the web application scenario of Figure 7.2a:
(a) CompStore of HIRE with 6 composite templates, (b) schematic representa-
tion of a CompReq, and (c) the PolyReq derived from the CompReq by the model
transformer module.

The configuration of inter-composite connectivity between composites “c4” and “c5”
is also shown in Figure 7.3b. Here, the connection type is all of “c4” to one of “c5”
and is bidirectional. The CompReq could be easily extended to support also bandwidth
requirements by annotating the directed edges in the CompReq with bandwidth demands
and/or latency constraints, although this is not in focus of this work.

7.3.3 Polymorphic Resource Requests

HIRE transforms each submitted CompReq into a polymorphic resource request (PolyReq)
which is more amenable as input for the scheduler. A PolyReq is specified by a set of
connected task groups. Each task group G represents a bundle of identical tasks that
require the same resources indicated by a demand vector ~d. The task groups in a PolyReq
may have two types—a server task group Gs runs on server nodes and a network task
group Gn runs on INC nodes.

Figure 7.3c depicts the PolyReq that is transformed from the CompReq shown in Fig-
ure 7.3b. The composite coordinator is transformed into two task groups, each for one

127

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

of the alternative implementations. In some cases, an implementation may be trans-
formed into multiple task groups, such as the DistCache implementation for the cache
composite where two task groups “spine” and “leaf” are generated. The task group for
the implementation netchain (shown in the code snippet) has a size of 3 and is accom-
panied by the following resource demands: {rmt-stages :2(sharable),sram:5MB}. The
“ sharable ” label after the resource quantity indicates that this resource can be shared
among multiple tenants involving the same implementation. This sharing behavior will
be taken into account by the HIRE scheduler ([nol]). The topology of this task group
is specified as a chain, meaning that all the tasks in this task group will be traversed
sequentially. The resource demands of the task group for the implementation server is
derived directly from the configuration map of the implementation.

As the implementations specified in a CompReq for each composite are alternatives to
each other, i.e. only one will be actually scheduled at runtime, the corresponding task
groups for these implementations in PolyReq are also exclusive to each other. To support
this, PolyReq introduces the concept of resource flavor ([alt]), and assigns each task
group a flavor vector ~f . The size of ~f equals the total number of decision variables required
to encode the CompReq, which in most cases is smaller than the total number of task groups.
Each element in the flavor vector of a task group represents the relationship of this task
group to others and has three possible states: “0” (mutually exclusive), “1” (concurrent),
and “x” (ignorable). All ~f of a PolyReq are of same length (or padded with “x” entries).
For example, in the “cache” composite, the flavor vector for the “spine” task group for the
distcache implementation is 〈xxxx11xxx〉, meaning that the “leaf” task group will have
to be scheduled concurrently with “spine”. In contrast, in the “coordinator” composite
the flavor vector for the task group for the netchain implementation is 〈xxxxxxx01〉,
and for the server implementation is 〈xxxxxxx10〉, meaning that only one of the task
groups for the netchain and server implementations in the “coordinator” composite will
be scheduled. We will explain how the scheduler uses the flavor vector to track mutually
exclusive implementations in Section 7.4.

7.3.4 Model Transformation

The CompStore holds information on how to transform a CompReq to a PolyReq, by
applying graph transformation rules. This allows HIRE to build more complex topologies
for specific implementations of a composite template, and allows to hide INC service
specific implementation details from the user ([het]). Our HIRE prototype uses Scala
code to describe transformation rules in the CompStore, but we could also use a graph
domain-specific language (DSL) like GraphIt [Zha+18].

128

7.4. HIRE Scheduler

Figure 7.4: Non-linear resource sharing example.

7.3.5 Limitations

HIRE utilizes the information of composite templates for translating resource requests,
creating alternatives, and unwrapping resource sharing constraints. To ensure correct
deployment profiles of new INC services, especially for all heterogeneous switches of a
data center, new INC services must first be added to the CompStore (e.g ., by the INC
service implementer), before users can use them in a CompReq. We do not consider this
to be a limitation of the expressiveness or flexibility of HIRE, rather it leads to a more
reliable operation of INC services. New (feature) flags/dimensions of future INC services
can be added in a backward-compatible manner, since the HIRE resource model builds
on directed graphs with configuration dictionaries for composites and their connections.

7.4 HIRE Scheduler

HIRE has multiple scheduling problems to solve: (1) which flavor to take for each of the
PolyReq ([alt]), (2) which server takes which server task, and (3) which switch takes
which INC task. The decision for each of these problems influences the available options
([nol]) and possible scheduling quality to reach for each other problem ([loc]). Table 7.2
lists the used notations.

7.4.1 Problem Modeling

The scheduling problem can be considered as a variant of the general multi-dimensional
bin packing problem [SSS11]. We formalize a simplified version of it to highlight the new
challenges mentioned above. This formalization is not comprehensive, but captures the
most important factors ([alt], [nol]).

The scheduling problem concerns determining the flavor of each job and mapping
the correct task groups in every PolyReq onto data center resources, with the goal of
maximizing job success rate (and/or other goals), while respecting resource capacity
constraints. We use binary indicator yJ to represent the scheduling decision for job J
where yJ = 1 if J is scheduled and 0 otherwise. Assume after scheduling ~xJ produces

129

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

the final selected flavor of job J . The status sG ∈ {0, 1} of task group G in the final
scheduling decision is given by sG = (||~fG ∧ ~xJ ||1 > 0) where sG = 1 means G is selected
and 0 otherwise. Note that the elements with value “x” in ~f are skipped in the “∧”
operation since they stand for ignorable states. A job is successfully scheduled if all its
selected task groups, i.e. those having sG = 1 in its PolyReq, are successfully scheduled.
This refers to the gang-scheduling problem where we do not allow partial scheduling of
a job. We use matrix [aT,M] to denote the task-to-node mapping decisions; aT,M = 1

indicates task T is mapped to node M and aT,M = 0 otherwise. To model non-linear
resource sharing, we assume task groups are categorized into types, and tasks in task
groups of the same type can share resources on the resource dimensions specified with the
“ sharable ” flag in the PolyReq. Z denotes a task group type and Z(G) the type of task
group G. Figure 7.4 shows an example where all tasks in task groups of type Z1 share
the resources on the second resource dimension while it is the third resource dimension
for type Z2. For any Z, the total number of tasks that are assigned to node M is given
by

nZ,M =
∑

J

∑
G∈J :Z(G)=Z

∑
T∈G yJsGaT,M . (7.1)

Combined with the “ sharable ” flag, we define a sharing-degree vector ~qZ,M which has
the same size as the resource demand vector. An element in ~qZ,M is equal to nZ,M if the
corresponding resource dimension is sharable and 1 otherwise. The aggregate amount of
resources demanded by all tasks from task groups of type Z on node M is given by

~eZ,M =
∑

J

∑
G∈J :Z(G)=Z

∑
T∈G yJsGaT,M

~dG. (7.2)

Our scheduling problem can be characterized as an integer program (IP):

max
∑

J yJ s.t. (7.3)∑
Z ~eZ,M � ~qZ,M ≤ ~rM ,∀M (7.4)∏
G∈J

∏
T∈G

∑
M sGaT,M = yJ , ∀J (7.5)

“�” stands for Hadamard division which is applied element-wise between two vectors.
The first constraint guarantees that the resource capacities are respected on all nodes,
which also takes into account non-linear sharing behavior. The idea is to divide the
total resource consumptions by the sharing degree captured by ~qZ,M on the sharable
resource dimensions for each task group type Z. The second constraint is a combination
of non-linear constraints and ensures that a job is scheduled only if all tasks in all its
tasks groups with sG = 1 are scheduled. The IP formulation shows that the search space
is extremely large. An exact solution is likely to be impractical due to scalability issues,
especially when we consider data centers with thousands of servers and INC nodes. Thus
we present a heuristic that can achieve high efficiency and scale to large scenarios.

130

7.4. HIRE Scheduler

7.4.2 Flow-based Scheduling Approach

Our heuristic leverages graph theory. In particular, we transform the scheduling problem
into a MCMF problem.

Approach Overview. Flow-based scheduling, first introduced with Quincy [Isa+09],
uses a flow network to take scheduling decisions on servers. In the basic variant (for
slot-based scheduling), each task spawns a unitary flow which could either pass by a
node corresponding to a server resource, or by an “unscheduled” node before reaching
the sink. After applying an MCMF solver, the scheduler extracts for each flow the
server resource node (a valid allocation) or the unscheduled node (postponed allocation).
When considering multi-dimensional resources (heterogenous tasks), the flow network
must ensure that each flow of a task node can only reach servers with matching available
resources. Existing approaches (e.g ., CoCo [Sch15, §7.3]) enforce multi-dimensional
resource constraints of servers by assigning each edge from a server to the sink a capacity
of one, and by connecting each task node to the flow network so only servers with
matching available resources or the unscheduled node are reachable. This way, at most
one additional task is allocated on each server during a scheduling attempt. An alternative
flow network with vector-based flows could allocate multiple tasks on the same server in
one attempt, but solving vector-based MCMF problems is unlikely to become feasible
within reasonable time [Sch15, §C.4.2]. HIRE extends flow-based scheduling with unique
features to meet its requirements (Section 7.2.1) as follows.

Capturing INC Constraints. We propose the following novel designs to handle the
following INC constraints.

Resource locality ([loc]): Both server and INC resources need to be integrated in
a single flow network so HIRE can schedule resources jointly. When doing so,
we must ensure that no flow of a server task can reach nodes referring to INC
resources, and vice versa. HIRE achieves this by having two representations of the
data center topology in the flow network, one for server and a shadow one for INC
resources. HIRE knows which of the flow network nodes refers to which location in
the topology, so it can transfer locality and cost term information from the server
to the INC part and vice versa, without letting flows of server nodes pass INC
resources. We propose two algorithms for the HIRE cost model to reflect server and
INC locality constraints, also jointly (i.e. across the two parts of the flow network).

INC heterogeneity ([het]), non-linearity ([nol]): INC services not only consume
resources of a “multi-dimensional” resource vector, but have complex dependencies,
e.g ., the need of a switch feature. Furthermore, when (de)allocating an INC task on
a switch, the number of running INC service instances may change depending on
the sharing nature of involved services. HIRE keeps track of these dependencies by
propagating status information along the network, so all possible flows in the flow

131

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

Materialized

Flavor-Undecided

Server

INC (Shadow)

Gs
+4

DB

Gs
+6

Web

Gn
+1

DistCache Leaf

Gn
+1

DistCache Spine

P

GsP4 Server

GsCoord. Server

GnCustom P414

GnCustom P416

GnNetChain

FS+1

PolyReq of Figure 7.3c

Ns

l = 0

Ns

l = 1

Ns

l = 1

Ns

l = 2 Ms

Ms

Ms

Ns

l = 2

Ms

Ms

Ms

Nn

l = 0

Mn

Nn

l = 1

Nn

l = 1

Mn

Nn

l = 2

Mn

Nn

l = 2

Mn

K

Figure 7.5: HIRE flow network for Figure 7.3c. Double edges have capacity of
1. Dashed edges are shortcut edges. Numbers in red are positive supplies. l
denotes node depth in the topology.

network end in valid allocations. More importantly, the propagated, cached, status
information of the flow network allows HIRE to quickly find matching resources for
requesting tasks, respecting heterogeneity and non-linearity.

Resource alternatives ([alt]): Scheduling decisions for resource alternatives require
joint consideration of server and INC resources, so that all parts of a flavor take
resource availability into account. HIRE resolves this problem by adding a flavor
selector node for each corresponding job to the flow network. HIRE connects the
task groups belonging to the flavor-undecided part of a job to the job’s flavor, and
sets their own supply to 0. The HIRE cost model ensures that each possible flow of
the flavor selector considers the joint cost of a flavor, so that a MCMF solver selects
the flavor which fits best the current cluster utilization, considering all alternatives
of all jobs simultaneously.

7.4.3 HIRE Flow Network Structure

We show how to use the above novelties to build a HIRE flow network. Figure 7.5 shows
an example for the PolyReq of Figure 7.3c.

132

7.5. HIRE Cost Model

Nodes. The flow network holds nodes of following types: one super flavor selector node
(S); tasks group nodes (G) including server task groups (Gs), and network task groups
(Gn) according to the PolyReqs which are further categorized into flavor-undecided and
materialized (with flavors decided) ones; one postponing node (P) for each job; one flavor
selector node (F) for each job that has alternatives; data center resource nodes (M)
including server resource nodes (Ms) and INC resource nodes1 (Mn); auxiliary nodes
(N) for the shadow network (for brevity only half is shown in Figure 7.5); and one sink
node (K).

Edges. The S node connects to all flavor nodes F in the graph (with edges of capacity
1). A G node has a connection from F if it belongs to the flavor-undecided part of the
job. A G node is also connected to M/N nodes via shortcut edges (dashed lines in
the figure). We call them shortcut edges since there can be several of them to encode
scheduling preferences. An edge G → M indicates that M contains enough resources
to run at least one task in G, while an edge G → N indicates that all resource nodes
that can be reached via N can run at least one task in G. An edge G → P allows the
flow network to postpone the scheduling of G. All M and N nodes are interconnected
following the physical network topology. All resource nodes M and the postponing node
P connect to the sink node K.

Figure 7.5 shows an example flow network for the PolyReq of Figure 7.3c (this example
shows a single job, but HIRE holds all pending jobs and task groups in a single large
flow network). In this example, the flavor of 5 task groups is not yet decided, so these
task groups belong to the flavor-undecided part of the job. All other task groups of this
job with flavors decided (4 task groups) belong to the materialized part. Their supply
equals the number of remaining tasks to start. If this example graph shows the whole
flow network HIRE is working on in the ongoing scheduling round, HIRE can allocate
up to 12 tasks (4 + 6 + 1 + 1) in the materialized part, and up to 1 task allocation in
the flavor-undecided part, but in total limited by the number of available resource nodes
(Mn and Ms) for serving tasks (resource nodes have edges of capacity 1). In general,
HIRE can perform as many decisions in the flavor-undecided part, as jobs take part of
the flavor-undecided part, but at most 1 decision per job (the S node connects to all
flavor nodes F, each with an edge of capacity of 1).

7.5 HIRE Cost Model

Table 7.3 lists all notation used and introduced by the HIRE cost model. The HIRE cost
model is summarized as follows.
There are two sources of positive supplies in the HIRE flow network:

1 Each switch has an N node and if it provides INC resources, an Mn node is attached next to it for
the INC part.

133

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

Symbol Description
E Edge in the flow network
|G| Number of tasks in task group G
σE , ~σE Cost (σE) of edge E, summarizes ~σE

> Cost value for normalization (no upper bound cost term)
Φi Cost function i used in Table 7.4 and Table 7.5
wJ Waiting time of job J
~uM Utilization vector of node M
cE Capacity of edge E
χ Parameter: Level of detail for shortcut edge
γ Parameter: INC locality gain
ξ Parameter: Decay factor for γ propagation
ΓN,G INC locality gain of task group G and machine M
ΥN,G VM locality gain of task group G and machine M

Table 7.3: List of notation used for HIRE’s cost model.

1. supply of S is given by the number of F nodes or a customized upper-bound to
limit the number of flavor decisions per scheduling round and

2. supply of a materialized G node equals the number of tasks in the task group.

The capacity of all edges S → F is set to one since we allow only one flavor decision
per job in one scheduling round. All edges M → K also have a capacity of one where
only one decision is allowed for each resource node in one round. The costs on edges are
assigned as follows. For edges M → K in the server part, the cost is proportional to
the node utilization and balance level of resource dimensions computed as the standard
deviation of the utilizations of all resource dimensions, while for the INC shadow part,
the cost is proportional to the node depth in the topology and the number of active
INC services that are already running on the INC node. For edges F/G → P the cost
is proportional to the job queueing time and the number of scheduled tasks of the job.
Shortcut edges G → M/N have costs proportional to the utilization and the balance
level of the corresponding resource nodes (in the subtree). Job priority and non-linear
resource sharing behavior are also encoded in the cost of shortcut edges. The cost for
F→ G edges is an approximation of the total cost in the corresponding flavor.

Similarly to CoCo [Sch15], on the server nodes we propagate two numerical vectors of
lower and upper bounds of the available resources for the shortcut edge construction. For
INC nodes, in addition to the numerical vectors, three bit vectors of size of the number
of INC services are used for flagging whether at least one node in its subtree supports
the INC service, an INC service is active on all nodes, and an INC service is active on
at least one node, respectively. Moreover, each N node maintains a map containing a
counter for the running tasks of a task group in the subtree rooted at N; this map is
propagated in the flow network via a gossip-like protocol.

134

7.5. HIRE Cost Model

Flow Network Updates. The flow network is updated upon job arrivals and comple-
tions. When jobs arrive, HIRE starts to prepare the next scheduling round by adding
or updating the job in the flow network. For a new job J , HIRE initializes the current
selected flavor ~xJ = 〈x . . . x〉 (see Section 7.4.1) and adds the job’s postpone node P to the
flow network. For each (new) task group of the job, HIRE compares ~fG with ~xJ and adds
a G node either to the flavor-undecided part or to the materialized part of the job. If all
decision variables of ~f (except x) are equal to ~x, then G belongs to the materialized part.
If there is at least one contradiction (0 6=1), the task group is not in the job (anymore).
In all other cases (~x has x overlapping with ~f), G belongs to the flavor-undecided part.
Finally, a P node is added for the job and each new task group is connected to P. The
edge costs are updated following our cost model. Upon job completions, the flow network
is not immediately updated. Instead, a special flag is assigned to the nodes/edges that
are affected. The flow network is updated at the beginning of each scheduling round
using the flags on nodes/edges.

When HIRE processes the result of an MCMF instance, allocations of G nodes of the
flavor-undecided part trigger updates of the corresponding ~x, i.e. overwriting x values
with 0/1. Before moving to the next scheduling round, HIRE checks all G nodes of
the flavor-undecided part (of updated ~x) to see whether they still belong to the flavor-
undecided/materialized part or are not relevant for the job anymore.

Cost Model Goals. The cost model of HIRE, together with the flow network, offers
the following properties:

1. balancing switch and server utilization,

2. co-locating, if possible, INC service instances of the same INC service to maximize
resource sharing benefits and keep the set of active INC services (per switch) small,

3. informed flavor selection where the scheduler always tries to select the “cheapest”
flavor with respect to the task counts in task groups and the aggregate flavor costs
of tasks in all the task groups belonging to the flavor, and

4. locality-aware scheduling of tasks on machines close to (or covered by the same
network topology tree) the running tasks of the same or directly connected task
groups.

HIRE uses a multi-dimensional cost vector ~σ for each edge in the flow network. We
further transform ~σ to a scalar cost value σ, so that HIRE can run the MCMF problem.
To this end, we flatten ~σ by applying a weighted sum. The weights can be used to model
priorities or other custom policies. Table 7.4 and Table 7.5 summarize all cost terms of
~σ, and refer to sub-cost functions Φ specified below.

135

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

~σ elements N→M/N Ms → K Mn → K S→ F

Utilization - avg(~u) avg(~u) -
Multiplexing - 1-stddv(~u) 1-stddv(~u) -
Locality - - ΦToR -
Interference - - ΦbPc -
Priority - - - -

Flattening - avg(~σ) avg(~σ) -
Penalty - - - >

Table 7.4: Job-independent costs: multi-dimensional cost vectors for each edge
as specified in the table. Before sending the graph to the solver, HIRE flattens
~σ as shown in the second last row into the range [0,>], and for some edges we
add a penalty (last row).

Job-independent Costs. Table 7.4 shows job-independent edge costs for evaluating
machine resource utilization and resource balancing. Costs are lower for machines with
lower utilization, and with higher variation among the load of all resources dimensions.
Furthermore, Mn → K considers the network level in the topology and the number of
different active INC services, so that it is less attractive to choose a switch for INC that
is not close to a server or which combines more different INC services on the same Mn.
More specifically, we define two cost functions:

ΦbPc – A cost term proportional to the number of active INC services on an Mn,
normalized to the maximum number of INC services that could run on a particular
Mn.

ΦToR – A cost term inversely proportional to the number of network hops an Mn

node is away from its closest Ms node, normalized to the largest possible distance.

Job-dependent Cost. Table 7.5 lists all job-dependent edge costs. The first two rows
(utilization and multiplexing) define cost terms so that HIRE prefers allocations for which
the resource demand matches better the available resources. More specifically, the cost
is smaller if the task group uses a similar portion, with respect to current load, in each
resource dimension. Furthermore, we define the following cost functions for locality,
resource interference, and priority. The high-level goal of these cost functions is to co-
locate o tasks (Φloc), leverage INC resource sharing (Φnew), and prioritize long waiting
task groups (Φdelay).

Φloc – For server tasks, HIRE prefers subtrees which already host tasks of the same
or a directly connected task group of the same PolyReq. For INC tasks, HIRE
prefers switches that are close (in terms of network hops) to other switches involved

136

7.5. HIRE Cost Model

~σ elements F→ G F→ P Gs → Ns/Ms Gn → Nn/Mn G→ P

Utilization Φ
~̂x

- avg(~d� ~r) avg(~d� ~r) -
Multiplexing - - stddv(~d� ~r) stddv(~d� ~r) -
Locality - - Φloc Φloc -
Interference - - > Φnew -
Priority - Φw Φprio Φprio Φdelay

Flattening avg(~σ) avg(~σ) avg(~σ) avg(~σ) avg(~σ)
Penalty Φpref 3> - - 5>

Table 7.5: Job-dependent costs: multi-dimensional cost vectors for each edge as
specified in the table. Before sending the graph to the solver, HIRE flattens
~σ as shown in the second last row using a weighted average function into the
range [0,>], and for some edges we add a penalty (last row). � refers to the
element wise division (Hadamard division).

in the same or connected task group. We combine the two locality preferences so
that switches consider servers and vice versa, simply by checking both flow network
parts (server and shadow) for the same node in the topology for calculating the
cost term. More specifically, we define two locality metrics, Υ (Equation 7.6) for
the server part of flow network (with Ms and Ns), and Γ (Figure 7.6) for the INC
shadow network (with Mn and Nn). HIRE takes the weighted average (using task
counts) of Υ and Γ and normalizes the value afterwards.
There are three cases to consider: (a) For G → N, Φloc checks the two nodes
Nn,Ns that correspond to the same location in the data center, and returns the
combination of norm(ΓNn,G) and ΥNs,G, respectively. (b) For G → Mn, Φloc

simply considers the corresponding Nn to calculate the costs as per (a). (c) For
G→Ms, Φloc considers a simplified version of Equation 7.6 to evaluate the number
of tasks running on M, but considers Γ and Υ of the parent Ns for the connected
Gs. Υ is recursively defined:

ΥNs
1,G

=

∑
Ns

2∈children(Ns
1)

{ |G| not running on Ns
2

|G| N s
2 ∈ {M s}

ΥNs
2,G

N s
2 ∈ {N s}

|children(Ns
1)|

(7.6)

Φnew – Prefer switches with matching INC service already active, and switches with
more active INC services. If a Gn node uses an INC service that is already active
on a switch, return 0, otherwise, 1/(δ+ 1) with δ the number of active INC services
on a switch divided by the max possible.

Φpref – This term adds a penalty cost according to the job’s waiting time, using two
configuration parameters for lower and upper bound. If waiting time is below the

137

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

1 procedure IncLocProp (N start, G, γ)
2 N visited ← ∅
3 N visit ← {N start}
4 while γ > 0 and N visit 6= ∅ do
5 N next ← ∅
6 forall N ∈ N visit \ N visited do
7 ΓN,G ← ΓN,G + γ // propagate
8 N visited ← N visited ∪ {N}
9 N next ← N next ∪ neighbors(N)

10 N visit ← N next \ N visited

11 γ ← bγ/ξc // decay propagation

Figure 7.6: INC Locality Propagation.

thresholds, Φpref returns >, if its above, it returns 0, otherwise 3>×(−tanh(ratio×
3− 3)), with ratio the linearly scaled inverse waiting time within the range.

Φ
~̂x
– HIRE uses a total cost estimate for each possible flavor, so that when selecting
any of the possible task groups, also the costs of other tasks groups are considered.
Φ
~̂x
depends on G→M/N and ~f for estimating the overall cost of a flavor. While

updating all shortcuts (G→M/N), HIRE updates an approximate cost estimate of
each of the involved flavors of F as follows. The cheapest shortcut edge G→M/N

of each task group multiplied by |G| gives the total cost estimate for G. The cost
estimate for a flavor is the sum of all involved G estimates. Φ

~̂x
returns for each

flavor a cost proportional to the ratio of the estimated flavor cost term compared
with the largest flavor cost term.

Φprio – Proportional to job priority: 0 (highest), > (lowest).

Φdelay – Prefer placement of tasks with longer waiting time and with fewer tasks
remaining. wJ compared with other jobs, considering number of scheduled tasks of
the given G, using wJ × e|G| scheduled /|G|/(max w × e).

Φw – Postpone the flavor decision, if there are only very expensive options available.
Φw uses a threshold and returns > if wJ is above the threshold, or > × (0.5 ×
cos((ratio− 1.0)× π) + 0.5), with ratio equals wJ divided by the threshold.

7.6 Evaluation

We use a workload trace of a 4000 machine cluster to run large-scale experiments to
address following questions:

138

7.6. Evaluation

RQ1 How successful is HIRE at fulfilling INC requests as overall demands for INC
increase (Section 7.6.3)?

RQ2 How well does HIRE handle resource sharing and INC server locality dependencies
(Section 7.6.4)?

RQ3 What is the impact of INC resource heterogeneity on the scheduling problem
(Section 7.6.5)?

RQ4 How well does HIRE handle resource contention to improve on tail placement
latency (Section 7.6.6)?

7.6.1 Retrofitting Existing Schedulers

All experiments compare HIRE against retrofitted variants of four existing schedulers,
using IncSched (Chapter 6). In summary, IncSched mitigates the limitations of the
retrofitted schedulers in the face of INC challenges as follows: (1) cannot handle inter-
changeable INC resources→ transform requests with alternatives beforehand by creating
two variants for each job; (2) cannot suitably capture topological constraints → ignore
topologies; (3) cannot track actual resource reuse among co-located INC services → ig-
nore sharing, i.e., INC services do not benefit from reusing resources; (4) no runtime
dependency support → substitute retrofitted scheduler’s own device list with our simula-
tor API that filters for feasible nodes, i.e., borrowing semantics from HIRE.
More detailed, for these baselines, IncSched treats switches like a distinct group of
servers: when a baseline policy wants to iterate over all possible switches for a specific
INC service, the simulator returns only those machines (switches) matching resource
constraints, INC compatibility, and INC multiplexing constraints. Each baseline runs
each experiment with two modes for handling job alternatives (INC vs server):

Concurrent submits all INC-enabled jobs simultaneously as a server-only and a strict
INC job variant, and withdraws the job counterpart on the first allocation that
does not fit both variants.

Timeout submits only the INC variant of each job, but submits the server fallback
variant if the INC variant is not served within a timeout. The Timeout mode uses
10% of a job’s duration as a timeout for each job. For Yarn++, we also use other
Timeout configurations in Section 7.6.7.

We do not compare HIRE vs . baselines using the Timeout and Concurrent modes of Inc-
Sched, but not IncSched’s Cluster load policy (IncSched’s Cluster load is not compatible
with [nol]). We implement four baselines:

Yarn++: A queuing-based delay scheduler [Zah+10] inspired by the Yarn [Vav+13]
capacity scheduler with two queues (batch/service jobs) with FIFO ordering using
task submission times. Yarn++ applies rack-aware scheduling to improve locality
(delays: 50ms re-check; 100ms rack-preference).

139

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

K8++: A queue-based best-effort policy inspired by K8’s [Bur+16] default con-
figuration, with two active and one backoff queue(s). Similarly to Omega and
Borg [Bur+16], (1) K8++ iterates over all machines in a round-robin fashion to
find at least 5% of the total machines which are capable to serve the current request.
Then, (2) K8++ checks this machine subset to find the best candidate for serving
the request and allocates the resources. For the next request, (1) resumes where
it stopped before. We use the default multi-dimensional cost model, and a sample
size of 10%.

CoCo++: A flow-based scheduler with a flow network and cost model inspired by
CoCo [Sch15] (Firmament [Gog+16]), using the same MCMF solver as HIRE.
CoCo++ considers INC resources by adding one virtual rack for each INC service,
each connecting to all compatible switches at the time of scheduling. This enables
CoCo++ to incorporate INC compatibility checks, however, without considering
[nol] and [loc]. Furthermore, CoCo++ cannot handle job alternatives within a
scheduling round, thus CoCo++ runs only in Timeout mode.

Sparrow++: A distributed scheduler using a variant of power of two choices [Mit01]
with batch sampling and late binding inspired by Sparrow [Ous+13]. For each
pending job with some unscheduled tasks, Sparrow++ draws 2 × m machines
randomly for m pending tasks and enqueues the tasks to the service- or batch
queue of the machines. Each time a machine (server or switch) has enough spare
resources, its Sparrow++ agent checks the next task to start locally, via RPCs to
a central Sparrow++ instance. We observed very high placement latency (almost
starvation), especially for INC PolyReqs, when switches hit their resource limit, and
for small task groups (leading to very few machine samples). Sparrow++ mitigates
this issue by using a re-check timer, which kicks in for every PolyReq and checks
whether its number of samples is below a threshold. If so, Sparrow++ adds another
round of samples. We observed stable results for a re-check timer of 200ms and a
50% threshold.

7.6.2 Methodology

We extended the cluster scheduling simulator built for IncSched (Chapter 6), now a
codebase of 13K lines of Scala code, with support for the HIRE components shown in
Figure 7.1, INC resources with [nol] characteristics, and multi-path network topologies.
The source code of the simulator with all schedulers is publicly available at GitHub2.
Each experiment, characterized by 〈plugged scheduler, target ratio µ of jobs requesting
INC resources, INC heterogeneity (yes/no)〉, runs with three seeds.
We report the following metrics:

2 https://github.com/mblo/hire-cluster-simulator

140

https://github.com/mblo/hire-cluster-simulator

7.6. Evaluation

Satisfied INC jobs: Ratio of PolyReqs with INC getting scheduled with INC (Figs.
7.7a and 7.7d). For HIRE we also report ratio of scheduled INC task groups (Figs.
7.7b and 7.7e).

Preempted tasks: Ratio of the number of tasks preempted to the total number of
tasks started (Figs. 7.7c and 7.7f).

Switch detours: Number of additional levels in the switch topology required to cover
all involved servers with the set of involved switches for a job (Figs. 7.8a and 7.8b).

Switch load: Amount of resources per dimension allocated among all switches, mea-
sured in a time interval for the whole simulation time (Figs. 7.9a and 7.9b).

Placement latency: Time between a task group of a PolyReq arrives until all its
tasks start processing on machines.

We replay 36 hours of a public production workload trace from a 4000 machine Alibaba
cluster [Gro18], which contains jobs of two priority classes. To best fit the 4000 servers
we use a Fat-Tree (see Section 2.2) topology with k = 26, holding 4394 servers and
845 switches. For the switches we define three resource dimensions, namely reserved
recirculation capacity, stages (48), and SRAM size (22MB), in order to roughly estimate
INC resource demands referring to INC processing overhead, program complexity, and
storage, respectively [Jos+15].

Name |Switches| PolyReq Requirements

SHArP [Gra+16a] dlog |G|e Tree SHArP ASIC
IncBricks [Liu+17] max(3, dlog |G|e) Single OF + Accelerator
NetCache [Jin+17] max(3, dlog |G|e) Single (ToR) P414
DistCache [Liu+19] max(3, dlog |G|e) see Figure 7.3c P414
NetChain [Jin+18] max(3, 3|G|/103) see Figure 7.3c P414
Harmonia [Zhu+19] d|G|/9000e Single P414
HovercRaft [KB20] d|G|/9000e Single P414
R2P2 (JBSQ) [Kog+19] d|G|/9000e Single P414

Table 7.6: Transformation rules and resource constraints for building PolyReqs
for INC approaches used in evaluation.

Table 7.6 shows 8 INC services we configure in the CompStore. This is the same set of
INC services used for the evaluation of IncSched (Chapter 6), but now considering also
the topology of the INC services. For each INC service, we list parameters how to build
the PolyReq with respect to number of required switches and topology how the switches
communicate. Most INC services depend on P414, but some require a custom ASIC and
an attached accelerator. To discuss the effects of INC heterogeneity (Section 7.2.1) we

141

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

run two setups, one with all switches of homogeneous capabilities (supporting all INC
services) and one with randomly choosing two compatible INC services per switch.
Table 7.7 lists the resource demand for each INC service. We set resource demand

ranges (with resources sharing) according to numbers reported and communicated to
us by the authors. For each task group with INC, the simulator draws actual resource
demand values based on these ranges using the seed of the simulation.
To achieve the target ratio µ of jobs requesting INC resources, jobs of the trace are

selected randomly, and for up to 1/3rd of a selected job’s task groups, any of the INC
composites are applied to create a job alternative (adding entries to the alternative
field of a request). To capture savings of required servers and reduced processing time
of a job using INC, we reduce both by 10%. We chose 10% as an upper bound to keep
saving effects as a non-dominant source for performance effects. However, some INC
services exhibit savings like 10x or higher, depending on usage pattern [Kog+19; Zhu+19;
Jin+18].

The schedulers use algorithms of different runtime complexities, hence they have dif-
ferent think times for solving the same scheduling problem. For queue-based schedulers,
typical reported numbers [Sch+13; Tir+20; Cur+19] are in the range 0.4 − 7.2 ms per
allocation. For fair comparison we set each scheduler’s think time to match these num-
bers for an idle cluster state. For HIRE and CoCo++, we set think time as a function
of flow network statistics using numbers reported in [Gog+16], but we also benchmark
HIRE to validate the assumption that it runs at similar speed as Firmament [Gog+16].
Section 7.6.8 sheds light on MCMF solver speed when running HIRE.
For HIRE, we set parameters of the cost model as follows: Φpref uses 500ms, 2000ms

for lower/upper. The upper threshold also sets the timeout for preempting a flavor
decision, in case of congested resources. Φw uses 500ms. HIRE is set to perform up to
250 INC flavor decisions per scheduling round. HIRE and CoCo++ limit the number of
requesting task groups in the graph to 800 at any time, by using a backlog of “postponed”
task groups using FIFO with the submission time. This helps to prevent situations where
the MCMF solver runs too long (see Figure 7.12). HIRE and CoCo++ add up to 50

shortcut edges per task group in the graph.

7.6.3 Satisfying INC Requests (RQ1)

The primary goal of HIRE is to serve INC requests. We report the ratio of satisfied INC
jobs and run experiments where we increase the overall ratio of jobs with INC demands
in Figure 7.7a. We find HIRE serves more than 92% of all jobs when demand is highest,
about 30% more than the best baseline (K8++ Concurrent) 69%. For cases with fewest
INC demands (only 5% of all jobs ask for INC resources), the improvement is above 8%

for all baselines. To further analyze HIRE’s performance, we let it run with a simplified
flavor logic – decide only once for each job whether to serve the whole PolyReq with
INC or without. Even with this simplified logic HIRE achieves better results than all
baselines, falling below 11% behind normal HIRE. Yarn++ with Timeout mode shows

142

7.6. Evaluation

Name Res. recirc. cap. Stages SRAM (MB)

SHArP [Gra+16a] / / 0 | [1, 8]MB
IncBricks [Liu+17] 0 | [0, 40]% 0 | [4, 8] 0 | [3, 12]MB
NetCache [Jin+17] 0 | [0, 10]% 8 | [0, 8] 0 | [6, 12]MB
DistCache [Liu+19] 0 | [0, 10]% 8 | [0, 8] 0 | [6, 12]MB
NetChain [Jin+18] 0 | [0, 10]% 8 | [0, 8] 0 | [6, 12]MB
Harmonia [Zhu+19] 0 | 0 3 | [0, 3] 0 | [768, 2048]KB
HovercRaft [KB20] 0 | [0, 10] 18 | [0, 18] 0 | [0, 128]KB
R2P2 (JBSQ) [Kog+19] 0 | [0, 30]% 0 | [0, |G|] 0 | [1, 64]KB

Table 7.7: INC approaches used in evaluation. Each column gives resource
demand per switch (before |), and per INC service instance (after |).

the worst success in satisfying INC resources. We investigate this performance drop in
Section 7.6.7.
Figure 7.7b shows for the same experiments the ratio of unserved INC task groups

when running HIRE (for better scaling, we only show numbers for HIRE). This metric
serves as a test to check whether HIRE achieves a high success rate in Figure 7.7a by
simply rejecting the majority of each job’s INC part. We note the reported numbers
correspond to the success rates in Figure 7.7a, hence HIRE does not sacrifice fairness
among jobs.
Figure 7.7c shows the ratio of preempted tasks to the total number of tasks started.

In general, the lower the ratio of preempted tasks, the better. Nonetheless, a scheduler
use task preemptions to improve on other metrics. All schedulers show a similar pattern,
the ratio of preempted tasks grows with increasing INC demand. HIRE shows almost no
preemption until approximately µ = 50%, and then steadily grows to 8% preemptions
at µ = 100%. Except for Yarn++, all retrofitted schedulers with Concurrent show lower
preemption rations compared with their Timeout counterpart.

7.6.4 Cluster Resource Efficiency (RQ2)

We gauge HIRE’s ability to use cluster resources efficiently in two ways – by considering
(i) the switch detour metric and (ii) resource load of the switches. (i) tests to what extent
the scheduler’s placement decisions affect data center fabric east-west traffic (lower is
better). Figure 7.8a shows detour values for the experiments of Figure 7.7a: HIRE
performs best, requiring on average less than 0.6 additional switch levels per job to cover
all traffic – an improvement by at least 24% over all baselines (which serve fewer INC
jobs). We also note very high values for Yarn++; this indicates a problem of rack-aware
server task placement in combination with locality-unaware INC placement. The results
of CoCo++ allow the assumption that the good values for HIRE can be attributed to its
cost model and flow network which intertwines server and INC resources.

143

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

(a) Satisfied INC jobs;
Homogeneous switches

(b) Not allocated INC task
groups; Homog. switches

(c) Preempted tasks;
Homogeneous switches

(d) Satisfied INC jobs;
Heterogeneous switches

(e) Not allocated INC
task groups; Heterog.
switches

(f) Preempted tasks;
Heterogeneous switches

Figure 7.7: Scheduling performance as function of µ (ratio of jobs requesting
INC) for experiments with homogeneous and heterogeneous switches.

(ii) Switch resource load in Figure 7.9a focuses on the experiments with highest INC
demand (µ = 1) and reports the load of all switches over the whole simulation time. We
clearly identify SRAM as the bottleneck resource dimension of the experiments. More
importantly, HIRE shows lower values for usage of switch stages, all the while serving
more INC tasks (and jobs). We attribute this to HIRE’s ability to exploit resource sharing
of co-located INC services. HIRE prefers placement decisions (server and INC) of the
same sub-tree in the network topology.

7.6.5 Scheduling Under High INC Heterogeneity (RQ3)

We are particularly interested in understanding the effect of INC resource heterogeneity
on scheduling performance. Thus we compare the results with two cluster setups – with

144

7.6. Evaluation

(a) Switch detours;
Homogeneous switches

(b) Switch detours;
Heterogeneous switches

Figure 7.8: Switch detours as a function of µ (ratio of jobs requesting INC) for
experiments with homogeneous and heterogeneous switches.

(a) homogeneous switches (Figs. 7.7a-7.10a) and (b) heterogeneous switches (Figs. 7.7d-
7.10b). With (b) HIRE still achieves best results in delivering INC resources, serving 88%

of all jobs with INC resources when all jobs ask for INC. The best baselines drop to 57%.
Furthermore, we observe that the performance gap to HIRE grows from 11% (a) to 18%

(b) when deactivating the flexible flavor logic. Figure 7.7e still validates that HIRE serves
INC task groups corresponding to the success rate in Figure 7.7d. For switch detours
(Figure 7.8b), we note similar trends but HIRE shows higher values for µ ≤ 0.5 than in
(a). Switch resource load (Figure 7.9b) unveils the difficulties of resource packing, but
the overall trends remain the same—HIRE needs less INC resources whilst at the same
time serving more jobs with INC.

7.6.6 Preventing Resource Contention (RQ4)

Another side-effect of resource heterogeneity is potential resource contention which may
lead to long tail placement latencies. Figs. 7.10a and 7.10b show the complementary
CDFs of placement latency when µ = 1. HIRE shows the best tail latency, 50 − 60%

shorter than the best baselines in both scenarios. While making more efficient use of INC
resources, HIRE schedules 90% of all allocations with latencies < 1s.

7.6.7 Yarn++ Parameter Stability

The experiments of IncSched with Yarn (see Section 6.4.3) showed Yarn’s sensitivity
to the Timeout configuration. To further investigate the performance of Yarn++, we run
Yarn++ with different Timeout configurations. Figure 7.11 shows the result of Yarn++
with three additional configurations: Yarn++ with a static timeout of 60 seconds, 10

145

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

(a) Resource usage; Homogeneous switches

(b) Resource usage; Heterogeneous switches

Figure 7.9: Cluster resource efficiency as a function of µ (ratio of jobs requesting
INC) for experiments with homogeneous and heterogeneous switches.

minutes, and 15 minutes. Regardless of the job durations, the new Yarn++ configurations
always use the statically configured timeout to trigger a server fallback. Figure 7.11a
shows the highest success in delivering INC for Yarn++ with 10m and 15m. With a
static timeout of 60s, Yarn++ shows a slightly higher success than the normal Timeout
mode (which uses 10% of a job’s duration). The placement latency in Figure 7.11c shows
a different pattern. Yarn++ with a static timeout of 60s shows higher latencies than
static timeouts of 10m and 15m and the normal Timeout mode.

7.6.8 MCMF Solver Speed

As described in Section 7.6.2, our evaluation runs in an discrete-event simulator written
in Scala. This requires to set scheduler think time as a function of the problem input size,
in order to perform fair comparison of different schedulers. To validate the parameters
used for HIRE, we run a performance benchmark on a server with an AMD EPYC 7542.
We are interested in the effects on runtime performance of the MCMF solver, when INC

146

7.7. Conclusions

(a) Placement latency;
Homogeneous switches

(b) Placement latency;
Heterogeneous switches

Figure 7.10: Placement latency as a complementary CDF when µ = 1, i.e.
when all jobs ask for INC resources for experiments with homogeneous and
heterogeneous switches.

enters the picture. Figure 7.12 shows MCMF solver speed, when HIRE runs at different
levels µ, from server-only workload (µ = 0) to all jobs with INC (µ = 1). For all other
parameters, this benchmark uses the same configuration of Figure 7.7a.

Figure 7.12a shows a median MCMF solver speed of approximately 200ms for a work-
load with only server jobs, and a median of approximately 60ms for µ ≥ 0.5. Figure 7.12b
shows tail latency of MCMF solver speeds. The MCMF solver speed is positively affected
by increased INC demand, potentially due to the smaller number of switches vs. number
of servers in the flow network. Another reason could be the flavor selection of HIRE,
which causes to split a job request into different scheduling rounds, depending on the
number of different flavors of a job. However, we note no significant difference in tail
latencies (in the range of 2500ms to 3500ms).

7.7 Conclusions

This chapter introduced a new data center resource scheduler, called HIRE. HIRE pro-
vides a resource management solution for data center INC by introducing (a) a resource
model which captures user requests through high-level APIs, transformed automatically
into logical requests with resource alternatives specified, and (b) a novel scheduler de-
sign tailored for joint scheduling of server and INC resources under resource alternatives.
HIRE clearly outperforms non-trivial retrofitted variants of existing data center schedulers
using our solution IncSched (Chapter 6), demonstrating the need for novel solutions in

147

Chapter 7. HIRE: A Cluster Resource Manager for INC and Server Resources

(a) Satisfied INC jobs (b) Preempted tasks

(c) Placement latency (d) Switch detours

Figure 7.11: Scheduling performance using different configurations of Yarn++
for experiments with homogeneous switches.

this space.

HIRE follows the path of flow-based schedulers [Gog+16; Isa+09], but introduces a
flow network that considers server and INC resources at the same time, and integrates
resource allocations with alternative selection (to decide for each job, which of the re-
source alternatives to choose). For this purpose, HIRE integrates a INC shadow network
into the “normal” server flow network, and adds special node supplies for the resource
alternative selection. This design satisfy the feasibility constraints for an MCMF solver,
but enables to take decisions on multi-dimensional resource allocations (for server and
INC tasks) and resource alternative selections, and provides means to encode holistic
scheduling preferences e.g ., for cross-resource locality and priority.

We demonstrated in this chapter that data center resource scheduling with a scheduling
logic that jointly considers server and INC resources is superior to existing, retrofitted
schedulers using a non-trivial resource management framework solution (IncSched,
Chapter 6), with respect to common scheduler performance metrics including placement

148

7.7. Conclusions

(a) CDF of MCMF solver speed (b) CCDF of MCMF solver speed

Figure 7.12: HIRE MCMF solver speed (CDF and CCDF) at different ratios of
PolyReqs with INC (from no INC to all INC).

latency, but also INC specific performance metrics like switch detours and satisfied INC
jobs. A key enabler for this novel solution is a resource model that builds on automatic,
fine-grained resource alternative mappings, supporting [nol] resource usages with all
INC implementation and setup details stores in the scheduler.

149

Part IV

Epilogue
The last part of this dissertation concludes with a summary of our contributions and

a discussion of potential future research directions. Lastly, we provide an outlook.

151

8
Conclusion

Chapter Outline
8.1 Summary . 153

8.2 Future Work . 155

8.3 Outlook . 159

In this dissertation, we presented four holistic runtime scheduling solutions for the
distributed computing landscape to improve distributed systems’ performance and the
efficiency of the underlying resources. In the following sections, we summarize our con-
tributions, discuss future work, and finally provide an outlook.

8.1 Summary

We have presented four solutions in the field of holistic runtime scheduling for the dis-
tributed computing landscape. Our contributions work towards the goal of a holisti-
cally organized distributed computing landscape. The motivation of our contributions

153

Chapter 8. Conclusion

is twofold. First, the ever-increasing demand for Internet services fosters the necessity
to bring runtime scheduling to the application level for every possible use case. Second,
the highly heterogeneous computing infrastructure and especially the emergence of INC,
pushed the demand for holistic resource scheduling, i.e., resource scheduling that consid-
ers both compute resources on servers and on switches. This dissertation comprises three
main parts that made the following contributions.

Part I In summary, Part I laid the foundation of all other parts with an overview of
resource scheduling in the distributed computing landscape. We introduced a clas-
sification of INC that contributes to the general discussion of offloaded application
logic in the distributed computing landscape. This classification sets three charac-
teristics that classify an offloaded function as belonging to INC, namely physical,
semantic, and logical characteristics.

Part II The second part discussed two application scenarios and highlighted the im-
portance of runtime resource scheduling for the efficient usage of the distributed
computing landscape. Chapter 4 discussed the scenario of data aggregation of big
data applications. We proposed the runtime scheduling solution ROME, which auto-
matically optimizes the resource usage to reduce total aggregation latency. ROME
works standalone and in tandem with well-known systems Flink and Spark. We
demonstrated the performance of ROME with these two systems for iterative and
classic batch workloads. Especially ROME’s automatic mode shows great poten-
tial to improve an application’s aggregation plan at runtime. Chapter 5 discussed
the second scenario and presented a runtime scheduling solution for the traffic
scheduling problem of distributed service function chains, with a variant using a
centralized policy (IA-MPP) and a fully distributed variant (STEAM). IA-MPP
and STEAM reduce required resources and improve delivered service quality com-
pared with state-of-the-art solutions. STEAM does not require a global view, works
without traffic estimates, and operates at packet-level granularity, which are the
main advantages over other schedulers for this problem.
Part II presented resource scheduling solutions on the application level for two
scenarios. These solutions could be integrated with an existing or one of our pro-
posed (Part III) data center resource scheduling solutions. The scenarios show the
advantage of runtime scheduling solutions to achieve better resource efficiency and
increase service quality, even though these two scenarios are not representative to
serve as a generalization for all application-level scheduling solutions.

Part III The third part focused on the infrastructure level and presented two data center
resource scheduling solutions for managing server and INC resources. Chapter 6
presented the resource management framework IncSched with a new resource
model and INC scheduling logic. IncSched can be used jointly with existing
infrastructure-level resource schedulers to make these for the first time compatible
with INC resources. We evaluated IncSched in combination with three schedulers.

154

8.2. Future Work

These cover centralized and fully distributed scheduler architectures and three
scheduler designs, namely queue-based, dominant resource fairness delay scheduling,
and power of two choices. The widespread applicability of IncSched demonstrates
its flexibility, which is mainly driven by the fact that IncSched encapsulates the
complexity of INC-specific implementation details. Lastly, Chapter 7 presented the
new resource manager HIRE, which expands upon IncSched with an extended
resource model and a holistic scheduling logic for joint server and INC resource
scheduling. HIRE considers resource alternatives, non-linear resource usages, and
INC specific side-effects and constraints within the same scheduling logic. In the
evaluation, we compared HIRE with IncSched solutions and showed the advantage
of HIRE’s holistic scheduling logic. HIRE serves more resource requests with INC
and performs scheduling decisions of better quality concerning INC resource sharing
and reduced network detours of INC-server communication.
Part III presented the first data center resource scheduling solutions for shared
INC on a data center level, with a solution that retrofits existing schedulers and
a solution with an aligned design for better resource allocations. These solutions
improve resource efficiency by serving more resource requests with INC in a shared
data center setup.

To evaluate the hypothesis of this dissertation, we built four systems as summarized
above. Our solutions at the application level demonstrate for two scenarios how run-
time resource scheduling achieves better resource efficiency and application performance.
The infrastructure-level solutions show how to democratize INC resources on a data cen-
ter wide perspective and how holistic resource scheduling better accounts for resource
interdependencies, thus serving more INC resource requests.

8.2 Future Work

In this section, we outline some open questions and possible future research with high
relevance for which our work lays important directions.

8.2.1 Pushing INC to More Application Scenarios

The solutions on the application level focus on two application scenarios and exemplify
the advantages of runtime scheduling solutions. We choose the scenarios of big data
aggregation systems and traffic scheduling of distributed service function chains. The
proposed systems in Chapter 4 and Chapter 5 focus on the runtime scheduling problem,
using widespread available servers as a deployment target. The next logical step is to
integrate these solutions with INC accelerated setups. For example, by integrating these
systems with any recently proposed INC solutions for INC data aggregation [Sap+17;
Gra+16a; Mai+14] and INC service function chains [Wu+19a].

155

Chapter 8. Conclusion

Data Aggregation. Adding INC to the data aggregation scenario with ROME opens up
several challenges. First, from an engineering perspective, the communication layer must
be re-designed based on UDP instead of TCP. Second, INC switches have less memory
than servers (switch memory is typically limited to tens of MB). Hence, additional logic
is required to classify aggregation operators as potential candidates for offloading. These
changes must be done for the ROME middleware system, but also for Spark and Flink,
if used jointly. Lastly, from a conceptual perspective, ROME optimizes the aggregation
overlay depending on the number of available aggregation nodes and the aggregation
function’s data stream input/output ratio. This optimization assumes that each node’s
aggregation time depends strictly on the data input size. However, with INC, this
assumption might not hold anymore. INC switches typically operate at the network
ports’ line-rate, with some exceptions that require packet recirculation (which reduces
the effective throughput of the switch). We see demand for further research to exploit
potential optimizations of aggregation overlays with a combined usage of server and INC
nodes.

Service Function Chaining. The traffic scheduling problem of distributed SFCs with
STEAM shows two potential variants of how to integrate INC. First, INC could be the
deployment target of the service functions. STEAM could be set up jointly with a system
that offloads service functions on an INC switch, e.g ., Dejavu [Wu+19a]. STEAM should
work out of the box with a setup using Dejavu. The main reasons for this are as follows.
STEAM considers stateless functions, performs queuing at the forwarders, and considers
all functions to be installed ahead of scheduling. These properties match perfectly to a
setup with INC service functions. In summary, a setup with STEAM and Dejavu could
provide more insights into how STEAM performs with INC-based service functions.

The second variant of how to integrate INC with STEAM is an even more challenging
setup. In our evaluation, we run STEAM on a server using a DPDK implementation.
Even though the performance satisfied our expectations, a promising future direction
is to run the STEAM scheduling logic on a switch using INC. This setup brings the
benefit of offloading a service function forwarder’s scheduling logic to a switch, i.e., a
device whose original purpose is packet forwarding. As we have shown in Section 5.3.3,
STEAM’s scheduling logic requires constant processing time to the number of packet
classes. Furthermore, STEAM has a small memory footprint (2 registers per service
function), making STEAM likely to be a valid INC candidate. However, STEAM follows
the concept of packet queuing at the service function forwarder, which might be an
issue for INC—switch memory might not be sufficient for STEAM’s queuing demand.
STEAM’s batch mode reduces the queuing demand at the service function forwarder,
however, the general problem remains. One solution to this could be an INC switch that
offers more buffer capacity. Alternatively, STEAM’s scheduling logic could perform the
majority of queuing at the servers. Related work for INC load balancing [Kog+19] shows

156

8.2. Future Work

promising solutions for efficient implementation of custom queuing policies, which could
be a starting point for an INC variant of STEAM.

8.2.2 Stateful Service Function Chaining

STEAM considers stateless SFCs, i.e., service functions without a state of packets be-
longing together. Although this is a realistic assumption in many scenarios [Kab+17;
ARI+18], a logical next step is to explore how to apply STEAM for stateful SFCs. A
possible extension to stateful processing with STEAM is to apply its scheduling logic not
on a packet level granularity, but more coarse-grained. For example, by using a database
for storing previous scheduling decisions. When packets arrive at a STEAM instance,
before handing over a packet to STEAM’s scheduling, the adapted STEAM solution could
check the database. Upon an entry exists for the packet’s flow, STEAM forwards the
packet immediately according to the previous decision. Also, for each service function
forwarder’s queue, STEAM must continuously check the queue’s head packet if an entry
in the database exists. The database could also fade out entries after a particular time,
similar to flowlet routing [Kan+07; Kat+16b] in data center networks. The outlined
extension of STEAM enables stateful SFCs. However, it cannot guarantee strict packet
order consistency within flows. For strict packet order consistency additional logic is
required, e.g ., to check the queues for awaiting packets belonging to the same flow of an
ongoing scheduling decision.

8.2.3 INC Data Center Benchmarks

Due to the lack of a multi-tenant/shared data center testbed for INC, we performed
large-scale simulations to evaluate IncSched and HIRE. These benchmarks do not
consider real-world performance benefits of applications when using INC. Furthermore,
the benchmarks used approximate resource demands for INC solutions, based on numbers
reported by the authors of such solutions. We designed the evaluation to match the
reported numbers. However, simulations cannot substitute benchmarks using a real-
world INC testbed or even a data center with INC. Such benchmarks could provide more
insights into the performance of HIRE and IncSched. Furthermore, a real deployment
could also give more insights on the advantages of HIRE’s locality awareness, which aims
to prevent network detours when using INC.

8.2.4 INC Switch Runtime

HIRE does rely on other works for the INC compiling and programming toolchain [Gao+19;
Jos+15; Gao+20b; Son+20; Tok+19; Gao+20a] and methods for combining different INC
services [Wan+20; ZBH18; HM16; Zha+19; Zha+17a] on switches. We see a demand for
further research to fully implement a combined system of HIRE and an INC runtime sys-
tem that supports resource sharing and (partial) runtime-reallocation. A one-size-fits-all

157

Chapter 8. Conclusion

INC virtualization layer with an INC switch runtime system with these features is not
yet available.

8.2.5 Integrating Dynamic INC Availability

Our systems IncSched and HIRE do not consider the dynamic availability of INC
resources, i.e., HIRE does not consider to automatically inform running applications
about newly available (INC) resources. Even though HIRE considers updated resource
requests, i.e., users can ask for (additional) INC resources even after a job has started.
For example, if an application benefits from an INC service, but at the time of submission
of the resource request, no INC resource was available. The application may still benefit
if it gets access to INC later while the application is still running. An extension of
HIRE could provide a push-based interface, that informs running applications about
previously not satisfied resource alternatives, that have now become available. HIRE
could be extended with this push-based interface, without any conceptual changes to
the scheduling logic. A straightforward adaption of HIRE could re-submit failed INC
requests to the scheduler using the lowest priority. If any of these re-submitted requests
get satisfied, the linked job can be informed.

8.2.6 Coupling INC Demand with Plan-Ahead

IncSched and HIRE consider resource requests without plan-ahead, i.e., resource re-
quests do not contain information for how long a resource is required or if and when
the request will be updated later on. Even though this is a very generic and often used
resource request model [Bur+16; Vav+13; JS14], it limits the possibilities the scheduler
can take into account. HIRE already supports updates on resource requests. Users can
add new task groups to previously submitted resource requests or update existing task
groups. Furthermore, a user can set the requested task count of a task group to 0, indi-
cating that there will be an update on the task count eventually. We refer to this as an
implicit notion of upcoming resource demands. However, HIRE does not take advantage
of this information (task groups with task count equals zero) for scheduling. A possible
extension could consider this information for increased plan-ahead.

Another extension could require explicit information on lifetime. Similarly to (domain-
specific) schedulers that consider estimated finish times of jobs [Xia+18; Mah+20; Le+20;
Tum+16], a possible extension to HIRE could consider the lifetime of resource requests
or parts of it. The resource model could be extended with explicit information on how
long a resource is required. For example, by introducing two categories of task group
lifetime, namely job-lifetime and short-time. Furthermore, a callback that returns the
estimated progress of a resource request could be beneficial. These extensions to HIRE
bring new opportunities for better resource packing.

158

8.3. Outlook

8.3 Outlook

The advent of in-network computing is one aspect of the ever-growing heterogeneity of
data center hardware. Domain-specific hardware like GPUs and TPUs make servers
more heterogeneous but also more powerful for some applications. Many scenarios expose
INC to the user (see Section 3.3), which requires resource scheduling solutions as we
have presented. In other scenarios, domain-specific accelerators are used only on the
infrastructure level and are not fully exposed to the applications [Fir+18]. Despite the
many application scenarios that benefit from INC, there is still an open discussion of how
INC should be used [McC+19b; Ben19; PN19; Alo+19; Son+20]. We are just beginning
to see how INC is used and how it will influence distributed systems. We expect to
see more domain-specific accelerators become available in the distributed computing
landscape, at servers, in the network fabric, and at the edge. The resource heterogeneity
and the demand for omnipresent Internet services will drive the need for a holistically
organized distributed computing landscape that utilizes all resources most efficiently.
Several factors exacerbate the demand for holistic runtime solutions, including the cost
of moving data, latency-sensitive applications, and the seemingly infinite data growth.
We have been working towards this goal and demonstrated the benefit of holistic runtime
scheduling solutions across the stack—from application to infrastructure levels. Our
solutions ROME and STEAM have exemplified the power of runtime scheduling at the
application level, especially for scenarios where not all information is available ahead
of runtime. The infrastructure-level solutions IncSched and HIRE have demonstrated
the advantage of a holistic resource model and scheduling logic for INC-aware resource
management. Hopefully, our ideas will be used for the next generation of holistic runtime
resource scheduling solutions for the distributed computing landscape.

159

This work was funded by the German Federal Ministry of Education and Research
(BMBF) Software Campus grant 01IS17050 “dynSFC” and by the German Research
Foundation (DFG) as part of the project B2 in the Collaborative Research Center (CRC)
1053 “MAKI”.

161

Bibliography

[Abu+10] Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and
Austin Donnelly. “Symbiotic routing in future data centers”. In: SIGCOMM.
2010.

[Add+15] Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Stefano Secci.
“Virtual network functions placement and routing optimization”. In: ACM
CloudNet. 2015, pp. 171–177.

[Ale+14] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, et al. “The Strato-
sphere Platform for Big Data Analytics”. In: The VLDB Journal 23.6 (2014),
pp. 939–964.

[Ali+14] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, et al. “CONGA:
Distributed congestion-aware load balancing for datacenters”. In: CCR.
Vol. 44. 4. 2014, pp. 503–514.

[Ali+16] Abdul Alim, Richard G Clegg, Luo Mai, Lukas Rupprecht, Eric Seckler,
Paolo Costa, Peter Pietzuch, Alexander L Wolf, Nik Sultana, Jon Crowcroft,
et al. “FLICK: developing and running application-specific network services”.
In: Annual Technical Conference (ATC). USENIX, 2016, pp. 1–14.

[Alo+19] Gustavo Alonso, Carsten Binnig, Ippokratis Pandis, Kenneth Salem, Jan
Skrzypczak, Ryan Stutsman, Lasse Thostrup, Tianzheng Wang, Zeke Wang,
and Tobias Ziegler. “DPI: The Data Processing Interface for Modern Net-
works”. In: CIDR 2019, 9th Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 13-16, 2019, Online Proceed-
ings. 2019.

[Anw+15] Bilal Anwer, Theophilus Benson, Nick Feamster, and Dave Levin. “Pro-
gramming Slick Network Functions”. In: SIGCOMM. 2015, p. 14.

[Apa11] Apache Software Foundation. Flink. 2011. url: http://flink.apache.
org.

[Apa14] Apache Software Foundation. Spark. http://spark.apache.org. 2014.

163

http://flink.apache.org
http://flink.apache.org
http://spark.apache.org

Bibliography

[Apa19] Apache Software Foundation. Apache Hadoop: Capacity Scheduler. 2019.
url: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-site/CapacityScheduler.html.

[ARI+18] ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, and TTC. Technical Realiza-
tion of Service Based Architecture; Stage 3. Technical Specification (TS)
TS29.500. Version 0.4.0. 3GPP, 2018.

[Arm+10] Michael Armbrust, Armando Fox, Rean Griffith, et al. “A View of Cloud
Computing”. In: Communications of the ACM (CACM) 53.4 (Apr. 2010),
pp. 50–58.

[AWE19] Alexey Andreyev, Xu Wang, and Alex Eckert. Mar. 2019. url: https:
//engineering.fb.com/2019/03/14/data-center-engineering/f16-
minipack/.

[Bal+11] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Antony I. T. Row-
stron. “Towards predictable datacenter networks”. In: ACM Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM). 2011, pp. 242–253.

[Bal+20] Hitesh Ballani, Paolo Costa, Raphael Behrendt, et al. “Sirius: A Flat Dat-
acenter Network with Nanosecond Optical Switching”. In: Proceedings of
the 2020 Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and proto-
cols for computer communication (SIGCOMM). ACM, 2020, pp. 782–797.
doi: 10.1145/3387514.3406221.

[Bas+20] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni An-
tichi, Minlan Yu, and Michael Mitzenmacher. “PINT: Probabilistic In-band
Network Telemetry”. In: ACM SIGCOMM. ACM, 2020, pp. 662–680.

[BCH13] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. “The datacenter as
a computer: An introduction to the design of warehouse-scale machines”.
In: Synthesis lectures on computer architecture 8.3 (2013), pp. 1–154. doi:
10.2200/S00516ED2V01Y201306CAC024.

[Ben19] Theophilus A. Benson. “In-Network Compute: Considered Armed and Dan-
gerous”. In: ACM Workshop on Hot Topics in Operating Systems (HotOS).
2019, pp. 216–224.

[Ber14] David Bernstein. “Containers and Cloud: From LXC to Docker to Kuber-
netes”. In: Cloud Computing 1.3 (2014), pp. 81–84.

[Bha+11] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar,
and Rafael Pasquin. “Incoop: MapReduce for Incremental Computations”.
In: SOCC. 2011.

164

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://doi.org/10.1145/3387514.3406221
https://doi.org/10.2200/S00516ED2V01Y201306CAC024

Bibliography

[Bha+17] Deval Bhamare, Mohammed Samaka, Aiman Erbad, Raj Jain, Lav Gupta,
and H. Anthony Chan. “Optimal virtual network function placement in
multi-cloud service function chaining architecture”. In: Computer Commu-
nications 102 (2017), pp. 1–16.

[Blö+17] Marcel Blöcher, Malte Viering, Stefan Schmid, and Patrick Eugster. “The
Grand CRU Challenge”. In: Proceedings of the Workshop on Hot Topics in
Container Networking and Networked Systems (HotConNet). ACM, 2017,
pp. 7–11. doi: 10.1145/3094405.3094407.

[Blö+18] Marcel Blöcher, Tobias Ziegler, Carsten Binnig, and Patrick Eugster.
“Boosting Scalable Data Analytics with Modern Programmable Networks”.
In: Proceedings of the 14th International Workshop on Data Management
on New Hardware (DAMON). ACM, 2018, pp. 1–3. doi: 10.1145/3211922.
3211923.

[Blö+19] Marcel Blöcher, Matthias Eichholz, Pascal Weisenburger, Patrick Eu-
gster, Mira Mezini, and Guido Salvaneschi. “GRASS: Generic Reactive
Application-Specific Scheduling”. In: Proceedings of the 6th SIGPLAN In-
ternational Workshop on Reactive and Event-Based Languages and Systems
(REBLS). ACM, Oct. 2019, pp. 21–30. doi: 10.1145/3358503.3361274.

[Blö+20a] Marcel Blöcher, Emilio Coppa, Pascal Kleber, Patrick Eugster, William
Culhane, and Masoud Ardekani Saeida. “ROME: All Overlays Lead to
Aggregation, but Some Are Faster than Others”. Submitted for publication.
Mar. 2020.

[Blö+20b] Marcel Blöcher, Ramin Khalili, Lin Wang, and Patrick Eugster. “Letting
off STEAM: Distributed Runtime Traffic Scheduling for Service Function
Chaining”. In: Proceedings of the 39th Conference on Computer Commu-
nications (INFOCOM). IEEE, Aug. 2020, pp. 824–833. doi: 10.1109/
INFOCOM41043.2020.9155404.

[Blö+21] Marcel Blöcher, Lin Wang, Patrick Eugster, and Max Schmidt. “Switches
for HIRE: Resource Scheduling for Data Center In-Network Computing”. In:
Proceedings of the 26th Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). ACM, 2021, pp. 268–
285. doi: 10.1145/3445814.3446760.

[Bos+13] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz. “Forwarding
metamorphosis: Fast programmable match-action processing in hardware
for SDN”. In: ACM SIGCOMM Computer Communication Review (CCR).
Vol. 43. 4. 2013, pp. 99–110.

165

https://doi.org/10.1145/3094405.3094407
https://doi.org/10.1145/3211922.3211923
https://doi.org/10.1145/3211922.3211923
https://doi.org/10.1145/3358503.3361274
https://doi.org/10.1109/INFOCOM41043.2020.9155404
https://doi.org/10.1109/INFOCOM41043.2020.9155404
https://doi.org/10.1145/3445814.3446760

Bibliography

[Bos+14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese,
et al. “P4: Programming protocol-independent packet processors”. In: ACM
SIGCOMM Computer Communication Review (CCR) 44.3 (2014), pp. 87–
95.

[Bou+14] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. “Apollo: Scalable and Coordinated
Scheduling for Cloud-Scale Computing”. In: USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI). 2014, pp. 285–300.

[BSM15] Tom Barbette, Cyril Soldani, and Laurent Mathy. “Fast userspace packet
processing”. In: IEEE/ACM ANCS. 2015, pp. 5–16.

[Bur+16] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John
Wilkes. “Borg, Omega, and Kubernetes: Lessons Learned from Three Container-
Management Systems over a Decade”. In: Queue 14.1 (Jan. 2016), pp. 70–93.
issn: 1542-7730. doi: 10.1145/2898442.2898444.

[BW03] Maury Bramson and R. J. Williams. “Two Workload Properties for Brown-
ian Networks”. In: Queueing Systems 45.3 (2003), pp. 191–221.

[BZ97] Jon C. R. Bennett and Hui Zhang. “Hierarchical Packet Fair Queueing
Algorithms”. In: TON 5.5 (1997), pp. 675–689.

[CB02] Brian Carpenter and Scott Brim. Middleboxes: Taxonomy and issues. RFC
3234. 2002.

[Cha+10] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff
Kuehn, Chuck Koelbel, and Lauren Smith. “Introducing OpenSHMEM:
SHMEM for the PGAS community”. In: ACM Conference on Partitioned
Global Address Space Programming Model. 2010, p. 2.

[Cha+20] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, Nipun
Kwatra, and Srinidhi Viswanatha. “Balancing efficiency and fairness in het-
erogeneous GPU clusters for deep learning”. In: Proceedings of the Fifteenth
European Conference on Computer Systems (EuroSys). ACM, 2020, pp. 1–
16.

[Che+11] Yanpei Chen, A. Ganapathi, R. Griffith, and R. Katz. “The Case for Eval-
uating MapReduce Performance Using Workload Suites”. In: MASCOTS.
2011.

[Cho+16] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion Stoica. “HUG:
Multi-Resource Fairness for Correlated and Elastic Demands”. In: USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
2016, pp. 407–424.

166

https://doi.org/10.1145/2898442.2898444

Bibliography

[Chu+17] Pavel Chuprikov, Alex Davydow, Kirill Kogan, Sergey I. Nikolenko, and
Alexander V. Sirotkin. “Planning in compute-aggregate problems as opti-
mization problems on graphs”. In: ICNP. 2017, pp. 1–2.

[Chu+18] Pavel Chuprikov, Alex Davydow, Kirill Kogan, Sergey I. Nikolenko, and
Alexander Sirotkin. “Formalizing Compute-Aggregate Problems in Cloud
Computing”. In: Structural Information and Communication Complexity -
25th International Colloquium, SIROCCO 2018, Revised Selected Papers.
2018, pp. 377–391.

[Cis] Cisco. Best Practices in Core Network Capacity Planning. Tech. rep.

[Clo53] Charles Clos. “A study of non-blocking switching networks”. In: The Bell
System Technical Journal 32.2 (1953), pp. 406–424. doi: 10.1002/j.1538-
7305.1953.tb01433.x.

[CNC19] Cloud Native Computing Foundation CNCF. containerd – An industry-
standard container runtime with an emphasis on simplicity, robustness and
portability. Feb. 2019. url: https://containerd.io.

[Cog] Cogent Communications. Cogent Network Map. url: http://cogentco.
com/en/network/network-map.

[Coh+15] Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny Raz. “Near
optimal placement of virtual network functions”. In: INFOCOM. 2015,
pp. 1346–1354.

[Cos+12] Paolo Costa, Austin Donnelly, Antony Rowstron, and Greg O’Shea. “Cam-
doop: exploiting in-network aggregation for big data applications”. In: USENIX
Conference on Networked Systems Design and Implementation (NSDI).
2012, pp. 3–3.

[CR90] Y.C. Cheng and T.G. Robertazzi. “Distributed computation for a tree
network with communication delays”. In: Aerospace and Electronic Systems,
IEEE Transactions on 26.3 (1990), pp. 511–516. issn: 0018-9251. doi: 10.
1109/7.106129.

[CT00] Jae-Hwan Chang and L. Tassiulas. “Energy conserving routing in wire-
less ad-hoc networks”. In: INFOCOM. 2000. doi: 10.1109/INFCOM.2000.
832170.

[Cul+14] William Culhane, Kirill Kogan, Chamikara Jayalath, and Patrick Eugster.
“LOOM: Optimal Aggregation Overlays for In-Memory Big Data Process-
ing”. In: 6th Workshop on Hot Topics in Cloud Computing, (HotCloud).
USENIX, 2014. url: https://www.usenix.org/conference/hotcloud14/
workshop-program/presentation/culhane.

167

https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://containerd.io
http://cogentco.com/en/network/network-map
http://cogentco.com/en/network/network-map
https://doi.org/10.1109/7.106129
https://doi.org/10.1109/7.106129
https://doi.org/10.1109/INFCOM.2000.832170
https://doi.org/10.1109/INFCOM.2000.832170
https://www.usenix.org/conference/hotcloud14/workshop-program/presentation/culhane
https://www.usenix.org/conference/hotcloud14/workshop-program/presentation/culhane

Bibliography

[Cul+15] William Culhane, Kirill Kogan, Chamikara Jayalath, and Patrick Eugster.
“Optimal communication structures for big data aggregation”. In: Confer-
ence on Computer Communications, INFOCOM. IEEE, 2015, pp. 1643–
1651. doi: 10.1109/INFOCOM.2015.7218544.

[Cul15] William Culhane. “Optimal "Big Data" Aggregation Systems – From The-
ory to Practical Application”. https://docs.lib.purdue.edu/cgi/
viewcontent.cgi?article=1218&context=open_access_dissertations.
PhD thesis. Purdue University, USA, 2015.

[Cur+14] Carlo Curino, Djellel Eddine Difallah, Chris Douglas, Subru Krishnan,
Raghu Ramakrishnan, and Sriram Rao. “Reservation-based Scheduling: If
You’re Late Don’t Blame Us!” In: ACM Symposium on Cloud Computing
(SoCC). 2014, pp. 1–14.

[Cur+19] Carlo Curino, Subru Krishnan, Konstantinos Karanasos, et al. “Hydra: a
federated resource manager for data-center scale analytics”. In: Symposium
on Networked Systems Design and Implementation (NSDI). USENIX, 2019,
pp. 177–192.

[Dan+15] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and
Robert Soulé. “NetPaxos: Consensus at Network Speed”. In: Symposium on
Software Defined Networking Research (SOSR). ACM, 2015.

[Dan+16] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. “Paxos
made switch-y”. In: ACM SIGCOMM Computer Communication Review
(CCR) 46.1 (2016), pp. 18–24.

[Del+15] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, andWilly Zwaenepoel.
“Hawk: Hybrid Datacenter Scheduling”. In: USENIX Annual Technical Con-
ference (ATC). 2015, pp. 499–510.

[Del+18] Pamela Delgado, Diego Didona, Florin Dinu, andWilly Zwaenepoel. “Kairos:
Preemptive Data Center Scheduling Without Runtime Estimates”. In: ACM
Symposium on Cloud Computing (SoCC). 2018, pp. 135–148.

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data process-
ing on large clusters”. In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113.
issn: 0001-0782. doi: 10.1145/1327452.1327492. url: http://doi.acm.
org/10.1145/1327452.1327492.

[DL05] J. G. Dai and Wuqin Lin. “Maximum Pressure Policies in Stochastic Pro-
cessing Networks”. In: Operations Research 53.2 (2005), pp. 197–218.

[DL08] J. G. Dai and Wuqin Lin. “Asymptotic optimality of maximum pressure
policies in stochastic processing networks”. In: The Annals of Applied Prob-
ability 18.6 (2008), pp. 2239–2299.

168

https://doi.org/10.1109/INFOCOM.2015.7218544
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1218&context=open_access_dissertations
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1218&context=open_access_dissertations
https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492

Bibliography

[Duf+99] Nick G. Duffield, Pawan Goyal, Albert G. Greenberg, Partho Pratim Mishra,
K. K. Ramakrishnan, and Jacobus E. van der Merwe. “A Flexible Model for
Resource Management in Virtual Private Networks”. In: Proceedings of the
1999 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM). ACM, 1999, pp. 95–108. doi:
10.1145/316188.316209.

[Era+17] Vincenzo Eramo, Emanuele Miucci, Mostafa Ammar, and Francesco Giac-
into Lavacca. “An Approach for Service Function Chain Routing and Virtual
Function Network Instance Migration in Network Function Virtualization
Architectures”. In: TON 25.4 (2017), pp. 2008–2025.

[FA13] Nathan Farrington and Alexey Andreyev. “Facebook’s data center network
architecture”. In: Optical Interconnects Conference. IEEE, 2013, pp. 49–50.

[Fac18] Facebook. June 2018. url: https://engineering.fb.com/data-center-
engineering/twine/.

[Fai19] Daniel Failing. “Entwicklung einer Testumgebung in CloudLab für dynamis-
ches Scheduling von SFC”. Bachelor-Thesis. TU Darmstadt, Germany, 2019.

[Fei+18] Xincai Fei, Fangming Liu, Hong Xu, and Hai Jin. “Adaptive VNF Scaling
and Flow Routing with Proactive Demand Prediction”. In: INFOCOM.
2018.

[Fir+18] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, et al. “Azure
accelerated networking: SmartNICs in the public cloud”. In: NSDI. 2018,
pp. 51–66.

[Fir17] Daniel Firestone. “VFP: A Virtual Switch Platform for Host SDN in the
Public Cloud”. In: 14th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017.
USENIX Association, 2017, pp. 315–328.

[FM93] Wolfgang Fischer and Kathleen S. Meier-Hellstern. “The Markov-Modulated
Poisson Process Cookbook”. In: Perform. Eval. 18.2 (1993), pp. 149–171.

[Fue+18] Carlo Fuerst, Stefan Schmid, Lalith Suresh, and Paolo Costa. “Kraken: On-
line and Elastic Resource Reservations for Cloud Datacenters”. In: IEEE/ACM
Transactions on Networking (ToN) 26.1 (2018), pp. 422–435.

[Gao+19] Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma, Anirudh Sivaraman,
and Srinivas Narayana. “Autogenerating Fast Packet-Processing Code Us-
ing Program Synthesis”. In: ACM Workshop on Hot Topics in Networks
(HotNets). 2019, pp. 150–160.

[Gao+20a] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan
Tian, Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu. “Lyra: A Cross-
Platform Language and Compiler for Data Plane Programming on Hetero-
geneous ASICs”. In: ACM SIGCOMM. 2020, pp. 435–450.

169

https://doi.org/10.1145/316188.316209
https://engineering.fb.com/data-center-engineering/twine/
https://engineering.fb.com/data-center-engineering/twine/

Bibliography

[Gao+20b] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghunathan, Aatish
Kishan Varma, Pravein Govindan Kannan, Anirudh Sivaraman, Srinivas
Narayana, and Aarti Gupta. “Switch Code Generation Using Program Syn-
thesis”. In: ACM SIGCOMM. 2020, pp. 44–61.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google File
System”. In: SOSP. 2003.

[Gha+15] Milad Ghaznavi, Aimal Khan, Nashid Shahriar, Khalid Alsubhi, Reaz
Ahmed, and Raouf Boutaba. “Elastic virtual network function placement”.
In: ACM CloudNet. 2015, pp. 255–260.

[Gho+11] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. “Dominant Resource Fairness: Fair Allocation of
Multiple Resource Types”. In: USENIX Symposium on Networked Systems
Design and Implementation (NSDI). 2011.

[Gho+17] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali, and
Amin Firoozshahian. “DRILL: Micro Load Balancing for Low-latency Data
Center Networks”. In: SIGCOMM. 2017, pp. 225–238.

[Gog+16] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and
Steven Hand. “Firmament: Fast, Centralized Cluster Scheduling at Scale”.
In: Symposium on Operating Systems Design and Implementation (OSDI).
USENIX, 2016, pp. 99–115.

[Gra+14] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao,
and Aditya Akella. “Multi-resource packing for cluster schedulers”. In: Con-
ference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM). ACM, 2014, pp. 455–466. doi: 10.
1145/2619239.2626334.

[Gra+16a] Richard L Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad
Shainer, Gil Bloch, Dror Goldenerg, Mike Dubman, Sasha Kotchubievsky,
Vladimir Koushnir, et al. “Scalable hierarchical aggregation protocol (SHArP):
a hardware architecture for efficient data reduction”. In: International Work-
shop on Communication Optimizations in HPC (COMHPC). IEEE, 2016,
pp. 1–10.

[Gra+16b] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Anantha-
narayanan. “Altruistic Scheduling in Multi-Resource Clusters”. In: USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 2016,
pp. 65–80.

[Gra+16c] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janard-
han Kulkarni. “GRAPHENE: Packing and Dependency-Aware Scheduling
for Data-Parallel Clusters”. In: USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 2016, pp. 81–97.

170

https://doi.org/10.1145/2619239.2626334
https://doi.org/10.1145/2619239.2626334

Bibliography

[Gro18] Alibaba Group. Alibaba Cluster Trace Program 2018. Version 23c0b40. 2018.
url: https://github.com/alibaba/clusterdata/tree/23c0b40.

[Gu+19] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae
Jeon, Junjie Qian, Hongqiang Harry Liu, and Chuanxiong Guo. “Tiresias:
A GPU Cluster Manager for Distributed Deep Learning”. In: USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI). 2019,
pp. 485–500.

[Guo+10] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong,
Peng Sun, Wenfei Wu, and Yongguang Zhang. “SecondNet: a data cen-
ter network virtualization architecture with bandwidth guarantees”. In:
ACM Conference on Emerging Networking Experiments and Technology
(CoNEXT). 2010, p. 15.

[Guo+15] Chuanxiong Guo, Lihua Yuan, Dong Xiang, et al. “Pingmesh: A large-scale
system for data center network latency measurement and analysis”. In: CCR.
Vol. 45. 4. 2015, pp. 139–152.

[Han+17] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew
W Moore, Gianni Antichi, and Marcin Wójcik. “Re-architecting datacenter
networks and stacks for low latency and high performance”. In: SIGCOMM.
2017, pp. 29–42.

[Har00] J. Michael Harrison. “Brownian models of open processing networks: canon-
ical representation of workload”. In: The Annals of Applied Probability 10.1
(2000), pp. 75–103.

[Heu+18a] Jens Heuschkel, Rick Vogel,Marcel Blöcher, and Max Mühlhäuser. “Blow
up the CPU Chains! OpenCL-assisted Network Protocols”. In: Proceedings
of the 43rd Conference on Local Computer Networks (LCN). IEEE, 2018,
pp. 657–665. doi: 10.1109/LCN.2018.8638096.

[Heu+18b] Jens Heuschkel, Lin Wang, Erik Fleckstein, Michael Ofenloch, Marcel Blö-
cher, Jon Crowcroft, and Max Mühlhäuser. “VirtualStack: Flexible Cross-
layer Optimization via Network Protocol Virtualization”. In: Proceedings
of the 43rd Conference on Local Computer Networks (LCN). IEEE, 2018,
pp. 519–526. doi: 10.1109/LCN.2018.8638106.

[Hin+11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony
D. Joseph, Randy H. Katz, Scott Shenker, and Ion Stoica. “Mesos: A Plat-
form for Fine-Grained Resource Sharing in the Data Center”. In: USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
2011.

171

https://github.com/alibaba/clusterdata/tree/23c0b40
https://doi.org/10.1109/LCN.2018.8638096
https://doi.org/10.1109/LCN.2018.8638106

Bibliography

[HM16] David Hancock and Jacobus E. van der Merwe. “HyPer4: Using P4 to
Virtualize the Programmable Data Plane”. In: International on Conference
on emerging Networking EXperiments and Technologies (CoNEXT). ACM,
2016, pp. 35–49.

[Hop00] Christian E. Hopps. “Analysis of an Equal-Cost Multi-Path Algorithm”. In:
RFC 2992 (2000), pp. 1–8.

[HP15] Joel M. Halpern and Carlos Pignataro. Service Function Chaining (SFC)
Architecture. RFC 7665. 2015.

[HP19] John L. Hennessy and David A. Patterson. “A New Golden Age for Com-
puter Architecture”. In: Communications of the ACM (CACM) 62.2 (Jan.
2019), pp. 48–60.

[Hue+03] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott
Shenker, and Ion Stoica. “Querying the Internet with PIER”. In: Proceedings
of the 29th International Conference on Very Large Data Bases - Volume
29. VLDB ’03. VLDB Endowment, 2003, pp. 321–332. isbn: 0-12-722442-4.
url: http://dl.acm.org/citation.cfm?id=1315451.1315480.

[Hun+10] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
“ZooKeeper: Wait-free Coordination for Internet-scale Systems”. In: ATC.
2010.

[IBS08] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. “A survey of
top-k query processing techniques in relational database systems”. In: ACM
Computing Surveys 40.4 (2008).

[Int13] Intel. Intel Ethernet Switch FM6000 Series, white paper. 2013.

[Int18] Intel. Intel Tofino 2. Previously Barefoot Networks Tofino 2, acquired by
Intel in 2019. 2018. url: https://www.intel.com/content/www/us/
en/products/network-io/programmable-ethernet-switch/tofino-2-
series.html.

[Isa+09] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Tal-
war, and Andrew V. Goldberg. “Quincy: fair scheduling for distributed com-
puting clusters”. In: Symposium on Operating Systems Principles (SOSP).
ACM, 2009, pp. 261–276.

[Ist+16] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. “Consensus
in a Box: Inexpensive Coordination in Hardware”. In: USENIX Symposium
on Networked Systems Design and Implementation (NSDI). 2016, pp. 425–
438.

[Jai+07] Navendu Jain, Dmitry Kit, Prince Mahajan, Praveen Yalagandula, Mike
Dahlin, and Yin Zhang. “STAR: Self-tuning Aggregation for Scalable Mon-
itoring”. In: VLDB. 2007.

172

http://dl.acm.org/citation.cfm?id=1315451.1315480
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html

Bibliography

[Jeo+19] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian,
Wencong Xiao, and Fan Yang. “Analysis of Large-Scale Multi-Tenant GPU
Clusters for DNN Training Workloads”. In: USENIX Annual Technical Con-
ference (ATC). 2019, pp. 947–960.

[Jep+18] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and Robert
Soulé. “Life in the fast lane: A line-rate linear road”. In: ACM Symposium
on SDN Research (SOSR). 2018, p. 10.

[Jin+17] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. “NetCache: Balancing Key-Value
Stores with Fast In-Network Caching”. In: Symposium on Operating Systems
Principles (SOSP). ACM, 2017, pp. 121–136.

[Jin+18] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. “NetChain: Scale-Free Sub-RTT
Coordination”. In: USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 2018, pp. 35–49.

[Jos+15] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. “Compiling
packet programs to reconfigurable switches”. In: USENIX Symposium on
Networked Systems Design and Implementation (NSDI). 2015, pp. 103–115.

[JS14] Brendan Jennings and Rolf Stadler. “Resource management in clouds: Sur-
vey and research challenges”. In: Journal of Network and Systems Manage-
ment (2014), pp. 1–53.

[Jua+16] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. “Field-
aware factorization machines for CTR prediction”. In: Proceedings of the
10th ACM Conference on Recommender Systems. ACM. 2016, pp. 43–50.

[Jyo+16] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, et al. “Morpheus:
Towards Automated SLOs for Enterprise Clusters”. In: 12th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI. 2016,
pp. 117–134.

[Kab+17] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. “Stateless
network functions: Breaking the tight coupling of state and processing”. In:
NSDI. 2017, pp. 97–112.

[Kan+07] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. “Dy-
namic load balancing without packet reordering”. In: ACM SIGCOMM
Computer Communication Review 37.2 (2007), pp. 51–62.

[Kat+16a] Georgios P Katsikas, Marcel Enguehard, Maciej Kuźniar, Gerald Q Maguire
Jr, and Dejan Kostić. “SNF: Synthesizing high performance NFV service
chains”. In: PeerJ Computer Science 2 (2016), e98.

173

Bibliography

[Kat+16b] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jen-
nifer Rexford. “HULA: Scalable Load Balancing Using Programmable Data
Planes”. In: Proc. ACM Symposium on SDN Research. 2016.

[Kat+18] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and
Gerald Q. Maguire Jr. “Metron: NFV Service Chains at the True Speed of
the Underlying Hardware”. In: NSDI. 2018, pp. 171–186.

[Kau+16] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas E. Anderson,
and Arvind Krishnamurthy. “High Performance Packet Processing with
FlexNIC”. In: ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 2016, pp. 67–
81.

[KB20] Marios Kogias and Edouard Bugnion. “HovercRaft: Achieving Scalability
and Fault-Tolerance for Microsecond-Scale Datacenter Services”. In: ACM
European Conference on Computer Systems (EuroSys). 2020, pp. 1–17.

[Ke+15] Huan Ke, Peng Li, Song Guo, and I. Stojmenovic. “Aggregation on the fly:
reducing traffic for big data in the cloud”. In: Network, IEEE 29.5 (Sept.
2015), pp. 17–23. issn: 0890-8044. doi: 10.1109/MNET.2015.7293300.

[Kim+16] Changhoon Kim, Parag Bhide, E Doe, H Holbrook, A Ghanwani, D Daly,
M Hira, and B Davie. In-band Network Telemetry (INT) Dataplane Speci-
fication. https://p4.org/assets/INT-current-spec.pdf. 2016.

[KJL96] Hyoung-Joong Kim, Gyu-In Jee, and Jang-Gyu Lee. “Optimal load dis-
tribution for tree network processors”. In: Aerospace and Electronic Sys-
tems, IEEE Transactions on 32.2 (1996), pp. 607–612. issn: 0018-9251.
doi: 10.1109/7.489505.

[Kle17] Pascal Kleber. “Fault Tolerance in Optimal Aggregation Overlays for Big
Data Applications”. Master-Thesis. TU Darmstadt, Germany, 2017.

[Kog+19] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. “R2P2: Making RPCs first-class datacenter citizens”. In: Annual
Technical Conference (ATC). USENIX, 2019, pp. 863–880.

[Kul+15] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christo-
pher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and
Siddarth Taneja. “Twitter Heron: Stream Processing at Scale”. In: SIGMOD.
2015.

[Kul+17] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K. K.
Ramakrishnan, Timothy Wood, Mayutan Arumaithurai, and Xiaoming Fu.
“NFVnice: Dynamic Backpressure and Scheduling for NFV Service Chains”.
In: SIGCOMM. 2017, pp. 71–84.

174

https://doi.org/10.1109/MNET.2015.7293300
https://p4.org/assets/INT-current-spec.pdf
https://doi.org/10.1109/7.489505

Bibliography

[Kum+16] Gautam Kumar, Ganesh Ananthanarayanan, Sylvia Ratnasamy, and Ion
Stoica. “Hold ’em or Fold ’Em? Aggregation Queries under Performance
Variations”. In: EuroSys. Association for Computing Machinery, 2016. isbn:
9781450342407. doi: 10.1145/2901318.2901351. url: https://doi.org/
10.1145/2901318.2901351.

[Kuo+16] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai.
“Deploying chains of virtual network functions: On the relation between
link and server usage”. In: INFOCOM. 2016, pp. 1–9.

[Le+20] Tan N. Le, Xiao Sun, Mosharaf Chowdhury, and Zhenhua Liu. “AlloX:
Compute Allocation in Hybrid Clusters”. In: ACM European Conference on
Computer Systems (EuroSys). 2020.

[LeB10] Jean-Yves LeBoudec. Performance Evaluation of Computer and Communi-
cation Systems. EPFL Press, Lausanne, Switzerland, 2010.

[Lee+13] Jeongkeun Lee, Myungjin Lee, Lucian Popa, Yoshio Turner, Sujata Baner-
jee, Puneet Sharma, and Bryan Stephenson. “CloudMirror: Application-
Aware Bandwidth Reservations in the Cloud”. In: 5th Workshop on Hot
Topics in Cloud Computing (HotCloud). USENIX Association, 2013.

[Lei85] Charles E. Leiserson. “Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing”. In: Transactions on Computers 34.10 (1985), pp. 892–
901. doi: 10.1109/TC.1985.6312192.

[Ler+19] Alberto Lerner, Rana Hussein, Philippe Cudre-Mauroux, and U eXascale
Infolab. “The Case for Network-Accelerated Query Processing”. In: Biennial
Conference on Innovative Data Systems Research (CIDR). 2019, pp. 13–16.

[LHM11] Y. Liu, Z. Hu, and K. Matsuzaki. “Towards Systematic Parallel Program-
ming over MapReduce”. In: Euro-Par. 2011.

[Li+14] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing
Su. “Scaling Distributed Machine Learning with the Parameter Server”.
In: USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 2014, pp. 583–598.

[Li+16a] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and Dan
RK Ports. “Just say NO to paxos overhead: Replacing consensus with
network ordering”. In: USENIX Symposium on Operating Systems Design
and Implementation (NSDI). 2016, pp. 467–483.

[Li+16b] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G Andersen, and
Michael J Freedman. “Be fast, cheap and in control with SwitchKV”. In: 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 2016, pp. 31–44.

175

https://doi.org/10.1145/2901318.2901351
https://doi.org/10.1145/2901318.2901351
https://doi.org/10.1145/2901318.2901351
https://doi.org/10.1109/TC.1985.6312192

Bibliography

[Li+19] Yuliang Li, Rui Miao, Hongqiang Harry Liu, et al. “HPCC: high precision
congestion control”. In: ACM SIGCOMM. ACM, 2019, pp. 44–58.

[Lia+19] Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Alexey Tumanov,
Joseph Gonzalez, and Ion Stoica. “HyperSched: Dynamic Resource Real-
location for Model Development on a Deadline”. In: ACM Symposium on
Cloud Computing (SoCC). 2019.

[Liu+17] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and
Kishore Atreya. “IncBricks: Toward In-Network Computation with an In-
Network Cache”. In: International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM, 2017,
pp. 795–809.

[Liu+19] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,
Vladimir Braverman, Xin Jin, and Ion Stoica. “DistCache: Provable Load
Balancing for Large-Scale Storage Systems with Distributed Caching”. In:
USENIX Conference on File and Storage Technologies (FAST). 2019, pp. 143–
157.

[LMP17] Jialin Li, Ellis Michael, and Dan RK Ports. “Eris: Coordination-free consis-
tent transactions using in-network concurrency control”. In: ACM Sympo-
sium on Operating Systems Principles (SOSP). 2017, pp. 104–120.

[LRS18] Marcelo Caggiani Luizelli, Danny Raz, and Yaniv Sa’ar. “Optimizing NFV
Chain Deployment Through Minimizing the Cost of Virtual Switching”. In:
INFOCOM. 2018, pp. 2150–2158.

[Mad+05] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. “TinyDB: An Acquisitional Query Processing System for Sensor
Networks”. In: ACM Trans. Database Syst. 30.1 (Mar. 2005), pp. 122–173.
issn: 0362-5915. doi: 10.1145/1061318.1061322. url: http://doi.acm.
org/10.1145/1061318.1061322.

[Mah+20] Kshiteej Mahajan, Arjun Singhvi, Arjun Balasubramanian, Varun Batra,
Surya Teja Chavali, Shivaram Venkataraman, Aditya Akella, Amar Phan-
ishayee, and Shuchi Chawla. “Themis: Fair and Efficient GPU Cluster
Scheduling for Machine Learning Workloads”. In: USENIX Symposium on
Network Systems Design and Implementation (NSDI). 2020.

[Mai+14] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa, Matteo Migliavacca,
Peter Pietzuch, and Alexander L Wolf. “NetAgg: Using Middleboxes for
Application-specific On-path Aggregation in Data Centres”. In: ACM In-
ternational on Conference on Emerging Networking Experiments and Tech-
nologies (CoNEXT). 2014, pp. 249–262.

176

https://doi.org/10.1145/1061318.1061322
http://doi.acm.org/10.1145/1061318.1061322
http://doi.acm.org/10.1145/1061318.1061322

Bibliography

[Mao+19] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili
Meng, and Mohammad Alizadeh. “Learning scheduling algorithms for data
processing clusters”. In: ACM Special Interest Group on Data Communica-
tion (SIGCOMM). 2019, pp. 270–288.

[Mar+14] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio
Honda, Roberto Bifulco, and Felipe Huici. “ClickOS and the art of network
function virtualization”. In: 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14). USENIX Association. 2014,
pp. 459–473.

[Mar+15] Barbara Martini, Federica Paganelli, Paola Cappanera, Stefano Turchi, and
Piero Castoldi. “Latency-aware composition of virtual functions in 5G”. In:
NetSoft. 2015, pp. 1–6.

[Mar02] Robert C Martin. Agile software development: principles, patterns, and
practices. Prentice Hall, 2002.

[McC+19a] James McCauley, Aurojit Panda, Arvind Krishnamurthy, and Scott Shenker.
“Thoughts on load distribution and the role of programmable switches”. In:
ACM SIGCOMM Computer Communication Review (CCR) 49.1 (2019),
pp. 18–23.

[McC+19b] James McCauley, Aurojit Panda, Arvind Krishnamurthy, and Scott Shenker.
“Thoughts on load distribution and the role of programmable switches”. In:
ACM SIGCOMM Computer Communication Review (CCR) 49.1 (2019),
pp. 18–23.

[Men+18] Zili Meng, Jun Bi, Chen Sun, Haiping Wang, and Hongxin Hu. “CoCo:
Compact and Optimized Consolidation of Modularized Service Function
Chains in NFV”. In: ICC. 2018.

[MGZ16] Marouen Mechtri, Chaima Ghribi, and Djamal Zeghlache. “A scalable algo-
rithm for the placement of service function chains”. In: TNSM 13.3 (2016),
pp. 533–546.

[Mic20] Marco Micera. “Data center resource management for in-network process-
ing”. Master-Thesis. Polytechnic University of Turin, Italy, 2020.

[Mij+15] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De
Turck, and Steven Davy. “Design and evaluation of algorithms for mapping
and scheduling of virtual network functions”. In: NetSoft. 2015, pp. 1–9.

[Mit01] Michael Mitzenmacher. “The power of two choices in randomized load bal-
ancing”. In: IEEE Transactions on Parallel and Distributed Systems 12.10
(2001), pp. 1094–1104.

[MK16] Antonio Marotta and Andreas Kassler. “A power efficient and robust virtual
network functions placement problem”. In: ITC. Vol. 1. 2016, pp. 331–339.

177

Bibliography

[Mor+09] A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. “The Third Homo-
morphism Theorem on Trees: Downward & Upward lead to Divide-and-
Conquer”. In: POPL. Jan. 2009.

[Mur+13] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martín Abadi. “Naiad: a timely dataflow system”. In:
SIGOPS 24th Symposium on Operating Systems Principles, SOSP. ACM,
2013, pp. 439–455. doi: 10.1145/2517349.2522738. url: https://doi.
org/10.1145/2517349.2522738.

[Mus+19] Craig Mustard, Fabian Ruffy, Anny Gakhokidze, Ivan Beschastnikh, and
Alexandra Fedorova. “Jumpgate: In-Network Processing as a Service for
Data Analytics”. In: USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud). 2019.

[MW13] Dmitriy Morozov and Gunther Weber. “Distributed merge trees”. In: PPoPP.
2013.

[Nar+20] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phan-
ishayee, and Matei Zaharia. “Heterogeneity-Aware Cluster Scheduling Poli-
cies for Deep Learning Workloads”. In: 14th Symposium on Operating Sys-
tems Design and Implementation (OSDI). USENIX Association, Nov. 2020,
pp. 481–498.

[Nat18] National Science Foundation. US-EU Internet Core & Edge Technologies
(ICE-T). May 2018. url: https://www.nsf.gov/pubs/2018/nsf18535/
nsf18535.pdf.

[Nee09] M. J. Neely. “Delay Analysis for Maximal Scheduling With Flow Control
in Wireless Networks With Bursty Traffic”. In: TON 17.4 (2009), pp. 1146–
1159.

[Nel+16] Tim Nelson, Nicholas DeMarinis, Timothy Adam Hoff, Rodrigo Fonseca,
and Shriram Krishnamurthi. “Switches are Monitors Too!: Stateful Property
Monitoring as a Switch Design Criterion”. In: HotNets. 2016, pp. 99–105.

[Net18] Netronome. Netronome NFP-6000 Intelligent Ethernet Controller Family.
2018. url: https://www.netronome.com/m/documents/PB_NFP-6000_
.pdf.

[New89] Peter Newman. “Fast Packet Switching for Integrated Services”. PhD thesis.
University of Cambridge, 1989.

[NN10] Ron Nadiv and Tzvika Naveh. “Wireless Backhaul Topologies: Analyzing
Backhaul Topology Strategies”. In: White Paper Ceragon (2010).

[Ous+13] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. “Sparrow:
distributed, low latency scheduling”. In: ACM Symposium on Operating
Systems Principles (SOSP). 2013, pp. 69–84.

178

https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://www.nsf.gov/pubs/2018/nsf18535/nsf18535.pdf
https://www.nsf.gov/pubs/2018/nsf18535/nsf18535.pdf
https://www.netronome.com/m/documents/PB_NFP-6000_.pdf
https://www.netronome.com/m/documents/PB_NFP-6000_.pdf

Bibliography

[Pac+11] S. Pacheco-Sanchez, G. Casale, B. Scotney, S. McClean, G. Parr, and S.
Dawson. “Markovian Workload Characterization for QoS Prediction in the
Cloud”. In: IEEE CLOUD. 2011.

[Pal+15] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. “E2: a framework for
NFV applications”. In: SOSP. 2015, pp. 121–136.

[Pen+18] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. “Optimus: an efficient dynamic resource scheduler for deep learning
clusters”. In: ACM European Conference on Computer Systems (EuroSys).
2018, pp. 1–14.

[Pen+19] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan,
Chuan Wu, and Chuanxiong Guo. “A generic communication scheduler for
distributed DNN training acceleration”. In: ACM Symposium on Operating
Systems Principles (SOSP). 2019, pp. 16–29.

[PN19] Dan R. K. Ports and Jacob Nelson. “When Should The Network Be The
Computer?” In: Workshop on Hot Topics in Operating Systems (HotOS).
ACM, 2019, pp. 209–215.

[Pon+19] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone,
Marco Spaziani, Valerio Bruschi, Davide Sanvito, Giuseppe Siracusano, An-
tonio Capone, Michio Honda, et al. “Flowblaze: Stateful packet processing
in hardware”. In: 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). 2019.

[Pop+12] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. “FairCloud: sharing the network in cloud
computing”. In: ACM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM). 2012,
pp. 187–198.

[QAS16] Long Qu, Chadi Assi, and Khaled Shaban. “Delay-aware scheduling and
resource optimization with network function virtualization”. In: TCOM 64.9
(2016), pp. 3746–3758.

[QCB18] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. “Auto-Scaling
Web Applications in Clouds: A Taxonomy and Survey”. In: ACM Computing
Surveys 51.4 (2018), 73:1–73:33.

[QEP18] P. Quinn, U. Elzur, and C. Pignataro. Network Service Header (NSH). RFC
8300. 2018.

[Rec+11] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. “Hog-
wild: A lock-free approach to parallelizing stochastic gradient descent”. In:
Advances in neural information processing systems. 2011, pp. 693–701.

179

Bibliography

[Ren+14] Jing Ren, Wen Qi, Cedric Westphal, Jianping Wang, Kejie Lu, Shucheng
Liu, and Sheng Wang. “Magic: A distributed max-gain in-network caching
strategy in information-centric networks”. In: Computer Communications
Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. IEEE. 2014,
pp. 470–475.

[Rza+20] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, et al. “Autopilot:
Workload Autoscaling at Google”. In: Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems (EuroSys). ACM, 2020.

[Sae+19] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen W. Zegura, Mostafa
H. Ammar, Khaled Harras, and Amin Vahdat. “Eiffel: Efficient and Flexible
Software Packet Scheduling”. In: NSDI. 2019, pp. 17–32.

[Sap+17] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and
Panos Kalnis. “In-Network Computation is a Dumb Idea Whose Time Has
Come”. In: Workshop on Hot Topics in Networks (HotNets). ACM, 2017,
pp. 150–156.

[Sap+19] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan R. K.
Ports, and Peter Richtárik. “Scaling Distributed Machine Learning with
In-Network Aggregation”. In: CoRR abs/1903.06701 (2019).

[Sat+18] Argawal Satyam, Malandrino Francesco, Carla Fabiana Chiasserini, and De
Swedes. “Joint VNF Placement and CPU Allocation in 5G”. In: INFOCOM.
2018.

[SB17] Giuseppe Siracusano and Roberto Bifulco. “Is it a SmartNIC or a Key-Value
Store?: Both!” In: Proceedings of the SIGCOMM Posters and Demos. ACM.
2017, pp. 138–140.

[SB18] Malte Schwarzkopf and Peter Bailis. “Research for practice: cluster schedul-
ing for datacenters”. In: Communications of the ACM 61.5 (2018), pp. 50–
53.

[Sch+13] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. “Omega: flexible, scalable schedulers for large compute clusters”. In:
ACM European Conference on Computer Systems (EuroSys). 2013, pp. 351–
364.

[Sch15] Malte Schwarzkopf. “Operating system support for warehouse-scale com-
puting”. PhD thesis. PhD thesis. University of Cambridge Computer Labo-
ratory, 2015.

[Shv+10] K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler. “The Hadoop
Distributed File System”. In: MSST. 2010.

[SIG] SIGKDD. KDD CUP 2012 data set. url: https://www.csie.ntu.edu.
tw/~cjlin/libsvmtools/datasets/binary.html#kdd2012.

180

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2012
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2012

Bibliography

[Sin+15] Arjun Singh, Joon Ong, Amit Agarwal, et al. “Jupiter Rising: A Decade of
Clos Topologies and Centralized Control in Google’s Datacenter Network”.
In: Proceedings of the 2015 Conference on Special Interest Group on Data
Communication (SIGCOMM). ACM, 2015, pp. 183–197. doi: 10.1145/
2785956.2787508.

[Son+20] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate
Foster. “Composing Dataplane Programs with µP4”. In: ACM SIGCOMM.
2020, pp. 329–343.

[SSS11] Michael Sindelar, Ramesh K. Sitaraman, and Prashant J. Shenoy. “Sharing-
aware algorithms for virtual machine colocation”. In: ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 2011, pp. 367–378.

[SSZ98] Ion Stoica, Scott Shenker, and Hui Zhang. “Core-stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed Net-
works”. In: CCR 28.4 (1998), pp. 118–130.

[Sto+15] Radu Stoenescu, Vladimir Andrei Olteanu, Matei Popovici, et al. “In-Net:
in-network processing for the masses”. In: EuroSys. 2015, p. 23.

[The] The Computational Biology and Functional Genomics Laboratory at DF-
CI/Harward. TGI Database: DNA sequences. http : / / compbio . dfci .
harvard.edu/tgi/.

[Tir+20] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene
Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes. “Borg: The next
Generation”. In: ACM European Conference on Computer Systems (Eu-
roSys). 2020.

[TJP16] Fung Po Tso, Simon Jouet, and Dimitrios P. Pezaros. “Network and server
resource management strategies for data centre infrastructures: A survey”.
In: Computer Networks 106 (2016), pp. 209–225. doi: 10.1016/j.comnet.
2016.07.002.

[TK03] Hüseyin Özgür Tan and Ibrahim Körpeoǧlu. “Power Efficient Data Gather-
ing and Aggregation in Wireless Sensor Networks”. In: SIGMOD Rec. 32.4
(Dec. 2003), pp. 66–71. issn: 0163-5808. doi: 10.1145/959060.959072.
url: http://doi.acm.org/10.1145/959060.959072.

[TMZ18] Y. Tokusashi, H. Matsutani, and N. Zilberman. “LaKe: The Power of In-
Network Computing”. In: 2018 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). Dec. 2018, pp. 1–8.

[TNG] Telecommunications Networks Group - Politecnico di Torino TNG. Traces
from Real Internet Traffic. url: http://tstat.polito.it/traces-skype.
shtml.

181

https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/2785956.2787508
http://compbio.dfci.harvard.edu/tgi/
http://compbio.dfci.harvard.edu/tgi/
https://doi.org/10.1016/j.comnet.2016.07.002
https://doi.org/10.1016/j.comnet.2016.07.002
https://doi.org/10.1145/959060.959072
http://doi.acm.org/10.1145/959060.959072
http://tstat.polito.it/traces-skype.shtml
http://tstat.polito.it/traces-skype.shtml

Bibliography

[Tok+19] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé, and Noa
Zilberman. “The Case For In-Network Computing On Demand”. In: ACM
European Conference on Computer Systems (EuroSys). 2019.

[Tum+16] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor
Harchol-Balter, and Gregory R. Ganger. “TetriSched: global rescheduling
with adaptive plan-ahead in dynamic heterogeneous clusters”. In: European
Conference on Computer Systems (EuroSys). ACM, 2016, pp. 1–16.

[Val+12] José Valerio, Pascal Felber, Martin Rajman, and Etienne Riviere. “CADA:
Collaborative Auditing for Distributed Aggregation”. In: 2012 Ninth Euro-
pean Dependable Computing Conference, Sibiu, Romania, May 8-11, 2012.
2012, pp. 1–12.

[Van+02] Robbert Van Renesse, Kenneth Birman, Dan Dumitriu, and Werner Vogels.
“Scalable Management and Data Mining Using Astrolabe”. In: Peer-to-Peer
Systems. Springer, 2002, pp. 280–294.

[Vav+13] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agar-
wal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh
Shah, Siddharth Seth, et al. “Apache hadoop yarn: Yet another resource
negotiator”. In: ACM Symposium on Cloud Computing (SoCC). 2013, p. 5.

[Ven+13] Shivaram Venkataraman, Erik Bodzsar, Indrajit Roy, Alvin AuYoung, and
Robert S Schreiber. “Presto: Distributed Machine Learning and Graph
Processing with Sparse Matrices”. In: EuroSys. 2013.

[Ver+15] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. “Large-scale cluster management at Google
with Borg”. In: ACM European Conference on Computer Systems (EuroSys).
2015, pp. 1–17.

[Wan+15] Kai Wang, Minghong Lin, Florin Ciucu, Adam Wierman, and Chuang
Lin. “Characterizing the Impact of the Workload on the Value of Dynamic
Resizing in Data Centers”. In: Perform. Eval. 85 (2015), pp. 1–18.

[Wan+16] Luhan Wang, Zhaoming Lu, Xiangming Wen, Raymond Knopp, and Ro-
hit Gupta. “Joint optimization of service function chaining and resource
allocation in network function virtualization”. In: IEEE Access 4 (2016),
pp. 8084–8094.

[Wan+19] Zhijun Wang, Huiyang Li, Zhongwei Li, Xiaocui Sun, Jia Rao, Hao Che,
and Hong Jiang. “Pigeon: An Effective Distributed, Hierarchical Datacenter
Job Scheduler”. In: ACM Symposium on Cloud Computing (SoCC). 2019,
pp. 246–258.

182

Bibliography

[Wan+20] Tao Wang, Hang Zhu, Fabian Ruffy, Xin Jin, Anirudh Sivaraman, Dan
R. K. Ports, and Aurojit Panda. “Multitenancy for Fast and Programmable
Networks in the Cloud”. In: Symposium on Hot Topics in Cloud Computing
(HotCloud). USENIX, 2020.

[WD96] David W Walker and Jack J Dongarra. “MPI: A standard message passing
interface”. In: Supercomputer 12 (1996), pp. 56–68.

[Wik] Wikipedia. Pageviews hourly statistics dumps. https://wikitech.wikimedia.
org/wiki/Analytics/Data/Pagecounts-raw.

[Wil16] Ruth J. Williams. “Stochastic Processing Networks”. In: Annual Review of
Statistics and Its Application 3.1 (2016), pp. 323–345.

[Wu+19a] Dingming Wu, Ang Chen, TS Eugene Ng, Guohui Wang, and Haiyong
Wang. “Accelerated Service Chaining on a Single Switch ASIC”. In: ACM
Workshop on Hot Topics in Networks (HotNets). 2019, pp. 141–149.

[Wu+19b] Heng Wu, Wenbo Zhang, Yuanjia Xu, Hao Xiang, Tao Huang, Haiyang
Ding, and Zheng Zhang. “Aladdin: Optimized Maximum Flow Manage-
ment for Shared Production Clusters”. In: IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 2019, pp. 696–707.

[Xia+18] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, et al. “Gandiva:
Introspective Cluster Scheduling for Deep Learning”. In: USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI). 2018,
pp. 595–610.

[Xia+19] Yikai Xiao, Qixia Zhang, Fangming Liu, Jia Wang, Miao Zhao, Zhongxing
Zhang, and Jiaxing Zhang. “NFVdeep: adaptive online service function chain
deployment with deep reinforcement learning”. In: IEEE/ACM IWQoS.
2019, 21:1–21:10.

[Xie+12] Di Xie, Ning Ding, Y. Charlie Hu, and Ramana Rao Kompella. “The only
constant is change: incorporating time-varying network reservations in data
centers”. In: ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM). 2012, pp. 199–
210.

[XZ19] Zhaoqi Xiong and Noa Zilberman. “Do Switches Dream of Machine Learn-
ing?: Toward In-Network Classification”. In: ACM Workshop on Hot Topics
in Networks (HotNets). 2019, pp. 25–33.

[Yan+07] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. “Map-
reduce-merge: simplified relational data processing on large clusters”. In:
SIGMOD. 2007.

[YD04] Praveen Yalagandula and Mike Dahlin. “SDIMS: A scalable distributed
information management system”. In: SIGCOMM. 2004.

183

https://wikitech.wikimedia.org/wiki/Analytics/Data/Pagecounts-raw
https://wikitech.wikimedia.org/wiki/Analytics/Data/Pagecounts-raw

Bibliography

[YGI09] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. “Distributed aggrega-
tion for data-parallel computing: interfaces and implementations”. In: SOSP.
2009.

[Yu+20] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury,
and Xin Jin. “NetLock: Fast, Centralized Lock Management Using Pro-
grammable Switches”. In: ACM SIGCOMM. 2020, pp. 126–138.

[Zah+10] Matei Zaharia, Khaled Elmeleegy, Dhruba Borthakur, Scott Shenker, Joy-
deep Sen Sarma, and Ion Stoica. “Delay Scheduling: A Simple Technique
for Achieving Locality and Fairness in Cluster Scheduling”. In: European
Conference on Computer Systems (EuroSys). ACM, 2010, pp. 265–278.

[Zah+12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. “Resilient Distributed Datasets: a Fault-
Tolerant Abstraction for In-memory Cluster Computing”. In: NSDI. 2012.

[ZBH18] Peng Zheng, Theophilus Benson, and Chengchen Hu. “P4Visor: lightweight
virtualization and composition primitives for building and testing modu-
lar programs”. In: ACM International Conference on emerging Networking
EXperiments and Technologies (CoNEXT). 2018, pp. 98–111.

[Zen+20] Lior Zeno, Dan RK Ports, Jacob Nelson, and Mark Silberstein. “SwiShmem:
Distributed Shared State Abstractions for Programmable Switches”. In:
Workshop on Hot Topics in Networks (HotNets). ACM, 2020.

[Zha+15] Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung
Chung, and Yun Li. “Cloud Computing Resource Scheduling and a Survey
of Its Evolutionary Approaches”. In: ACM Computing Surveys 47.4 (July
2015).

[Zha+17a] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu. “Hy-
perV: A high performance hypervisor for virtualization of the programmable
data plane”. In: IEEE International Conference on Computer Communica-
tion and Networks (ICCCN). 2017, pp. 1–9.

[Zha+17b] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman.
“SLAQ: quality-driven scheduling for distributed machine learning”. In:
ACM Symposium on Cloud Computing (SoCC). ACM, 2017, pp. 390–404.

[Zha+18] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian
Shun, and Saman P. Amarasinghe. “GraphIt: a high-performance graph
DSL”. In: Proceedings of the ACM on Programming Languages 2 (2018),
121:1–121:30.

[Zha+19] Cheng Zhang, Jun Bi, Yu Zhou, and Jianping Wu. “HyperVDP: High-
Performance Virtualization of the Programmable Data Plane”. In: Journal
on Selected Areas in Communications (JSAC) 37.3 (2019), pp. 556–569.

184

Bibliography

[Zhu+19] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan RK Ports, Ion Stoica,
and Xin Jin. “Harmonia: Near-linear scalability for replicated storage with
in-network conflict detection”. In: Proceedings of the VLDB Endowment
13.3 (2019), pp. 376–389.

[ZLZ19] Qixia Zhang, Fangming Liu, and Chaobing Zeng. “Adaptive Interference-
Aware VNF Placement for Service-Customized 5G Network Slices”. In: IN-
FOCOM. 2019, pp. 2449–2457.

[ZWY19] Wei Zhou, K Preston White, and Hongfeng Yu. “Improving Short Job
Latency Performance in Hybrid Job Schedulers with Dice”. In: International
Conference on Parallel Processing (ICPP). 2019, p. 56.

185

List of Abbreviations

CompReq composite resource request 123–129, 192

CompStore composite template store 119, 123–129, 141, 192

PolyReq polymorphic resource request 123, 124, 127–130, 132, 133, 136, 140–142, 149,
192, 193, 195

ACP admission control policy 74, 83

ASIC application-specific integrated circuit 28, 32

CDF commulative distribution function 147, 193

DNN deep neural network 8

DPI deep packet inspection 28, 31

DRF dominant resource fairness 112

DSA domain specific architecture 2

DSL domain-specific language 128

FPGA field-programmable gate array 6, 7, 9, 20, 29

GPU graphics processing unit 2, 6, 7, 9, 20, 159

HIRE Holistic INC-aware Resource managEr vi, viii, 5, 10, 12, 14, 95, 101, 115, 117–121,
123–129, 131–149, 155, 157–159, 192, 193, 195

IncSched INC-aware Scheduling vi, viii, 4, 5, 10–14, 95, 97–102, 105–108, 110, 114,
115, 117–120, 139–141, 145, 147, 148, 154, 155, 157–159, 188, 189, 192, 195

IA-MPP integer allocation maximum pressure policy 4, 10–13, 35, 69–72, 74, 75, 79,
81–89, 92, 154, 192, 195

187

List of Abbreviations

IaaS Infrastructure as a Service 24

INC in-network computing v–viii, 2–14, 17, 21, 26–33, 67, 95, 97–115, 117–149, 154–159,
192, 193, 195

IP integer program 130

ISP Internet service provider 89

K8 Kubernetes 110, 140, 188

K8++ IncSched+K8 110–112, 114, 192

MatReq materialized request 102, 105–108, 110, 112–114

MCMF min-cost max-flow 12, 123, 124, 131, 132, 135, 140, 142, 146–149, 193

ML machine learning 2, 6, 23

MMP Markov modulated process 87, 90

MPP maximum pressure policy 11, 12, 71, 79–81, 92

NAT network address translation 28, 29

NFV network function virtualization 27–30, 87

NIC network interface card 28, 29

NPU network processing unit 29

NSH network service header 77, 84, 91

OPEX operating expenses 2

OSPP offline static planning policy 85, 87

PaaS Platform as a Service 24

QoS quality of service 8, 77, 86, 87

RMT reconfigurable match tables 28, 33, 122

ROME Robust Aggregation Overlays Minimizing Execution Time vi, viii, 4, 5, 10–13,
35, 37–40, 42, 45–49, 51–67, 154, 156, 159, 191, 195

RTT round-trip time 84

188

List of Abbreviations

SaaS Software as a Service 24

SALVE STEAM T-valve 72, 74, 75, 83–85, 91

SDN software defined network 32, 33

SF service function 70, 73–79, 83, 85, 87, 89, 92, 192

SFC service function chain 1, 4, 7, 10, 11, 13, 35, 67, 69–75, 77–81, 84, 86, 87, 89, 90,
92, 93, 154–157, 191, 192

SFF service function forwarder 75–79, 82–89, 91, 192

SFI service function instance 7, 70, 71, 73, 75–79, 83–87, 89, 91, 192

SGHP shortened greedy heuristic policy 85, 87

Sparrow++ IncSched+Sparrow 113, 114, 192

SPN stochastic processing network 11, 12, 71, 74, 75, 77–80, 92, 192

SR-IOV Single Root I/O Virtualization 20

STEAM multi-site cooperative IA-MPP vi, viii, 4, 5, 10–13, 35, 69–72, 74, 75, 83–86,
88–93, 154, 156, 157, 159, 192, 195

TAG tenant application graph 23, 101

ToR top-of-rack 21, 122, 141

TPU tensor processing unit 2, 6, 7, 20, 159

VC virtual cluster 23, 101

VM virtual machine 2, 20, 24, 101, 102, 134

VNF virtualized network function 73, 74

VOC virtual oversubscribed cluster 23, 101

Yarn++ IncSched+Yarn 112, 114, 192

189

List of Figures

1.1 This dissertation’s organization. 13

2.1 The distributed computing landscape. 20
2.2 Clos network as a building block for many data center topologies. 22
2.3 Common data center resource abstractions for network bandwidth guar-

antees. 23
2.4 Data center resource management architectures. 25

3.1 Logical representation of communicating parties with INC. 30

4.1 Visual representation of the computation and aggregation phases. 43
4.2 Four aggregation trees with 16 leaves. 44
4.3 Compute-aggregate and total aggregation in the data analytics problem

space. 46
4.4 ROME’s three-staged approach. 47
4.5 The effect of the balancing mechanism. 50
4.6 Reusing workers to reduce resources and latency. 50
4.7 Final aggregation in ROME vs a third-party system. 52
4.8 Minimizing reaggregation. 52
4.9 Architecture of ROME. 54
4.10 Overlay comparison for various values of R. 58
4.11 Aggregation latency when changing input data or number of leaf nodes. . 60
4.12 LCS with Flink. 61
4.13 LCS with Spark. 61
4.14 Top-k with Flink. 63
4.15 Top-k with Spark. 63
4.16 Gradient descent with Spark. 65
4.17 Gradient descent time savings. 65
4.18 Failure affecting multiple tree levels. 66
4.19 ROME fault tolerance. 66

5.1 SFC resource provisioning of state-of-the-art solutions. 71

191

List of Figures

5.2 Tackling the SFC resource provisioning problem as a runtime scheduling
problem. 72

5.3 Small scenario with two sites, three SFFs, five servers, and three SFs with
multiple SFIs of each. 76

5.4 An SPN representation of the scenario in Figure 5.3 with two SFCs C1 =

(F1, F2, F3), C2 = (F2). Showing only A1-A5. 80
5.5 Single site scenario, running centralized scheduling IA-MPP vs baselines.

Varying server capacity cS to reach full success rate. cS normalized to
IA-MPP’s cS at 100% success rate. 86

5.6 From centralized to distributed scheduling, varying #sites. Normalized to
IA-MPP. 87

5.7 50 sites running distributed scheduling: STEAM vs baselines. Varying
server capacity cS to reach full success rate. cS normalized to STEAM’s
cS at 100% success rate. 88

5.8 50 sites, varying #SFs, using cS within 50%-100% of STEAM’s cS with
full success. 89

5.9 Pcap workload: STEAM vs baselines. Varying server capacity cS to reach
full success rate. cS normalized to STEAM’s cS at 100% success rate. . . 90

5.10 Performance effect on success rate of varying batch size running STEAM. 91
5.11 STEAM prototype scheduling performance; varying φb. 92

6.1 Architecture of IncSched. 105
6.2 K8++ scheduling performance with INC multiplexing (a-d) and without

(e), as function of µ (INC demand). 111
6.3 Yarn++ scheduling performance with INC multiplexing, as function of µ

(INC demand). 112
6.4 Sparrow++ scheduling performance with INC multiplexing, as function of

µ (INC demand). 113

7.1 HIRE system architecture. 123
7.2 Example applications with potential INC-enabled components. 126
7.3 HIRE resource model for the web application scenario of Figure 7.2a: (a)

CompStore of HIRE with 6 composite templates, (b) schematic representa-
tion of a CompReq, and (c) the PolyReq derived from the CompReq by the
model transformer module. 127

7.4 Non-linear resource sharing example. 129
7.5 HIRE flow network for Figure 7.3c. Double edges have capacity of 1.

Dashed edges are shortcut edges. Numbers in red are positive supplies. l
denotes node depth in the topology. 132

7.6 INC Locality Propagation. 138
7.7 Scheduling performance as function of µ (ratio of jobs requesting INC) for

experiments with homogeneous and heterogeneous switches. 144

192

List of Figures

7.8 Switch detours as a function of µ (ratio of jobs requesting INC) for exper-
iments with homogeneous and heterogeneous switches. 145

7.9 Cluster resource efficiency as a function of µ (ratio of jobs requesting INC)
for experiments with homogeneous and heterogeneous switches. 146

7.10 Placement latency as a complementary CDF when µ = 1, i.e. when all
jobs ask for INC resources for experiments with homogeneous and hetero-
geneous switches. 147

7.11 Scheduling performance using different configurations of Yarn++ for ex-
periments with homogeneous switches. 148

7.12 HIREMCMF solver speed (CDF and CCDF) at different ratios of PolyReqs
with INC (from no INC to all INC). 149

193

List of Tables

4.1 Some common aggregation functions and their size ratios of output to one
input (|a| means the size of a). 39

4.2 List of notation used for ROME. 44
4.3 System comparison. 45
4.4 Optimal value for F to minimize the latency of a single input block, and

values ROME chooses. 49
4.5 Examples of Accumulator implementations. 55
4.6 Core ROME API. 56
4.7 Network optimizations. Average and standard deviation in seconds. 65

5.1 List of notation used for IA-MPP and STEAM. 75

6.1 Resource constraints for INC approaches used in IncSched evaluation. . 109
6.2 INC approaches used in IncSched evaluation. 109

7.1 How existing schedulers cope with INC challenges. 121
7.2 Notation for HIRE. 125
7.3 List of notation used for HIRE’s cost model. 134
7.4 HIRE’s cost model job-independent costs. 136
7.5 HIRE’s cost model job-dependent costs. 137
7.6 Transformation rules and resource constraints for building PolyReqs for

INC approaches used in HIRE evaluation. 141
7.7 INC approaches used in HIRE evaluation. 143

195

A
Curriculum Vitæ

Gemäß §8 Abs. 1 lit. a der Promotionsordnung der TU Darmstadt

Wissenschaftlicher Werdegang

2008 – 2012 Bachelorstudium der Informatik an der TU Darmstadt

2012 – 2015 Masterstudium der Informatik an der TU Darmstadt

2015 – 2021 Wissenschaftlicher Mitarbeiter am Fachgebiet Programmierung verteil-
ter Systeme des Fachbereichs Informatik an der TU Darmstadt

197

B
Erklärung laut Promotionsordnung

Gemäß der Promotionsordnung der TU Darmstadt,

§8 Abs. 1 lit. c Promotionsordnung
Ich versichere hiermit, dass die elektronische Version mit der schriftlichen Version übere-
instimmt.

§8 Abs. 1 lit. d Promotionsordnung
Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertations-
thema und Ergebnis dieses Versuches mitzuteilen.

§9 Abs. 1 Promotionsordnung
Hiermit erkläre ich, die vorgelegte Arbeit zur Erlangung des akademischen Grades
“Doktor-Ingenieur (Dr.-Ing.)” mit dem Titel “Holistic Runtime Scheduling for the Dis-
tributed Computing Landscape” selbständig und ausschließlich unter Verwendung der

199

Appendix B. Erklärung laut Promotionsordnung

angegebenen Hilfsmittel erstellt zu haben.

§9 Abs. 2 Promotionsordnung
Die vorgelegte Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 01. Februar 2021
Marcel Blöcher

200

	Introduction
	The Demand on Resource Scheduling
	Highly Heterogeneous Compute Resources
	Unpredictable Workloads and Fluctuations
	Applications with Resource Alternatives

	Problem Statement
	Thesis Statement
	Contributions of This Dissertation
	Overview of This Dissertation
	Related Publications

	I Background and Analysis
	Distributed Computing Landscape
	Servers and Accelerators
	Network Fabric
	Resource Abstractions
	Resource Scheduling
	Summary

	In-Network Computing
	Deployment Targets
	Classification of INC
	Overview of INC Services
	Summary

	II Application-Level Resource Scheduling
	ROME: A Middleware System for Optimized Aggregation Overlays
	Overview
	Design Challenges
	Related Work
	Contributions

	Model
	Problem Definition
	Function Requirements
	In Perspective

	Optimizing Compute-Aggregate
	Optimizing Overlays
	Analysis Stage
	Overlay Stage
	Mapping Stage

	ROME System
	System Architecture
	API
	Fault Tolerance
	Integrating ROME

	Overlay Evaluation
	Varying Fan-in
	Append-only Updates
	Input Size and Distribution

	Integrated Evaluation
	Longest Common Substring
	Top-k Sort
	Gradient Descent
	Parent-child Colocation and Root Node Bypass
	Fault Tolerance Overhead

	Conclusions

	STEAM: Distributed Runtime Scheduling of Service Function Chains
	Overview
	Design Challenges
	Related Work
	Contributions

	Model and Problem
	System Model
	Problem Description

	Optimal Scheduling Policy
	Background on SPNs
	Reducing SFC Scheduling to SPN Scheduling
	Integer Allocation Maximum Pressure Policy (IA-MPP)

	Distributed Scheduling Policy
	STEAM Overview
	STEAM Deployment

	Evaluation
	Algorithms Compared Against
	Setup
	Single-site Experiments
	Multi-site Experiments
	Prototype

	Conclusions

	III Infrastructure-Level Resource Scheduling
	IncSched: Towards Cluster Resource Scheduling with INC Support
	Overview
	Design Challenges
	Related Work
	Contributions

	INC Challenges and Key Insights
	High Heterogeneity
	Complex Scheduling Dependencies
	Many Demand Alternatives

	IncSched Architecture
	Overview
	Resource Model
	Alternative Selection

	Case Studies
	Methodology
	Queue-based Scheduling Using Best Effort
	Delay Scheduling Using DRF
	Power of Two Choices

	Conclusions

	HIRE: A Cluster Resource Manager for INC and Server Resources
	Overview
	Design Challenges
	Related Work
	Contributions

	Challenges and System Design
	Challenges to Data Center Scheduling with INC
	System Design

	HIRE Resource Model
	Composite Templates
	Composite Resource Requests
	Polymorphic Resource Requests
	Model Transformation
	Limitations

	HIRE Scheduler
	Problem Modeling
	Flow-based Scheduling Approach
	HIRE Flow Network Structure

	HIRE Cost Model
	Evaluation
	Retrofitting Existing Schedulers
	Methodology
	Satisfying INC Requests (RQ1)
	Cluster Resource Efficiency (RQ2)
	Scheduling Under High INC Heterogeneity (RQ3)
	Preventing Resource Contention (RQ4)
	Yarn++ Parameter Stability
	MCMF Solver Speed

	Conclusions

	IV Epilogue
	Conclusion
	Summary
	Future Work
	Pushing INC to More Application Scenarios
	Stateful Service Function Chaining
	INC Data Center Benchmarks
	INC Switch Runtime
	Integrating Dynamic INC Availability
	Coupling INC Demand with Plan-Ahead

	Outlook

	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables
	Appendices
	Curriculum Vitæ
	Erklärung laut Promotionsordnung

