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A central question in neuroscience is how self-organizing dynamic interactions in the brain emerge
on their relatively static structural backbone. Due to the complexity of spatial and temporal
dependencies between different brain areas, fully comprehending the interplay between structure and
function is still challenging and an area of intense research. In this paper we present a graph neural
network (GNN) framework, to describe functional interactions based on the structural anatomical
layout. A GNN allows us to process graph-structured spatio-temporal signals, providing a possibility
to combine structural information derived from diffusion tensor imaging (DTI) with temporal neural
activity profiles, like that observed in functional magnetic resonance imaging (fFMRI). Moreover,
dynamic interactions between different brain regions discovered by this data-driven approach can
provide a multi-modal measure of causal connectivity strength. We assess the proposed model’s
accuracy by evaluating its capabilities to replicate empirically observed neural activation profiles,
and compare the performance to those of a vector auto regression (VAR), like that typically used

in Granger causality. We show that GNNs are able to capture long-term dependencies in data and
also computationally scale up to the analysis of large-scale networks. Finally we confirm that
features learned by a GNN can generalize across MRI scanner types and acquisition protocols, by
demonstrating that the performance on small datasets can be improved by pre-training the GNN on
data from an earlier study. We conclude that the proposed multi-modal GNN framework can provide
a novel perspective on the structure-function relationship in the brain. Accordingly this approach
appears to be promising for the characterization of the information flow in brain networks.

Brain connectivity comes in different flavors, either resting on the structural anatomical layout, as derived from
diffusion tensor imaging (DTI) or based on temporally resolved activity patterns, like observed in functional
MRI (fMRI)'. White matter tracks reconstructed from DTI provide a foundation for structural connectivity (SC)
and can be used to quantify the (static) anatomical connection strength between brain regions. On the other
hand fMRI enables us to map out dynamic neural activity distributions across the brain, whereas the coher-
ence of fluctuations is usually referred to as functional connectivity (FC). Such functional states can alternate
very rapidly in contrast to changes in the structural connectome, alterations of which are mainly related to the
natural development of the brain, aging or disease?. Therefore the brain structure can be considered as static
during a fMRI measurement, in comparison to the fast functional fluctuations. Intuitively one might follow then
the motto ‘structure determines function”, but it has been shown that the relationship between brain structure
and function is quite complex and still a focus of intense research*®. For instance, brain regions with robust
SC usually show also high FC, but the inverse is not necessarily true’. While FC is a statistical measure with no
information concerning the directionality of the relation, effective connectivity and directed functional con-
nectivity measures try to infer causal dependencies in functional imaging data'®. Thus connectivity measures
derived from different modalities can provide distinct, but complementary aspects of brain connectivity!!-1°. Still,
studying their relations is challenging mainly due to the complex spatio-temporal dependencies and inherent
difficulty in long term forecasting.

In this paper we propose a data driven model, which combines information from fMRI and DTI to infer
causal dependencies between brain regions. Temporal activity patterns of neuron pools, interconnected by the
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spatial anatomical layout, can be interpreted as time-varying graph structured signals. For such applications,
graph neural networks (GNN) have shown to be useful, providing a possibility to process data with graph-like
properties in the framework of artificial neural networks (ANN)!*. Motivated by their success in computer
vision'>!¢, convolution operations were recently extended to the graph domain'”'®. Training such convolution
filters in ANN enables us to capture inherent spatial dependencies in the non-Euclidean geometry of graphs,
which are used in our context to integrate spatial relations of brain networks, based on their structural anatomical
connections. Further, temporal dependencies in a dynamic system can be acquired by recurrent neural networks
(RNNG) that have proven to be well suited for processing data with sequential structure. In our study, RNNs learn
temporal characteristics of brain dynamics, like those observed in resting-state fMRI. A certain type of GNN
architecture denoted as diffusion convolution recurrent neural network (DCRNN)Y, provides the possibility to
integrate spatio-temporal information of graph-structured signals. By combining fMRI with DTI data, the idea
is to replicate brain dynamics more accurately, to get an improved understanding of functional interactions
between brain regions, which are physically constrained by their structural backbone®.

Causal relationships between brain regions can be revealed by directed functional connectivity and effective
connectivity. Two prominent and distinct approaches have been established in recent years!?. The first one is
based on a simple idea taken up by the British econometrician Clive Granger?'. If one event A causes another
event B, then A would precede B, and information on the occurrence of A should contribute to the prediction of
the occurrence of event B. Such temporal dependencies between multivariate processes are typically described in
the framework of a multivariate vector auto regressive (VAR) model, building a foundation for Granger causality
(GC). By trying to make accurate predictions of temporal neural profiles, GC tests if adding information about
neural activity in brain region B helps to improve the prediction of the activity in region A (and vice versa). This
provides an exploratory measure for directed causal dependencies between segregated brain areas.

The second popular approach is methodologically different: Dynamic causal modeling (DCM) relies on a
mechanistic input-state-output model of neuron pools, describing the effective connectivity strength between
brain areas®?. Experimental conditions and stimuli are encoded in input functions, and the model output can be
related to empirically observed electromagnetic or hemodynamic responses. In a Bayesian framework, effective
couplings of neural populations are estimated, providing a neurophysiological perspective on causal relation-
ships between different regions in the brain. However due to its relatively high computational complexity, the
analysis with DCM is usually limited to a few pre-defined regions in the brain only, what could neglect relevant
components for the analysis®.

Here we present a data-driven machine learning approach that combines structural and functional infor-
mation of neuron pools in a predictive framework for brain dynamics. By studying spatio-temporal depend-
encies between brain areas which were learned by the DCRNN model from DTI and fMRI data, we deduce
the information flow between segregated areas in the brain. This provides us with a multi-modal data-driven
perspective on causal relationships within brain networks. Currently, for investigating causal structures from
an information theoretic perspective, a VAR is most often used as the underlying predictive model for Granger
causality inference!®?. In our study we compare the VAR model to the multi-modal DCRNN model for this
application. We test the capabilities of the two models to replicate empirically observed fMRI signals, in order
to assess how well they can capture the underlying functional dynamics. First we show that the DCRNN is able
to make more accurate long-term predictions in fMRI data. While a classical VAR model has to fit a parameter
for each possible pair of the N brain areas in the network, which parameters then grow with an order N2, the
DCRNN learns localized filters on the structural network, also making its number of parameters independent
of the network size'®. This is especially useful for the analysis of large brain networks, when only sparse imag-
ing data is available. Moreover, as white matter tracks build the physical substrate for the propagation of neural
signals, a greater neurophysiological plausibility is provided by the DCRNN, because neural interactions are
related to their anatomical connections in this model as well. This property makes such a GNN architecture also
suitable for an explorative study of large-scale brain networks, unlike classical DCM, which is often limited to
a few predefined brain regions only?.

Finally such a GNN framework, which integrates anatomical and functional neuroimaging data, can pro-
vide a novel perspective on the general relationship between brain structure and function. Until now different
computational models have contributed valuable insights into the complex structure-function relationship, by
simulating how empirically observed FC patterns can emerge from the structural backbone*®*%. Furthermore,
by relying on methods from graph theory, functional networks have been derived from a mapping of the underly-
ing structural graphs®*-2%. Also approaches from machine learning have been employed to predict the strength
of functional connections from the anatomical connectivity?**, and more recently some models have been
proposed that additionally considered dynamic FC patterns for studying this relation®>*!.

So far most of the methods for investigating the structure-function relationship try to predict only the
temporal coherence patterns of functional fluctuations (FC) from their structural connectivity profile (SC), but
such a correlation based FC might be limited in its ability to characterize the rich nature of functional brain
dynamics. Instead of replicating only FC patterns, our approach directly models the measured neural activity in
different brain areas, thereby capturing more of the original information in the empirically observed functional
dynamics. By modeling neural interactions on the structural backbone, this method allows us to reconstruct the
amount of information on activity distributions that occurs in structurally connected brain regions. Accordingly,
such a spatio-temporal GNN model can provide a novel possibility to investigate the complex structure-function
relation under a different lens.

Usually for a good performance more complex machine learning models require a larger amount of data, but
it is not economical feasible in MRI to perform studies with very large sample sizes. To account for these issues
we demonstrate that also in our context transfer learning® can enhance the model accuracy of small datasets.
We pre-train the DCRNN on a large-scale dataset of 100 resting-state fMRI (rs-fMRI) sessions provided by the
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Figure 1. An overview of the DCRNN model. The model consists of an encoder and decoder (a), modified to
process graph structured signals (b). In our context, vertices (nodes) V, |V| = N of the graph G are defined as N
brain regions, derived from an atlas (b2). Structural connections between brain regions are derived from DTI,
quantifying the strength of edge connections in the graph (b1). The signal on the graph x(¢) at a certain time
point ¢ is the average BOLD signal in brain regions/nodes, obtained by the fMRI measurement at time # (b3).
The encoder (a) receives an input sequence [x(1), ..., X(Tp)], and iteratively updates its hidden state H(¢). The
final encoder state H(T)) is passed to the decoder part, which learns to recursively predict the output sequence
of graph signals [x(Tj, + 1),...,x(T, + Tf)]in the future. The encoder, as well as the decoder (c) consist of
diffusion convolution gated recurrent unit cells (DCGRU). The first encoder and decoder cell receive the input
graph signal, and they pass their hidden state to the subsequent cell. In the decoding part, the final cell of the
decoder generates then the predicted signal (c). During testing and validation, the decoder uses its own outputs
as inputs, to generate the subsequent output. The first input of the decoder (< GO > symbol) is simply a vector
of zeros. Figure (b1) was created with the MRtrix3 software package® (version 3.0) : https://www.mrtrix.org/,
and figure (b2) and (b3) with the Connectome Workbench (version 1.4.2): https://www.humanconnectome.org/
software/connectome-workbench.

Human Connectome Project®® (HCP). We then show that the pre-trained model considerably improves the
predictive performance on a smaller independent dataset of 10 sessions compared to standard training. This
points to the ability of the DCRNN to generalize across scanner types and acquisition protocols to a certain
extent, enabling the possibility for transfer learning.

Results

Model description. In this study we use the DCRNN model" architecture to explore the spatio-temporal
relationships of brain dynamics in resting state fMRI. An overview of the model structure is provided in Fig. 1.
To learn the temporal dependencies of the BOLD signal, recurrent neural networks (RNNs) with sequence-to-
sequence learning are employed*. In such an architecture the encoder network maps information from an input
sequence into a hidden representation, which is used by the decoding part to sequentially generate outputs,
based on this encoded information. In the context of brain dynamics, the input sequence corresponds to meas-
urements of the BOLD signal x(t) € R in N brain regions at T, time points, while the objective is to predict the
signal at Ty subsequent time points.

In addition to temporal, also spatial dependencies between brain regions are incorporated via diffusion
convolution operations'. Consider the network of regions of interest (ROIs) as a graph G = (V, €, A,), where
V,|V| = N denotes a set of vertices (nodes), £ represents a set of edges and A,, € RN*N is a weighted adjacency
matrix. The latter represents the spatial connectivity of the nodes, i.e. the ROIs on the neuronal network, which
are adjacent to each other, i.e. connected by an edge. Also the weights result from DTI, reflecting the axonal con-
nection strength between the connected regions. Goal of the DCRNN model is to learn a function A(...) which
maps T, past activity states x(#), to Ty future states:
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The encoder, as well as the decoder of the DCRNN consist of gated recurrent units®*, modified with graph
convolutions®, and for training the model scheduled sampling was applied®’. A detailed description of the model
architecture is provided in the methods section.

Data description. For the first part of our evaluation, resting-state fMRI data from the $1200 release pro-
vided by the Human Connectome Project®® (HCP) was employed™. Further the multi-model parcellation pro-
posed by Glasser et. al*® was applied to divide each hemisphere into 180 segregated regions. The BOLD signal
in each region was averaged, so for each resting state session, N = 360 time courses were obtained. During each
session T = 1200 images were acquired, so the data can be arranged in a matrix X € RV*T, For the follow-
ing analysis, we filter the data with a 0.04-0.07 Hz narrow band bandpass filter, as it has shown to be reliable
and functionally relevant for gray matter activity?®*’-*’. We additionally present results in supplement IV, when
employing a more liberal bandpass filter with cutoff frequencies between 0.02 and 0.09 Hz.

The input and output (label) samples for the DCRNN model were generated from the data in X, by defining
windows of length T}, to obtain input sequences of neural activity states [x(t — T) + 1),...,x(¢)], and respec-
tive target sequences [x(f + 1),...,x(¢ + Ty)] of length Ty. The index ¢ was propagated through each resting-
state fMRI session, so in total T — T, — Ty + 1 input-output pairs were generated per session. The first 80% of
those time window samples of each fMRI session were used for training the DCRNN model, the subsequent
10% for validation, and the last 10% for testing. In total 4 resting-state fMRI sessions from 25 different subjects
were employed for the evaluations in the following sections. The input and output length was chosen to be
Tp = Ty = 30, what would correspond to a time span of roughly 22 s, based on the sampling with a repetition
time TR = 0.72 s*. But note that in general the sequence-to-sequence architecture employed would be able to
deal with arbitrary input and output signal lengths*.

In addition to temporal brain dynamics, also structural information was incorporated into the model,
described by the anatomical connection strength between brain regions deduced from DTI. Therefore the DTI
dataset provided in the $1200 release®® was further processed by employing multi-shell, multi-tissue constrained
spherical deconvolution®’, implemented in the MRtrix3 software package®. White matter tractography was
performed to estimate whole brain structural connectivity between the N = 360 regions of the multi-modal
parcellation atlas®. The number of generated streamlines connecting two brain regions were used to define
the edge strengths in the graph adjacency matrix A,, € RV*N. A more detailed description of the datasets and
preprocessing involved can be found in the methods subsection ‘HCP data’

Model performance. In a first step we assess the capabilities of the DCRNN model to learn temporal activ-
ity patterns in neuron pools, and their relationships across the spatial layout. As a first baseline we compare the
DCRNN to the performance of a linear vector autoregressive (VAR) model?!, further described in the subsection
‘Autoregressive models. A common way to estimate causal relations between different regions of interest (ROIs)
in a brain network, is to fit a multivariate VAR model to neural temporal activity patterns, like those observed in
different neuroimaging modalities'“***¢. Evaluating the fitted VAR allows us to infer, if one spatial brain region,
contains additional information about future activity profiles of other regions, indicating a causal dependency
between them. The accuracy in replicating empirically observed neural activity profiles can indicate how well
a model has learned the underlying process of neural dynamics, including the interactions and dependencies
among brain regions. In this comparison we incorporated two different optimization methods for the estima-
tion of the VAR coefficients. The first one employs an ordinary least squares (OLS) fit on the neural activity
timecourses x(¢) from individual rs-fMRI sessions*. The second approach, in analogy to the DCRNN, follows
a gradient-descent based optimization*s on the windowed neural activity samples as outlined in the subsection
‘Data description’. For this evaluation we rely on the latter one, as it could improve the performance of the VAR,
as described in the subsection ‘Autoregressive models.

The evaluations were performed on test data from 100 rs-fMRI sessions (4 sessions from 25 subjects), using
the last 10% of the time window samples of each session, corresponding to 114 test samples per session. Within
a time window length of T, = Ty = 30 both models can make relatively reasonable predictions, but also the
difference in the prediction accuracy becomes apparent. A representative example of the accuracy of the two
approaches is shown in Fig. 2, as well as their average performance on the complete testing data set. Figure 2a
illustrates that a linear VAR model can generate in a few cases also correct long term predictions, but most often
after 10 TRs (= 7 s) the error starts to accumulate and the predictions become less accurate. The predictions of
the DCRNN (Fig. 2b) remain stable over much longer forecasting horizons, and the average mean absolute error
MAE = 0.0279 is considerably lower than the MAE = 0.1786 of the VAR.

To further test the significance of the performance difference across subjects, the overall MAE between the
predicted and true BOLD signals were computed for each of the 25 subjects individually, as an average across
sessions, brain regions and test samples. A paired t-test was applied and with considering a significance threshold
0f 0.05, the difference in forecasting accuracy between the models showed to be highly significant with p < 0.0001
across subjects. Due to the oscillations of the BOLD signal, the predicted signals tend to intersect the true ones
at some point in time, what can be seen for example in Fig. 2a. After the truth and prediction have diverged from
each other at previous timepoints, at this point of intersection the MAE tends to be smaller again. Therewith
these intersections are reflected in some flatspots occurring in the error bars along the forecasting horizon, like
observed in Fig. 2c. The forecasting error in dependence of different model output horizons is provided in Table 1.
The difference in the performance between the DCRNN and VAR model already becomes apparent within the
first few predicted timesteps, and the margin tends to further increase for larger prediction horizons.
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Figure 2. The figure illustrates the prediction accuracy of a VAR model (a) in comparison to the DCRNN

(b). The true BOLD signal in these 4 ROIs is marked green, while predictions of the VAR are highlighted in

red, and for the DCRNN in blue. The first 30 TRs of BOLD signal were used as the model inputs, and the goal
was to predict the subsequent 30 TRs. This illustrative example was chosen to represent the whole test set,

the prediction error of the VAR model on this sample is 0.169, and as such slightly below average, while the
error of the DCRNN is with 0.037 higher than its average. Below in (c) the overall test MAE is illustrated in
dependence of the forecasting horizon, computed as the average over all subjects, sessions, brain regions and test
samples. On the right side in (c) the average of all horizons is shown.

Forcasting horizon (TRs)
Model 5 10 15 20 25 30
VAR 0.0321 0.0589 0.0751 0.1099 0.1449 0.1786
DCRNN 0.0018 0.0028 0.0065 0.0115 0.0163 0.0279

Table 1. The overall test MAE of the VAR and DCRNN model, in dependence of different forecasting
horizons.

Additional analysis of the performance of the DCRNN model can be found in the Supplementary Informa-
tion. At first in supplement I we reproduced the evaluations by testing the prediction accuracy on a cohort of new
and unseen subjects. Further in Supplementary I we have discussed the impact of the training dataset size, as well
as the role of the input horizon length T), on the model's prediction performance. Additionally we studied the
consistency of the model performance across subjects and we investigated, how the prediction accuracy depends
on the different brain regions, to examine if there are areas with more or less complex temporal dynamics. To
test the efficiency of neural network architecture implemented by the DCRNN, we then compared it to differ-
ent baseline models in Supplementary II. Further in Supplementary III we compared the VAR and DCRNN on
a smaller dataset collected at a different imaging site. To study the impact of a more liberal frequency filtering
within the 0.02-0.09 Hz range, the equivalent evaluation is provided in Supplementary IV. In Supplementary V
we evaluate the different approaches employing the volumetric AAL parcellation®” and performing an alternative
method for reconstructing the anatomical connectivity™. Finally the effects of the timeseries input length and
optimization methods on the VAR model performance are discussed in Supplementary VI.
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Figure 3. This figure depicts the effect of structural modeling on the prediction accuracy. The MAE values

were computed as the average over all subjects, sessions, brain regions and test samples. In (a) the test MAE in
dependence on included walk order K is shown, while (b) demonstrates the impact of K on the computational
load per epoch. A more detailed comparison of the MAE on the forecasting horizon when employing filters with
order K = 0 and K = 3 is illustrated in (c).

Impact of spatial modeling. For this application of the DCRNN model, the anatomical connectivity was
used to characterize spatial relations between nodes in the brain network, shaping the transition of activity
between brain regions. To illustrate that the DCRNN indeed has learned relevant spatial interactions between
different ROIs, we evaluate this recurrent neural network model, without employing graph (diffusion) convo-
lution layers. This restriction considers only self-couplings (filters of order K = 0) of nodes on the structural
graph. Figure 3a shows the test MAE in dependence of the incorporated walk order K. The increase in computa-
tional time per epoch in dependence of included transition orders K is depicted in Fig. 3b. A more detailed com-
parison of the prediction MAE between the sequence-to-sequence model without graph convolutions (K = 0),
and including spatial transitions up to order K = 3 is illustrated in Fig. 3c.

These results show, that the vast amount of the information about future activity in one region comes from
the region itself. But by including first order transitions on the structural network (K = 1) the error can already
be decreased by 25%. Filters of higher orders K = 2, 3 only slightly improve the predictions further, as shown
in Fig. 3a, but the computational load increases linearly with order K, like illustrated in Fig. 3b. The role of such
transitions within the anatomical network can tell us something about the general structure-function relationship
in the human brain, by pointing out how much information about functional dynamics comes from structurally
connected regions. The comparison between K = 0 and K = 3 shows, that roughly up to 27% of the predictive
performance can be attributed to information from regions that are anatomically connected with each other. A
paired t-test was applied to test the difference in the models accuracy between K = 0 and K = 3 across subjects,
which turned out to be significant with a value of p < 0.0001

Causal connectivity. In this section the objective is to study the principle of information passing between
different ROIs the DCRNN has learned from the neuroimaging data. As shown in the previous subsection
‘Impact of spatial modeling), propagating information on the anatomical network can improve the predictions
of the temporal evolution of the BOLD signal, displaying a dependence among structurally connected brain
regions. Such a dependency might go beyond simple coherency based functional connectivity, as the latter usu-
ally assess only the temporal similarity of two signals. Observing that the past activity in some regions contains
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Figure 4. The figure illustrates the influence of activity in PIVC on all other brain regions. The left side depicts
the left hemisphere, while on the right side the right hemisphere is shown. The target region PIVC in the

right hemisphere is marked in blue. The values of the influence measure I(n’) were normalized between 0 and
100 and are encoded in red in this illustration. PIC posterior insular cortex, PIVC parieto-insular vestibular
cortex, SF Sylvian fissure and surrounding perisylvian cortex, TPJ temporo-parietal junction. Note that causal
relationships from right PIVC were primarily found in the ipsilateral hemisphere. The figure was created with
the Connectome Workbench software (version 1.4.2): https://www.humanconnectome.org/software/conne
ctome-workbench.

additional information about the future activity in other regions, beyond information retrieved from their own
past, could indicate some flow of information among them and could provide a first indication for a causal
dependency structure. Now to derive such a measure of causal connectivity strength, by following the idea of
Granger?', the goal is to reconstruct how information about the activity in ROI A contributes to the prediction of
the activity in ROI B. To reveal relationships inside the data by directly looking at the learned parameters is often
challenging when ANN models become more complex. One simple strategy used to account for this problem is
to induce perturbations in the models input space and then observe how these perturbations are propagated to
the models outputs®>2.

In our context, the DCRNN first learns a function A(...), mapping the original input sequences of neural
activity states [x(t — T, + 1), ..., x(t)]to a predicted output sequences of future states [X(¢ + 1),...,X(t + TPl
Then the information about the activity in a ROI ' is removed, by simply replacing the values x,, (¢) in the input
sequence with the mean value of the data distribution X,/ (t) = 0. Next the input sequence with the artificial
perturbation in #" is projected by the model /(...) to an output sequence [X'(t + 1),...,X'(t 4 Tf)]. Finally the
differences of the models predictions X’ (¢) with the perturbation in the input space in ROI#/, and the predictions
x(t) with the original input can be compared. A measure of influence I(n’) € RY of the information in ROI #’ on
the predictions in other ROIs can then be defined as:

S Ty
1 1 n N
() = ¢ > 7 PO SUOES I O] )
s=0 t=0

with I,,(n") describing the impact of region #’ on region n. Here f(ﬁf)(t) and )A(;(S)(t) denote the predictions in
region n with and without the perturbation of n” in the input space respectively, of a test sample s at time step .

To visualize this measure of influence of n’ on each individual region #, values of I(#’) can be projected onto
the cortical surface. In the following we studied the impact of the parieto-insular vestibular cortex (PIVC) on
all other brain regions. Here PIVC in the right hemisphere is characterized as a conjunction of ROIs R_OP2-3
and R_Ig, as defined by Glasser et al.*. Previous results show that this location coincides with the average loca-
tion of PIVC across human subjects®>**. The perturbation was induced in R_OP2-3 and R_Ig simultaneously,
and Fig. 4 illustrates the strength of influence on all other regions (encoded in red) of the target region PIVC
(marked in blue).

The results of this analysis show that PIVC exhibited an interrelationship with the Sylvian fissure, the perisyl-
vian cortex and the insula. Similar connectivity patterns have been observed using diffusion weighted imaging>>*®
and resting state functional connectivity’” in human subjects as well as in non-human primates using tracer
techniques®®. Several separate regions of the vestibular cortex are located within this Sylvian network, includ-
ing the posterior insular cortex area (PIC), a region critical to the integration of visual and vestibular cues (for
human subjects®*’; for non-human primates the region is referred to as VPS**!). The information flow within
this Sylvian network is not fully understood yet. Current theories assume that vestibular and visual cues about
self motion are combined within PIVC and PIC and are then further processed to the temporoparietal junction
(TPJ), alarger cortical region located at the junction of the temporal and parietal cortices, where visual-vestibular
signals are integrated into a representation of the self in space®’. The results of the current analysis support this
view by providing first evidence for a potentially causal relationship with the supramarginal gyrus, which is part
of the TPJ. Further functional connectivity between PIVC was observed with the visual cortex. This result is
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interesting, since several studies have shown inhibitory interactions between the visual system and PIVC®762-64,

such that PIVC is inhibited when visual cues are processed attentively and vice versa. As shown by magnetic
resonance spectroscopy, this inhibition of PIVC is reflected by a decrease of excitatory neurotransmitter (glu-
tamate and its precursor glutamine) within PIVC, concomitant with an increase in negative BOLD signal in
PIVC®. These inhibitory interactions are assumed to be modulated in magnitude by attention networks located
in the visual and parietal cortices®’.

Model generalization. Often one problem is the availability of a sufficient amount of data, in order to fully
train and take advantage of machine learning models with large parameter spaces. Especially in MRI studies it
is usually time-consuming and costly to acquire such large data sets. To account for this limitation, the concept
of transfer learning was proposed in machine learning®?. The basic idea behind transfer learning is that if only
sparse data are available to learn a certain task, one can pretrain the model on a large-scale dataset of a similar
task. In a next step, the feature representations learned on the large database can be used as an initialization for
learning the desired target task. The goal is to transfer knowledge of one source domain to a target domain, by
re-using the pretrained models weights. If the feature representation of the source domain is diverse enough, this
can improve the model performance in comparison to starting the training without any prior knowledge, e.g.
relying on a random initialization of the model weights®?.

To investigate if transfer learning can also be suitable for our application, we studied the capabilities of the
DCRNN to generalize across different datasets. Therefore we pretrained the DCRNN using the data provided
by the HCP?, as described in the methods subsection ‘HCP data. The model was pretrained for 70 epochs on
in total 100 resting-state fMRI sessions, including the anatomical connectivity as reconstructed from DTI. Next
we used a dataset acquired with a Siemens Magnetom Prisma 3T at the University of Regensburg (UR), where 10
different subjects participated in a resting-state fMRI session, including a DTT session, to acquire the correspond-
ing structural imaging data. Each resting-state session of the UR dataset had a duration of 7.3 min, whereby 600
fMRI images were collected per scan. The acquisition parameters and the preprocessing involved are outlined
in more detail in the subsection ‘UR data’ In analogy to the HCP dataset, the UR data was further processed by
windowing the average BOLD signals in the regions defined by Glasser et al.*’, thereby obtaining windows with
an input and output length of T;, = Ty = 30 timepoints. The first 80% of these samples were used as a training
data set, the subsequent 10% for validation and the final 10% for testing. We fine tuned the DCRNN, pretrained
on the HCP data, by training it for 70 more epochs on the UR dataset, and initialized the second training with
a lower learning rate of 0.001. This pretrained model was compared to the DCRNN, only trained on the UR
dataset, and with weight parameters initialized randomly with Xavier/Glorot initialization®.

The comparison between relying on standard training, and utilizing transfer learning is illustrated in Fig. 5.
Figure 5a shows the training and validation error during learning when starting with a random initialization of
the weights in red. This model was trained in total for 140 epochs on the UR dataset only. In blue the training and
validation error is depicted of the model, initially pretrained on the HCP dataset for 70 epochs, and fine tuned on
the UR dataset for the subsequent 70 epochs. Figure 5a illustrates that at onset, the training error on the UR data
is relatively high, but as the pretrained model adapts to the new dataset the MAE becomes considerably smaller
than without pretraining. In Fig. 5b the test MAE in dependence of the prediction horizon is depicted. In total
540 test samples from 10 different subjects were used for the evaluation. The average test error could be reduced
by 27% from 0.0388 to 0.0284 by encompassing transfer learning. Accordingly, the model performance on the
small UR dataset, containing 10 sessions a 7.3 min becomes comparable to the performance on the large HCP
dataset with 100 sessions a 14.4 min with a MAE = 0.0279. Finally, to evaluate the significance across subjects,
the test MAE with and without pre-training the model was computed for each of the 10 subjects. A paired t-test
was applied and the difference was significant with p < 0.0001.

Discussion

We introduced a multi-modal framework for inferring causal relations in brain networks, based on a graph neu-
ral network architecture, uniting structural and functional information observed with DTT and fMRI. First this
model provides a data-driven perspective on a fundamental question in neuroscience, namely how the function
of the brain is related to its structure. Moreover, by modeling dynamic interactions on the structural anatomi-
cal substrate, this framework accounts for non-linear spatio-temporal dependencies between segregated brain
regions, allowing us to reconstruct a multi-modal measure of causal influence strength.

First, we evaluated the performance of the DCRNN by studying its capabilities to reproduce empirically
observed neural activity patterns, and compared it to a VAR model, like that typically used for the analysis of
brain connectivity with Granger causality*"*¢. We showed that the DCRNN can also capture temporal long-term
dependencies in fMRI data, enabling it to make accurate predictions up to 30 TRs (= 20 s) in the 0.04-0.07 Hz
frequency range, which could reduced the overall test MAE considerably in comparison to a linear VAR. Note
that results in subsection ‘Model performance’ demonstrate, that despite its simplicity, a VAR can make quite
reliable predictions within the first 10 TRs. Also its linearity allows for various possibilities for statistical infer-
ence of causal relations between different time courses, making it a feasible and fast tool for the estimation of
Granger-causal connectivity?. But in the future it could be of interest to also consider non-linear and long-term
relationships in neuroimaging data, in order to get a more complete picture of functional interactions between
areas in the brain. The improved accuracy of the DCRNN reveals that it can better learn inherent characteristics
of brain dynamics, and might therefore be more able to characterize causal relations than simple linear models.
We further reproduced the analysis on a different dataset in Supplementary III, which could reveal that especially
on small datasets it is beneficial to model transitions in brain networks with localized graph filters'®. With this
technique the predictions of the DCRNN remain stable also on large brain networks, even when only sparse data
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Figure 5. This figure illustrates the performance difference between standard training and encompassing
transfer learning. Figure (a) shows the validation and training MAE during learning from epoch 70 onwards,
and the errors with and without pretraining are depicted in blue and red respectively. The MAE values were
computed as the average over all subjects, sessions, brain regions and test samples. At the very beginning of
fine tuning, the error of the pretrained model is relatively high, but decreases after the model adapts to the UR
dataset. In figure (b) the final test MAE of both models is shown in dependence on the forecasting horizon.

are available to fit this model to complex network structures. We additionally verified the results by employing
a more liberal bandpass filter with cutoff frequencies 0.02-0.09 Hz in Supplementary IV. By including more
frequency components, the BOLD signal becomes more complex and is accordingly harder to predict. The same
analysis has been carried out relying on a volumetric brain atlas*, and using an alternative tractography method
to reconstruct the structural connectivity in Supplementary V. In all cases the difference between the VAR and
DCRNN in the prediction performance is apparent, especially for larger horizons. Also the DCRNN does not
require stationarity of time series data, therefore avoiding potentially distorting pre-pocessing steps in order to
achieve the latter. Another aspect that improves the plausibility of the estimated causal relations between brain
regions is the integration of structural information into the graph neural network model. As the propagation
of neural signals is physically constrained by the layout of white matter connections, propagating information
via graph convolutions along anatomically connected regions is in agreement with prior knowledge about the
anatomy of the brain.

The impact of this structural modeling was further investigated in the subsection Tmpact of spatial modeling’
In the DCRNN the propagation of information is realized as a stationary diffusion process in the notion of a
diffusion convolutions (DCs)"’. Results show that diffusion steps of order K = 1already contribute most to the
improvement of prediction accuracy, while higher order terms of K = 2, 3 only have a nominal further impact
on the performance. The influence of structural modeling on the predictive performance provides additional
insight into the general structure-function relation in the brain, by pointing out, how much additional informa-
tion about the functional activity in a certain region can be gained from the inclusion of structurally connected
regions. By including filters up to order K = 3, the predictions could be improved by 27% in comparison to when
information from anatomically connected regions has been neglected. Note that for each time step t the DCRNN
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already applies multiple DCs to the multi-variate time series data, thereby inherently capturing the influence of
higher order structural connections. Therefore low orders of diffusion walks K < 3 seem to be already sufficient
to account for indirect transitions. A good trade-off between computational load and model accuracy could
be achieved with a maximum walk order of K = 2, as the computational complexity linearly increases with K.
Learning localized filters characterized by polynomial coefficients 6 renders it possible to efficiently analyze large
scale networks'®, which allowed us to conduct an analysis with N = 360 regions simultaneously on a single GPU.
So unlike classical DCM, this model can also be applied to study interactions across the whole brain, making it
suitable for an exploratory analysis.

The results demonstrated that propagating information across anatomical connections improves the model
accuracy, pointing towards functional dependencies between different brain regions. In the spirit of explainable
artificial intelligence (XAI), we proposed a method to reconstruct such dependencies, which the DCRNN has
learned from the data in subsection ‘Causal connectivity’ Inducing perturbations in the model’s input space
allowed us to study how the activity in a certain region influences other regions. This influence would quantify
the importance of temporal information on the activity in a certain ROI for predicting the activity in other
ROIs. Following the philosophy of Granger causality, this indicates a causal dependency between ROIs, thereby
providing a measure of directed influence among each other. This kind of relation is referred to as directed
functional connectivity or causal connectivity, as such information theoretic measures are dependent on causal
mechanisms, but are not necessarily identical with them®”%®, which distinguishes them from explicit model-
based approaches like DCM for effective brain connectivity'®. For our approach we used the more general notion
of causal connectivity, as we do not only incorporate functional data, but also structural information to describe
such causal dependencies between different regions. To demonstrate an application of our proposed approach,
we evaluated the influence of PIVC on other brain regions. The derived connectivity network indicated a causal
relationship between PIVC with brain regions in the Sylvian fissure, the perisylvian cortex and the insula, but
also with the visual cortex.

In a final step, we proposed an approach to improve the model performance on smaller data sets. We demon-
strated that the concept of transfer learning®* finds also an application in our context of detecting intrinsic pat-
terns in fMRI time-series and structural connectivity data. Features learned from the data of the HCP repository™
could be well transferred to a smaller dataset, acquired with a Siemens Magnetom Prisma 3T. This made it
possible to achieve almost the same accuracy on a small dataset with 10 sessions (each 7.3 min in duration) as
with a large dataset of 100 sessions (each 14.4 min in duration). The acquisition and preprocessing protocols of
the two fMRI datasets were relatively comparable in our study, so in other cases with larger differences in the
temporal resolutions of the data, downsampling one dataset could be necessary in order for the model to better
learn transferable feature representations.

Note that by integrating the structural information into the model, the functional interactions learned by
this model also depend on the predefined anatomical layout. Therefore the quality of DTT data is additionally
relevant for the results, but it is known that DTT has problems to accurately reconstruct long-range white matter
tracks®. In our study we incorporated data from young healthy subjects and we computed a group SC matrix
for the whole subject cohort, in order to model neural transitions on the anatomical substrate. Such transitions
were characterized by local graph filters, which are optimized specifically for the underlying structural layout
used in the model. In case of subject cohorts with very different SC profiles, like in studies including diseased
patients or when comparing younger and older subjects, such graph filters would not generalize across cohorts
and therefore have to be learned for the SC of every group individually. Also fMRI comes with its limitations for
studying neural interactions, as the sampling rate is considerably lower than the underlying neural responses,
and the neural activity is only indirectly measured based on the observed hemodynamic response*. An interde-
pendence between the temporal information of two brain areas therefore only provides an indication for a causal
relationship, and it should not necessarily be assumed to be identical with the latter. So the interpretation of the
results should consider the informative content of the neuroimaging data used in this model. In our study we
investigated possible applications of the GNN model using two different MRI data sets and different approaches
for white matter tractography and frequency filtering (as outlined in the Supplementary Information). But for
future studies, alternative imaging modalities and preprocessing schemes, could also be interesting for study-
ing the structure-function relationship under a different light, for example by employing a log-transformed SC
matrix to modify the influence of long-range structural connections, or observing functional dynamics in higher
temporal resolution with electroencephalography (EEG) or magnetoencephalography (MEG).

In conclusion we think that GNN architectures can provide an interesting novel approach to combine complex
non-linear temporal and spatial patterns as observed in fMRI and DTI data. Currently GNNs already show very
promising applications for classification tasks in MRI based on brain connectivity networks”*-">. In our study we
showed that they can be also suitable to characterize the non-Euclidean spatial relationship of segregated brain
regions when analyzing dynamic functional interactions on the structural network. Beyond the investigation
of causal relations, this data-driven approach to brain dynamics could also be of interest for other applications.
While many current approaches dealing with the structure—function relationship in the human brain focus on
inferring the overall functional coherence patterns from their SC®262$293174 this framework allows us to directly
relate temporally resolved activity profiles to their anatomical substrate. Further this whole-brain model could
be interesting for clinical research, by studying dynamics in the diseased brain and observing how functional
interactions between different areas might be affected. This multi-modal brain model could also be used to
simulate the impact of a structural lesion to investigate the effects on the brain functions”. For detecting func-
tional dependencies among different brain areas, we studied the signal changes in all other areas of the network,
caused by a perturbation in a certain target area of interest. Alternative ways to look at such dependencies among
the models input variables could be provided by approaches, like sensitivity analysis’® or layer-wise relevance
propagation’’, what might be of interest for future investigations in this area.
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Methods
DCRNN. In the context of neuroimaging, neural activity patterns can be interpreted as a graph structured
spatio-temporal signal distribution. The nodes in this graph represent ROIs in a human brain, while the edges
reflect the connection strengths between these ROIs in the anatomical neuronal network, which forms a struc-
tural scaffold for the flow of information. This connection strength is given by the axonal connection strength
as determined from DTI measurements. The activity dynamics on such networks can be modeled by a random
walk on a graph, where a diffusion convolution operation is invoked to capture the spatial dependencies'®"’.
A diffusion-convolution recurrent neural network (DCRNN) is designed to integrate diffusion convolution, a
sequence-to-sequence architecture and a scheduled sampling technique!. The model, as it is applied in the cur-
rent study, is described in detail below.

When considering voxel time series of brain activity maps, we collect all data into a data matrix
X = (x(1)...x(T)), with x(t) € RY. Given N ROIs, taken from a brain atlas and each represented by a meta-
voxel, and considering T time points for each meta-voxel time series, which represents the activation time course
of one of the ROIs, then we have

XN1 *°* XNT

Note that the columns x(t) € R¥ of the data matrix describe the activation of all ROIs at any given time point
1 <t < T, whileits rows X, (t), t = 1,..., T represent the meta-voxel time course of every ROI1 < n < N.

Now consider a network of ROIs (brain areas, neuron pools) as an undirected graph G = (V, £, Ay,), where
V, V| = N denotes a set of vertices (nodes), £ represents a set of edges and A,, € RN*Nisa weighted adjacency
matrix. The latter represents the structural connectivity of the nodes, i.e. the ROIs on the neuronal network,
which are adjacent to each other and connected by an edge. Such undirected graphs can be deduced from dif-
fusion tensor imaging (DTI) data, which also provide the edge weights w,,,. The latter reflect the anatomical
connection strengths between the vertices. Note that DTT alone cannot determine the direction of information
flow, what makes it necessary to incorporate functional imaging data.

'The flow of activity observed on G is expressed as a time-dependent graph signal x(t) € R¥. It represents the
feature of each ROI, which here is the BOLD signal amplitude. Forecasting the flow of activity on G amounts to
learning a function h(...) that maps T}, past graph signals to future Ty graph signals:

x(t = Tp+1),..,x(0; 6] 2% [x(t +1),..,x(t + T7)]. @)

Spatial dependencies. Information flow on G is considered a stochastic random walk process modeled by

® are-start probability o € [0, 1]
® astate transition matrix T = D™'A,, = (Wl .. .WN)
Here we have withw € RN and w,, = (fvln . ..ﬁ/N,,)T Vn=1,...,N
D = diag(A,1) (5)

where the w = wy,y/ >,/ Wpy denote normalized edge strengths. Here state transitions are modeled as a diffusion
process on a graph. Note that because the DTT cannot obtain directed graphs, its diffusion matrix is symmetric,
i.e. T = T'. Thus an eigen-decomposition exists according to

T = UAU". (6)
Further the state transition matrix T is proportional to a normalized graph Laplacian
Ly =1-T=UI-AU" )

representing a random walk on the graph. Now consider the set of eigenvectors U of the diffusion Laplacian
matrix as a set of basis vectors. Then the graph signal x; € RN can be transformed to the conjugate domain and
vice versa, hence we have’®

Xy = UTxt (8)

x; = Uxy,. (9)

Finally invoking the convolution theorem, the graph convolution operator x can be defined as

ye =xi 6§ =U((U") © (UTx) ) = U6, O x0), (10)
where fy denotes a filter parametrized by 6 and © denotes the Hadamar product in the conjugate domain.
The transformed vector UTfy = 0, = (01(w),...,05(w))T summarizes the filter parameters 0,,n =1,...,N
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into a parameter vector in the conjugate frequency domain. If it is replaced by a diagonal feature matrix, i.e.
0, > 0O, = diag(0; (w) ... 0On(w)), it represents a convolution kernel. Thus we have for the output signal

y: = UO,x, = UO,U x,. (11)

Now expanding the filter kernel ®,, into a power series with respect to the eigenvalue matrix A of the transi-
tion matrix T, unfolding the bi-quadratic form into a sum of rank one outer product forms GnUUT, n=1,...,N,
which can be considered elementary filter kernel, and finally keeping only terms up to order K, we obtain

K
(Z Hk(a))Ak> U'x,

k=0

y=U

K
= Zek(w)T"X,.
k=0

Note that this diffusion convolution operation includes the inverse diffusion process, represented by the
transpose state transition matrix TT as well, since DTI can only yield undirected graphs. Thus, as has been shown
by", diffusion convolution is intimately related to spectral graph convolution (SGC)'®. More precisely, GDC is
equivalent to SGC up to a similarity transformation®.

Considering a CNN architecture and using the diffusion convolution operation, the output of each of the

q € {1,...,Q} diffusion convolution layers (DCL) is then given as follows:
K
hy =0 (Yq,t) =0 <Z Qk,quxt>. (13)
k=0

Hereby x; € RY denotes the input at time £, hy; € RY the corresponding output of the gth convolution layer,
Q the number of filters employed, o (...) any suitable activation function, and 6, x € REX+1 parameterizes the g-
th convolutional kernel of order k. The DCL learns to represent graph structured data and can be trained with
gradient descent based optimization techniques.

Note that this random walk on a graph represents a Markov process. At the limit K — oo it converges to a

stationary distribution P € RN*N, which for finite K < oo can be approximated by’
K
P= Za(l —oz)ka. (14)
k=0

The i-th row P;, of this matrix represents the likelihood of diffusion starting from ROI v; € V, hence the
proximity of any other ROIv; € V with respect to ROI v;.

Temporal dependencies. Given the graph convolution operation, temporal dynamics on the graph can be mod-
eled using gated recurrent units (GRU)?. The trick is to replace the matrix multiplications in GRU by diffusion
convolutions *g, as derived in Eq. (12). This leads to the diffusion convolutional gated recurrent unit (DCGRU)"

r(t) = 0(0; g [x(), H(t — 1)] + b,) (15)

u(t) = o (Oy *¢ [x(), H(t — 1)] + by) (16)

c(t) = tanh (O, *¢ [x(t), (r(t) © H(t — 1))] + b,) (17)
H(t) =u(t) OH( — 1) + (1 —u(®)) O c(t), (18)

where x(¢), H(t) denote the input and output states of the GRU at time t and [x(¢), H(t — 1)] denotes their
concatenation. Also r(), u(t) represent reset and update gates at time t, and b,, b, b, respectively, denote bias
terms. Furthermore, ®,, @, ®. denote the parameter sets of the corresponding filters. An illustration of a single
DCGRU cell is provided in Fig. 6.

Similar to GRUs, also DCGRUSs can be employed to build layers of recurrent neural networks, which can be
trained by backpropagation through time (BPTT)%%4!. If multiple step ahead forecasting is intended, a sequence-
to-sequence architecture can be used. In this architecture, both the encoder and the decoder are composed of
DCGRU layers forming a diffusion convolution recurrent neural net (DCRNN) (see Fig. 1). During training,
a time series of past events is fed into the encoder and its final states form the input to the decoder. The latter
then generates predictions, which can be compared to available ground truth observations. For later testing,
such ground truth observations are replaced by predictions generated by the model itself. Given BOLD signal
voxel activation time series, segments of an observed voxel time series are used to train a DCRNN to predict
future activations.

Training the DCRNN. The network is trained by maximizing the likelihood of generating the target future time
series using BPTT learning. Hence, DCRNN can capture spatio-temporal dependencies between time series.
After the Bandpass filtering of the BOLD signal in each region, the data of each fMRI session was scaled between
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Figure 6. Overview of the processing steps of the DCGRU cell. The input x(t), as well as the previous hidden
state H(t — 1) are concatenated and passed to the reset gate r(t), as well as to the update gate u(t). The reset
gate r(t) controls the proportion of H(t — 1) which enters c(t), together with input x(¢). Then the hidden state
H(t — 1) is updated by c(t), whereby the amount of new information is controlled by u(#).

0 and 1 before starting the training. The DCRNN" was implemented using the TensorFlow®? library for machine
learning, and computations were performed on an Nvidia Quadro K6000 GPU, running on a desktop PC with
an Intel(R) Xeon(R) CPU E5-1620 v4 CPU under Linux Debian 9. Scheduled sampling® is invoked during train-
ing to account for the fact that the distribution of input stimuli during testing might differ from the distribution
of training stimuli. During scheduled sampling reference observations are fed to the model with probability ;,
while predictions released by the model are fed in with probability 1 — ¢; at the i-th iteration. During supervised
training, instances to be predicted are, of course, known. An inverse sigmoidal function determines the sampling
probability decay:

T

T 1—expli/t)

€ (19)

It was found to be sufficient to train the model for 70 epochs, and the scheduled sampling parameter can be
set to T = 5000. As an objective function the mean absolute error (MAE) was used to describe the overall dif-
ference between true activity x(¢) and predicted activity x(¢):

Ty

MAE (x,%) = Ti > Ix() — k(). (20)

t=1

For this optimization problem, the ADAM algorithm® was employed. The samples in the training data set
were randomly permuted and the gradient was derived from mini-batches of 32 samples. To achieve a good
convergence and to avoid too strongly growing gradients, it was found useful to use an annealing learning rate,
initialized with n = 0.1. The learning rate was decreased by a factor of 0.1 at epochs 20, 40 and 60, or if the valida-
tion error did not improve for more than 10 epochs. Before lowering the learning rate, the weights with lowest
validation error were restored, in order to avoid getting stuck in local optima. The encoder and decoder of the
sequence-to-sequence architecture consist to two diffusion convolution GRU layers each, and the hidden state
size is set to Q = 64. The training performance is illustrated in Fig. 7. Due to the curriculum learning strategy,
within the first few epochs the probability of the decoder receiving a true label is very high, like that illustrated
by the gray line in Fig. 7. Therefore at onset of the training, the model has to make only correct short term pre-
dictions and the training MAE is already relatively small, indicated by the solid dark blue line. For validation
and testing, the decoder always receives its own previous prediction. The validation MAE is illustrated with
the dashed light blue line, and it can be seen that the model gradually learns to make also accurate long term
predictions. Finally, for the evaluations the whole population dataset was scaled to unit variance and zero mean.

Autoregressive models. As Granger causality® is typically based on linear vector autoregressive (VAR)
models for stochastic time series data, we evaluated a VAR as one baseline method. The idea of an autoregressive
process (AR) is that a time series x(f) can be described by a linear function of the first T, of its lagged values®*

x(t) = B +arx(t —1) +onx(t —2) + -+ apx(t = Tp) + u(t) (21)

with coefficients ; . . . ap, intercept 8 and an error term u(t). This expression can be extended to a multivariate
VAR model with N time series x(t) = [x1(¢), ..., xn(t)]as®

X() =b4+Aix(t — 1) + Aox(t —2) + -+ + Apx(t — Tp) +u(t), (22)

where coefficients are stored in matrices A € RN*N, and intercepts and errors are described by vectors b € RN

andu(t) € RYN. In the context of this study, time series x(t) reflect the BOLD signal of N brain regions, measured
at different times .
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Figure 7. Illustration of the model performance during training. The figure shows the MAE during the training
(solid blue line) and validation data set (dashed light blue line) in dependence of the number of epochs. The
gray line illustrates the scheduled sampling probability €; over time. Vertical lines indicate when the learning
rate was lowered by a factor of 0.1. In the first few epochs the training error, due to the high schedule sampling
probability €;, is already quite low. During testing and validation the inputs for the decoder are always the
models own predictions, what reflects the large discrepancy between training and validation error within the
first epochs. When the sampling probability is subsequently decreased, the model also learns to successfully
make long term forecasting.

For the estimation of coefficients A and intercepts b various methods exist?*, and in this study we rely on

two different strategies. The first is based on a typical ordinary least squares (OLS) estimation?**” on individual
subject sessions, implemented in the statsmodel python package®. The first 80% of each fMRI session were used
to fit the model to the data, and the subsequent 10% were used for validation and the last10% were employed as
a test set. To check for stationarity of the analyzed time series an augmented Dickey-Fuller test for unit roots
was performed*”#, with a p-value of p < 0.01.

Additionally, in order to render the comparison to the DCRNN more accurate, we implemented a gradient
descend based optimization for a VAR model in TensorFlow®, to verify that the differences in predictive per-
formance can be related to the models, and not solely to the optimization strategies. In analogy to the DCRNN
training, input-output samples of neural activities were generated from the data like described in subsection
‘Data description; which were used to minimize the MAE between the model’s prediction X(#) and groundtruths
x(t). The convergence could be optimized by employing stochastic gradient descent (SGD) optimization with a
batch size of 1, using an annealing learning rate with a start value of » = 0.005. The VAR model was trained for
100 epochs, and the learning rate was reduced by a factor of 0.1 after epoch 70 and 90. A comparison of the error
on the test set between the two different optimization strategies can be found in supplement VI.

Best performance could be achieved employing a SGD based optimization in combination with a lag order
of P = 30. Note that with such a high lag order, around 9.7% of the N = 360 time courses do not fulfill the sta-
tionarity criteria of the augmented Dickey-Fuller test anymore (p > 0.01). Yet the prediction accuracy could
still be improved by including lags up to P = 30, like shown in supplement V1. As the objective criterion of the
evaluation was to assess the capabilities of replicating empirically observed neural activity patterns, we chose the
VAR model with best accuracy for comparison with the DCRNN in ‘Model performance’.

Datasets. HCPdata. The first data set used in this study is provided by the HCP data repository**¥. The
$1200 release includes data from subjects which participated in four resting state fMRI sessions, lasting 14.4 min
each and collecting 1200 volumes per session. Customized Siemens Connectome Skyra magnetic resonance im-
aging scanners with a field strength of By = 3 T were employed for data acquisition, using multi-band (factor 8)
acceleration®®'. The data was collected by gradient-echo echo-planar imaging (EPI) sequences with a repetition
time TR = 720ms and an echo time TE = 31.1ms. The field of view was FOV = 208 mm x 180 mmand N, = 72
slices with a thickness of d; = 2 mm were obtained, containing voxels with a size of 2 mm x 2 mm x 2 mm.
The preprocessed version, including motion-correction, structural preprocessing and ICA-FIX denoising was
chosen®*>-7. Next a multi-model parcellation scheme was applied to divide the cortical gray matter hemisphere
into 180 regions®’, and the BOLD signal inside each region was averaged, to obtain the temporal activity evo-
lution for each area. For our study we found it appropriate to apply global signal regression, firstly because it
showed to effectively reduce movement artifacts in HCP datasets®. Also in this study of causal relations, the goal
was to extract the additional information, which certain brain regions contain about the activity of other regions,
whereby local interactions rather than global modulations were of interest for us. Those time courses were band-
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pass filtered, first performing the evaluations on a noise reduced narrowband in ‘Model performance, employing
a filter with cutoff frequencies 0.04-0.07 Hz**~*, and additionally implementing a more liberal bandpass filter
with cutoff frequencies 0.02-0.09 Hz, as displayed in Supplementary IV.

Diffusion MRI data was collected in 6 runs, whereby approximately 90 directions were sampled during each
run, employing three shells of b = 1000, 2000, and 3000 s/mm?, including 6 b = 0 images®. A Spin-echo EPI
sequence was employed with repetition time TR = 5520 ms, echo time TE = 89.5 ms, and multi band factor 3. In
total Ny = 111 slices were obtained, with field of view FOV = 210 mm X 180 mm and an isotropic voxel size of
1.25 mm x 1.25 mm X 1.25 mm. The preprocessing included intensity normalization across runs, EPI distortion
correction, eddy-current corrections, removing motion artifacts, and gradient non-linearity corrections®1°0-103,
To obtain the structural connectivity strengths between regions defined by Glasser et al.**, the MRtrix3 software
package was employed?®. Briefly multi-shell multi-tissue constrained spherical deconvolution*® was used to
obtain the response functions for fiber orientation distribution estimation!*!%, Furher 10 million streamlines
were created with anatomical constrained tractography'® and spherical-deconvolution informed filtering was
applied'”, reducing the number of streamlines to 1 million. To quantify the strength of the structural connec-
tions, the number of streamlines connecting two brain regions were computed, and normalized by the region
volumes. A detailed description of the workflow can be found in: https://osf.io/fkyht/. The group structural con-
nectome was computed as an average across the first 10 subjects, as the variance in the structural connectivity
strength is relatively low across subjects'®, while probabilistic tractography methods are relatively computation-
ally demanding. For this dataset, including only young healthy subjects, the similarity of the SC across subjects
was relatively high, and the correlation coefficient between SC values of different subjects was on average 0.91.
But note that when comparing very different subject cohorts, like healthy and diseased subjects, the SC matrix
should be computed for every studied group individually.

UR data. 'The second dataset was acquired with a Siemens Magnetom Prisma with field strength By =3 T
at the University of Regensburg (UR). The data of 10 different subjects were used, whereby resting state fMRI
data were collected during a scanning time of 7.3 min. All subjects provided written informed consent and the
study was approved by the local ethics committee of the University of Regensburg. All methods were performed
in accordance with the relevant guidelines and regulations. An EPI sequence was employed using multi-band
(factor 8) acceleration, sampling 600 volumetric images per run with a repetition time of TR = 730 ms and an
echo time of TE = 31 ms. The field of view was FOV = 208 mm x 208 mm and N = 72 slices with thickness of
ds; = 2 mm were collected, containing voxels with a size of 2 mm x 2 mm X 2 mm. For preprocessing the HCP
pipeline (version 4.0.0) was employed, as described by Glasser et al.*®. To achieve good correspondence between
the two datasets, the further preprocessing was also performed as outlined in subsection ‘HCP data. The fMRI
time courses were averaged within each brain region of the multi-modal parcellation scheme®, and again global
signal regression was applied. Finally those time courses were bandpass filtered within the noise reduced range
of 0.04-0.07 Hz.

To reconstruct the anatomical connectivity, diffusion MRI data was collected in 4 runs, sampling approx-
imately 90 directions, employing two shells with b = 1500 and 3000 s/mm?, and also including 7 b = 0
images. The repetition time of the Spin-echo EPI sequence was TR = 3222 ms with an echo time TE = 89.2
ms, employing a multi-band (factor 4) acceleration. Overall Ny = 92 slices were collected, with a field of view
FOV = 210 mm X 210 mm, containing voxels with a size of 1.5 mm x 1.5 mm x 1.5 mm. Preprocessing of the
diffusion MRI data was based on the HCP guidelines®, and finally the anatomical connectivity matrices were
obtained like in the previous subsection ‘HCP data) using constrained spherical deconvolution as provided in
the MRtrix package®. The group structural connectivity was computed as an average over the 10 subjects.
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