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I.  Abbreviations 

4-MUP 4-methyl-umbelliferylphosphate 

Ab antibody 

AB ammonium bicarbonate 

AFP α-fetoprotein  

Alen alendronate 

APA 5-azidopentanoic acid 

AS assay buffer 

AuNP gold nanoparticle 

BCN bicyclononyne 

BGG bovine γ-globulins 

bp boiling point 

BSA bovine serum albumin 

C constant region 

CEA carcinoembryonic antigen 

cBSA cationized bovine serum albumin 

CFI chrome-free infinity corrected 

CPS counts per second 

CV coefficient of variance 

DAB diaminobenzidine 

DAPI 4′,6-diamidino-2-phenylindole 

DDAO phosphate (9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) phosphate, 

diammonium salt) 

ddH2O double-distilled water 

DELFIA dissociation-enhanced lanthanide fluorescence immunoassay 

DLS dynamic light scattering 

DMEM Dulbecco's modified eagle's medium 

DMF dimethylformamide 

DMSO dimethylsulfoxide 

dsDNA double-stranded DNA  
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E. coli Escherichia coli 

EC50 effective concentration that gives half maximal response 

ECL electrochemiluminescence 

EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

EDTA ethylene diamine tetraacetic acid 

ELASA enzyme-linked apta-sorbent assay 

ELISA enzyme-linked immunosorbent assay 

EM electron microscopy 

ErbB/HER2 human epidermal growth factor 

Fab antigen-binding fragment 

FAM 5(6)-carboxyfluorescein 

Fc crystallizable fragment 

FCCS fluorescence cross-correlation spectroscopy 

FCS fluorescence correlation spectroscopy 

FFPE formalin-fixed paraffin-embedded 

FIA fluorescent immunoassay 

FPIA fluorescence polarization immunoassay 

FRET Förster resonance energy transfer 

FWHM full width at half maximum 

GAL β-D-galactosidase 

GUS β-D-glucuronidase  

H&E hematoxylin and eosin 

HBsAg hepatitis B surface antigen 

hCG human chorionic gonadotropin 

HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

HIV human immunodeficiency virus 

HRP horseradish peroxidase 

ICC immunocytochemistry 

Ig immunoglobulins  

IGEPAL CO-520 polyoxyethylene (5) nonylphenylether 

IHC immunohistochemistry 
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LC-MS/MS liquid chromatography with tandem mass spectrometry 

LFA lateral flow assay 

LOD limit of detection 

LOQ limit of quantification 

LWD long working distance 

MES sodium 2-(N-morpholino)ethanesulfonate 

MIP molecularly imprinted polymer 

MWCO molecular weight cut-off 

NA  numerical aperture 

NBT nitro blue tetrazolium 

Ner neridronate 

NFL neurofilament light chain protein 

NHS N-hydroxysuccinimide 

NIR near-infrared 

NPP nitrophenyl phosphate  

NTA nanoparticle tracking analysis 

o.n. overnight 

PBS phosphate-buffered saline 

PCR polymerase chain reaction 

PDI polydispersity index 

PDMS polydimethylsiloxane 

PEG polyethylene glycol 

PSA prostate specific antigen 

PVA poly(vinyl alcohol) 

QD quantum dot 

Q-TOF quadrupole time of flight 

RGP resorufin-β-D-galactopyranoside  

RIA radioimmunoassay 

RNA ribonucleic acid 

ROI region of interest  

RT room temperature 
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S/B signal/background 

SA streptavidin 

SB SuperBlock 

sCMOS scientific complementary metal oxide semiconductor 

SELEX systematic evolution of ligands by exponential enrichment 

SERS surface-enhanced plasmon resonance 

Simoa single-molecule array platform 

SPR surface plasmon resonance 

ssDNA single-stranded DNA 

TBS tris-buffered saline 

TBS-T tris-buffered saline containing Tween 20 

TEM transmission electron microscopy 

TIRFM total internal reflection microscopy 

TMB tetramethylbenzidine 

TNF-α tumor necrosis factor-α 

TR time-resolved 

Tris tris(hydroxymethyl)aminomethane 

TS transition state 

TST transition state theory 

UCL upconversion luminescence 

UCNP photon-upconversion nanoparticle 

ULISA upconversion-linked immunosorbent assay 

UV ultraviolet 

V variable region 

WI working distance 

ΔG
‡ free energy of activation 
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IV.  Fundamentals 

IV.1. Introduction 

The first part of the present work describes the fundamental building blocks of immunoassays 

or more generally spoken affinity assays. Historical milestones that finally led to the 

development of highly sensitive digital (single-molecule) immunoassays are highlighted. 
According to the glossary for chemistry of terms used in biotechnology written by the 

International Union of Pure and Applied Chemistry (IUPAC) in 1992,1 an immunoassay is 

defined as a ligand-binding assay that uses a specific antigen or antibody, capable of binding 
to the analyte to identify and quantify a substance. The antibody can be linked to a radioisotope 

(radioimmunoassay), or to an enzyme that catalyzes an easily monitored reaction (enzyme-

linked immunosorbent assay, ELISA), or to a highly fluorescent compound by which the 
location of an antigen can be visualized (immunofluorescence). Hence, this definition is very 

specific regarding the labels and does not cover any sort of nanoparticle label, or label-free 

techniques like surface plasmon resonance (SPR), therefore more general definition is 
preferable. The IUPAC recommendations of 1994 about the nomenclature for radioanalytical 

chemistry provide a broader definition of immunoassays. Here, immunoassays are assays 

based on the immunological binding of a specific antigen or antibody with the component 
under study.2  

The literature is describing countless variations of immunoassays. In the following text the 
fundamental assay schemes are briefly described. Immunoassays are divided into two main 

categories; (i) heterogeneous assays, which require a separation step of bound and free labels, 

and (ii) homogeneous assays where no separation step is needed.3 Both types can be either in 
a non-competitive (sandwich), or a competitive format. A basic heterogeneous sandwich 

immunoassay (Figure 1A) consists of a capture antibody bound to a solid surface like the 

bottom of a microplate, subsequent incubation with the analyte leads to the formation of the 
antigen-antibody immunocomplex. A second antibody—usually carrying a label that generates 

a measurable signal—called detection antibody is added and forms the final immunosandwich. 

Hence, the number of labeled detection antibodies increases with increasing analyte 
concentration, which leads to the increase of the detectable signal. The sandwich assay is only 
possible for analyte molecules that are big enough to allow for two antibodies to bind. 

In a heterogeneous competitive assay (Figure 1B), the capture antibody is also bound to a solid 

substrate, but no detection antibody is needed. The competition for free binding sites of the 

capture antibody occurs between a tracer molecule and the analyte itself. The tracer molecule 
must be able to bind to the antibody with a comparable affinity as the analyte itself, and it must 
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carry a label that generates the signal. The tracer molecule often consists of an analyte molecule 
bound to a label. The signal of tracer molecules bound to the capture antibody in a competitive 

sandwich assay decreases with increasing analyte concentration because more binding sites 

get occupied by the free analyte instead the tracer that generates the signal. Alternatively, the 
free tracer molecules in the supernatant can be measured, resulting in an increasing signal, with 

increasing analyte concentration. This form of an assay is also suitable for small analyte 
molecules that do not have two binding sites for antibodies.  

Homogeneous assays do not require a solid support for the immobilization of a capture 

antibody. Instead, the signal is directly measured in solution without the need for an additional 
separation step. Omitting the washing step is possible because the free label generates no or a 

different signal than the bound label. In a sandwich-like homogeneous assay (Figure 1C), two 

antibodies carrying interacting labels are used. The quantitative signal is generated if both 
labels come into proximity and start interacting with each other. One commonly used 

interaction is the Förster resonance energy transfer (FRET), where one fluorophore absorbs 

the excitation light and transfers the energy through non-radiative dipole-dipole interactions to 
a second fluorophore, which then emits light.4  

The competitive homogeneous immunoassay (Figure 1D)—analog to the competitive 
heterogeneous assay—requires a tracer molecule. If the tracer is bound to the labeled antibody, 

FRET can happen between both labels, and a high signal is observed. If the analyte is present, 

it can replace the tracer, which diffuses away from its FRET-partner, and the FRET-signal 
decreases.  
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Figure 1: Generalized immunoassay schemes. A) In the heterogeneous sandwich immunoassay, a first 
antibody (capture antibody) is bound to a solid substrate and binds to the analyte molecules. A second 
antibody carrying a label (detection antibody) also binds to the analyte. After a washing step to remove 
unbound detection antibody, the signal, which is generated by the label is measured. B) In a competitive 
heterogeneous immunoassay, the analyte molecules compete with a labeled tracer molecule for free 
binding sites of a surface-immobilized capture antibody. With an increasing number of analyte 
molecules, fewer tracer molecules can bind to the surface, causing a decreasing signal. C) The 
homogeneous sandwich immunoassay requires two labeled antibodies where one label generates a 
measurable signal if it comes into proximity with the second label. D) In the homogeneous competitive 
immunoassay, a tracer molecule competes with the free analyte for the antibody binding sites. The label 
on the tracer can interact with the label on the antibody if both are in proximity. If free analyte is present, 
less of the tracer can bind to the antibody, and the signal changes. 
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IV.2. A Short Historical Perspective on Immunoassays 

In 1959 the two U.S. researchers Rosalyn S. Yalow and Solomon Berson, developed one of 

the first immunoassay.5 They observed that patients suffering from diabetes who were treated 

with animal insulin developed globulins, freely circulating in the bloodstream.6 By injecting 
more insulin into the patient, Yalow and Berson observed a longer retention time of insulin in 

the blood compared to untreated patients. This finding suggested that the globulins they found 

can bind specifically to insulin. The insulin antibodies were purified and used in the first 
radioimmunoassay (RIA). To determine the insulin concentration in blood samples, purified 

insulin was labeled with the radionuclide 131I and added to the analyte sample. After adding 

the antibodies, labeled and unlabeled insulin competed for the antigen-binding sites of the 
antibodies. Bound and free insulin molecules were separated by paper chromatography and 
131I was quantified with a scintillation counter. The invention of the RIA and the fact that 

Yalow and Berson did not patent the assay principle led to the rapid development of numerous 
different immunoassays.7 In 1977—five years after the death of Berson—Yalow was honored 
with the Nobel Prize for medicine. 

In 1971 the Swedish scientists Eva Engvall and Peter Perlmann developed the first competitive 

enzyme-linked immunosorbent assay (ELISA). They determined the concentration of specific 

rabbit antibodies in rabbit serum. Polystyrene tubes were coated with the antigen of the target 
antibody, followed by incubation with rabbit serum. The antigen-specific antibodies in the 

rabbit serum bound to the antigen on the surface of the tube. Next, alkaline phosphatase-labeled 

anti-rabbit antibodies were added, which bound to the rabbit antibodies. After a washing step 
to separate unbound phosphatase-labeled antibodies, the chromogenic substrate p-nitrophenyl 

phosphate (NPP) was added. Alkaline phosphatase catalyzes the hydrolysis of NPP, leading to 

the formation of the yellow p-nitrophenol, which was monitored by measuring the absorbance 
at 400 nm.8 In the same year, B.K. Van Weemen and A.H.W.M. Schuurs from the Netherlands 

conducted a competitive ELISA assay using the enzyme horseradish peroxidase (HRP). HRP 

is a peroxidase that catalyzes the oxidation of a chromogenic substrate in the presence of 
hydrogen peroxide.9 

One year later, in 1972, Kenneth E. Rubenstein et al. performed the first homogeneous 
immunoassay. Morphine was coupled to the enzyme lysozyme, binding of anti-morphine 

antibodies to these conjugates inhibited the enzyme activity. Free morphine was added and 

competed with the enzyme-coupled morphine for the antibody binding sites. The release of the 
morphine-lysozyme conjugate led to a reactivation of the enzyme, which was monitored by 

absorption measurements. At the present of Micrococcus luteus, the reaction mixture was 

turbid, during the enzymatic reaction the bacterium got digested and the absorbance 
decreased.10-11  
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Another milestone in the history of immunoassays was the development of a method to 
produce monoclonal antibodies in large quantities. In 1975 George Köhler and Cesar Milstein 

from the MRC Laboratory of Molecular Biology in Cambridge invented a technique to merge 

mouse cancer cells so-called myeloma cells with antibody-producing B-cells, extracted from 
the spleen of mice that were immunized with the antigen of interest.12 For their 

accomplishments, Köhler and Milstein were awarded the Nobel Prize for medicine in 1984. 

Rapid reproduction and longevity of myeloma cells allowed the reproducible production of 
high amounts of monoclonal antibodies leading to numerous variations of immunoassays in 
the following decades. 

IV.3. Digital Immunoassays 

The typical detection limit of a standard immunoassays, like the ELISA, is in the picomolar 

range.13 Many clinical markers for infectious diseases,14 toxins,15 and cancer16 occur in lower 

concentrations, thus demanding for lower limits of detection. Increasing the sensitivity of 
affinity assays also opens access to novel clinical markers whose concentrations are 

undetectable using conventional methods. It is no wonder that assay development today aims 

for the highest possible sensitivity, which ultimately leads to the development of single-
molecule immunoassays. 

In single-molecule immunoassays, the analyte molecule is labeled in the same way as in 
conventional assays, but the readout and/or the assay design is more sophisticated in a way 

that it allows for the detection of an individual label. Many different readout schemes, even 

label-free, have reached single-molecule sensitivity. By using nanopipettes, it was, for 
example, possible to monitor the concentration of α-fetoprotein (AFP) in solution using an 

electrochemical readout.17 A force-based technique with molecular tuning forks was employed 

for the sensing of an anti-digoxigenin antibody.18 However, the most sensitive single-molecule 
assays rely on optical readout methods of nanoparticles, the (luminescent) product of an 
enzymatic reaction, or fluorescent molecules.  

All three label-types are shown in Figure 2 and finally resulted in assays with single-molecule 

sensitivity. The ability to detect an individual label that is bound to an analyte molecule does 

not mean that the assay has the highest possible sensitivity. Factors like the non-specific 
binding of the label or the antibodies and the affinity of the antibodies are vital elements that 

limit the assay sensitivity. The clear advantage of the digital readout is that each label gives 

one signal well above the measurement background making the readout independent of the 
measurement noise and variations in the optical background. By lowering the errors and 

making the assay more robust, digital readout methods are less prone to background 
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interference. These advantages contribute to the (often) higher sensitivity compared to analog 
readout methods. 

 

Figure 2: Overview of the development of different immunoassays with optical readout sorted by the 
label type.  

A fluorophore can emit up to 106 photons before it bleaches, but the excitation light also causes 
optical background interferences due to light scattering and autofluorescence. Considering that 

the measured signal in digital assays is generated by a single label, achieving single-molecule 

sensitivity is only possible by reducing the background signal, which is generally done by 
decreasing the detection volume to a few femtoliters. Techniques like total internal reflection 

microscopy (TIRFM), confocal microscopy, or fluorescence correlation microscopy are 

commonly used to decrease the background signal. Lowering the detection volume also lowers 
the number of labels that can be detected at the same time, increasing the sampling error (also 

Poisson noise,  √𝑛/𝑛), which depends on the number of detected labels (𝑛). To compensate 
for this, either the measurement time or a high parallelization is necessary.  
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IV.4. Antibodies 

IV.4.1. Antibody Isotypes 

The most critical element in an immunoassay is the antibody. It provides specificity and—
together with the label—translates the presence of an analyte molecule into a measurable 

signal. Antibodies, or immunoglobulins (Ig) of vertebrates, exist in five different isotypes 

classified according to the structures of their heavy chain (Figure 3). IgA plays a pivotal role 
in the immune response at the mucosal surfaces and appears in a monomeric, dimeric, or rarely 

trimeric and tetrameric form, where the dimeric form is predominantly present in secretions 

like milk, tears or saliva.19 IgD only appears in its monomeric form, its exact role in the immune 
response is still unclear, but it is known that it works as an antigen receptor in the development 

of B-cells.20 IgE is an almost only membrane-bound antibody, especially on mast cells, to 

protect against parasites and allergens. On contact with allergens, the IgE antibodies trigger 
the release of biologically active mediators from the mast cells.21 The most abundant type of 

antibody in human blood is the IgG, which accounts for 10–20% of the total protein content in 

human serum. It is a monomeric antibody and has four subclasses IgG1, IgG2, IgG3, and IgG4, 
which have structural differences in the constant region. IgG antibodies are glycoproteins that 

consist of 82–96% protein and 4–18% carbohydrates. 22 The largest immunoglobulin is the 

pentameric IgM antibody, it is the first antibody that appears upon infection with an antigen 
and has a total of 10 antigen-binding sites and bind exceptionally strong onto their targets.23 

 

Figure 3: Different isotypes of antibodies sorted by their structure. IgD, IgE, and IgG antibodies are 
monomeric antibodies (green). The IgA antibody (purple) is dimeric. The biggest antibody isotype is 
the IgM antibody (blue), consisting of a total of 10 antigen-binding sites. 
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IV.4.2. Antibody Structure 

The most frequently used antibody in immunoassays is the IgG antibody. The typical structure 
of an IgG (Figure 4) consists of two heavy chains (H, 50 kDa) and two light chains (L, 25 

kDa) that are connected via disulfide bonds and result in a Y-shaped form. Incubating an 

antibody with the protease papain generates three fragments, each having a mass of 50 kDa. 
Two of these fragments are called antigen-binding fragments (Fab). The third fragment is the 

crystallizable fragment (Fc). It has glycosylation sites for glycans, which serve as a 

communication element for the immune system.24 The Fab fragments consist of a full light 
chain and half of a heavy chain and are connected to the Fc region via flexible polypeptide 

segments called the hinge region. The heavy chains are again divided into different subclasses 

γ1, γ2, γ3, and γ4, which differ in the number and location of disulfide bonds and length of the 
hinge region.25 Heavy and light chains consist of immunoglobulin domains that are formed by 

two β-sheets facing each other.26 The top two immunoglobulin domains of the heavy and the 

light chain form the variable region (V), the flexibility in this part of the antibody is necessary 
to account for various antigens. In the V region of the heavy and light chains are highly variable 

chains located that form loops in the immunoglobulin structure. These loops are called 

complementary-determining regions (CDR1, CDR2, and CDR3) and form together a surface 
that causes the antigen specificity.27 The remaining eight domains build the constant region 
(C), which is highly conserved and only differs between the isotypes. 
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Figure 4: Structure of an IgG antibody. The antibody consists of two heavy chains (blue) and two light 
chains (purple). Upon incubation with papain three fragments (two Fab, and one Fc region), each having 
a mass of 50 kDa. The upper part of the Y-shaped antibody contains the variable regions that contain 
highly variable CDR regions. CDR regions, form hyperloops that are responsible for the antigen 
specificity. 

IV.4.3. Polyclonal Antibodies 

B-lymphocytes are cells that produce antibodies. If different B-cells express an antibody 

against a specific antigen, then the antibodies are called polyclonal because they differ in their 

variable regions and bind to different sites—also called epitopes—of the antigen. For the 
preparation of polyclonal antibodies, the target antigen is injected into an animal like rabbit, 

goat, or mouse. The process is repeated several times over a defined period to trigger the 

animal’s immune response, causing the B-cells to produce antibodies. The polyclonal antibody 
is then purified from the serum and often lyophilized in the presence of stabilizers like sugars, 

or polyols. In this form the antibodies are stable for several years if stored at low temperatures 

between −20 and −80 °C.28-29 Polyclonal antibodies are inexpensive, quick in production and 
especially suited for the detection of antigens that have slight variations in their epitopes. 

Because of the nature of the production process, there are always slight variations from batch 

to batch because different animal individuals are used. Also, the cross-reactivity can be higher 
because of the variable antigen-binding sites. 
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IV.4.4. Monoclonal Antibodies 

The counterpart to the polyclonal antibody is the monoclonal antibody that binds to one 
specific epitope of the antigen. The first step in the production (Figure 5) of monoclonal 

antibodies is the immunization of an animal, typically a mouse. After a specific period, 

antibodies appear in the blood, and antibody-producing B-cells from the spleen of the animal 
are isolated. The next step is the preparation of hybridoma cells consisting of spleen cells fused 

with cancer cells from bone marrow, which are called myeloma cells.30 Hybridoma cells 

combine the immortality of cancer cells with the production of specific antibodies against the 
desired target. Next, the hybridoma cells are highly diluted, and individual cells are grown in 

microtiter wells, followed by the screening for high-affinity antibodies against the antigen of 

interest. This step is repeated several times. The clone with the best antibody is amplified, the 
antibodies separated and purified. Monoclonal antibodies have a high specificity against a 

particular epitope and can be produced in large quantities with low batch-to-batch variations, 
but the development and production are costly and time-consuming. 

 

Figure 5: Production process of monoclonal antibodies. The antigen is injected into a mouse, triggering 
an immune response that leads to the production of antibody-producing B-cells from the spleen. The 
B-cells are fused with “immortal” myeloma cells and form hybridoma cells. The hybridoma cell-line 
with the best antibody is selected and cloned. In the last step, the antibodies are separated and purified. 
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IV.5. Antibody Alternatives 

IV.5.1. Aptamers 

Antibodies are not the only molecules used as recognition elements in affinity assays. In 1990, 
Andrew D. Ellington and Jack W. Szostak from the department of molecular biology of the 

Massachusetts General Hospital published a method to produce RNA molecules that 

specifically bound to target molecules. They called these molecules aptamers, which is derived 
from the Latin word Aptus, meaning “to fit”.31 Szostak later won the Nobel prize for medicine 

in 2009 not for his work on aptamers but for the discovery of “how chromosomes are protected 
by telomeres and the enzyme telomerase”.32 In the same year of the first publication of 
aptamers, Tuerk and Gold published a method called systematic evolution of ligands by 

exponential enrichment (SELEX).33 This made it possible to select aptamers from a 

combinatorial library that specifically bind to a non-nucleic acid target with high affinity. A 
combinatorial library (Figure 6) of approximately 1015 different single-stranded DNA 

(ssDNA) molecules is amplified with polymerase chain reaction (PCR) to generate a large pool 

of double-stranded DNA (dsDNA), which is transcribed into RNA that has a more extensive 
repertoire of available spatial structures.34 The RNA pool is incubated with the target analyte, 

which is, for example, immobilized on magnetic microspheres,35 or on the solid phase of a 

chromatographic column,36 and only RNA molecules with affinity to the target bind to the 
microbeads. The bound RNA is separated from unbound RNA and eluted from the magnetic 

spheres. The RNA is again transcribed into DNA and amplified with PCR. Now the whole 

process is usually repeated 8–15 times to get highly specific and strong-binding aptamers.37 
After the final SELEX round, the aptamers are cloned and sequenced. With the known aptamer 

sequence, the molecule can be synthesized in vitro—a significant advantage over antibodies—
and further optimized, for example, by shortening the sequence. It is also possible to use 
ssRNA as aptamers. These have a lower intrinsic chemical stability,38 but their 3D structures 

are considered to be more stable than the corresponding DNA structures.39 Additionally, the 

commonly used T7 RNA polymerase is tolerant towards many modified ribonucleotides 
making the available structural pool even bigger.40 To make aptamers more resistant towards 

degradation by nucleases the D-(deoxy)ribose can be exchanged by L-(deoxy)ribose generating 

an enantiomeric aptamer—also called Spiegelmer—that is not recognized by natural 
enzymes.41-42  
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Figure 6: Illustration of the SELEX process. A combinatorial DNA library is amplified using PCR. 
The resulting dsDNA is transcribed into RNA and incubated with the analyte immobilized on magnetic 
beads. A washing step removes unbound RNA. RNA that bound to the magnetic beads is eluted and 
transcribed into DNA. The DNA is amplified with PCR and the cycle is repeated multiple times. At the 
end aptamers with the highest binding affinity to the analyte are cloned and sequenced.  

Nowadays, aptamers found wide application in various kinds of affinity assays, the direct 

replacement of the ELISA is called the enzyme-linked apta-sorbent assay (ELASA).43 Even 
combinations between aptamers and antibodies are reported. 44 A brief comparison of 
antibodies and aptamers is given in Table 1. 
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Table 1: Comparison of aptamers with antibodies. 

 Aptamer Antibody 

Production -tedious SELEX method 

-in vitro by chemical synthesis 

-in vivo  

-difficult to produce antibodies for 

non-immunogenic molecules 
-with hybridoma cells, almost 

endless supply of monoclonal 

antibodies 
-with known gene sequence, in vitro 

synthesis of recombinant antibodies 

or fragments also possible 
 

Size -12–30 kDa for 30–80 

nucleotides 

-access to tissue45  

-normal IgG ~150 kDa 

-limited membrane permeability 

-90 kDa nanobodies with 15 kDa 
antigen binding fragments exist but 

are still rare46 

Targets -small targets like ions (Ni2+)47 
to epitopes of cells (cell-

SELEX)48 

-non-immunogenic targets 

-small targets like ions (Hg2+)49 
-big proteins, viruses, bacteria, 

surface proteins of cells 

Reproducibility -low batch-to-batch variations -different animals produce different 
antibodies 

-monoclonal antibodies have low 

batch to batch variations 

Stability -highly temperature stable 

-can be stored at room 

temperature 
-refold into active structure after 

heating 

-theoretically reusable after 
assay 

-sequence of aptamer is stored 

as data 

-storage in refrigerator/freezer 

-irreversible denaturation after 

heating 
-usually one-time use 

-hybridoma cells must be stored 

frozen 

Dissociation 
constants 

-nanomolar to picomolar 
range50 

-nanomolar to picomolar range51 
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IV.5.2. Molecularly Imprinted Polymers 

Linus Pauling postulated in 1940 a process of the formation of antibodies. He assumed that the 
antibody consists of at least two antigen-binding sites and a conformationally stable center. In 

his theory, the globulin chain forms around the antigen. Attracting groups like a positive charge 

of the antigen and a negative charge of the peptide chain will face each other while repelling 
groups with the same charge. These electrostatic interactions lead to a defined three-

dimensional structure that is specific for the analyte molecule.52 While Pauling’s hypothesis 
for the antibody formation turned out to be wrong, his idea explains the specificity of another 
promising recognition element for affinity assays so-called molecularly imprinted polymers 

(MIPs). MIPs are polymers formed from selected monomers polymerized in the presence of a 

template molecule. Synthesizing a MIP (Figure 7) starts with the selection of appropriate 
monomers that can interact with specific sites of the target molecule via hydrophobic 

interactions, metal coordination, electrostatic forces, hydrogen bonding, and more. The 

monomers and the template are dissolved in an inert solvent and interact with each other. The 
solvent in MIP synthesis called “porogen” plays a pivotal role in the formation of the pores in 
the polymer. The pores are essential for the access of the analyte when the polymer has 

formed.53 The polymerization is often initiated by a radical polymerization of monomers with 
acryl or vinyl groups because they exist in large variations of functional groups.54 After 

polymerization, the template molecule is eluted, and depending on the polymerization method 
and treatment afterward, MIPs can have various sizes and shapes.  

 

Figure 7: General procedure of MIP synthesis. The template molecule (dark grey) is incubated with 
functional monomers (colored). Some monomers interact with the template molecule via electrostatic, 
hydrophobic interaction, hydrogen bonding, and more. The polymerization of the monomers is 
initiated, and the template molecule eluted from the resulting MIP. 

 

One of the easiest but also the crudest method is to mechanically grind the MIP after solution 

polymerization, which yields micrometer-sized particles often used as column material for 
chromatographic separations.55 However, this top-down approach yields particles with 

different shapes and a broad size distribution. It is also possible to form the polymers directly 
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in chromatographic columns via in situ thermal-initiated copolymerization, which are then 
called monolithic MIPs. This method was used to separate enantiomeric D and L-phenylalanine 

derivatives, which would not be possible with commonly used C-18 columns.56 Uniform MIP 

beads with an average diameter of 5.6 µm were synthesized by a two-step swelling and 
polymerization method with 1 µm polystyrene beads as a shape template.57 Another way to 

synthesize spherical MIPs is the in-flight polymerization of an aerosol of the monomer, a 

photoinitiator, and the template molecule. The aerosol is sprayed into a box equipped with two 
UV lamps (400 W) that start the cationic polymerization. At the end of the flight path, the 
formed MIP beads are collected with an electrostatic precipitator.58  

The group of Mosbach performed one of the first affinity assays using MIPs as a recognition 

element in 1993.59 They designed a competitive radio MIP assay where either theophylline or 

diazepam were radiolabeled and competed with the unlabeled analyte molecules in spiked 
human serum. Nowadays, spherical MIP nanoparticles (MIPNs) as an alternative to antibodies 

have attracted attention for affinity-based assays. MIPNs have a high surface to volume ratio, 

are easily dispersible, and many different methods for the functionalization of the polymer 
have been developed.60 MIPNs were, for example, used in a competitive affinity assay for the 

determination of vancomycin.61 In this competitive assay format, a microwell was coated with 

vancomycin, and a mixture of MIPNs with a γ-Fe3O4 core that has a peroxidase-like activity 
and free vancomycin were added. In case of a low amount of free vancomycin the MIPNs 

could bind to the surface-immobilized vancomycin, whereas at high vancomycin 

concentrations, the binding sites of the MIPs were occupied. After a washing step to remove 
unbound MIPNs, a tetramethylbenzidine (TMB) substrate was added, and the catalytic core of 

the MIPNs converted the substrate to a colored product. The ability to produce MIPNs with an 
intrinsic enzymatic activity removes the need for an additional labeling procedure. 

Xing et al. reported a sandwich-like affinity assay for neuron-specific enolase using MIPs.62 

For the surface imprinting of the detection label, the group synthesized silica-coated silver 
nanoparticles with incorporated boronic acid. Coupling fructose to the N-terminus of the 

neuron-specific enolase template leads to a complex formation between the fructose and the 

boronic acid. The surface imprinting was performed by incubating the dispersion with different 
functional silanes for 40–70 min. After removing the template molecule, the particles had a 

specific affinity towards the N-terminus of the analyte molecule. For capturing the analyte, 

fructose was coupled to the C-terminus of the protein and bound to boronic acid-functionalized 
gold nanoparticles coated on a glass substrate. Surface imprinting was performed utilizing the 

same silanes used for imprinting the silver particles. The final MIP-complex consisted of the 

epitope imprinted gold nanoparticles on a glass substrate for capturing, the neuron-specific 
enolase, and the epitope imprinted silver nanoparticles as a detection label. Quantification of 
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the analyte was done by surface-enhanced Raman scattering, which resulted in a limit of 
quantification (LOQ) of 10 pg/mL. 

MIPs are versatile tools for various applications such as affinity-based separation methods, or 
quantitative affinity assays. Main advantages are the easy production63 and high stability, 

which renders MIPs as perfect recognition elements in biosensors. However, challenges 

including non-specific adsorption,64 heterogeneity of target binding sites, and lower affinity 
and specificity compared to antibodies have to be overcome to establish MIPs as an alternative 
to antibodies.65 

 

IV.6. Enzyme Labels 

IV.6.1. Enzyme-Linked Immunosorbent Assay 

An enzyme is a protein that has an intrinsic catalytic ability that can be exploited to generate 

high signals if used with an appropriate substrate. Enzymes are the gold standard as signal 

generating elements in different kinds of affinity assays, including the widespread ELISA. The 
most common enzymes used for affinity assays are horseradish peroxidase (HRP), alkaline 

phosphatase, beta-D-galactosidase (GAL), and urease. Choosing the optimal enzyme for each 

application is an essential factor. High turnover numbers, availability of suitable substrates, 
and the absence of interfering compounds in the measurement environment are essential points 

for the assay design.66 Sodium azide is, for example, often used as an additive in buffers 

because it is preventing bacterial growth, prolonging the shelf-life of the buffers. However, it 
is also known to inhibit the activity of HRP,67 thus, potentially reducing the sensitivity of the 

assay. In this case, GAL might be a better option. Also, the pH of the used buffer dramatically 

influences the activity of an enzyme species. Alkaline phosphatase is well-suited for 
measurements in an alkaline environment and has its optimal activity at around pH 9.0.68 In 

contrast, HRP has its pH optimum at around pH 6.5, depending on the substrate.69 Some buffers 

contain ethylene diamine tetraacetic acid (EDTA), which complexes divalent metal ions like 
Mg2+; GAL is a glycoside hydrolase that has two Mg2+ ions bound per monomer70 as cofactors 

that are crucial for the catalytic reaction. In the presence of EDTA, the activity of GAL 

decreases.71 For each application, a suitable substrate is needed; a few selected examples and 
typical applications are listed in Table 2. 
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Table 2: Common enzyme substrates for different applications. 

Substrate Enzyme Detection Application example 

3,3‘,5,5‘-
Tetramethylbenzidine 

(TMB)/H2O2 

HRP Colorimetric ELISA, Western Blot 

Diaminobenzidine 

(DAB)/H2O2 

HRP Colorimetric Immunocytochemistry, 

Western Blot 

Amplex Red/H2O2 HRP Fluorescence ELISA, Western Blot 

Luminol/H2O2 HRP Chemiluminescence Western Blot, ELISA 

Nitro blue tetrazolium 
(NBT) 

Alkaline 
phosphatase 

Colorimetric Western Blot 

4-Methyl-

umbelliferylphosphate 
(4-MUP) 

Alkaline 

phosphatase 

Fluorescence ELISA 

DDAO-phosphate Alkaline 

phosphatase 

Fluorescence ELISA 

o-Nitrophenol-β-D-
galactopyranosid 

(oNPG) 

GAL Colorimetric ELISA 

Resorufin-β-D-

galytopyranoside (RGP) 

GAL Fluorescence ELISA, digital ELISA 

Fluorescein di(β-D-

galactopyranoside) 

GAL Fluorescence ELISA 

Bromocresol 

purple/urea72 

Urease Colorimetric ELISA 

 

Since Yalow and Berson performed the first immunoassay, many different assay designs have 
emerged. ELISAs are routinely conducted in microtiter plates. The most straightforward 

ELISA assay is the direct ELISA (Figure 8A). In the direct approach, the analyte is coated 

onto the bottom of a microplate via non-specific adsorption. Next, a blocking step is performed 
to decrease non-specific binding sites. For blocking, phosphate-buffered saline (PBS, pH 7.4) 

containing 1% bovine serum albumin (BSA) is often used. Other possible blocking agents are 

casein, skim milk powder, or commercial blocking buffers. Incubation with an enzyme-labeled 
detection antibody leads to the formation of an immunocomplex. Buffers used for antibody-

antigen binding usually have a neutral pH and contain a small amount of a non-ionic detergent 
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like Tween 20, which occupies hydrophobic regions of the antibody to suppress non-specific 
binding. Unbound antibody conjugates are removed, and a substrate is added. During the 

enzymatic reaction, the substrate is converted, for example, to a colored product that can be 

detected in a microplate reader. To avoid time-consuming incubation times until a stable signal 
is achieved, it is advantageous to stop the enzymatic generation after a particular time. The 

HRP substrate TMB for example turns from colorless to blue upon the enzymatic oxidation, 

adding H2SO4 stops the reaction and turns the color to yellow, which can be quantified by 
measuring the absorbance at 450 nm. The direct approach is usually less sensitive than using 

a sandwich like-format. In biological fluids like blood serum, many proteins are present in 

higher concentrations than the analyte causing them to block the surface of the microplate, 
preventing the target from binding there. 

A typical sandwich ELISA is shown in Figure 8B. Here, the analyte is captured by the capture 
antibody and a second antibody, the detection antibody that is labeled with an enzyme forms 

the final immunosandwich. The capture antibody is often non-specifically adsorbed to the 

microplate surface by incubation overnight (o.n.) in carbonate buffer at pH 9.6. The relatively 
high pH value ensures that the antibody has several hydrophobic binding sites, promoting 
adsorption to the polystyrene surface. 

In indirect ELISAs (Figure 8C), a third antibody (called secondary antibody) is used that 

carries the label. Secondary antibodies are anti-species antibodies that specifically bind to 

immunoglobulins from the respective species. If a mouse antibody is used as a primary 
antibody, an anti-mouse secondary antibody will bind to it. In this case, the target is detected 

indirectly by detecting the presence of the primary antibody. The indirect approach can result 

in higher signals because, in theory, more than one secondary antibody can bind to the primary. 
Thus, more enzyme labels are present. Additionally, secondary antibodies can be used for 

different targets if the species of the primary and secondary antibody match. However, the 

capture antibody must be from a different species, or the secondary antibody will bind to it and 
cause a high non-specific signal. 

Using secondary antibodies to immobilize the capture antibody is also possible (Figure 8D). 
A wide range of microplates coated with anti-species antibodies is commercially available or 

can be produced in the laboratory. The advantage of using anti-species plates is that the capture 

antibody—from the same species—can be immobilized much faster compared to the non-
specific adsorption because the equilibrium of the immunoreaction is usually reached in less 

than an hour. Secondary antibodies that bind primarily to the heavy chains of the primary 

antibodies cause a directional binding of the capture antibody, potentially reducing the 
necessary coating concentration of the primary antibody. With a dissociation constant of 10-15 

M, the biotin-streptavidin complex is the most robust known noncovalent bond between 
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protein and ligand.73 The strong biotin-streptavidin interaction can be exploited for an indirect 
detection system (Figure 8D) if connecting the primary antibody to biotin and using an enzyme 
that is connected to streptavidin (SA).  

 

Figure 8: Different types of ELISA assay designs. A) In the direct ELISA the analyte is coated onto a 
surface and the detection antibody binds to it to generate a measurable signal. B) The typical sandwich 
ELISA includes a capture antibody to immobilize the target onto a surface. The detection antibody 
binds to a different epitope of the target and forms the immunosandwich. C) In an indirect sandwich 
ELISA, a labeled anti-species antibody is used to detect a target-bound primary antibody. D) An anti-
species antibody can be used to achieve a directional immobilization of the capture antibody. Primary 
antibodies connected to biotin serve as an anchor for streptavidin, which is connected to the label. 
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IV.6.2.  Digital ELISA 

The ability of enzyme molecules to produce thousands of fluorophores in a short time, each 
emitting up to a million photons, enabled the development of one of the first digital ELISAs. 

In the digital ELISA, individual enzyme molecules are enclosed into so-called femtoliter arrays 

(fL-arrays) fabricated into polydimethylsiloxane (PDMS),74 fused silica,75 or optical fiber 
bundles.76 The arrays consist of a high number of homogeneous wells (>50,000) with a volume 

of around 50 µm³ (50 fL). The research group of David R. Walt paved the way for the 

commercialization of this technique by improving the limit of detection (LOD) for prostate-
specific antigen (PSA) of conventional analog ELISAs by 1000×.77 With the idea of 

developing a fully automated single-molecule ELISA system, the company Quanterix was 

founded in 2007. The commercial digital ELISA from Quanterix is called single-molecule 
array platform (Simoa) and uses several fL-arrays fabricated into microfluidic channels that 
are arranged in a circular pattern on a compact disc-like chip.  

For the immunoassay, the capture antibody was immobilized onto magnetic microbeads with 

a diameter of 2.7 µm (Figure 9A, B). The antibody-coated beads were dispersed in excess into 

the analyte solution to capture the target. This step improves the overall capture efficiency 
compared to microplate assays, because the beads have a high surface area and diffuse freely 

in the analyte medium. In addition, the beads can be used to preconcentrate the analyte. 

Preconcentration is done by dispersing the beads in the analyte medium, followed by magnetic 
separation, and redispersion in a smaller volume. The high bead-to-analyte ratio resulted in a 

significant fraction of beads that did not capture an analyte molecule and a small fraction with 

an immobilized analyte molecule. Next, the beads were incubated with a biotinylated primary 
antibody and a streptavidin-GAL conjugate. A washing step followed by magnetic separation 

removed the unbound detection conjugate. The microspheres were loaded, together with the 

fluorogenic substrate RGP, into the femtoliter array and sealed by an oil film to prevent product 
diffusion. The size of the beads was chosen that exactly one bead fits into a fL-well 

(Figure 9B). Wells that contained a magnetic bead that captured a target molecule also 

contained a GAL label and showed increasing fluorescence over time that was monitored using 
epifluorescence microscopy. The analyte concentration was obtained by counting the number 
of fluorescent wells. 
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Figure 9: Scanning electron microscopic images of fused silica fL-arrays with a diameter of 4 mm and 
a depth of 3 µm (38 fL) loaded with magnetic beads with a diameter of 2.7 µm. A) Image with 3300× 
magnification and a 15° angle. B) Image of a single well with a 19000× magnification and a 15° angle. 

The Simoa technology enabled measurements of PSA and tumor necrosis factor-α (TNF-α) 
with very low LODs of 50 aM for PSA and 150 aM for TNF-α.77 The technology was further 
used to measure the concentrations of other clinical relevant analytes like the p24 protein of 

HIV,78 urinary biomarkers79, or the neurofilament light chain protein (NFL), an indicator of 

different neurodegenerative conditions and brain injuries.80 NFL is traditionally measured in 
cerebrospinal fluid, which is obtained by a lumbar puncture. The high sensitivity of the digital 

ELISA superseded the need for this procedure and enabled NFL measurements in human 
serum.81  

IV.7. Fluorescent Molecular Labels 

Supposedly the immunological staining of cells is the earliest report about the use of 

fluorescent molecular labels in bioanalytical applications. Albert H. Coons described in 1942 
a method of conjugating a fluorescein derivative onto antibodies and used these conjugates to 

stain mouse liver cells that had a pneumococcal 3 infection.82 Affordable, stable and bright 

excitation sources like laser diodes, stable fluorophores with large Stokes shifts, and sensitive 
detectors like photomultiplier tubes, and photodiodes accounted for the development of very 
sensitive fluorescent immunoassays (FIA). 

IV.7.1.  Fluorescence Polarization Immunoassay 

The fluorescence polarization immunoassay (FPIA) is a prominent example of a competitive, 

homogeneous FIA. Fluorescent polarization occurs if a slowly rotating fluorescent molecule 

is excited with linear polarized light. Free fluorescent molecules undergo rapid rotations in 
solution. Upon binding to an antibody, the rotary diffusion of the fluorescent molecule strongly 

decreases, causing a polarized emission. Dandliker and Feigen described the first FPIA in 

1961.83 The two researchers synthesized fluorescein-labeled ovalbumin and used it to 
immunize rabbits. Rabbit γ-globulins were separated and used in an affinity assay for 
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fluorescently labeled ovalbumin. Binding of the fluorescein-ovalbumin conjugate resulted in 
an emission decrease and an increase in polarization that could be monitored in a cuvette. With 

their measurements, Dandliker and Feigen successfully demonstrated the potential of the FPIA 

for the determination of equilibrium constants and the quantification of biomarkers. FPIA 
systems were also commercialized, for example, by Abbot (AxSYM).84 

IV.7.2.  Time-Resolved Fluorescence Immunoassay 

The development of time-resolved (TR) detection methods marked another important 
milestone for FIAs. In 1983 Siitari et al.85 from the company Wallac Oy (Turku, Finland) used 

lanthanide complexes for the quantification of hepatitis B surface antigen (HBsAg). The 

general assay design was similar to the sandwich ELISA, except that the detection antibody 
was directly labeled with a luminescent Eu3+ complex. An aminophenyl derivative of EDTA 

that strongly coordinates to lanthanide ions was synthesized. The aminophenyl was activated 

via diazotization and coupled to tyrosine and histidine groups of an anti-HBsAg antibody. A 
polystyrene tube was coated with a capture antibody, incubated with plasma containing the 

analyte, followed by the detection antibody. The advantage of the lanthanide luminescence is 

the long lifetime up to a few milliseconds depending on the ligand.86 In the TR measurements, 
the Eu3+ complex was excited with a 0.5 µs light pulse of a xenon flashlamp at 330 nm. A 

delay of 50 µs ensured that the autofluorescence of the matrix was decayed before the 613 nm 

emission light was collected for 250 µs. The TR measurement significantly reduced the 
background caused by autofluorescence and light scattering. With the TR-FIA, Siitari et al. 

reached higher sensitivity for HBsAg (0.2 ng/mL) compared to the RIA (0.5 ng/mL) 
simultaneously eliminating the need to use radioactive isotopes. 

In 1985 Wallac Oy successfully launched an improved version of the TR-FIA, the dissociation-

enhanced lanthanide fluorescence immunoassay (DELFIA).87 The assay principle of the 
DELFIA is the same as in the TR-FIA, but at the end, the lanthanide complex is dissociated 

from the antibody, and a highly fluorescent chelate in a micellar solution is formed, 

significantly enhancing the lanthanide emission.88 Today Wallac Oy belongs to Perkin 
Elmer.89 

IV.7.3. Immuno PCR 

In 1992, Sano et al.90 published an FIA that uses a PCR amplification step called immuno PCR. 

The main difference to the ELISA was the detection conjugate. The group designed a chimeric 
molecule between SA and protein A, which specifically bound to the Fc-fragment of IgG 

molecules. The SA-side served to immobilize a biotinylated linear plasmid DNA. After the 

immunocomplex was formed, a 260 base pair sequence of the linear plasmid DNA was 
amplified via PCR using appropriate primers. Then, 15 µL of the amplified DNA was loaded 

onto an agarose gel that solidified in the presence of the intercalation dye ethidium bromide. 
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An electric field was applied, and the 260 base pair sequence migrated towards the positively 
charged anode. After electrophoresis, the gel was photographed under UV excitation. Ethidium 

bromide showed a significantly enhanced fluorescence upon intercalation into double-stranded 

DNA, which was proportional to the number of analyte molecules. At this time, digital cameras 
were still rare, so the group took a photo of the gel on a polaroid film and evaluated the 

emission using a densitometer, which was used to measure the optical density of transparent 

or reflective surfaces.91 The superior sensitivity of the immuno PCR was demonstrated with 
BSA as a model analyte and was able to detect 580 BSA molecules in a volume of 50 µL (20 

aM), which was 105 more sensitive than the corresponding ELISA with alkaline phosphatase 
as a label (20 pM). 

IV.7.4. Digital Fluorescence Affinity Assays 

TIRF Microscopy 

For the detection of individual fluorophores, the detection volume must be significantly 

reduced to distinguish the emission from the background. Therefore, techniques like TIRF 

microscopy are the method of choice for digital fluorescence affinity assays. In TIRF 
microscopy, the excitation light is directed in a total reflection angle to a coverslip or prism. 

At the boundary surface, an evanescent field develops, decaying exponentially with the 

distance from the coverslip or prism. This causes that only fluorophores in proximity (few 100 
nm) to the surface get excited, decreasing the measurement background.92  

Weng et al.93 reported a digital fluorescence affinity assay for the quantification of the three 
small molecules; adenosine, the insecticide acetamiprid, and the toxin PCB-77. As a 

recognition element, a hairpin-shaped aptamer was used that was attached to the surface of a 

glass slide via biotin-SA interaction. The analyte solution was applied together with a short 
fluorescent DNA probe. Binding of the analyte to the aptamer changed the conformation of 

the hairpin-like structure to an open form, which allowed for the binding of the fluorescent 

DNA probe. The binding event of the fluorescent DNA probe took place inside the evanescent 
field of the TIRF illumination, leading to the excitation of the fluorophore. Unbound DNA 

probes were on average too far away and were not excited by the evanescent field. The LODs 

were 0.3 pM for adenosine, 0.35 pM for acetamiprid and 0.72 pM for PCB-77. Weng et al. 
demonstrated that aptamers are valid options for affinity assays, especially if small analyte 
molecules are the targets of interests. 
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Laser-induced Fluorescence 

While TIRF illumination is a powerful tool for background reduction for microscopic 
applications, it is challenging to implement this technique in automated fluorescence readers 

in routine applications. Here a different single-molecule technique based on laser-induced 

fluorescence detection in capillaries, the Erenna platform proved to be the leading technique. 
Originally the Erenna was invented by the American company Singulex, which shut down in 

2019. Merck took over the distribution and is selling the device along with kits for the detection 

of various analytes like cardiac troponin I, tumor necrosis factor-α, or interleukin 1-α.94 During 
the assay procedure, capture antibody-coated magnetic microbeads are used to immobilize and 

preconcentrate the target. A fluorescently labeled detection antibody forms an 

immunosandwich with the antigen and capture bead. Unbound detection antibody is removed 
by magnetic separation of the beads, and the spheres are resuspended in a small volume of 

20 µL. The detection antibody is eluted from the particles and loaded into a capillary. For 

single-molecule counting, a small volume inside the capillary is illuminated by a highly 
focused laser through an objective. If a fluorescently labeled molecule passes the excitation 

volume, a fluorescence burst is detected and counted if it is above a fixed threshold. In the 

specifications of the Erenna, an LOD for a fluorescently labeled antibody of less than 1 fM is 
given, which would correspond to approx. 12,000 antibodies in a volume of 200 µL.94 The 

Erenna system was used to determine cardiac troponin I (LOD of 8 pM),95 soluble amyloid-
beta oligomers (0.18 pM),96 or mutant huntingtin protein (40 fM).97 

Fluorescence Correlation Spectroscopy 

Fluorescence correlation spectroscopy (FCS) is an experimental technique for the detection of 
individual fluorophores, which is based on statistical fluctuations of the fluorescence intensity 

in solution. For FCS, a tiny observation area is needed, rendering microscopic techniques like 

TIRF microscopy, confocal microscopy, stimulated emission depletion microscopy, or two-
photon microscopy as suitable methods to measure FCS. In confocal microscopy, the 

excitation laser is focused to a diffraction-limited spot, and a pinhole in front of the detector 

further confines the detection along the axial direction.98 The emission light of fluorophores 
traveling through the excitation volume is measured by highly sensitive photon avalanche 

diodes capable of detecting single photons in real-time.99 The time-dependent fluctuations in 

the fluorescence intensity contain the information needed to quantify the target. Extraction of 
the relevant data is done by applying the appropriate auto-correlation function, which depends 

among other things on the shape of the excitation beam, photophysical properties of the 
fluorophore, and the orientation of the fluorophore in the sample.100 

Chatterjee et al.101 used FCS to develop a single-molecule sandwich immunoassay for the 

detection of the neuronal cell adhesion molecule contactin-2 in cerebrospinal fluid. A 
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fluorescently labeled anti-contactin-2 primary antibody formed an immunosandwich with anti-
contactin-2 and a second primary antibody. The formation of the immunocomplex changed the 
diffusion rate of the labeled antibody, which was monitored via FCS.  

The sensitivity of FCS in sandwich immunoassays is further increased by using two 

fluorescently labeled antibodies (two different colors). This technique is also called 

fluorescence cross-correlation spectroscopy (FCCS). Here, the cross-correlation curve 
compares the intensities of both fluorophores (Figure 8). If the sandwich immunocomplex is 

formed, the diffusion times of both fluorophores are equal.98 Miller et al., for example, 

demonstrated the practical use of FCCS for the quantification of human chorionic 
gonadotropin (LOD of 100 pM) and prion protein (2 nM).102  

 

Figure 10: Schematic representation of the cross-correlation of two fluorescently labeled antibodies in 
the presence of the analyte (blue curve) and without analyte (green curve). 
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IV.8. Nanoparticle Labels 

In recent years, many different bioaffinity assays using nanoparticles as a label were 

reported.103 Well-established representatives are gold nanoparticles, nanozymes, photon-

upconversion nanoparticles, and quantum dots. Nanoparticles generate higher signals than 
small molecular labels but are also bigger in size, potentially hindering the formation of 

immunocomplexes because of steric effects and promoting non-specific binding. Another 

problem is the colloidal stability of nanoparticles. If the surface of nanoparticles is not shielded 
by a suitable coating, nanoparticles tend to aggregate over time, resulting in poor performance 

in affinity assays. In contrast to small molecular fluorophores where techniques like confocal 

microscopy and TIRF microscopy are needed to detect a single label, individual nanoparticles 
can be detected with standard microscope methods. For example, individual gold nanoparticles 

larger than 20 nm can be imaged directly by phase-contrast microscopy or differential 

interference microscopy,104 and the emission of photon-upconversion nanoparticles is visible 
using standard epiluminescence microscopy.105  

IV.8.1. Gold Nanoparticles 

Gold nanoparticles (AuNPs) are plasmonic nanoparticles that can be synthesized in aqueous 

solution by reducing Au3+ in the presence of a stabilizer. A common way of AuNP synthesis 
is to reduce AuCl3 with citric acid, which also acts as a stabilizer. After nucleation, a ligand 

exchange reaction can be performed to introduce functional groups like carboxyl groups that 

are suitable for the immobilization of biomolecules. The strong affinity of thiol groups to gold 
is often used to attach linkers like PEG onto gold nanoparticles.106 

AuNPs have various properties that can be exploited for analytical applications. Small AuNPs 
(~30 nm)107 strongly absorb light causing the intense red color in colloidal dispersion. A 

popular application for colloidal AuNPs is the colorimetric lateral flow assay (LFA, Figure 11) 

for the pregnancy indicator human chorionic gonadotropin (hCG). In a typical lateral flow 
assay, the sample (blood or urine) is applied on the sample pad, and capillary forces cause the 

liquid to move towards the other end of the strip, where the adsorption pad is located. The 

sample first passes through the conjugate pad that contains the detection conjugate. The target 
is captured by the AuNPs conjugated with antibodies and travels towards the test-line. The 

test-line consists of immobilized capture antibodies that form a sandwich with the detection 

antibody and the analyte. The accumulation of gold particles causes a red color, which allows 
for a visual readout. At the end of the strip the control-line is located, which consists of 

immobilized secondary antibodies that bind the detection antibody independent of the analyte 
and indicates if the assay worked properly. 



Fundamentals 

 
IV-39 

 

 

Figure 11: Top: Photograph of an LFA strip with AuNPs as a label. Bottom: Illustration of the different 
components of a typical lateral flow strip. 

Small AuNPs also emit light with a maximum at a wavelength of about 610 nm. It was reported 

that the particle (38 nm diameter) brightness is high enough to detect individual AuNPs using 
epifluorescence microscopy for imaging of cancer cells.108 After excitation, the electrons 

undergo a thermal relaxation causing the environment close to the AuNP to heat up, which is 

a critical factor for in vivo imaging, or if the AuNP is bound to a heat-sensitive molecule like 
a protein. Orrit et al.109 exploited the photothermal effect to visualize individual AuNPs down 

to 10 nm by photothermal imaging and estimated the temperature increase during excitation of 

about 15 K for a 5 nm AuNP. Another method to image single AuNPs is the dark-field 
microscopy. It is based on the strong scattering properties of the nanoparticles that are also 

tunable because the wavelength of the scattered light depends on the size and shape of the 
nanoparticles.  

Upon absorption of light, free electrons inside the AuNP are excited and start to oscillate 

collectively, which is referred to as a surface plasmon resonance.110 The surface plasmon 
resonance frequency is size-dependent and around 510–530 nm for particles between 4–
40 nm.111 The plasmonic effect is a powerful tool to enhance the sensitivity in Raman 

spectroscopy. In Raman spectroscopy, the inelastic scattering of vibrational and rotational 
states of molecules is measured. Scattered photons can take energy from the molecule causing 

the wavelength of the scattered light to shift to smaller values (anti-Stokes shift) or transfer 

energy to the molecule of interest, causing a redshift (Stokes shift). The Raman spectrum is 
characteristic for a given molecule and suitable for the label-free detection of analytes.112 

Attaching the molecule of interest onto a gold surface, for example, by the formation of an 

immunocomplex, enhances the Raman signal by several orders of magnitude and is called 
surface-enhanced Raman scattering (SERS). In label-free SERS the spectrum of the analyte is 
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directly measured. In the label-based SERS, for example, a Raman active dye coupled to a 
SERS-active nanoparticle. The label-based SERS effect was used in a sandwich immunoassay 

for the detection of cardiac troponin I. Magnetic beads were used to capture and preconcentrate 

the analyte. The detection label consisted of AuNPs coated with a Raman reporter and an anti-
cardiac troponin I antibody, several of these conjugates were assembled on graphene oxide 

fragments and formed the reporter probe. The SERS-based assay achieved a LOD of 5 pg/mL 
suitable for real-world applications.113 

Uniform AuNPs typically have a red color that rapidly changes to blue if the particles form 

aggregates. In 1996, Chad Mirkin first reported a colorimetric assay for DNA based on the 
color change of AuNPs during aggregation.114 De la Rica et al. used the color change of AuNPs 

to design a plasmonic ELISA, one of the most sensitive assays for PSA in existence.115 The 

target molecule was captured by the capture antibody, coated in a microwell. A primary anti-
PSA antibody was added, followed by the addition of a biotinylated secondary antibody. For 

the detection, a streptavidin decorated with catalase was used. The enzyme catalase promotes 

the disproportionation reaction of H2O2 to H2O and O2. If H2O2 was present in the solution, the 
AuNPs were stable because H2O2 reduces gold ions in solution, stabilizing the spherical 

AuNPs causing a red colored dispersion. In the presence of the analyte, the catalase-labeled 

streptavidin is also present and the H2O2 concentration decreases, causing the particles to 
aggregate, resulting in a color change from red to blue. The difference is visible with the bare 
eye. The plasmonic ELISA reached an LOD of 1 ag/mL (0.4 aM). 

IV.8.2. Quantum Dots 

The first report about semiconductor nanocrystals, also known as quantum dots (QDs), was by 

Alexei Ekimov in the early 1980s. He studied the color of glass doped with semiconductors 

such as CdSe, CdS, CuBr and CuCl. During his experiments with the glass, he found small 
nanometer-sized crystals that absorbed light at low wavelengths.116 Together with Alexander 

Efros, he developed a controlled growing technique for these nanocrystals in multicomponent 

silicate glass, and described their size-dependent optical properties.117 These particles were 
later named QDs. The intrinsic optical features that render QDs as exceptional labels for 

bioanalytical applications are high quantum yields, high molar extinction coefficients, a broad 

absorption range (Figure 11A, black line), narrow emission bands (Figure 11A) that are 
tunable by size (Figure 11B), large Stokes shifts, and a high chemical and optical stability.118 
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Figure 11: Spectral properties of QDs. A) Absorption and emission spectra of CdSe QDs with different 
radii. The black line indicates the absorption spectrum of CdSe particles with a radius of 13.5 Å. B) 
Photo of CdSe QD dispersions demonstrating the size-dependent emission of QDs. Adapted with 
permission from Springer Nature: Nature Materials118, Copyright 2005. 
 

Today, colloidal synthesis routes are established for various QD types like CdSe, CdTe, ZnSe, 

ZnS, and CdS. The group of Bawendi119 was the first to establish a synthesis method for highly 

uniform QDs. The synthesis was based on the pyrolysis of organometallic compounds by 
injection into a hot coordinating solvent, which lead to a controlled crystal growth with a 

narrow size distribution. For QDs the size distribution is critical because a broader distribution 
also causes broader emission peaks. 

Because of their small size, electrons in QDs are confined in all three dimensions resulting in 

quantized energy levels between the valence band and the conduction band. The energy gap 
between valence and conduction band depends on the size of the particle. Bigger particles have 

a smaller energy gap, leading to a red shifted emission. Smaller QDs have a larger energy gap 

causing the emission to be shifted to the blue.120 The emission of available QDs covers the 
whole visible spectrum (Figure 12), even particles that emit in the ultraviolet (ZnS), and in the 

near-infrared (NIR) region (PbS, PbSe/Te) exist. Sharp emission bands with maxima at many 

different wavelengths make QDs especially interesting for multiplexed applications. The 
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company Intellicyt, for example, uses mixtures of QDs for the barcoding of microbeads in flow 
cytometry.121 

 

Figure 11: Schematic representation of the emission ranges of various kinds of QD materials. 

Adapted with permission from Springer Nature: Nature Materials118, Copyright 2005. 

 

QDs also found a wide range of applications in immunoassays. Kerman et al. developed a 

quantum dot-based immunosensor for the detection of PSA with a fluorescence microscope.122 

A capture antibody was immobilized on a carbon electrode, followed by incubation with the 
sample to capture specifically PSA. A biotinylated primary antibody was used to immobilize 

SA-coated QDs. The readout was performed under a fluorescence microscope, and the 

integrated intensity in several defined regions of interest (ROIs) compared to a calibration was 
used to quantify the analyte concentration in human serum with an LOD of 0.25 ng/mL. A 

multiplexed analysis of four different toxins was reported by the group of Mattoussi.123 A 

mixture of capture antibodies against the toxins was immobilized in microwells and incubated 
with mixtures of the analytes (ricin, cholera toxin, shiga like toxin 1, and staphylococcal 

enterotoxin B). Four different QDs were conjugated with detection antibodies specific for one 

of the toxins. The group demonstrated that all four toxins could be detected by measuring a 
whole spectrum in each well with subsequent deconvolution of the spectrum. The advantages 

of QDs for multi-analyte detection compared to organic fluorophores (small Stokes shifts, 
broad emission bands) were demonstrated with this experiment. 

 

IV.8.3. Photon-Upconversion Nanoparticles 

Photon-upconversion nanoparticles (UCNPs) are luminescent nanocrystals that can be excited 

by NIR light at 980 nm, whereupon the UCNPs emit light with higher energy. This process 

involves the sequential absorption of two or more photons by the nanoparticle (Figure 13). 
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The brightest known UCNPs today consist of a hexagonal NaYF4 host lattice, a material that 
has low phonon energies, minimizing non-radiative relaxation pathways.124 The host matrix is 

doped with Yb3+ sensitizer ions that absorb the excitation light and emitting ions like Er3+ (red 

and green emission, Figure 13, right) or Tm3+ (blue and NIR emission, Figure 13, left). The 
principles of using Yb-Er and Yb-Tm couples reach back to 1966, when François Auzel 

suggested that energy transfers can occur between excited rare earth metal ions.125 It took more 

than three decades until Heer et al. reported on lanthanide upconversion in a transparent 
colloidal solution.126  

 

Figure 13: Photographic image of the upconversion luminescence of UCNPs in cyclohexane with 
excitation at 980 nm. A) Blue upconversion luminescence of Tm3+-doped UCNPs. B) Total 
upconversion luminescence of Er3+doped UCNPs. C) Green upconversion luminescence (red filtered). 
D) Red upconversion luminesce (green filtered). Adapted with permission from John Wiley and Sons: 
Advanced Materials127, Copyright 2008. 
 

Any upconversion process can, by nature, never reach a higher quantum yield than 50%. For 

UCNPs, the highest achievable quantum yield resembles the yield of its bulk material, which 

lies for NaYF4:Yb3+, Er3+, at around 10%.128 The quantum efficiency of UCNPs is drastically 
reduced in aqueous environments. The quenching is caused by non-radiative relaxation 

pathways between the excited state and vibrational modes of the OH-groups of water (blue 

curled arrows in Figure 14).129 To overcome the quenching effect, an inert NaYF4 shell 
without emitting ions can be grown around the UCNPs.130  
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Figure 14: Simplified energy diagram for Er3+-doped UCNPs (left) and Tm3+-doped UCNPs (right). 
Dashed arrows indicate non-radiative energy transfers. Curled, black arrows represent multiphoton 
relaxations, and blue curled arrows denote increased multiphoton relaxations caused by vibrations of 
OH-groups. Solid arrows mark photon absorption (black) or emission (colored). 

The generally low quantum yields of UCNPs are compensated by several factors. 1) Each 

particle consists of many simultaneously sensitizing and emitting ions. 2) UCNPs are 
extremely photostable, allowing for a powerful laser excitation to enhance the luminescence. 

3) The NIR excitation prevents autofluorescence and minimizes light scattering, which enables 

almost background-free measurements. 4) UCNPs, unlike QDs, do not blink and show a 
constant emission, this is especially beneficial for imaging applications. 

UCNPs can be synthesized in a controlled manner by a high-temperature coprecipitation 
method.131 In this method, lanthanide trichloride salts (YCl3, YbCl3, TmCl3) in methanol are 

heated to 160° for 30 min in a mixture of oleic acid and 1-octadecene, cooled down to room 

temperature and a mixture of NH4F and NaOH in methanol is added. The methanol is 
evaporated by heating to 160 °C for 30 min, and the temperature is increased to 300 °C for 90 

min under argon or nitrogen atmosphere. At 300 °C the UCNPs undergo a phase transition 

from cubic α-phase to the hexagonal β-phase. The particles are precipitated with ethanol and 
washed with methanol and ethanol several times. The purified UCNPs have a hydrophobic 
surface because a coating of oleic acid is formed around the particles during the synthesis. 

For bioanalytical applications like immunoassays, water dispersible particles are required, 

which can be achieved by replacing the oleic with other surface coatings like PEG,132 a silica 
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shell,133 or forming a polymer around the particles.134 Two common methods exist to remove 
the oleic acid from the particles, a ligand exchange reaction with NOBF4,135 and protonation 

of oleic acid with subsequent washing.136 Phosphonate groups strongly coordinate to 

lanthanide ions; this can be exploited to immobilize functional linkers onto the UCNP 
surface.136  

To specifically detect an analyte, UCNPs can be coupled to a recognition element like an 
antibody137 or aptamer.138 A common way to attach biomolecules to the nanoparticles is to 

modify them with carboxyl groups. UCNPs can be silanized with a carboxy silane, or 

carboxylated PEG can be used for surface coating. The carboxyl group is transformed into an 
active ester using EDC/NHS chemistry. Activated carboxyl groups react with amino groups in 

the side chains of lysine to form an amide bond. Hlaváček et al.139 used EDC/NHS chemistry 

to build a tracer molecule for a competitive ULISA for diclofenac. In a first step, EDC/NHS 
was used to covalently bind diclofenac to bovine γ-globulin, then silica-coated UCNPs with 

free carboxyl groups were activated with EDC/NHS, and the diclofenac/bovine γ-globulin was 

attached. This tracer was used to compete with the free diclofenac for binding sites of a capture 
antibody. With an increasing amount of free analyte molecules, less of the tracer molecules 

could bind to the microplate, and the signal decreased. The assay resulted in an LOD of 70 pM 
for diclofenac. 

IV.8.4. Digital Affinity Assays with Nanoparticle Labels 

AuNPs were used in a single-particle scattering assay for the detection of the clinical marker 

molecules PSA, α-fetoprotein (AFP), and carcinoembryonic antigen (CEA). A gold 
nanoparticle was decorated with a primary capture antibody and immobilized in a flow cell on 

a microscope coverslip. The analyte was added and captured by the primary antibody, and the 

detection conjugate, consisting of a silver nanoparticle (AgNP); this was followed by the 
addition of a primary antibody. The binding of the detection conjugate led to a significantly 

enhanced scattering intensity, which was detected via darkfield microscopy for individual 

particles. The digital readout resulted in LODs of 3.3 pM for PSA, 5.9 pM for AFP, and 1.7 
pM for CEA.140 

A homogeneous immunoassay was developed for CEA using QDs as a label. Two batches of 
the same kind of QD were coated with different antibodies against CEA. The particles formed 

immunosandwiches with the analyte and were subsequently immobilized on a microscope 

coverslip. Because of the small size of the particles below the diffraction limit, it was 
impossible to separate individual QDs from the immunocomplexes under a fluorescence 

microscope. The researches exploited the photooxidation of QDs (bleaching) that occurs after 

a certain irradiation time. The QD-emission was split into a zeroth-order dot (direct 
transmission) and a first-order streak (diffraction beam) using a diffraction grating in front of 
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the detector. During the excitation, an asynchronous photooxidation of the two sandwiched 
QDs took place that led to a blue shift of the emission wavelength of the first order streak. 

Because the first order streak only split if two QDs were bound together, the analyte 

concentration could be determined by counting the number of the split streaks. The digital 
counting of split first order streaks resulted in an LOD of 6.7 fM for CEA and demonstrated 
that the same label could be used twice in an optical, homogeneous immunoassay.141 

The next chapters will demonstrate the use of UCNPs for highly sensitive immunoassays. 

Research articles 1 & 2 describe digital sandwich immunoassays for PSA. The third article 
uses UCNP labels for the immunochemical staining of breast cancer cells. 
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V.1. Abstract 

The ability to detect low concentrations of analytes and in particular low-abundance 

biomarkers is of fundamental importance, e.g., for early-stage disease diagnosis. The prospect 

of reaching the ultimate limit of detection has driven the development of single-molecule 
bioaffinity assays. While many review articles have highlighted the opportunities of single-

molecule technologies for analytical and diagnostic applications, they are not as widespread in 

real-world applications as one should expect. This review provides a theoretical background 
on single-molecule—or better digital—assays to critically assess their potential compared to 

traditional analog assays. Selected examples from the literature include bioaffinity assays for 

the detection of biomolecules such as DNA, proteins, and viruses. The structure of the review 
highlights the versatility of optical single-molecule labeling techniques, including enzymatic 
amplification, molecular labels and innovative nanomaterials. 

V.2. Introduction 

The ability to detect individual molecules—at first sight—holds the promise to reach the 
ultimate sensitivity. Thus, it is not surprising to see a surge in the number and variety of single-

molecule approaches. While there have been many review articles on the obvious advantages 

of single-molecule fluorescence spectroscopy in the field of biophysics,1 more recent reviews 
have discussed the potential and limitation of single-molecule applications for analytical 

chemistry.2 Our review is focused on single-molecule bioaffinity assays and does not cover 

similar techniques for fundamental biophysical or biomolecular research. Furthermore, it was 
necessary to limit the review to optical single-molecule techniques. Other emerging single-

molecule applications of electrochemical3 and force-based techniques4 can be found 

elsewhere. As the labeling technique is the key element for the ability to detect a single analyte 
target, the review structure follows different types of optical detection labels. We have also 

included illustrative examples of label-free optical techniques reported for single-molecule 
assays.5 

Most bioaffinity techniques rely on antibodies, though aptamers or molecularly imprinted 

polymers (MIPs)6 have also been used to specifically bind and capture an analyte of interest. 
Antibodies can be generated with high specificity against almost any analyte. Only the affinity 

ceiling limits their binding constant to approximately 1010 M-1,7 which is much lower compared 

to (strept)avidin-biotin binding (1014 M-1).8 Since antibodies have a rather large size, cameloid 
antibodies that consist only of a single binding site have attracted some attention. The 

advantage of aptamers is the easy large-scale production, whereas MIPs stand out for their high 

chemical stability. MIPs are especially useful for the detection of small molecules with a rigid 
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structure. More flexible analytes such as proteins, however, seem less suitable for the specific 
detection by MIPs. 

For detecting the binding event, two approaches can be distinguished: (1) In label-free assays, 
the binding of the analyte to the detection element results in a signal change that can be directly 

measured. (2) In the so-called sandwich format, a second affinity reagent, which carries a 

signal-generating label, binds to the analyte. As a detection label can strongly amplify the 
signal, this approach is more amenable for implementing single-molecule assays. The first 

immunoassays used radioactive labels,9 but enzyme labels have gradually replaced 

radionuclides for safety reasons and because each enzyme label generates thousands of 
measurable product molecules (intrinsic signal amplification step). The enzyme-linked 

immunosorbent assay (ELISA) is still considered as the gold standard for the quantitative 

measurement of various analytes ranging from clinical diagnosis to environmental applications 
not the least because it is relatively easy to use. 

Over the last 60 years, the development of immunoassays has been mainly driven by making 
measurements more sensitive, specific and reproducible. While conventional ELISAs can 

measure picomolar concentrations of analytes, higher sensitivities are required because few 

molecules of toxins can be harmful,10 individual pathogens can initiate an infectious disease,11 
and trace amounts of a cancer marker indicate the beginning of a malignant transformation.12 

Additionally, the development of more sensitive immunoassays is essential for the discovery 
of new potential biomarkers that are not accessible using current diagnostic tests.13 

A conventional ELISA is performed in a laboratory and requires several washing steps and 

relatively long incubation times. Thus, the second line of immunoassay development has aimed 
at a faster throughput using lower sample volumes, and assays that can be performed directly 

at the site of sample collection (on-site testing), for example, at the bedside for diagnostic 

tests,14 or in the field for environmental and food products applications. In diagnostics, such 
assays are commonly known as point-of-care (POC) tests.15 Minimally invasive sample 

collection methods, e.g. from urine or saliva, and no washing steps are preferred to maintain 

the user-friendliness of POC tests. The most famous antibody-based POC test is the home 
pregnancy test, a very successful example of a lateral flow assay first described in the 1980s.[16] 

The wide acceptance and user-friendliness is a precondition for POC methods to become a 

cornerstone in the predictive, preventive, personalized and participatory medicine, commonly 
termed P4 medicine.17 

The family of bioaffinity assays, in particular immunoassays, can be subdivided depending on 
the detection label as shown in Figure 1. (1) Enzyme labels represent the central branch and 

continue to be the most common detection route. (2) Fluorescent molecular labels are in 
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principal easier to implement because the detection antibody is directly labeled with a 
fluorescent label and no enzymatic amplification step is necessary. The simplest form, the 

fluorescence immunoassay (FIA), however, is limited by background fluorescence without the 

advantage of enzymatic amplification. In addition to the direct intensity-based fluorescence 
detection, this scheme was adapted for signal amplification (e.g. by Immuno PCR) or to 

develop homogeneous assays using fluorescence polarization. Nevertheless, the non-zero 

background of fluorescence remains. A decisive breakthrough was the development of time-
resolved (TR) detection by employing lanthanide-based labels that display a long lifetime 

(microseconds) compared to organic fluorophores (nanoseconds).18 In a time-gated approach, 

after luminescence excitation, the signal acquisition is delayed by a few microseconds to let 
the autofluorescence signal decay, and only the specific signal of the lanthanide is recorded. 

The TR-FIA is a background-free optical detection method that, however, needs a more 

sophisticated instrumental setup. The DELFIA (dissociation-enhanced lanthanide fluorescent 
immunoassay) technology is the most prominent TR-FIA system on the market.19 

 

Figure 1: Progress of immunoassay development using optical detection schemes towards single-
molecule detection. Radioisotopes were replaced by labels based on enzymes, fluorescent molecules 
and nanoparticles. By choosing an appropriate readout method, all these labels can be exploited for 
measurement at the single-molecule level. 
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Nanoparticles (NP) currently constitute the most rapidly branching labeling strategy for 

immunoassays.20 Colloidal gold has been used for the readout of lateral flow assays (LFA). 

Due to their plasmonic properties, gold nanoparticles (Au NPs) strongly absorb and scatter 
light such that a direct color read-out by eye is possible, and the user is able to make a yes/no 

decision. In the meantime, the use of NPs in immuno- and other bioaffinity assays has 

experienced a fast growth as a result of concurrent progress in nanomaterials research. 
Plasmonic NPs are now in widespread use, but also other NPs and nanocomposites have been 

designed that enable a convenient optical readout. For example, quantum dots (QDs) are a 

better alternative for organic fluorophores because they are more photostable and brighter, 
which is an important feature for single-molecule applications. Photon-upconversion 

nanoparticles (UCNPs) are another emerging class of labels that can be excited by near-

infrared light and emit shorter-wavelength light. The anti-Stokes emission prevents 
autofluorescence and light scattering and thus allows for an optical readout without 

background interference.21 The background-free detection renders UCNPs an excellent 

candidate for single-molecule applications.22 Nanocontainers such as liposomes can be filled 
with large numbers of fluorophores for a strong signal generation. In contrast to enzyme labels 

that generate the fluorophores in situ, the encapsulated fluorophores are released on demand 

from the nanocontainer to avoid self-quenching inside the confined environment.23 There are 
also mixed detection schemes, e.g., in the form of electrochemiluminescence that generates a 
stronger signal without background. 

All three branches shown in Figure 1 have now blossomed into single-molecule assays as a 

consequence of innovative assay designs as well as advances in instrumental techniques, 

detector sensitivities and software capabilities. In simple terms, single-molecule assays can 
thus be considered as the result of driving conventional assays to the highest sensitivity either 

by increasing the specific signal to very high levels or by background reduction. Therefore, 

any standard analytical method can, in principle, reach “single-molecule sensitivity” but 
background interference such as matrix effects, readout noise or non-specific binding typically 
prevents it. 

It is furthermore essential to understand that the ability to detect a single molecule is not 

synonymous with the most sensitive analytical assay. For example, some immunoassays from 

the pre-single-molecule era actually had higher sensitivities than current single-molecule 
assays.24 If we shift our attention from the detection of a single molecule as the “ultimate” 
sensitivity to the distinct readout mode, however, it becomes clear that single-molecule 

detection is a unique and powerful tool for background reduction. Since the signal of a single 
detection label can be reliably distinguished from the background noise of the instrument and 
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reagents, the measurement is completely independent of background fluctuations. Thus, the 
term “digital assay” (as opposed to a conventional “analog assay”) is a much better description 
of the advantages conferred by single-molecule detection in analytical chemistry. The digital 

readout, in turn, makes the measurement more robust and thus indirectly leads to lower 
detection limits. 

The signal-to-noise (S/N) ratio determines whether a single molecule can be detected or not. 
The strength of the specific optical signal depends on the type of label and can be strongly 

amplified, as discussed in the next chapters. In a digital assay, however, each detectable 

response is derived from a single analyte molecule, and thus the specific signal strength is 
ultimately fixed. The only option to assure single-molecule detection is the reduction of the 

background signal, which decreases with the detection volume. This problem has been 

extensively discussed for fluorescence spectroscopy, one of the earliest and most important 
methods for single-molecule detection, but similar considerations also hold for non-fluorescent 

single-molecule detection methods. Fluorescent molecules are capable of generating a high 

signal because each fluorophore can emit up to a million photons before it finally 
photobleaches. Fluorescence excitation, however, also leads to an optical background signal 

due to autofluorescence and light scattering.25 In order to observe a single fluorescent 

molecule, it is essential to reduce the detection volume to a femtoliter (fL) volume, commonly 
by using confocal microscopy, fluorescence correlation spectroscopy (FCS) or total internal 
reflection microscopy (TIRF). 

The requirement for a very small detection volume is associated with two closely related 

problems that must be addressed in order to achieve higher sensitivity with digital assays. The 

first problem is analyte sampling. At very low analyte concentrations, there are not enough 
molecules present in an analyte sample to reach the detection volume by diffusion on a 

reasonable time scale. For example, it was estimated that it takes on average more than ten 

minutes for a molecule present in a concentration of 1 fM to reach a detection volume of 10 fL 
by diffusion.26 Stochastic fluctuations are the second problem.27 At low analyte concentrations, 

a small observation volume is randomly at one time occupied by a single analyte molecule and, 

at another time, empty. The so-called Poisson noise (√𝑛/𝑛) depends on the number of counted 
events (n) and is negligible in conventional analog assays where n is very large. For digital 

assays, however, it presents a problem because a single detection event of an analyte molecule 

does not contain enough analytical information. Therefore, it is necessary to make either many 
parallel measurements on a larger area or many sequential measurements in the same detection 
volume. 



Review Article 1 

 
V-63 

 

V.3. Enzyme Labels 

The enzyme-linked immunosorbent assay (ELISA) has been successfully transformed into 

single-molecule immunoassays. The production of thousands of fluorescent molecules per 

enzyme label molecule multiplied by up to a million photons per fluorophore generates a very 
strong signal that can be detected by simple wide-field fluorescence microscopy. In particular, 

β-galactosidase from E. coli is an excellent enzyme label for single-molecule applications 

because it is robust and can turn over up to 1000 substrate molecules per second. Based on this 
strategy, Rotman28 reported the very first single-molecule experiment already in 1961. The 

enzymatic substrate turnover, however, is a kinetic process and needs time, which leads to 

product diffusion. Consequently, the signal is not detectable at the same location as the analyte. 
There are two options to spatially allocate the signal to the analyte. 

V.3.1. Assays Based on Product Precipitation 

In the easiest case, the enzymatic reaction generates a product that precipitates around the 

analyte. The group of Suzuki29 designed a digital sandwich immunoassay on beads by using a 
conjugate of detection antibody and horseradish peroxidase. The enzyme label converted a 

fluorescence-labeled tyramide substrate to a precipitating fluorescent product, which led to a 

high local fluorescence signal at the site of analyte binding. It was noted, however, that the 
detection of the tyramide signal on the beads by flow cytometry was less efficient than that of 
digital ELISAs in confined environments. 

V.3.2. Assays in Confined Environments 

Alternatively, the enzyme label converts a substrate to a soluble fluorescent product. In this 

case, the reaction must be confined in a very small compartment in order to prevent product 

diffusion.30 The concentration of the reaction product exceeds the detection threshold in small 
confined volumes. For example, a single molecule of β-galactosidase enclosed in a volume of 

50 fL (50 µm³) can produce a fluorophore concentration of 2 µM in 1 min, which can be easily 

detected via conventional epifluorescence microscopy.31 Enzymatic reactions were confined 
in water-in-oil emulsion28 or microfluidic droplets, fused silica capillaries,32 virus capsids,33 

lipid vesicles,34 or so-called femtoliter arrays. In particular, femtoliter arrays and water-in-oil 
microfluidic droplets have found analytical applications. 

Femtoliter Arrays 

Femtoliter arrays consist of a large number of homogeneous wells fabricated in the surface of 

optical fiber bundles,35 fused silica slides,3 or polydimethylsiloxane (PDMS)37. The Walt 

group38 pioneered single-molecule immunoassays based on a fluorogenic enzymatic reaction 
in femtoliter arrays, which was commercialized by Quanterix. In the so-called Simoa platform 
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(single molecule arrays, Figure 2), magnetic beads with a capture antibody are dispersed in an 
analyte sample. The bead concentration is typically much higher than the analyte 

concentration. The beads were magnetically separated and incubated with a biotinylated 

antibody, followed by the addition of a streptavidin-β-galactosidase conjugate. A high bead-
to-analyte ratio ensured resulted in a small fraction of beads labeled with a single enzyme 

molecule and a large excess of unlabeled beads. The beads were loaded with a fluorogenic 

substrate onto a femtoliter array and sealed with a gasket or oil film. A highly fluorescent 
product accumulated only in wells that contained a bead with a bound analyte molecule. The 

analyte concentration was determined digitally by counting the number of fluorescent wells. 

Prostate-specific antigen (PSA) and tumor necrosis factor-α were detected with an LOD of 
1.5 fg/mL (~50 aM) and 2.5 fg/mL (~150 aM), respectively. Other clinically relevant analytes 

included cancer biomarkers,39 urinary biomarkers,40 p24 protein of HIV,41 and the 

neurofilament light chain protein (NFL), a neuronal injury marker of various 
neurodegenerative conditions and brain injuries. Traditionally, cerebrospinal fluid needs to be 

obtained for analysis by lumbar puncture because the concentration of NFL in the blood is too 

low for a conventional ELISA. Shahim et al.42 developed an ultrasensitive immunoassay with 
an LOD of 0.29 pg/mL, which enabled NFL measurements in the serum of healthy subjects. 

Olivera et al.43 determined tau protein in blood plasma (LOD of 0.012 pg/mL) to examine the 

relationship between increased tau protein levels and chronical neurological and psychological 
symptoms in military personnel after a traumatic brain injury. The ultrasensitive detection of 
biothreats such as ricin has also been demonstrated44. 

 

Figure 2: Magnetic bead assisted single-molecule ELISA assay in femtoliter arrays. (a) Many capture 
antibody-coated magnetic beads are dispersed in the analyte medium. After catching an analyte 
molecule, a biotinylated antibody forms the sandwich complex and serves as an anchor for a 
streptavidin-modified β-galactosidase. (b) The beads are loaded—together with a fluorogenic 
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substrate—onto a femtoliter array and sealed by a PDMS gasket. (c) Scanning electron microscopy 
shows that only one bead is loaded per femtoliter well. (d) Fluorescence microscopy records the 
fluorescence increase in wells that contain a bead with a captured analyte molecule. Reprinted with 
permission from 38. Copyright 2010 Nature America. 

The Noji group45 developed larger arrays of one million femtoliter wells. Counting a very high 

number of individual immunocomplexes in the arrays reduced the Poisson noise. The assay 

was employed for the detection of PSA with an LOD of 60 ag/mL (~2 aM). The authors also 
showed that the digital assay in femtoliter arrays is amenable to multiplexing by using two 

different enzyme/substrate labels.46 Recently, a competitive femtoliter array format was 

demonstrated for the detection of small molecules such as cortisol in saliva.47 The assay 
achieved an IC50 down to 0.42 ng/mL, which was 44 times lower than for a conventional 
ELISA. 

 

Microdroplets 

Different ways for the generation of water-in-oil microdroplets have been reviewed earlier.[30] 

Water-in-oil droplets divide the reactants and the product into pico- to femtoliter volumes. The 
oil phase prevents interactions between reagents in the aqueous phase and on solid surfaces. 

While microdroplets generated by emulsification methods tend to be rather heterogeneous, 

more homogeneous microdroplets can be generated and handled by microfluidic devices. 
Microfluidic droplets separate the reactants from the liquid substances, reduce the assay 

volume, and enable rapid handling, which increases the assay throughput.48 Microfluidic 
droplets have also been used to study single enzyme molecule reactions49 and single cells.50 

Water-in-oil femtoliter droplets generated by a microfluidic device were used to establish a 

bead-based ELISA (Figure 3).51 A capture antibody on the surface of polystyrene beads 
immobilized PSA. The presence of PSA was then detected by a biotinylated detection antibody 

and a streptavidin-β-galactosidase conjugate using fluorescein-di-β-D-galactopyranoside 

(FDG) as the substrate. The enzyme product fluorescein was recorded by fluorescence 
microscopy while the beads were identified and counted based on their red autofluorescence. 
The microdroplet assay achieved an LOD of 46 fM and a linear range of 0.046–4.62 pM. 
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Figure 3: Scheme of single-molecule immunoassay in femtoliter-sized droplets. (a) Antibody-antigen 
complex formation on beads. (b) Beads with or without immunocomplex are encapsulated in droplets 
with the substrate and incubated on chip in traps to collect the fluorescent products of single-enzyme 
labels. (c) Three droplet populations can be distinguished: (i) droplets without bead, (ii) those 
containing a bead without immunocomplex, and (iii) those containing both a bead and 
immunocomplex, which exhibit a positive fluorescence signal due to the enzymatic activity of a single 
β-galactosidase label. Reprinted with permission from 51. Copyright 2013 American Chemical Society. 

 

Liu et al.52 developed another type of enzyme-linked immunoassay on magnetic beads for 

single-exosome counting in microdroplets (droplet digital ExoELISA). Magnetic beads were 
equipped with an anti-CD63 antibody to capture exosomes. After sample incubation, a 

biotinylated detection antibody and a streptavidin-β-galactosidase conjugate were added to the 

beads. The beads were enclosed in 40 µm droplets (~33 fL) containing FDG. The fluorescence 
increase of fluorescein was detected in each droplet containing a magnetic bead with captured 

exosome. A bead-to-droplet ratio of 0.3 was employed to ensure that only one magnetic bead 

was enclosed in a given droplet. The assay achieved an LOD down to 10 enzyme-labeled 
exosome complexes per microliter (∼10–17 M). 

An indirect bead-based immunoassay in microdroplets was reported for the detection of α-fetal 
protein (AFP).53 AFP was immobilized on antibody-coated magnetic beads followed by the 

addition of a biotinylated detection antibody and a streptavidin-β-galactosidase conjugate. 

After magnetic separation, the excess amount of unbound streptavidin-β-galactosidase was 
injected into a microfluidic chip to generate microdroplets with FDG. The microdroplets were 
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collected into a microtiter plate and fluorescent droplets containing free streptavidin-β-
galactosidase were counted under a fluorescence microscope. This indirect digital 
concentration readout reached an LOD in the fM concentration range. 

The Di Carlo group54 developed a microfluidic digital homogeneous entropy-driven 

biomolecular assay (dHEBA) for the detection of influenza A. Upon nucleoprotein binding, 

nucleic acid-labeled antibodies formed a catalytically active complex that drove a 
hybridization/displacement reaction on a multicomponent nucleic acid substrate and generated 

many fluorescence-labeled oligonucleotides. The dHEBA format enabled the detection of 

influenza A nucleoprotein in a concentration of 4 aM in approximately 10 min without the 
need for a purification step. The dHEBA has the potential to detect single analyte molecules 
in complex biofluids. 

V.4. DNA Labels for PCR Amplification 

The polymerase chain reaction (PCR) amplifies DNA—in principle starting from a single 

template strand—exponentially to very high copy numbers of DNA.55 Droplet microfluidics 

on a microchip enables the rapid isolation of single DNA strands and subsequent PCR 
amplification in pico- or femtoliter reaction containers.56 For example, a digital PCR was 

performed in rotational chips to detect viral RNA isolated from single HIV viruses.[57] Wells 

of different volumes were employed in the chip to enable quantification over a wider dynamic 
range. The assay achieved an LOD of 40 HIV molecules per mL. 

Similar to the digital readout of single enzyme molecule labels, a digital immuno-PCR can be 
implemented if the PCR reaction is enclosed in microdroplets. The droplet-based digital 

immuno-PCR (ddIPCR) uses magnetic beads as solid support, DNA as a marker and PCR for 

signal amplification e.g. for the detection of PSA.58 The IPCR is performed in three steps as 
shown in Figure 4. First, the PCR reaction mixture was emulsified to generate tens of 

thousands of water-in-oil droplets per microchip. Subsequently, the samples underwent 

thermal amplification cycles and the number of positive droplets was determined by end-point 
fluorescence detection. In the last step, the number of DNA copies was calculated based on the 

Poisson distribution. The IPCR can usually enhance the LOD by 100–10 000 fold compared 

to a standard ELISA. It was noted, however, that the washing steps and the microfluidic droplet 
system cannot be easily combined. The LOD for PSA was 0.48 ng/mL with a linear range of 

0.5–30 ng/mL. Human serum samples correlated well with a reference method based on a 
commercial automated immunoassay analyzer. 
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Figure 4: Scheme of immunomagnetic droplet-based digital immuno-PCR (ddIPCR). (a) Antibody-
magnetic beads conjugates captured the antigen. A biotinylated antibody, streptavidin, and biotinylated 
DNA sequence from Aspergillus fumigatus are then sequentially ligated. (b) The magnetic beads are 
resuspended in a reaction mixture and then emulsified. After ddPCR, the numbers of negative and 
positive droplets are counted. Reprinted with permission from 58. Copyright 2018 Royal Society of 
Chemistry. 

 

The digital PCR was combined with a proximity ligation assay (PLA) to improve the precision 
of the assay.59 Target proteins such as the cytokine IL-6 were immobilized on magnetic beads 

and detected by two types of DNA-modified antibodies that are capable of forming a pair of 

PLA probes. If both antibodies bound to the protein, the PLA probes was joined by DNA 
ligation. The ligated DNA reporter strand was then amplified by rolling circle amplification, 

and the amplified DNA was detected via fluorescent DNA probes. Because standard rolling 

circle amplification is not quantitative, the ligated DNA strands were compartmentalized 
individually by using a microfluidic device, and the protein concentration was determined 
digitally by counting fluorescent microdroplets. 

V.5. Fluorescent Molecular Labels 

The detection of molecular labels at the single-molecule level relies on fluorescence 

spectroscopy and microscopy. Total internal reflection microscopy (TIRF) and confocal 

microscopy can efficiently generate such a small detection volume that the background signal 
is reduced, and single fluorescent label molecules can be detected. When crossing a focused 

laser beam in a confocal microscope set-up, individual fluorophores emit bursts of photons that 
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are detected.60 The residence time depends on the diffusion of the fluorophore through the 
beam path (with a typical active volume of a few femtoliters) and on photobleaching. Cyanine 

dyes were proposed for such applications as the excitation within 650–700 nm is well 

compatible with the spectral window of low light scattering and autofluorescence of biological 
substances including blood. Even epifluorescence has more recently been reported to enable 

single fluorophore detection. However, the type of microscopy is not relevant for the assay 

design as long as it allows for the detection of a single fluorescent molecule. Thus, we have 
structured this chapter according to different assay formats. Fluorescence counting of single 

protein analyte molecules immobilized on a surface by capture antibodies seems to be more 
sensitive compared to correlation techniques in solution. 

 

V.5.1. Detection of Surface-Bound Analytes 

Löscher et al.61 developed a sandwich assay for the detection of single cardiac actin molecules. 

The scanning system employed a single-photon counting avalanche photodiode together with 
a CCD camera for imaging under 635-nm laser excitation. A glass surface was coated with a 

cellulose layer to reduce non-specific binding. Confocal microscopy reduced the optical 

background by minimizing the detection volume, which enabled the evaluation of photon 
bursts originating from individual molecules. 

A particular kind of bioaffinity assay, the so-called pull-down assay, has been used for the 
identification of protein-protein interactions. The Ha group62 developed a single-molecule 

pull-down assay (Figure 5). A capture antibody was immobilized in a flow chamber coated 

with polyethylene glycol (PEG) and biotin. Streptavidin was added to the flow chamber, 
followed by the addition of a biotinylated anti-His antibody, which captured overexpressed 

His6-tagged yellow fluorescent protein (YFP) from cell extracts. Individual YFP molecules 

were detected by TIRF microscopy. A stepwise decrease of the fluorescence intensity during 
single-molecule bleaching experiments enabled the identification of dimeric and trimeric YFP 

molecules. Individual protein kinase A (PKA) complexes were detected by a two-color single-

molecule pull-down assay. In its inactive form, PKA is present as a tetramer which consists of 
two catalytic and two regulatory subunits. Cyclic adenosine monophosphate (cAMP) activates 

the enzyme and leads to tetramer dissociation. The investigation of the stoichiometry of 
individual PKA complexes is essentially not possible using conventional analog detection. 
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Figure 5: A cell lysate is applied directly onto a coverslip for single-molecule TIRF microscopy. 
Specific antibodies on the coverslip capture protein complexes. Prey proteins associated with the bait 
protein are detected via a fluorescent dye fused to the prey. Reprinted with permission from63. 
Copyright 2011 Macmillan Publishers Limited. 

 

Burgin et al.64 developed a single-molecule assay for the detection of enhanced green 
fluorescent protein (EGFP) and tumor suppressor protein p53. A microfluidic chip was 

mounted onto a TIRF microscope under 473-nm laser excitation. Two methods for absolute 

protein quantification were used for the digital readout. In the accumulation method (Figure 

6a), the analyte was observed over a defined time period, during which the number of 

fluorescent spots increased until individual EGFP molecules were not distinguishable as 

diffraction-limited spots anymore. In the detect and bleach method (Figure 6b), fluorescent 
spots were counted, bleached, and after a fixed time interval counted again. Both images were 

subtracted to identify newly arrived and bleached molecules. Protein p53 was detected in the 
accumulation method by using a labeled detection antibody. 
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Figure 6: Different approaches for digital protein quantification. (a) For low analyte concentrations, 
the accumulation method counts the increasing number of fluorescent spots. If the distance between 
two fluorescent molecules is below the diffraction limit, they appear as one spot and cannot be 
distinguished anymore. (b) In the detect and bleach method, fluorescent molecules are counted after a 
certain time interval and subsequently bleached. The bleaching step keeps the average number of 
fluorophores bound to the surface at a constant level such that higher concentrations can be determined 
compared to the accumulation method. Reprinted with permission from 64. Copyright 2014 Royal 
Society of Chemistry. 
 

Zhang et al.65 developed a digital ATP assay using split aptamers. A coverslip was bound to a 

glass slide with a 5-mm hole in the center, followed by surface activation with plasma. A 

mixture of poly(L-lysine)-poly(ethylene glycol)-biotin (PLL-PEG-biotin) and PLL-PEG was 
added to the activated coverslip. Next, streptavidin was added, and a biotinylated Cy3-3'-

labeled split aptamer was bound to streptavidin. The analyte ATP was added together with the 

other Cy5-3'-labeled aptamer. The coverslip was placed on an epifluorescence microscope, and 
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the emission of the two dyes was collected simultaneously on the same EM-CCD camera. 
Diffraction limited spots of a mixed color indicated specific binding, whereas spots with only 

one color indicated non-specific binding. The assay achieved an LOD of 100 fM and a working 
range of 1 pM to 5 nM. 

Weng et al.66 developed an aptasensor for the detection of small molecules. The hairpin-shaped 

aptamer immobilized on a glass slide changes its conformation to an open state upon analyte 
binding (Figure 7). Fluorescently labeled short ssDNA probes bound preferably (but not 

exclusively) to the open conformation and the fluorescence trajectories of individual aptamers 

were monitored by TIRF microscopy. As the binding of the fluorescent probe followed 
different kinetic patterns depending on the conformation of the aptamer, the kinetic fingerprints 

were used to distinguish between nonspecific binding and analyte binding. Only spots that 

showed the signature of specific binding were counted to determine the analyte concentration. 
The assay achieved LODs of 0.3 pM for adenosine, 0.35 pM for acetamiprid, and 0.72 pM for 
PCB-77 in spiked chicken meat extract.  

 

Figure 7: (a) Scheme of a hairpin-shaped aptasensor immobilized on the slide surface. Analyte binding 
results in a conformational change and binding of a complementary fluorescent ssDNA probe. Single-
molecule trajectories (b) without and (c) with 50 pM adenosine are distinguishable. Reprinted with 
permission from 66. Copyright 2019 American Chemical Society. 

 

V.5.2. Laser-Induced Fluorescence Detection Inside a Capillary 

The Yeung group pioneered the use of capillary electrophoresis for single-molecule 
detection.36 In capillary electrophoresis, an electric field drives the sample through the 

illumination volume, which is small enough to allow for the detection of individual fluorescent 

molecules. Based on the electrophoretic mobility of individual fluorescently labeled 
antibodies, fluorescent immunoassays were established.67 Antibodies bound to an analyte 
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molecule have lower electrophoretic mobility and can thus be distinguished from free 
antibodies using cross-correlation. Individual fluorescence-labeled antibodies were recorded 

in the capillary by wide-field microscopy using a 20× objective (0.75 NA) and an intensified 
CCD camera. 

Stimulated by the need for reliable and sensitive assays for cardiac troponin, a diagnostic 

marker of acute myocardial infarction, the Erenna platform was developed. First, a sandwich 
immunoassay was performed in microtiter plates, and the bound labels were then released and 

inserted into a capillary electrophoresis device.68 As only a single fluorescent molecule passed 

through the detection volume during the observation interval, individual analyte molecules 
were counted, and an LOD of 1.7 pg/mL was achieved. In combination with magnetic beads, 

it was possible to detect troponin I levels of 0.2 pg/mL, which are typically found in healthy 

individuals (0.3 to 9 pg/mL).69 Esparza et al.70 used the Erenna assay to study amyloid-beta 
(Aβ) aggregation and deposition in Alzheimer’s disease. As low as 1.56 pg/mL (0.18 pM) of 

soluble Aβ oligomers was detectable above background, and the LOQ was determined to be 

6.25 pg/mL (0.72 pM). The method was applied to measure the Aβ oligomers in human cortical 
tissue homogenate. Wild et al.71 detected mutant huntingtin protein (mHTT) in cerebrospinal 

fluid. The mHTT is a promising biomarker for monitoring Huntington disease progression, but 

due to its predominantly intracellular localization, the concentration in the cerebrospinal fluid 
is very low (below pM even in patients with disease in advanced stage) and conventional 

methods are not sensitive enough to detect it. The Erenna assay provided an LOD of 40 fM 

and the authors found a significant difference in levels of mHTT in carriers of the genetic 
mutation in the premanifest stage and in different later stages of the disease. 

For the detection of the fertility-related human gonadotropin follicle-stimulating hormone 
(FSH), the laser beam was shaped into stripes, and 10 “superpixel” zones were evaluated using 
a CCD camera.72 Magnetic beads served as a solid phase for the immunoassay, the LOD for 

FSH was 34 fM for a few hundreds of fluorescent events counted above the background in 12 
s and corresponding to a few zeptomoles of labeled antibodies. 

The combination of several excitation lasers (blue 488 nm; green 543 nm; red 635 nm; infrared 
730 nm) and four single-photon counting modules allowed for the implementation of 

multiplexed assays.73 Confocal microsecond-scale alternating-laser excitation (ALEX) single-

molecule fluorescence spectroscopy was used to probe the fluorescent acceptor (A) without 
energy transfer (FRET) and provides also donor (D) excitation–based data for each single 

molecule. Distinct emission signatures are recovered for interacting species through 

determining the FRET efficiency E, which relates to the D–A distance, and distance-
independent stoichiometry-based ratio S (corresponds to the D–A stoichiometry of the various 

species). The combination of E and S on 2-dimensional histograms allowed for a virtual sorting 
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of single molecules. This technique was evaluated by determining 25 DNA sequences, 6 tumor 
markers, 8 bacterial gene markers and 3 drug resistance determinants. 

V.5.3. Fluorescence Correlation Spectroscopy 

Fluorescence correlation spectroscopy (FCS) records diffusion at the single-molecule level. 
Equilibrium concentration fluctuations due to Brownian motion are measured as spikes of 

fluorescence intensity within a small sampling volume. A concentration in the nanomolar 

range should be attained for subfemtoliter detection volumes to allow for following individual 
fluorescence-labeled molecules. Such a small detection volume can be obtained using confocal 

microscopy or multiphoton microscopy. The sensitivity of FCS depends mainly on the 

brightness of the fluorescent probe and on the detection volume.74 Evaluating fluorescence 
intensity fluctuations over time by an autocorrelation function yields information on the 

diffusion rates and the concentration of the fluorescent molecule.75 The diffusion time depends 

on the size and shape of the target molecule, on the viscosity of the solution, and the size of 
the focused laser beam. The increase of the diffusion time can therefore be used to determine 

the size of the fluorescently labeled molecule, which can be exploited for following its 

interactions with other molecules.76 FCS has found applications for example in in vitro and in 

vivo studies of protein-protein interactions, nucleic acid interactions, enzymatic activities, 
membrane diffusion.77 

The detection of fluorescence-labeled molecules at the single molecule level by FCS is 

applicable for the implementation of homogeneous immunoassays that avoid washing and 

separation steps as well as non-specific binding to surfaces, which becomes increasingly 
important at low analyte concentrations.75 On the other hand, FCS is prone to background 

interferences caused by autofluorescence, light scattering, quenching, and potential 

aggregation of the assay components. The simplest scheme of an FCS immunoassay is based 
on following the changes of the diffusion rate after the formation of the immunocomplex 

(Figure 8). Chatterjee et al.76 employed a sandwich assay for the detection of the neuronal cell 

adhesion molecule contactin-2 in cerebrospinal fluid. The assay was based on two different 
anti-contactin antibodies. One antibody was labeled with Alexa Fluor 488 and the other one 

was unlabeled. The formation of the sandwich immunocomplex of both antibodies with the 

analyte increased the diffusion rate, which was evaluated from the autocorrelation curve. The 
authors reached a limit of quantification of 0.2 ng/mL. 
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Figure 8: (a) Scheme of FCS setup. A laser is focused to excite fluorescent molecules in a confocal 
volume. Fluorescence intensity fluctuations due to Brownian motion are measured in solution by an 
optical fiber-connected photodiode. (b) The emitted photons are collected and plotted as time-
dependent intensity changes. (c) The autocorrelation curves show an increase in the diffusion time after 
formation of the immunocomplex (dotted line) compared to the antibody alone (solid line). Reprinted 
with permission from 76. Copyright 2017 Elsevier. 

 

Changes in the diffusion rates were also recorded by FCS to implement a competitive assay 
for the detection of the mycotoxin fumonisin B1 (FB1).78 The analyte FB1 competed with a 

tracer consisting of FB1 and Alexa Fluor 488 for the free binding site of the antibody. The 
assay provided an LOD of 1 ng/mL. 

The sensitivity towards the formation of immunocomplexes with smaller size difference can 

be enhanced using fluorescence cross-correlation spectroscopy (FCCS). FCCS uses two 
spectrally different fluorescent probes, which can be simultaneously excited using two separate 

excitation wavelengths and detected in two different channels. For FCCS, the amplitudes of 

the cross-correlation curves are calculated to detect the interactions of the fluorescent probes 
with the analyte. Because two labels are used, the sensitivity and especially the selectivity of 

FCCS in the quantitative measurement of biomolecules are higher compared to conventional 
FCS.  

The Klenerman group79 developed a sandwich assay based on counting of coincidence spikes 

of the two labeled antibodies. Compared to conventional FCCS, the data evaluation was 
simplified because only the number of spikes was counted, which corresponds to both labels 

being present in the confocal volume at the same time. Protein G and herpes simplex virus 
were detected with an LOD of 50 fM. 
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Miller et al.80 demonstrated a sandwich FCCS-based assay for the detection of human 
chorionic gonadotropin and the prion protein (Figure 9). Two lasers were alternated, and the 

emissions of different fluorescent labels were measured using separate detectors to eliminate 

spectral cross-talk and reduce the probability of false positive cross-correlation.81 The 
fluorophores were chosen in a way that their emission is separated, reducing the overlap of the 

emission and the possible energy transfer. To eliminate aggregation effects on the cross-

correlation curves, cross-correlations on short time sections were calculated followed by the 
elimination of the ones with the highest level of fluorescence (top 1% of the intensity 

distribution). The method provided LODs of 100 pM (human chorionic gonadotropin) and 2 
nM (prion protein) with an analysis time of 40 min. 

 

Figure 9: In fluorescence cross-correlation spectroscopy (FCCS), two fluorescence-labeled antibodies 
bind to the analyte. Black line: cross-correlation of labeled antibodies without analyte (antigen); red 
line: cross-correlation of labeled antibodies in the presence of the analyte. Reprinted with permission 
from 80. Copyright 2009 American Chemical Society. 

 

V.6. Nanoparticle Labels 

In recent years, various kinds of nanomaterials have been introduced as labels for 

immunoassays in order to enhance the assay performance.20a In particular, NPs with 
luminescent or plasmonic properties, which allow for a convenient optical readout, are suitable 

for single-molecule analysis.82 Compared to molecular labels, NPs display generally higher 

signals, which allows for an easier readout. On the other hand, their larger size can be a 
drawback in terms of steric hindrance of the immunocomplex formation as well as a potentially 
higher degree of non-specific binding. 
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V.6.1. Semiconductor Nanoparticles  

Quantum dots (QD) are fluorescent semiconductor nanocrystals with dimensions typically 
between 1 and 10 nm. The photoluminescence properties of QDs can be tuned by changing the 

nanocrystal size, allowing to reach emission wavelengths in the range of 380 to 2000 nm.83 

Compared to conventional fluorophores, QDs provide higher emission intensities, better 
photostability, wider excitation spectra, and narrower emission bandwidths.84 This allows for 
an easier detection of individual QDs compared to fluorophores. 

Detection of Surface-Bound Analytes 

Liu et al.85 developed a sandwich immunoassay based on QD labels. A capture antibody-coated 
QD and a detection antibody-coated QD were mixed with the sample, and then immobilized 

onto a positively charged coverslip. Mixed color spots (yellow) were counted under a 

fluorescence microscope. Carcinoembryonic antigen (CEA) was detected with an LOD of 6.1 
pM. The same group86 developed a method that made it possible to build a homogeneous 

sandwich immunoassay that employs only one label type. Capture and detection antibodies 

were coated on different QD 655s and formed an immunosandwich with the analyte. The QD 
emission was monitored through a diffraction grating placed in front of a CMOS camera of the 

microscope. The grating divided the emission into a zeroth-order spot and a first-order streak. 

Because of the diffraction limit, it was not possible to distinguish between unbound QDs and 
the sandwich immunocomplexes. During excitation, the QDs were oxidized, and the first order 

streak shifted to shorter wavelengths. The oxidation of the QDs started at different times and 

proceeded at different rates, which caused a splitting of the first order streak into two smaller 
streaks, if both QDs bound to the same analyte molecule. The number of split streaks was 

proportional to the amount of analyte molecules. The LODs for CEA and AFP were 6.7 fM 
and 3.4 fM, respectively. 

Detection in Microchannels 

A sandwich immunoassay for the detection of viruses was implemented in a microfluidic 

channel by exciting red and green fluorescent NPs simultaneously by a 488-nm laser87. The 

immunocomplex was detected by monitoring the coincidence of photon bursts in the red and 
green detection channels. In this way, wild type and mutated respiratory syncytial viruses were 
quantified in parallel with an LOD of 4×106 plaque-forming units (PFU). 

Zhang et al.88 developed an aptamer-based single QD-FRET assay for the detection of cocaine. 

They first designed a signal-off assay by assembling a sandwich of a 3' biotinylated 

oligonucleotide, a cocaine aptamer and a 3' Cy5 labeled oligonucleotide. The sensitivity of the 
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system was investigated by plotting the Cy5 burst counts against the ratio of Cy5 to 605QD 
from 0 to 24. It was possible to distinguish a difference between single Cy5 labels. The 

sandwich complex was dispersed in a diluted cocaine sample to capture the analyte, and then 

a commercial streptavidin-functionalized 605QD was added to capture the aptamer complex. 
In the presence of a high amount of cocaine, no FRET signal was observed due to the release 

of the Cy5 oligo after analyte binding. The signal off assay achieved an LOD of 0.5 µM for 

cocaine, which is comparable to other electrochemical and enzyme-based assays. The 
generally low sensitivity was explained by the poor affinity of the aptamer towards cocaine. 

Additionally, a signal-on assay was designed by forming a sandwich of a 3' biotinylated and 5' 

Cy5 oligo, the cocaine aptamer and a 3' Iowa black oligo, which quenched the emission of the 
605QD/Cy5 FRET. In the presence of cocaine, the quencher containing oligo was released, 

and the FRET emission between the 605QD and Cy5 was detected. A 488-nm argon laser was 

focused on the capillary (50 µm inner diameter), and photon bursts of 605QD and Cy5 were 
detected simultaneously by two avalanche photodiodes (APD). 

A high-throughput assay was developed in a very narrow channel (1–2 µm width and height) 
integrated in a chip system (Figure 10).89 Semiconducting polymer dots (Pdots) were modified 

with streptavidin and the binding of biotin-Alexa647 was investigated. Furthermore, Au NPs 

were added to the solution as an internal standard to compensate for instrumental fluctuations. 
The platform combined confocal fluorescence detection with narrow channels to allow 

counting of photon bursts corresponding to individual labeled molecules. The dual laser-based 

evaluation allowed to count single NPs, but more interestingly, the number of fluorophores per 
NP was quantified, too. This is a very promising technique for the characterization of different 
nanoconjugates. 
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Figure 10: (A) Scheme of the optical setup of the single-particle flow platform. Avalanche photodiodes 
APD1 and APD2 detect the fluorescence of Pdots or Alexa647, respectively, while APD3 detects the 
backscattered light of Au NPs. (B) Labeling and measurement procedure to quantify the number of 
streptavidin molecules bound to the surface of Pdots. (C) Fluorescence intensity traces of single-particle 
flow measurements of the Pdot-SA-biotin-Alexa647 complex. Blue (top) and red (bottom) traces were 
from Pdots and biotin-Alexa647, respectively. The dotted red line indicates the time when the 633 nm 
laser was turned off. The five labeled peaks indicate the Pdot-SA-biotin-Alexa647 complex since both 
blue (Pdot) and red (biotin) fluorescence were detected at the same time. Reprinted with permission 
from89. Copyright 2018 American Chemical Society. 

 

Fluorescence Correlation Spectroscopy 

To distinguish two components by FCS, at least a twofold difference in their diffusion 
coefficients is required, which corresponds to approximately an eightfold mass difference (in 

case of an idealized compact hydrodynamic sphere).90 This can be a limiting factor for the 

analysis of associations of particles with similar mass. If small fluorescent label molecules are 
replaced by larger NPs, however, the difference in the diffusion times between the free 

immunoreagents and the formed immunocomplex increases, and the sensitivity of FCS is 

improved. For example, a sandwich aptamer-based FCS assay utilizing QD-based probes was 
reported for the detection of thrombin in serum with an LOD of 2.6 nM and a working range 
of 5–500 nM.91 

The general configuration of the FCCS requires the alignment of the two lasers with different 

wavelengths to the same focal stop, which makes the optical setup more complicated compared 

to the conventional single-laser FCS. The misalignment of the detection volumes can lead to a 
decrease of apparent cross-correlation. The single-wavelength excitation FCCS (SW-FCCS) 
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developed by Wohland’s group92 allowed to overcome this limitation by the use of two probes, 
which can be excited using the same wavelength, but their emission is separated due to a large 

difference of the Stokes shifts. This can be conveniently achieved by the use of QDs93 or long 

Stokes shift fluorescent proteins.94 The group of Ren95 designed sandwich and competitive 
assays based on SW-FCCS for the detection of alpha-fetoprotein. In both approaches, QDs 

(655 nm emission) and Alexa Fluor 488 (520 nm emission) were chosen as the labels. The 
achieved LODs were 20 pM (sandwich assay) and 180 pM (competitive assay). 

 

V.6.2. Photon-Upconversion Nanoparticles 

The optical background of traditional fluorescence readout can be avoided by using photon-
upconversion nanoparticles (UCNPs) that emit shorter-wavelength light under near-infrared 

(NIR) excitation (anti-Stokes emission).96 UCNPs are lanthanide-doped nanocrystals and the 

most efficient UCNPs consist of a hexagonal NaYF4 host crystal doped with Yb3+ and Er3+ or 
Tm3+. The anti-Stokes emission strongly reduces autofluorescence and light scattering. Further 

advantages of UCNPs include a high photostability and multiple and narrow emission bands 

that can be tuned individually for the multiplexed detection of several analytes in parallel.[97] 
For example, the group of Soukka98 developed a multiplexed array-in-well assay to determine 

the immune status against virus infections in human serum samples by the spatial arrangement 

of several virus antigens on a microtiter plate. Additionally, two types of UCNP labels with 
different emission colors (Er-doped: green; Tm-doped: blue) were used to distinguish between 
IgG and IgM antibody classes.  

The groups of Fan99 and Jin100 further enhanced the multiplexing capabilities of UCNPs by 

combining wavelength- and lifetime-based encoding. The combination of several lifetime 

populations and emission bands laid the foundation for a very high encoding capacity. This 
approach was used for the detection and differentiation between the DNA of 9 subtypes of 

human papillomavirus,99 but can also be readily adapted for multiplexed antibody-based 
assays.  

Detection of Surface-Immobilized Analytes 

We have developed a method for visualizing individual UCNPs (NaYF4:Yb3+,Er3+) by 

conventional epiluminescence microscopy and applied it for the sensitive detection of the 

cancer marker PSA.22a Individual sandwich immunocomplexes consisting of (1) anti-PSA 
antibody immobilized on the surface of a microtiter well, (2) PSA, and (3) anti-PSA antibody-

UCNP conjugate were counted under an upconversion wide-field microscope equipped with a 

980 nm laser excitation source (Figure 11). The single-molecule (digital) ULISA provided an 
LOD of 1.2 pg/mL (42 fM) PSA in 25% blood serum and covered a dynamic range of three 
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orders of magnitude. The digital readout provided single-particle resolution with almost no 
instrumental background, which resulted in ten times lower LOD compared to the classical 

(analog) readout of luminescence intensity. An important advantage of the digital readout is 

the resistance against NP aggregation. In the analog mode, a large aggregate containing 
hundreds of luminescent NPs can lead to a very high background signal. By contrast, in the 

digital mode, each aggregate - independent of its size - only counts as a single binding event 

and has only a marginal effect on the background signal. Recently, we have prepared a 
detection label based on a conjugate of PEG-coated UCNPs with streptavidin, which allowed 

to decrease the label concentration and further improved the LOD by a factor of 50 to ~20 
fg/mL.22b 

 

Figure 11: Single-molecule upconversion-linked immunosorbent assay. (A) Scheme of sandwich 
immunoassay. (B) Wide-field upconversion microscope images of single immunocomplexes carrying 
a UCNP label. (C) Calibration curves of the digital (red) and analog ULISA (black). The number of 
UCNPs is given by the diffraction limited spots in B and the upconversion luminescence (UCL) is 
recorded by a microtiterplate reader.22 

 

Li et al.101 designed a digital homogeneous sandwich immunosorbent assay based on UCNPs 
(NaYF4:Yb3+,Er3+, 42 nm in diameter) for PSA. The green upconversion-luminescence 

overlapped strongly with the absorption spectrum of 50 nm Au NPs. By formation of an 

immunocomplex between UCNPs coated with a primary antibody, PSA, and Au NPs coated 
with another primary antibody, the upconversion luminescence was strongly quenched due to 

luminescence energy transfer, resulting in a lower ratio of the visible particles in a flow cell 

and the amount of UCNPs that were visible in the negative control. The assay achieved an 
LOD of 1.0 pM in buffer and 2.3 pM in serum. 
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Fluorescence Correlation Spectroscopy 

If a sample such as blood or plasma is strongly autofluorescent, the FCS/FCCS signal of a label 

present in in sub-nanomolar concentrations is not detectable due to spectral overlap. This effect 
can either be reduced by using brighter labels or by measuring the cross-correlation of UCNP 

labels to avoid optical background interference. Lahtinen et al.102 developed an assay based on 

upconversion cross-correlation spectroscopy for the detection of thyroid-stimulating hormone 
(TSH). Green (NaYF4:Yb3+,Er3+) and blue (NaYF4:Yb3+,Tm3+)-emitting UCNPs were 

conjugated with anti-TSH antibodies, and the cross-correlation was measured upon binding of 

the analyte TSH. Compared to small organic fluorophores, NP labels have a higher tendency 
to form aggregates, bind non-specifically, or induce bridging of more than two NPs. To 

suppress these effects, large intensity bursts that were attributed to aggregates were removed 

before calculating the auto- and cross-correlation functions.103 However, the smaller bursts 
were still causing strong variations of the amplitude, which affected the assay sensitivity. The 

achieved LOD was 15 mIU/L, which is above the range of normal TSH concentrations in 
serum (0.3–5.0 mIU/L). 

 

V.7. Plasmonic Nanoparticles 

Plasmonic NPs have been used in single-molecule immunoassays because they enable a highly 

sensitive readout based on their light scattering properties or spectral changes upon analyte 

binding. The most common materials include gold (Au NPs) and silver (Ag NPs). Au NPs are 
labels that are most frequently used in immunoassays in general, finding applications in lateral 

flow assays, electrochemistry, colorimetric assays, and plasmonic sensing.104 Ag NPs are less 

stable because they can be more easily oxidized, but they display higher extinction coefficients 
and stronger Raman and fluorescence enhancement.105 In both cases, the plasmonic properties 
are strongly dependent on the shape and the size of the NP.106 

Dark-Field Microscopy 

Dark-field microscopy is the most common method for the detection of single plasmonic 
particles. In dark-field microscopy, the illumination light is prevented from entering the 

objective acceptance cone, whereas the light scattering from immobilized NPs is collected by 

the objective lens. Background scattering and reflection from interfaces can be further reduced 
by optimizing the refractive indices. 

Poon et al.107 developed an antibody-based single-particle scattering intensity assay for the 
detection of various clinical cancer markers such as AFP, CEA and PSA. A gold nanoprobe 

coated with a capture antibody was immobilized in a flow cell on microscope cover slides. 



Review Article 1 

 
V-83 

 

Then the analyte was added, followed by an Ag NP decorated with the detection antibody. 
Binding of Au and Ag NPs resulted in a threefold increase of the scattering intensity and a 
spectrum shift. The LODs for all three analytes were in the range of 1 to 6 pM. 

Wu et al.108 developed a magnetic bead-based sandwich immunoassay for AFP, CEA and PSA 

using Au NP detection. First, a sandwich immunocomplex was formed by incubating the 

sample with a biotinylated antibody and a second unlabeled antibody (Figure 12). The 
immunocomplexes were captured on streptavidin-coated magnetic beads. Au NPs coated with 

a secondary antibody were added, and unbound labels were removed by magnetic separation. 

After washing, the Au NPs were released from the beads by 8 M urea. The free Au NPs were 
then immobilized on a cationic coverslip and counted under a dark-field microscope. Zhu et 

al.109 developed a similar sandwich immunoassay for PSA using a preconcentration step on 
magnetic beads.  

 

Figure 12: Assay scheme of Au NP-based detection of PSA with dark-field microscopy readout. 
Reprinted with permissions from 108. Copyright 2017 Royal Society of Chemistry. 

 

The Gooding group110 showed the potential use of customer-grade cameras as they appear in 

smartphones for the high throughput spectral readout of the localized surface plasmon 

resonance (LSPR) spectra of up to 5000 individual Au NPs (Figure 13). Anti-interleukin-6 
(IL-6) antibodies were conjugated to Au NPs and spin-coated on a glass slide. A biotinylated 

anti-IL-6 antibody was attached to a 10-nm streptavidin-modified satellite Au NP and then 

added to the Au NPs immobilized on glass. The binding of the satellite Au NP resulted in a 
red shift of the LSPR signal due to plasmon coupling. The spectral shift of single Au NPs 

before and after the addition of IL-6 was used to calculate the analyte concentration. While the 

setup was not sensitive enough to detect single binding events, single-molecule sensitivity may 
be achieved by using bigger satellite particles (20–80 nm). 
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Figure 13: Top: Color analysis using a customer-grade camera. The color of the Au NPs is transformed 
into a hue value that corresponds to a specific wavelength and arranged into a histogram. Bottom: Color 
analyses using a spectrometer, each spot has to be processed individually. Reprinted with permission 
from 110. Copyright 2018 Elsevier. 

 

A method for extracting affinity constants based on statistical fluctuations in equilibrium was 
proposed by Luthgens and Janshoff.111 It is based on a single-molecule readout of an array of 

isolated sensors, which can accommodate a high amount of simultaneously bound analyte 

molecules. Aćimović et al.112 employed this principle to follow antibody-antigen binding 
kinetics on long time scales on the single-molecule level. First, Au nanorods were modified 

with thiolated PEG followed by binding of an anti-PEG antibody. The signal fluctuations at 
equilibrium enabled the calculation of kinetic parameters and analyte concentrations. 

Yang et al.113 developed a digital aptamer-based assay for the detection of thrombin. A 

biotinylated anti-thrombin aptamer was immobilized on commercially available streptavidin-
coated magnetic beads. Au NPs coated with a complementary DNA sequence to the aptamer 

were introduced and bound to the aptamer. In the presence of thrombin, the Au NPs were 

released, and the beads were magnetically separated. The free Au NPs in the supernatant were 
either counted individually under a dark-field microscope by dispersing a drop on a coverslip 

(digital detection) or—at high concentrations—by measuring the absorption resulting from NP 

aggregation (analog detection). Another aptamer-based thrombin assay was developed by Li 
et al.114 A glass slide was modified by Au NPs to bind a thrombin-specific aptamer. Thrombin 

was specifically captured, followed by another anti-thrombin aptamer to form a sandwich 

complex. After the addition of Au NPs, NP oligomers formed through Au-S binding, which 
changed the color from green to yellow and red. Individual NPs were detected under a dark-
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field microscope, and the thrombin concentration was estimated from the intensity change of 
the Au NPs. The assay detected thrombin with an LOD of 10 fM. 

Chen et al.115 increased the LSPR signal of individual Au NPs by enzymatic amplification. 
When a single streptavidin horseradish peroxidase conjugate bound to a biotinylated Au NP, 

the resulting LSPR shift enabled the detection of single molecules. The enzymatic precipitation 

of 3,3′-diaminobenzidine further increased the colorimetric response by a factor of 50. This 
method can potentially be developed into a sandwich immunoassay by coating the Au NPs 
with a capture antibody and conjugating horseradish peroxidase with a detection antibody. 

Light Scattering Correlation Spectroscopy 

Resonance light scattering correlation spectroscopy (RLSCS) measures the fluctuations of 
resonance light scattering in small volumes due to the Brownian motion of single NPs. Noble 

metal NP are excellent labels for RSLCS because of their strong resonance light scattering, 

which is several orders of magnitude higher than light emission of fluorescent dyes.116 The 
RSLCS instrumentation is similar to the FCS, but no emission filter is needed. Like FCS, the 

RLSCS immunoassays are based on the increase of the characteristic diffusion time in the 

detection volume due to the formation of an immunocomplex. RLSCS was used in a sandwich 
immunoassay for AFP (LOD 1 pM)117 and in competitive assays for AFP (LOD 100 pM) and 

17-β estradiol (LOD 10 pM).118 Similar to FCCS, one of the major limitations of RLSCS is the 

significant effect of NP label aggregation. Although in both studies the particles were coated 
by PEG to suppress the NP aggregation, in the presence of a real sample matrix, the assay 
reproducibility in serum was lower compared to the standard ELISA. 

The fluorescence and scattering light cross-correlation spectroscopy (FSCCS) was used by 

Wang et al.119 in a confocal setup for measuring the scattering of labels based on Au NPs and 

a fluorescent dye (Alexa Fluor 488) as a probe pair (Figure 14). The advantage of FSCCS is 
the use of a single 488-nm laser as the excitation source for both the Au NP and the fluorescent 
label. A sandwich immunoassay based on this setup achieved an LOD of 3.1 pM AFP. 
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Figure 14: (a) Scheme of fluorescence and scattering light cross-correlation spectroscopy (FSCCS). 
(b) Spectral separation of excitation and emission wavelengths. (c) Scattering and fluorescence signals 
and their correlation curves for labeled species diffusing independently (left) or linked (right). ACF: 
auto-correlation curves; CCF: cross-correlation curves. Reprinted with permission from 119. Copyright 
2017 American Chemical Society. 

 

Surface Plasmon Microscopy 

The adsorption of individual plasmonic NPs can be followed in real-time using surface 
plasmon microscopy.120 Changes in surface plasmon resonance (SPR) properties affect the 

reflected light intensity, which is detected by an image sensor.121 The measurement can be 

based either on the setup with a high numerical aperture (NA) microscope objective 122 or on 
the standard Kretschmann configuration.123 While a high-NA objective provides high 

resolution, the field of view is typically limited to an area of 0.01 mm2. On the other hand, the 

Kretschmann configuration provides a wider field of view (over 1 mm2), but imperfections in 
the arrangement of object, lens, and image planes degrade the performance and resolution of 

the optical system. Surface plasmon resonance (SPR) imaging is typically used for the 
characterization of homogenous films, where high resolution is not necessary.124 

The group of Mirsky developed a wide-field approach for the detection and quantification of 

single NPs121 and applied it for the analysis of Au and Ag NPs in complex samples such as 
wine, apple juice and sunscreen (Figure 15).125 The large imaging area of the wide-field setup 

increased the probability of detecting single NP adsorption events at low concentrations. The 

signal strength was mainly determined by the size and refractive index of the NPs, the distance 
from the plasmonic substrate and the performance of the optical system. The adsorption of a 
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single NP, however, only led to a small signal change. To enhance the sensitivity, differential 
images of local temporal and spatial intensity changes were evaluated based on the changes 

between the two subsequently captured frames. The method provided an LOD of 106 NPs/mL 

(∼1.6 fM) and a working range of 106–1010 NPs/mL with 1 min measurement time. The 
sensitivity can be further improved by increasing the analysis time or the sensing surface area. 

 

 

Figure 15: Surface plasmon microscopy for the detection of single NPs adsorbing to the sensor surface. 
Reprinted from 125. 

 

Furthermore, the combination of surface plasmon microscopy with electrochemical analysis 
allowed to determine the composition of NPs.126 This technique was applied to the analysis of 

Ag and Cu NPs and achieved an LOD of 104 NPs/mL. Surface plasmon microscopy was also 

employed for single-molecule detection of DNA hybridization,127 and the application to single-
molecule immunoassays would be straightforward. 

Detection in Microarrays 

Sevenler et al.128 used Au nanorods as labels for the detection of hepatitis B virus surface 

antigen (HBsAg) on a protein microarray. An anti-HBsAg antibody was spotted on an 
interferometric reflectance imaging sensing (IRIS) substrate and incubated with the antigen 

followed by the addition of Au nanorods coated with another anti-HBsAg Ab, and the particles 

were counted in an automated imaging device under illumination by circular polarized light. 
Light reflected by the IRIS substrate was also polarized, but the light scattered by Au nanorods 



Review Article 1 

V-88 
 

was linearly polarized along the longitudinal axis of the NPs and was separated from the 
reflected light. The assay achieved an LOD of 3.2 pg/mL. 

Belushkin et al.129 designed a sandwich immunoassay for C-reactive protein (CRP). A gold 
nanohole array was coated with an anti-CRP capture antibody. The array was immersed in the 

analyte medium, and the array was washed and immersed in a dispersion of Au NPs that were 

coated with an anti-CRP antibody. Au NPs in or close the nanoholes could be detected because 
of a decrease in the extraordinary optical transmission (EOT). EOT is an SPR-based 

phenomenon which occurs if light passes through a subwavelength-sized regularly shaped 

metallic film. Particles too far away from nanoholes were not detected. Single Au NPs were 
counted under a microscope. 

 

V.8. Bead Labels 

V.8.1. Fluorescence Microscopy 

While it is not possible to make a sharp separation between NPs and beads, here we define 

beads as labels that are larger than 100 nm in diameter. The larger size, on the one hand, offers 

an easier way for detection but, on the other hand, impedes the accessibility of the label to the 
analyte. The Lövgren group130 was one of the first to employ a bead label for the detection of 

single analyte molecules. A europium-doped bead—with a diameter of 107 nm very close to 

NP size—was detected individually by TRF. A microtiter plate was coated with a monoclonal 
anti-PSA antibody and biotinylated PSA was added, followed by the streptavidin-coated Eu 

bead. The analyte binding was measured in the analog mode by time-resolved fluorometry and 

in the digital mode by counting single bead labels under a time-resolved microscope equipped 
with a 10× objective and a CCD camera. The assay achieved an LOD of 0.38 pg/mL of 
biotinylated PSA. 

Wu et al.131 used color-encoded magnetic beads to simultaneously detect single virus particles 

of three different types of avian influenza (Figure 16). Polystyrene beads were coated with γ-

Fe2O3, followed by QDs with different emission colors (green, yellow, red) and with antibodies 
against avian influenza. The three bead types, each one specific for a certain avian influenza 

type, were dispersed in the sample and magnetically separated. The beads were then loaded 

onto a PDMS microarray that was coated with antibodies for the different virus types. After 
washing, only beads that captured a virus particle remained in the array. The assay resulted in 
an LOD of 0.02 pg/mL. 
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Figure 16: Scheme of the multiplex assay for avian influenza viruses. Color encoded magnetic spheres 
—each of them coated with a specific anti-avian influenza virus—are dispersed in the analyte medium. 
After magnetic purification, the particles were loaded onto a PDMS array and digitally counted. 
Reprinted with permission from 131. Copyright 2019 American Chemical Society. 

 

Fan et al.132 embedded UCNPs of different colors and in different ratios into polymer 
microbeads to generate codes for the multiplexed detection of DNA. The combination of n 

intensity levels with m colors resulted in (nm−1) unique codes. The labels were detected under 

980-nm excitation at the single bead level by confocal microscopy. The DNA sequence was 
identified based on the upconversion encoding signal, while the presence and amount of the 
target sequence was indicated by conventional fluorescent dyes. 

Gite et al.133 developed a sandwich assay consisting of (1) a magnetic particle, (2) an anti-C. 

difficile capture antibody, (3) C. difficile, (4) an anti-C. difficile detection antibody, and (5) a 

fluorescent microparticle. A mixture of a visible light absorbing dye-cushion reagent and the 
density agent iodixanol was dried on the bottom of each microwell (Figure 17). The 

immunoreagents were added, and the magnetic beads were pulled to the bottom of the 

microplate with a magnet. The dye absorbed all visible light and stayed at the bottom due to 
the density agent resulting in a strong reduction of the background fluorescence of unbound 

fluorescent particles. Single fluorescent beads appeared as bright pixels on a digital camera 
chip. 
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Figure 17: (a) Detection of single fluorescent beads on one or a small group of pixels of a camera chip 
without the need for microscope magnification. (b) After immunocomplex formation, a magnet 
immobilizes the magnetic beads at the bottom of a microwell. Only fluorescent beads near the surface 
are excited because the dye absorbs the excitation light that penetrates deeper into the well. (c) 
Fluorescent beads appear as bright pixels on the digital camera. (d) A comparison of a well with and 
without dye shows the efficiency of a dye cushion layer. Reprinted from 133 with the permission of 
Creative Commons Attribution 4.0 International License. 

 

V.8.2. Bright-Field Microscopy 

Tekin et al.134 developed a microfluidic-based magnetic bead counting assay for the detection 

of proteins in serum (Figure 18). Magnetic beads (2.8 µm) were modified with a capture 
antibody to preconcentrate a target protein from fetal bovine serum. The beads were flown 

over a glass surface patterned with smaller antibody-modified magnetic beads (1 µm). The 

larger beads were attracted to the surface by a magnetic field, which allowed them to “roll” 
over multiple smaller beads due to dipolar magnetic forces. An immunocomplex formed when 

the antigen had a suitable orientation on the bead. The drag force caused by the flow needed 

to be high enough to release the particles when only dipolar forces were present. The analyte 
concentration was determined by counting the bound large beads on a conventional optical 

microscope. The combination of a magnetic preconcentration step and digital counting of 
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bound magnetic beads in a microfluidic chip afforded an LOD of 60 aM (~1 fg/mL) TNF-α, 
equivalent to ~200 molecules in 5 μL of the sample. 

 

 

Figure 18: (a) Scheme of microfluidic chip. (b) Large magnetic beads separated the target protein from 
the matrix. (c) The large beads roll over the patterned smaller beads, magnetically attracted to the 
surface. (d) A sandwich immunocomplex is formed when the antigen and the large bead have a suitable 
orientation. (e) Optical micrograph of the captured large beads on the patterned array of small beads. 
A colored SEM photograph in the inset shows the large bead captured on the small beads. Reprinted 
with permission from134. Copyright 2013 Royal Society of Chemistry. 

 

V.8.3. Dark-Field Microscopy 

Tethered particle monitoring is a biophysical technique used to characterize changes in the 

length of a polymer tethered to a particle on one end and a surface on the other end. The 

Brownian motion of the particle limited by the tether is usually monitored optically. Schafer 
et al.135 introduced tethered particle monitoring in 1991 to follow the transcription of a DNA 

template bound to an Au NP by RNA polymerase immobilized on a glass slide. Various 

modifications of the principle are possible and can be used for monitoring single-molecule 
binding events in an immunoassay. 
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Visser et al.136 utilized the tethered particle monitoring in an aptamer-based sandwich assay 
for thrombin. Magnetic beads were modified with an anti-thrombin capture aptamer and the 

glass surface of a flow chip by a detection aptamer. The beads were tethered to the glass surface 

by a 40-nm long dsDNA strand. When the analyte was captured between the aptamers, the 
bead was anchored onto the surface, and its mobility was strongly reduced (Figure 19), which 

was monitored over time by dark-field microscopy. The binding and unbinding events of 

hundreds of beads were detected simultaneously. The rate of switching between the two states, 
and especially the lifetime of the unbound state was dependent on the concentration of 

thrombin in a range of 10–300 nM. As the interaction was reversible and all recognition 

elements were bound in the flow cell, the system is amenable for continuous biomarker 
monitoring. 

 

Figure 19: (a) Particles (orange) are modified by capture aptamers (blue) and tethered to the substrate 
by a 40-nm dsDNA strand (black). The substrate is decorated with detection aptamers (red). The image 
was recoded by dark-field microscopy (scale bar: 50 µm). (b) After thrombin (green) binding, the 
particle’s movement is restricted, which changes the motion pattern. (c) The particle mobility is 
continuously analyzed for hundreds of particles in parallel. The mobility time traces of low and high 
analyte concentration reveal individual binding and unbinding events. Reprinted from 136 with the 
permission of Creative Commons Attribution 4.0 International License. 
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Silver et al.137 developed a sandwich immunoassay for the detection of PSA based on tethered 
particle monitoring. Magnetic beads (2.8 µm) with immobilized antibody captured PSA from 

the sample matrix. After magnetic separation, the beads were incubated with the biotinylated 

detection antibody and introduced into a flow cell. The beads carrying the immunocomplex 
were captured by a streptavidin-ended DNA tether. This tether allowed the beads to move 12 

µm back and forth when the flow direction changed by manual syringe operation. Thus, 

specifically bound beads were distinguished from nonspecifically bound beads and counted 
using a low-magnification (10×) dark-field microscope. The assay achieved an LOD of 1 pM 
PSA. 

Akama et al.138 combined tethered particle monitoring with an immunoassay in femtoliter 

arrays. In the “digital homogeneous non-enzymatic immunosorbent assay” (HoNon-ELISA), 

antibody-decorated magnetic particles were used to separate the analyte from the sample 
matrix. Then, they were magnetically pulled into the microreactors of a femtoliter array chip 

for the confinement of the antibody-antigen reaction. The antigen was recognized by another 

antibody immobilized through a PEG linker to the well surface. The sandwich complex 
tethered the particle to the surface and limited its Brownian motion, which was monitored for 

thousands of wells in parallel using bright-field or dark-field microscopy and particle tracking 

analysis. According to the movement patterns, selectively captured particles were discerned 
from non-specifically bound ones, and individual binding events were counted. The procedure 

did not require any washing or signal amplification steps and reached an LOD of 0.093 pg/mL 
PSA.  

V.9. Label-Free Detection 

Most label-free detection schemes are based on plasmonic effects. While chapter 6.3 describes 

the use of plasmonic NPs as labels, here we focus on the arrangement of plasmonic 
nanostructures to generate local hot spots, which are very sensitive to analyte binding.139 

Localized surface plasmon resonance (LSPR) has been used to follow the changes of local 

refractive indices near plasmonic NPs. There are various possibilities to link the refractive 
index changes to the presence of the analyte, as demonstrated by a large number of reports of 

bulk LSPR-based immunoassays.20a, 140 The high sensitivity of LSPR can be exploited to 

characterize statistical distributions of molecular properties and to follow single-molecule 
binding events.141 Beuwer et al.142 used correlated atomic force microscopy (AFM) and optical 

microscopy to study how the binding location affects the changes of LSPR signals. Au NPs 

were used as a model analyte and bound to single-crystal Au nanorods using cysteine-cysteine 
coupling.143 In the correlative approach, AFM was used to study the binding locations, and the 

plasmon shifts were evaluated by single-particle spectroscopy. A broad distribution of LSPR 
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shifts was observed for similar binding locations, which was attributed to the size-dispersion 
of the Au NPs. It was found that larger plasmon shifts occur after binding of the Au NPs to the 

tip of the rod as compared to its sides. Since the probability of binding to various locations of 

a nanorod is different,144 the knowledge of the binding location can help not only to determine 
the level of sensor response but also to evaluate the binding constants. Site-specific 

functionalization techniques can be used to maximize the sensitivity and reduce the signal 

distribution.145 Lee et al.146 designed plasmon rulers as sensors for the detection of single 
molecules of matrix metalloproteinase (MMP3). When two noble metal NPs exhibiting LSPR 

approach each other, their individual surface plasmon resonances couple, which generates a 
shift in the scattering spectrum and can be detected by dark-field microscopy. 

Beuwer et al.147 used Au nanorods to detect the interaction of biotin and an anti-biotin antibody 

(Figure 20). They functionalized the tips of Au nanorods with thiolated biotin and detected the 
change in the scattering intensity of individual nanorods. When the plasmon wavelength of a 

particle was shorter than the 795-nm illumination light, the scattered signal increased upon 

antibody binding. The intensity change was stepwise and irreversible due to the strong biotin-
antibody interaction. The binding constants (kon) were calculated from the mean waiting times 

and followed a Poisson distribution. The LOD was influenced by the number of binding events 

in a certain timeframe. As low analyte concentration resulted in long waiting times, a high 
number of particles had to be observed, which was limited by the field of view of the objective 

(ca. 50 000 NPs). The high rate of binding events at high analyte concentrations required a fast 

camera image acquisition. The shorter exposure times were compensated by a higher excitation 
power, which was limited by photothermal heating of the particles. 

 

Figure 20: (a) Scheme of dark-field microscope setup with a superluminescent diode (SLD). (b) Image 
of surface-immobilized gold nanorods shown in pseudocolors. (c) The tips of the gold nanorods are 
functionalized by receptors (red), while the sides are blocked by tetraethylene glycol (green). Individual 
antibody binding event result in a red shift of the plasmon resonance. The vertical gray line indicates 
the SLD center wavelength. Reprinted with permission from 147. Copyright 2015 American Chemical 
Society. 

Another emerging label-free technique for the detection of single molecules are whispering 

gallery mode (WGM) microring resonators, which trap light due to multiple total internal 
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reflections at a curved boundary (Figure 21). Analyte binding to the optical ring resonators 
results in a shift of the resonance wavelength. Arrays of microring resonators were used for 

the multiplexed detection of five protein biomarkers.148 Single-molecule sensitivity for protein 

or DNA has been achieved. More recently, even single ions such as Hg2+ and Zn2+ have been 
detected using a gold antenna coupled to a WGM microresonator.149 

 

Figure 21: Scheme of optical ring resonators. (A) Instrument setup of coupling a laser into an optical 
ring resonator. (B) A glass microsphere serves as an optical microcavity to measure physical, chemical 
and biological entities. Near total internal reflection of light results in an optical resonance (WGM, 
red). The WGM couples to a gold nanorod where it excites plasmon resonance. Single analyte 
molecules can be detected if they bind inside plasmonic hot spots. Reprinted with permission from 150. 
Copyright 2017 IOP Publishing. 

 

Surface-enhanced (SERS) and tip-enhanced Raman spectroscopy (TERS) also enable the 

label-free detection of single protein molecules.151 It is, however, difficult to employ these 
techniques for measuring protein concentrations in routine analytical applications. 
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V.10. Summary and Outlook 

As new and low-abundance disease markers are investigated, there is a growing need for 

developing more sensitive detection methods. Tables 1–3 summarize various assay types for 
the digital readout of analytes that have been discussed in the review.  

Table 1: Digital assays for cancer biomarkers. The LODs were converted into molar concentrations 
wherever applicable. 

Analyte Assay type Matrix LOD Working 

range 

Assay 

time 

(min) 

Sample 

volume 

Reference 

AFP FCCS with QDs Buffer 20 pM 20 pM – 
5 nM 

120 10 µL 95 

AFP Resonance light scattering 
correlation spectroscopy 

Buffer 1 pM 1 pM – 
1 nM 

50 20 µL 117 

AFP Fluorescence and scattering 
light cross correlation 
spectroscopy 

Buffer 3.1 pM 5 – 
580 pM 

120 10 µL 119 

AFP Fluorescence aided multiplexed 
molecule sorting  

50% 
human 
serum 
in 
buffer 

100 pM 100 pM – 
10 nM 

120 n/a 73 

AFP Immunoassay based on spectral 
blue shifts of QDs 

25% 
plasma 
in 
buffer 

3.4 fM 10 fM – 
100 pM 

n/a n/a 86 

AFP Scattering-based quantitative 
single-particle intensity 
measurement 

Human 
serum 

5.9 pM 0 – 300 
pM 

n/a n/a 107 

AFP Light scattering correlation 
spectroscopy 

Buffer 100 pM 100 pM – 
10 nM 

120 20 µL 118 

CEA Counting of spatially 
overlapping two-color QDs 

Plasma 
in 
buffer 

6.1 pM 10.4 – 
666.7 pM 

30 n/a 85 

CEA Fluorescence aided multiplexed 
molecule sorting  

50% 
human 
serum 
in 
buffer 

14 pM 10 pM – 
1 nM 

120 n/a 73 

CEA Immunoassay based on spectral 
blue shifts of QDs 

25% 
plasma 
in 
buffer 

6.7 fM 10 fM – 
100 pM 

n/a n/a 86 

CEA Scattering-based quantitative 
single-particle intensity 
measurement 

Human 
serum 

1.7 pM 0 – 300 
pM 

n/a n/a 107 

Exosomes Droplet microfluidics n/a 17 aM 10 aM – 
1 pM 

n/a n/a 52 

PSA Simoa 25% 
new 
born 
calf 

98 fM 100 fM – 
500 pM 

n/a n/a 39 
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serum 
in 
buffer 

PSA Droplet array Buffer 2 aM 1 aM – 
100 fM 

120 n/a 45 

PSA Femtoliter microfluidic 
droplets  

Buffer 46 fM 0.046 – 
4.62 pM 

270 200 µL 51 

PSA Droplet-based digital 
immunoPCR 

Buffer 17 pM 17 pM – 
1 nM 

120 30 µL 58 

PSA Digital ULISA with UCNPs 25% 
bovine 
serum 
in 
buffer 

42 fM 350 fM – 
35 pM 

150 100 µL 22a 

PSA Digital ULISA with 
streptavidin-coated UCNPs 

25% 
bovine 
serum 
in 
buffer 

800 aM 3.5 fM – 
3.5 pM 

210 100 µL 22b 

PSA Single-UCNP enumeration Buffer 1 pM 0 – 500 
pM 

120 n/a 101 

PSA Au NP enumeration with dark-
field microscope 

Buffer 35 pM 35 – 
700 pM 

170 95 µL 108 

PSA Counting of gold nanorods 
with dark-field microscopy 

Buffer 280 aM 350 aM – 
350 fM 

195 100 µL 109 

PSA Digital HoNon-ELISA Buffer 3.2 fM 3.2 fM – 
3.2 pM 

n/a n/a 138 

PSA Tethered-bead immunoassay Buffer 1 pM 1 – 10 pM n/a 50 µL 137 
PSA Simoa 25% 

bovine 
serum 

50 aM 100 aM – 
1 pM 

360 100 µL 38 

PSA Fluorescence aided multiplexed 
molecule sorting  

50% 
human 
serum 
in 
buffer 

100 pM 100 pM – 
10 nM 

120 n/a 73 

PSA Scattering-based quantitative 
single-particle intensity 
measurement 

Human 
serum 

3.3 pM 0 – 300 
pM 

n/a n/a 107 

TNF-α Simoa 25% 
bovine 
serum 

150 aM 100 aM – 
1 pM 

360 100 µL 38 
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Table 2: Summary of digital assays for other clinical biomarkers. The LODs were converted into molar 
concentrations wherever applicable. 

Analyte Assay type Matrix LOD Working 

range 

Assay 

time 

Sample 

volume 

Reference 

ATP Fluorescence 
colocalization 

Buffer 100 fM 1 pM – 
5 nM 

45 25 µL 65 

Contactin-
2 

FCS 17% CSF in 
buffer 

1.5 pM n/a 60 10 µL 76 

CRP Microarray 
based 
plasmonic 
biosensor 

Buffer 225 fM n/a 120 100 µL 129 

cTnI Erenna 25% human 
plasma in 
buffer 

74 fM n/a n/a 10 µL 68 

cTnI Erenna bead-
based 

25% human 
plasma in 
buffer 

8.7 fM 10 fM – 
500 pM 

180 100 µL 69 

17-β 
estradiol 

Light 
scattering 
correlation 
spectroscopy 

Buffer 10 pM 10 pM – 
1 nM 

120 20 µL 118 

FSH Single-
molecule 
fluorescence 
counting 

n/a 34 fM 100 fM – 
1 nM 

n/a 100 µL 72 

hCG FCCS Buffer 100 pM 100 pM – 
10 nM 

40 n/a 80 

IL-6 Proximity 
ligation assay  

n/a 5 fM 10 fM – 
1 nM 

n/a n/a 59 

IL-6 Counting of 
Au NPs using 
dark-field 
microscopy 
with digital 
color analysis 

Buffer 4.76 nM n/a n/a n/a 110 

Mutant 
huntingtin 

Erenna 30% 
cerebrospinal 
fluid in 
buffer 

40 fM 40 fM – 
1 nM 

n/a 45 µL 71 

NF-L Simoa 25% human 
serum in 
buffer 

4.3 fM 4.2 fM – 
26 pM 

n/a 152 µL 42 

PrP FCCS Buffer 2 nM n/a 40 n/a 80 
Synthetic 
Aβ dimers 

Single-
molecule 
counting 
fluorescence 
immunoassay 

Buffer 0.18 pM n/a o.n. + 
90 
min 

20 µL 70 

Tau Simoa 25% human 
plasma in 
buffer 

180 – 
250 aM 

250 aM – 
15 pM 

n/a 152 µL 43 
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Thrombin Aptamer-based 
assay using 
QDs 

Buffer 2.6 nM 5 – 500 
nM 

60 10 µL 91 

Thrombin Core-shell 
based 
aptasensor 
using dark-
field 
microscopy 

Buffer 2.54 fM 6 – 100 
fM 

30 n/a 113 

Thrombin Aptamer 
sandwich 
sensor with Au 
NP oligomers  

Buffer 10 fM 20 fM – 
20 nM 

n/a n/a 114 

Thyroid 
stimulating 
hormone 

Upconversion 
cross-
correlation 
spectrocopy 

Buffer 15 
mIU/L 

28.8 – 
2880 
mIU/L 

30 30 µL 102 

TNF-α Magnetic bead 
surface 
coverage assay 

Serum 60 aM n/a 20 5 µL 134 

Tumor 
suppressor 
protein 
p53 

Single-
molecule 
microarray 

Buffer 35 fM 100 fM – 
100 pM 

n/a 0.2 nL 64 

 

Table 3: Digital assays for bacteria, viruses, toxins and other contaminants. The LODs were converted 
into molar concentrations wherever applicable. 

Analyte Assay type Matrix LOD Working 

range 

Assay 

time 

Sample 

volume 

Reference 

Acetamiprid Single-molecule 
aptasensor 

Chicken 
extract 
100× 
diluted 
in 
buffer 

350 nM 500 fM – 50 
pM 

n/a n/a 66 

Adenosine, 
 

Single-molecule 
aptasensor 

Chicken 
extract 
100× 
diluted 
in 
buffer 

300 fM, 
 

500 fM – 50 
pM 

n/a n/a 66 

Avian influenza 
H9N2, H1N1, H7N9 

Multiplexed single-
virus immunoassay 

Buffer 0.02 
pg/mL 

n/a 60 n/a 131 

C. difficile toxin B Digital MultiPath 
immunoassay 

8% 
pooled 
stool 
sample 
diluted 
in 
buffer 

170 fM 100 fM – 
1 nM 

30 100 µL 133 

Cocaine Single QD-based 
aptamer nanosensor 

Buffer 500 nM 500 nM – 
10 µM 

n/a n/a 88 
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Fumonisin B1 FCS Buffer 1.4 nM 1.4 nM – 
35 nM 

15 9 µL 78 

Influenza A 
nucleoprotein 

Microfluidic digital 
HEBA  

Buffer 4 aM 10 aM – 
10 pM 

10 10 µL 54 

Hepatitis B surface 
antigen 

Bead-based digital 
ELISA  

Buffer 139 aM 100 aM – 
1 pM 

210 n/a 29 

Hepatitis B virus 
surface antigen 

Digital microarray 
with interferometric 
detection of plasmonic 
nanorods 

Buffer 126 fM 100 fM – 
100 nM 

270 n/a 128 

Herpes simplex virus Fluorescence 
coincidence detection 

Buffer 50 fM 100 fM – 
100 pM 

180 n/a 79 

HIV p24 capsid Simoa Human 
plasma 

117 aM 100 aM – 
100 fM 

210 100 µL 41 

PCB-77 Single-molecule 
aptasensor 

Chicken 
extract 
100× 
diluted 
in 
buffer 

720 nM 500 fM – 50 
pM 

n/a n/a 66 

Respiratory syncytial 
virus 

Counting assay with 
color-coded NPs 

Buffer 20–30 
fM 

100 fM – 
100 pM 

100 n/a 87 

Ricin Simoa Buffer 166 aM 100 aM – 
100 pM 

64 n/a 44 

 

Single-molecule immunoassays have gained popularity in clinical research and diagnostics and 

some platforms have been commercialized. Commercial single-molecule immunoassays offer 
complete solutions for the detection of a wide range of biomarkers in clinical research, 

including cytokines, hormones, and signaling proteins. As of September 2019, Merck offered 

49 ready-to-use immunoassay kits for the Erenna system,152 and Quanterix offered 130 kits for 
the Simoa platform.153 Furthermore, custom development services and kits for in-house 
development of new assays by the customer are available.  

Although the detection of individual optical detection labels is relatively easy using state-of-

the-art detectors, it is still a challenge to achieve a superior sensitivity of single-molecule 

assays compared to analog assays. Recently, the advantages of analog and digital detection 
modes have been compared systematically using the same TIRF platform.154 The performance 

of different assays was systematically compared using the same analyte,155 and three 

immunoassay platforms were compared for their ability to detect subpicomolar concentrations 
of the protein biomarker GAD65.156  

Another important challenge is the simplicity and robustness of the assay procedure. Even 
though single-molecule assays can reach extremely high sensitivity, the need for highly 

sophisticated instrumentation, well-trained personnel, or long operation times can impede their 

commercialization. Despite these challenges, single-molecule assays are successfully finding 



Review Article 1 

 
V-101 

 

their way into real-world applications and can replace conventional methods such as the ELISA 
or electrochemiluminescence assays. The possibility to detect only a few biomarker molecules 
in a sample opens up many new possibilities for enhanced diagnostics. 
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VI.1. Abstract 

The ability to detect disease markers at the single molecule level promises the ultimate 

sensitivity in clinical diagnosis. Fluorescence-based single molecule analysis, however, is 

limited by matrix interference and can only probe a very small detection volume, which is 
typically not suitable for real world analytical applications. We have developed a microtiter 

plate immunoassay for counting single molecules of the cancer marker prostate specific 

antigen (PSA) using photon-upconversion nanoparticles (UCNPs) as labels that can be 
detected without background fluorescence. Individual sandwich immunocomplexes consisting 

of (1) an anti-PSA antibody immobilized to the surface of a microtiter well, (2) PSA, and (3) 

an anti-PSA antibody-UCNP conjugate were counted under an upconversion wide-field 
microscope equipped with a 980 nm laser excitation source. The single molecule (digital) 

Upconversion-Linked Immunosorbent Assay (ULISA) reaches a limit of detection of 

1.2 pg mL−1 (42 fM) PSA in 25 % blood serum, which is about ten times more sensitive than 
commercial ELISAs, and covers a dynamic range of three orders or magnitude. This detection 
scheme has the potential to pave the way for a new generation of digital immunoassays. 

 

VI.2. Introduction 

Information on the onset and the progression of diseases is essential to start a therapy as early 
as possible. Consequently, sensitive diagnostic tests (assays) are required to measure the 

presence of diagnostic markers with the lowest possible limit of detection (LOD).1 The 

development of single molecule immunoassays has recently attracted wide attention2,3,4 
because the detection and quantification of individual analyte molecules - also termed a digital 

readout - obviates the need for a (sometimes disputed) classical definition of an LOD and in 
principle can reach a much higher sensitivity. 

A single fluorescent molecule conjugated to an analyte-specific antibody can only be detected 

in a (sub-)femtoliter volume by using confocal microscopy5 or total internal reflection 
fluorescence microscopy (TIRF)6-7 to minimize the background signal of billions of 

surrounding molecules. The high microscopic demands and extremely small detection volume 

are not practicable for analyzing real samples because it takes too long for an analyte molecule 
present in sub-pM concentrations to diffuse into such a small detection volume.8 Mainly two 

strategies have been developed to make single molecule immunoassays applicable in real 

analytical assays: First, the analyte can be pre-concentrated on the surface of magnetic 
microbeads rather than using a planar surface to access a larger probe volume and improve the 

binding kinetics of surface-bound capture antibody and analyte free in solution. Second, if the 
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detection antibody is labeled with an enzyme, thousands of fluorescent product molecules can 
be generated per analyte molecule which yields a much stronger and more robust signal 

detectable by conventional wide-field microscopy. The enzymatic signal amplification step is 

in line with an ELISA—the gold standard in immunodiagnostics—but diffusion of the 
fluorescent product has to be prevented to obtain a high local fluorophore concentration. A 

local confinement of the fluorescent product has been achieved either by using large arrays of 

femtoliter-sized wells9 to enclose microbeads containing the pre-assembled single enzyme-
analyte sandwich complex with a fluorogenic substrate10 or by using a substrate that is 

converted to a non-soluble fluorescent product and directly deposits on the surface of the 
microbeads.11 

Photon-upconversion nanoparticles (UCNPs) are lanthanide-doped nanocrystals that can be 

excited by near-infrared (NIR, 980 nm) light and—depending on the lanthanide dopant 
composition—emit various colors of short wavelength light. The anti-Stokes emission strongly 

reduces autofluorescence and light scattering of the surrounding matrix.12 UCNPs have been 

used as optical background-free luminescent labels for so-called upconversion-linked 
immunosorbent assays (ULISAs)13 to detect environmental analytes such as diclofenac14-15 and 

clinical analytes such as cardiac troponin I16 or prostate-specific antigen (PSA, Mw = 28.7 
kDa).17  

PSA is the most important diagnostic marker for prostate cancer, one of the most common 

cancers in men.18 PSA levels in serum are in particular important for monitoring the response 
to therapy and recurrence in patients after radical prostatectomy.19-20 The biochemical 

recurrence is defined as PSA concentrations rising from <0.1 ng mL−1 to persistently 

>0.2 ng mL−1, and occurs in up to 40 % after surgery.21 Therefore, sensitive assays and high-
affinity anti-PSA antibodies are required that allow for the reliable detection of PSA 
concentrations below 0.1 ng mL−1. 

Here, we present a single molecule (digital) ULISA for PSA (Figure 1), which is more easily 

amenable to standard immunoassay protocols compared to single enzyme molecule 

amplification systems because (1) there is no need to confine the diffusion of the fluorescent 
product, (2) no pre-concentration step is required, and (3) single analyte molecules can be 
detected in a conventional 96-well microtiter plate format using wide-field microscopy.22 
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Figure 1: A) Scheme of upconversion microscopy. An inverted wide-field epiluminescence 
microscope is equipped with a fiber-coupled 980 nm continuous-wave laser diode and a sensitive 
sCMOS camera. B) Scheme of sandwich upconversion-linked immunosorbent assay (ULISA) 
involving (1) immobilization of the anti-PSA capture antibody, (2) binding of the analyte PSA and (3) 
analyte detection by a UCNP-antibody conjugate. 

 

VI.3. Experimental Section 

Preparation of the UCNP-Antibody Conjugate 

UCNPs (β-NaYF4:18 mol % Yb3+, 2 mol % Er3+) of different sizes (Table S1) were 
synthesized by high-temperature co-precipitation23 and coated with a carboxylated silica layer 

using reverse microemulsion (Table S2).24 The affinity of anti-PSA antibodies was analyzed 

by surface plasmon resonance (SPR, Figure S1). A polyclonal anti-PSA antibody (AF1344, 
R&D Systems, USA) was conjugated to the surface of UCNPs via EDC/sulfo-NHS activation. 
The Supporting Information contains experimental details.  
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Characterization of Nanoparticles 

For transmission electron microscopy (TEM, Tecnai F20 FEI, USA), ~ 4 μL of UCNPs were 
placed onto a 400-mesh copper EM grid coated with a continuous layer of carbon. Size and 
shape of individual UCNPs were analyzed with the software ImageJ. Dynamic light scattering 

(DLS) and zeta potential measurements were performed on a Zetasizer Nano ZS (Malvern, 

UK). For agarose gel electrophoresis,25-26 UCNP samples were mixed in a ratio of 10:1 with 
glycerol (80 % w/w), and 6 μL were applied into the pockets of the agarose gel (0.5 % w/v 

agarose, 45 mM Tris, 45 mM borate, pH 8.6). After electrophoresis (40 min at 100 V), the gel 

was scanned with a step size of 0.5 mm using a custom-built upconversion scanner 
(Chameleon, Hidex, Finland) equipped with a continuous 980 nm laser (4 W). The integrated 

upconversion luminescence intensity of the gel pockets divided by the integrated luminescence 

over the whole gel lane yielded information on the fraction of aggregated UCNPs. 
Additionally, the calculation of UCNP mass concentrations is described in the Supporting 
Information. 

Upconversion Epiluminescence Microscopy 

A 980 nm continuous wave laser diode (4 W, WSLS-980-004-H-T, Wavespectrum, China) 

was connected to the motorized illuminator unit (Ti-TIRF-E, Nikon, Japan) of an inverted 

microscope (Eclipse Ti-E, Nikon) via a multi-mode optical fiber (105 µm fiber core, 0.22 NA, 
Wavespectrum). A computer was equipped with an analog output module (PCI-6723, National 

Instruments, USA) to control the laser power (Figure S2). The optical filter set included a 

long-pass excitation filter (λcut-on = 830 nm, Schott, Germany), a multiphoton dichroic mirror 
(λcut-on = 875 nm, AHF Analysentechnik, Germany), and a band-pass filter for the green 

emission of Er-doped UCNPs (λ = 535 ± 70 nm, OD980 nm ≈ 6, Chroma, USA). Images were 
taken with a 100× objective (NA = 1.49, CFI HP Apochromat TIRF, Nikon) and a cooled 5.5 
megapixel sCMOS camera (Neo, Andor Technology, UK). The maximum laser power of 4 W 

resulted in a power density of 640 W cm−2 in the focal plane. The optimization of the single 
UCNP detection on glass slides is described in the Supporting Information.  

  

http://www.fei.com/
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Upconversion-Linked Immunosorbent Assay (ULISA) 

A 96-well polystyrene microtiter plate with 190 µm thick bottom foil (high protein binding 

capacity, µCLEAR, Greiner, Germany) was coated with 0.3 µg mL−1 of monoclonal anti-PSA 
antibody (ab403, Abcam, UK) in coating buffer (50 mM NaHCO3/Na2CO3, 0.05 % NaN3, pH 

9.6; 200 μL per well) at 4 °C overnight. All subsequent steps were carried out at room 
temperature. After four washing steps with 250 μL of washing buffer (50 mM 
NaH2PO4/Na2HPO4, 0.01 % Tween 20, 0.05 % NaN3, pH 7.4), the microtiter plate was blocked 

with 250 μL of 1 % bovine serum albumin (BSA, Sigma-Aldrich) in 50 mM 

NaH2PO4/Na2HPO4, 0.05 % NaN3, pH 7.4, for 1 h. After four washing steps, serial PSA 
(ab78528, Abcam) dilutions were prepared either in assay buffer (50 mM Tris, 150 mM NaCl, 

0.05 % NaN3, 0.5 % bovine gamma globulin (Sigma-Aldrich), 0.2 % BSA, 0.01 % Tween 20, 

0.2 % polyvinyl alcohol (Mw: 6000 g mol-1), 1 % glucose and 5 mM EDTA, pH 7.5) or in four-
fold diluted bovine serum (Sigma-Aldrich). On each well, 100 µL of the PSA dilution was 

incubated for 1 h. After four washing steps, the microtiter plate was incubated with 100 μL of 
the UCNP-antibody conjugate (10 μg mL–1 in assay buffer) for 1 h. After four washing steps, 
the wells were left empty to determine the PSA concentration in each well in two different 
modes: 

Analog Mode 

The integrated upconversion luminescence of the UCNP label was detected in the microtiter 

plate wells by using a custom-built upconversion microplate reader (Chameleon, Hidex). The 
continuous 980 nm laser (4 W) was focused on the bottom of the microtiter wells resulting in 

a collimated laser spot size of ∼0.8 mm.14 Each well was scanned 64 times with a raster step 

size of 0.4 mm and 500 ms signal integration time. The truncated average was calculated for 
each well after discarding the eight highest and eight lowest luminescence intensities to 
exclude outliers.  

Digital Mode 

The number of single UCNP labels in the microtiter plate wells was counted by upconversion 
epiluminescence microscopy. Adding 100 µL of glycerol to the wells facilitated heat 

dissipation of the high-power laser beam. Nine images of 166×140 µm2 were recorded per well 

with a step size of 300 µm in a rectangular grid. Single UCNPs were counted automatically 
using a built-in function of the software NIS Elements (Nikon).  
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Data Analysis 

For each detection mode, the mean and standard deviation were calculated from three replicate 

wells and two types of regression analyses were applied for the calibration curves. (1) In the 
four-parameter logistic function 𝑌 = 𝑌max − 𝑌bg1 + ([PSA]EC50 )𝑠 + 𝑌bg 

[PSA] is the concentration of prostate specific antigen, and Y is either the upconversion 

luminescence (analog ULISA) or the number of UCNPs (digital ULISA). The equation yields 
the maximum (Ymax) and background (Ybg) signal, the PSA concentration that reduces (Ymax − 
Ybg) by 50 % (EC50) and the slope at the inflection point (s). 

(2) In the logit-log analysis, a linear regression was applied to the steepest part of the 

calibration curve and the background level was conventionally defined as the luminescence 

signal / number of UCNPs detected in the absence of PSA plus three times the standard 
deviation. The intersection of the regression line and the background level defined the LOD. 

VI.4. Results and Discussion 

The development of the single molecule ULISA critically depended on the design of a 

homogeneous and monodisperse UCNP label. The TEM images show a homogeneous size and 
shape of UCNPs covered by a closed silica shell (Figure 2). The shift of the electrophoretic 

mobility (Figure 2C) indicates the successful UCNP-Ab conjugation. Only a small fraction of 

aggregates (< 10 %) was present in the gel pockets that did not enter the gel matrix. The main 
fraction of single UCNPs as well as clusters of two and three UCNPs are visible as distinct 

bands in the gel. The success of the surface modification steps was further confirmed by an 
increasing hydrodynamic diameter as well as zeta potential measurements (Figure S4). 
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Figure 2: TEM images of A) oleic acid-capped UCNPs (diameter 48.2 ± 3.4 nm) and B) UCNPs with 
carboxylated silica shell (thickness 7.1 ± 1.2 nm). C) Agarose gel electrophoresis of (I) carboxylated 
UCNPs and (II) UCNP-antibody conjugates in duplicates (6 % of nanoparticle aggregates in I and 8 % 
in II). The arrow indicates the starting point of electrophoresis. 

 

Wide-field upconversion microscopy (Figure 1A) of single UCNPs was optimized by 

immobilizing different types of carboxylated UCNPs in a size range of 37 nm to 90 nm on a 

glass slide modified with cationized bovine serum albumin (cBSA) (Figure 3). The 
carboxylated UCNPs exposing a negative surface potential (Figure S4) strongly bind to the 

cBSA-coated glass slides such that the number of immobilized UCNPs increased linearly with 

the UCNP concentration (Figure S5). Excitation in the upconversion mode ensured a very low 
background signal that - in absence of UCNPs - only depended on the camera noise (Figure 

3A). The four types of UCNPs were visible individually (Figure 3B-E) as diffraction limited 

spots of ~ 400 nm in diameter (Figure 3F). The brightness of the spots increased so strongly 
with the size of UCNPs (Figure 3G) that the exposure time for the largest UCNPs had to be 

reduced in order to avoid detector saturation. The histograms in Figure 3H follow a single 

Gaussian distribution, which indicates some heterogeneity in the emission intensity of 
individual UCNPs - rather than clusters of one, two or more nanoparticles that would result in 

distinct peaks. Thus, both gel electrophoresis (Figure 2C, lines I) and the intensity distribution 
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confirm that the majority of UCNPs are monodisperse. UCNPs with a size of 48 nm showed 
highly homogeneous and strong luminescence intensities suitable for all further experiments. 

 

 

Figure 3: Image sections of individual UCNPs (green spots) bound to cBSA-modified glass slide taken 
by wide-field microscopy. A) no UCNP, 7 s exposure time; B) 37 nm, 7 s exposure time; C) 48 nm, 5 s 
exposure time; D) 69 nm 4 s exposure time; E) 90 nm, 2 s exposure time. F) Upconversion luminesce 
intensity cross-section of a single UCNP (diameter of 48 nm) evaluated from microscope image. G) 
The upconversion luminescence intensities normalized to 1 s exposure time increase with the size of 
UCNPs. H) Gaussian distributions of luminescence intensities with coefficients of variation (CV) of 
26 % (37 nm), 28 % (48 nm), 61 % (69 nm) and 37 % (90 nm). 

 

The sandwich immunoassay (Figure 1B) was performed on high-binding microtiter plates 

with a thin foil (190 µm) at the bottom of each well to account for the working distance of the 
high NA microscope objective. The microtiter plate format allowed for an easier 

immobilization of the capture antibody and for an improved assay handling and automation 

compared to glass slides. Serial dilutions of PSA spiked into 25 % serum (diluted in assay 
buffer) were prepared on the microtiter plate. After binding of the UCNP-antibody conjugate, 

the microtiter plates were read both by measuring the upconversion luminescence in a 

microtiter plate reader (analog ULISA) and by counting individual sandwich 
immunocomplexes as diffraction limited spots under the microscope (digital ULISA, Figure 

4). 
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Figure 4: Upconversion microscopy images of serial PSA dilutions in 25 % serum: A) no PSA; B) 10 
fg mL−1; C) 100 fg mL−1; D) 1 pg mL−1; E) 10 pg mL−1; F) 100 pg mL−1; G) 1 ng mL−1; H) 10 ng mL−1; 
I) 100 ng mL−1. PSA is captured on microtiter plate wells and detected by a UCNP-antibody conjugate. 
A small section (3 600 µm2) of the analyzed area (210 × 263 µm2) is shown. J) Calibration based on a 
4-parameter logistic regression model shows a test midpoint (EC50) of 1.8 ng mL−1 for the digital 
readout (green line) and 5.9 ng mL−1 for the analog readout (black line). K) Linear regression after logit 
transformation yields an LOD of 1.2 pg mL−1 in the digital readout and 20.3 pg mL−1 in the analog 
readout. The hatched lines are the background level defined either as mean number of spots (green) or 
upconversion luminescence (black) without PSA + 3× standard deviation. Error bars indicate the 
standard deviation from three replicate wells. 

 

The small number of spots in the absence of PSA (Figure 4A) can be attributed to some non-
specific binding of the UCNP-antibody conjugate to the microtiter plate surface and defines 

the LOD of the immunoassay—similar as in a conventional assay. Several advantages of the 

digital readout over an analog readout, however, should be noted: (1) Non-specific binding of 
the luminescent reporter and the instrumental background can be assessed separately in each 

measurement. (2) Counting single immunocomplexes is not affected by variations in the signal 

intensity of the reporter, e.g. as a result of luminescence heterogeneity or aggregation of 
UCNPs.27 By contrast, the size of an aggregate strongly affects the integrated signal in the 

analog mode even if only very few aggregates are present. To reduce the effect of large 

aggregates in the analog readout, we raster scanned 64 points on each well with the microtiter 
plate reader and determined a truncated average for further data evaluation. (3) The number of 

spots counted on a fraction of the microtiter well area covered by the PSA sample is a direct 
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measure of the detection efficiency of PSA (Supporting Information), which depends on 
several factors such as diffusion rates, binding kinetics and steric hindrance due to the 

nanoparticle size. Here, we have calculated an average detection efficiency of approximately 
1 % in the linear detection range of the assay. 

For a good precision of the assay, the imaging area must be large enough to minimize the 

sampling error,28 or—in physical terms—the Poisson noise. While either a 100× or a 60×-
microscope objective were suitable for counting single UCNPs, the 100× objective was more 

sensitive (Figure S6). To account for the small field of view of the 100× objective, we acquired 

consecutive images of nine areas per microtiter plate well. The total imaging area of 0.2 mm2 
per well was large enough to reduce the Poisson noise below 10 %, and counting of individual 

immunocomplexes in repeated measurements was highly reproducible (CV < 15 %) (Table 

S4). 

Data obtained by single molecule counting (digital ULISA) and by a microtiter plate reader 

(analog ULISA) were analyzed by a four-parameter regression model commonly used for 
microtiter plate immunoassays (Figure 4J) as well as a logit-log model (Figure 4K) to zoom 

in on low counts of UCNPs and signals close to the background. The digital ULISA achieved 

an LOD of 1.2 pg mL−1 and a linear working range between 10 pg mL−1 and 1 ng mL−1 of PSA 
in 25 % serum; this corresponds to the LOD of 4.8 pg mL−1 in the original serum. Higher PSA 

concentrations were outside the linear range because too many spots with overlapping point-

spread functions (Figures 4H and 4I) cannot be resolved individually. Higher PSA 
concentrations were analyzed by switching from the digital to the analog mode.29 The 

sensitivity (LOD: 20.3 pg mL−1) and the linear working range (100 pg mL−1 – 10 ng mL−1) of 

the analog ULISA were comparable to commercial ELISAs for the diagnosis of PSA (Table 

S5). The combination of both detection modes, however, improves the sensitivity by one order 

of magnitude and extends the linear working range to three orders of magnitude from 

10 pg mL−1 to 10 ng mL−1. The analysis of PSA spiked into buffer yielded essentially the same 
results (Figure S7 and Table S3) and indicates that matrix effects of 25 % serum are negligible. 

In the future, the single molecule immunoassay can be improved by (1) optimizing the blocking 
procedure to reduce non-specific binding, (2) tuning the antibody sandwich combination 

specifically for single molecule immunoassays30 and/or (3) by reducing the size of the UCNP-

antibody reporter. In an earlier report,31 fluorescence lifetime imaging of relatively large 
Eu(III)-doped nanoparticles (107 nm in diameter) did not improve the detection of PSA by 

counting single immunocomplexes compared to the analog mode. By contrast, we have 

achieved a 10× higher sensitivity in the digital mode by reducing the label size to 48 nm. It is 
likely that smaller nanoparticle can further increase the detection efficiency above 1 % by 

providing better access to the surface-bound PSA. The single molecule ULISA is also 
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amenable to the multiplexed detection of several analytes in parallel by using UCNP-antibody 
combinations that can be excited by 980 nm light but display different emission colors.32-34 

 

VI.5. Conclusions 

We have developed a digital sandwich immunoassay using UCNPs as a luminescent label for 

counting single PSA molecules without background fluorescence. With an LOD of 1.2 pg mL−1 

and a wide dynamic range of three orders of magnitude, the ULISA is superior to commercial 
ELISAs for the clinical diagnosis of PSA. While some more sensitive immunoassays have 

been described in the literature (Table S5), none of these are compatible with conventional 

microtiter plate assay protocols that can be readily adapted for the detection of any other 
diagnostic markers. Thus, we expect that the ability to detect single analyte molecules reliably 

and with a relatively simple detection scheme will have a strong impact on the development of 
future immunoassays.  

Zdeněk Farka and Matthias J. Mickert contributed equally to the work. 
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VI.7. Supporting Information  

Characterization of Anti-PSA Antibodies by SPR 

The monoclonal anti-PSA antibody (ab403) was obtained from Abcam (UK) and the 
polyclonal anti-PSA antibody (AF1344) was obtained from R&D Systems (USA). A Biacore 

3000 instrument (GE Healthcare, Sweden) was used for surface plasmon resonance (SPR) 

experiments. For the immobilization of antibody  on a carboxymethylated dextran chip (CM5, 
GE Healthcare, Sweden), the carboxyl groups were first activated by a freshly prepared 

mixture of EDC (200 mM) and NHS (50 mM) for 5 min followed by binding of antibodies 

(10 µg mL−1, 10 min) in acetate buffer (50 mM, pH 4.5). Free reactive groups were blocked 
by ethanolamine (1 M, pH 8.5, 5 min). The reference channel was modified by the same 

procedure without the antibody binding step. HBS-EP (10 mM HEPES, 150 mM sodium 

chloride, 3 mM EDTA and 0.005 % Tween 20) was used as a running buffer with the flow rate 
of 5 µL min−1. Different concentrations of PSA in HBS-EP buffer were injected using the 

KINJECT function with 10 min for both the association and dissociation phase. After each 
sample application step, the sensor surface was regenerated by 20 mM HCl for 1 min.  

 

 

Figure S1: SPR sensorgrams of PSA binding and dissociation to/from the immobilized A) monoclonal 
antibody ab403 (Abcam) and B) polyclonal antibody AF1344 (R&D). Differential signals ΔR 
corresponding to the difference between measuring and reference channel are shown. 

 

Measurement of NIR-Power Density 

The laser power in the focal plane was measured using a microscope slide thermal power 

sensor (S175C, ThorLabs, USA) in combination with an USB power and energy meter 
interface (PM100USB, ThorLabs, USA). The sensor was mounted on the x/y-stage of the 

microscope and the power was varied by adjusting the input voltage of the laser diode. To 
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prevent possible damage of the sensor due to the high power densities at the objective, power 
values for input voltage between 0 and 0.6 V were measured and linear extrapolation was used 
to evaluate the power for higher input voltages. 

To calculate the power density of the laser in the focal plane, the laser diameter was measured. 

First, the lens of the 100× objective was covered with immersion oil, then a square paper with 

millimeter scale was placed between a microscopic slide and a coverslip and mounted on the 
x/y-stage of the microscope. After focusing on the paper, the laser was turned on and an image 

of the illuminated paper was taken from above using an IR sensitive HD webcam (B525, 

Logitech, Switzerland). The image was analyzed using ImageJ; the intensity profile of the 
lasers cross-section was plotted and the scales of the millimeter paper were used to calculate 
the width of one pixel. The full width at half maximum was evaluated using Gaussian fit. 

 

Figure S2: A) Laser power calibration. Power values for input voltage between 0 and 0.6 V were 
measured using a thermal power sensor. According to the linear extrapolation, the maximum input 
voltage of 2.5 V corresponds to the laser power of 503 ± 17 mW. B) Cross-section of the 980 nm CW 
laser. Full width at half maximum (FWHM) of 317 ± 10 µm was evaluated using a Gaussian fit. The 
maximum power density of 637 ± 22 W cm−2 was evaluated using the maximum laser power and laser 
diameter. 
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Synthesis of UCNPs 

Materials: YCl3 × 6 H2O (99.99 %), YbCl3 × 6 H2O (99.99 %), ErCl3 × 6 H2O (99.99 %), 

NH4F (> 98 %), 1-octadecene (90 %) and oleic acid (90 %) were purchased from Sigma-
Aldrich (Germany), and NaOH (p.a.), cyclohexane (p.a.) and methanol (p.a.) from Penta 
(Czech Republic).  

β-NaYF4:18 mol % Yb3+, 2 mol % Er3+ UCNPs of different sizes were synthesized by high-

temperature co-precipitation.1 YCl3 × 6 H2O, YbCl3 × 6 H2O and ErCl3 × 6 H2O were dissolved 

in 20 mL of methanol and added to 100 mL three necked round bottom flask containing oleic 
acid and 1‐octadecene. The solution was heated to 160 °C for 30 min under an argon 

atmosphere and then cooled down to 50 °C. Thereafter, the protective atmosphere was 

disconnected and the solution of NH4F and NaOH in 20 mL of methanol was added to the 
intensively stirred mixture. The argon atmosphere was again connected and the solution was 

stirred for 30 min. The temperature was carefully increased up to 150 °C avoiding extensive 

boiling and ensuring evaporation of methanol. Thereafter, the solution was rapidly heated 
using the rate of 10 °C per minute and afterwards heating was carefully regulated to keep 

305 °C (± 3 °C). Finally, the flask was placed on another stirrer and rapidly cooled down to 

room temperature under air flux. The resulting nanoparticles were precipitated by adding 
21 mL of isopropyl alcohol and collected by centrifugation (3,000 g, 10 min). The pellet was 

redispersed in 20 mL of cyclohexane. Cyclohexane dispersion was precipitated by adding 

100 mL of methanol and UCNPs rapidly sedimented without the need for centrifugation. 
Precipitated waxy UCNPs were finally redispersed in 20 mL of cyclohexane. The size of 
UCNPs was adjusted by using the specifications listed in Table S1. 
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Table S1: Synthesis of differently sized UCNPs. 

Sample Size (nm) Reagents Heating Yield  

UCNP33 37.1 ± 2.3 YCl3 × 6 H2O  485.4 mg, 1.6 mmol 
YbCl3 × 6 H2O 139.5 mg, 0.36 mmol 
ErCl3 × 6 H2O 15.3 mg, 0.04 mmol 
oleic acid 6 mL 
1-octadecene 15 mL 
NH4F 296 mg, 8 mmol 
NaOH 200 mg, 5 mmol 
 

150 min 
305 °C 

244 mg 
59.7 % 

UCNP37 48.2 ± 3.4 YCl3 × 6 H2O  534 mg, 1.76 mmol 
YbCl3 × 6 H2O 153.5 mg, 0.395 mmol 
ErCl3 × 6 H2O 16.8 mg, 0.044 mmol 
oleic acid 6 mL 
1-octadecene 15 mL  
NH4F 326 mg, 8.8 mmol 
NaOH 220 mg, 5.5 mmol 
 

150 min 
305 °C 

206 mg 
45.7 % 

UCNP43 42.5 ± 4.9 YCl3 × 6 H2O  776 mg, 2.56 mmol 
YbCl3 × 6 H2O 224 mg, 0.58 mmol 
ErCl3 × 6 H2O 24 mg, 0.063 mmol 
oleic acid 24 mL 
1-octadecene 56 mL  
NH4F 474 mg, 12.8 mmol 
NaOH 320 mg, 8.0 mmol 
In 250 mL flask 

 

90 min 
300 °C 

360 mg 
54.5 % 

UCNP64 68.8 ± 3.4 YCl3 × 6 H2O  582.5 mg, 1.92 mmol 
YbCl3 × 6 H2O 167.4 mg, 0.43 mmol 
ErCl3 × 6 H2O 18.3 mg, 0.048 mmol 
oleic acid 6 mL 
1-octadecene 15 mL  
NH4F 356 mg, 9.6 mmol 
NaOH 240 mg, 6 mmol 
 

150 min 
305 °C 

270 mg 
55 % 

UCNP88 89.6 ± 3.6 YCl3 × 6 H2O 728 mg, 2.4 mmol 
YbCl3 × 6 H2O 210 mg, 0.54 mmol 
ErCl3 × 6 H2O 23.2 mg, 0.06 mmol 
oleic acid 6 mL 
1-octadecene 15 mL  
NH4F 444 mg, 12 mmol 
NaOH 300 mg, 7.5 mmol 

150 min 
305 °C 

263 mg 
38.5 % 

 

  



Research Article 1 

VI-130 
 

Preparation of a Carboxylated Silica Shell on UCNPs 

UCNPs were silica-coated and carboxylated by a reverse microemulsion method.2,3 The 

protocol was adjusted to account for the different sizes of UCNPs as shown in Table S2. 
UCNPs were diluted in cyclohexane with Igepal CO-520 (Sigma-Aldrich), tetraethyl 

orthosilicate (99 %, Sigma-Aldrich), and stirred with high intensity for 10 min. The 

microemulsion was created after adding water solution of ammonium hydroxide 12 % w/v. 
The resulting mixture was slowly stirred overnight. Another volume of tetraethyl orthosilicate 

was added and the microemulsion was slowly stirred for 4 hours. Carboxyethylsilanetriol 

sodium salt (25 % w/v in water, ABCR, Germany) was added and the cloudy emulsion was 
sonicated for 15 min and further stirred for 60 min. Carboxylated UCNPs were extracted by 

adding 500 µL of dimethylformamide and five times washed with 2 mL of acetone and three 

times with 2 mL of water. Carboxylated UCNPs were stored as an aqueous dispersion in a 
concentration of 10 mg mL−1. 

Table S2: Preparation of carboxylated silica shell. 

Reagents UCNP33 UCNP37 UCNP43 UCNP64 UCNP88 

UCNP (mg) 10 10 10 10 10 
Cyclohexane (µL) 3696 3296 2875 1906 1386 
Igepal CO-520 (mg) 291 259 225 150 109 
Tetraethyl orthosilicate I (µL) 16 14.3 12.5 8.3 6 
Ammonium hydroxide (12 % w/v 
in water, µL) 

17.3 15.4 13.8 17.9 13 

Tetraethyl orthosilicate II (µL) 8 7.1 3.1 4.1 3 
Carboxyethylsilanetriol sodium 
salt (25 % w/v in water, µL) 

16 14.3 6.3 8.3 6 

 

Conjugation of Carboxylated UCNPs and Antibody 

The polyclonal anti-PSA antibody (AF1344) was conjugated to UCNPs according to our 
previous protocol.3 The carboxylated UCNPs were first activated by 1-ethyl-3-(3-

(dimethylamino)propyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS). In 

a typical synthesis, 0.5 mg of carboxylated UCNPs was dispersed in water to obtain a final 
volume of 200 μL. Then, 50 μL of a mixture containing 0.4 mg of EDC and 1.2 mg of sulfo-

NHS in 100 μL of 100 mM sodium 2-(N-morpholino)ethanesulfonate (MES) buffer, pH 6.1 

was added and mixed for 30 min. A dispersion of 100 μL of activated UCNPs (2 mg mL–1) 
were mixed with 100 μL of antibody (0.02 mg mL−1) in 100 mM borate buffer, pH 9.0 and 

incubated for 90 min at room temperature. The nanoconjugates were centrifuged for 10 min at 

4,000 g, dispersed in assay buffer and sonicated for 10 min. The conjugates were stored in 
assay buffer at 4 C. 
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Figure S3: Surface activation of carboxylated UCNPs and conjugation of detection antibody (blue 
spheres) to activated carboxylated UCNPs. 

 

Figure S4: A) DLS and B) Zeta potentials of UCNPs (48 nm in diameter) during successive steps of 
antibody conjugation. 

Gravimetric Analysis to Determine the Mass Concentration of UCNPs 

The volume of 500 μL of oleic acid-capped UCNPs dispersed in cyclohexane (boiling point, 

bp = 81 °C) was loaded into a glass vial. The vial was placed first on a heater to evaporate 

cyclohexane (bp = 81 °C) and then for 3 hours in an oven to evaporate 1-octadecene (bp = 315 
°C) and oleic acid (bp = 360 °C) at 450 °C.  The mass of the bare (i.e. uncapped) UCNPs was 

used to determine the mass concentration. The same procedure was also utilized for estimating 
the concentration of the silica-coated UCNPs. 

  



Research Article 1 

VI-132 
 

Optimization the Detection of Single UCNPs 

UCNPs were adsorbed on glass cover slips modified by cationized BSA (cBSA). The reaction 

mixture for preparation of cBSA consisting of 0.37 mM BSA, 100 mM ethylenediamine, 
100 mM EDC and 500 mM MES was mixed for 2 hours and then dialyzed (150 mL of water, 

2 days at 4 °C, water was exchanged 2 times). The cBSA solution was aliquoted and stored at 

−20 C.4 The glass cover slips were cleaned for 10 min in Piranha solution (3:1 concentrated 
H2SO4 : 30 % H2O2) and activated by UV-Ozone cleaner (5 min cycle, 10 min ventilation). 

The cBSA (0.1 mg mL−1) was adsorbed for 10 min followed by washing with water and drying 

under nitrogen flow. The carboxylated silica-coated UCNPs were bound for 10 min followed 
by washing and drying. 

 

 

Figure S5: Upconversion microscopy images of UCNPs (diameter 43 nm) bound on cBSA-modified 
glass cover slips. UCNP concentrations: A) 0.1 pM; B) 0.5 pM; C) 1 pM; D) 2 pM. E) Calibration 
graph corresponding to different concentrations of UCNPs counted on cBSA-modified glass slide. 

  



Research Article 1 

 
VI-133 

 

Calculation of Capture Efficiency 

Diameter of µClear Well: 6.58 mm; sample volume: 100 µL 

(1) Filling height (h): ℎ = 𝑉𝐴𝑊 

AW: area of microplate well ℎ = 𝑉𝑟2 ∙ 𝜋 

r: radius of microplate well 

(2) Lateral area (AL): 𝐴𝐿 = 𝑉𝑟2 ∙ 𝜋 ∙ 2𝜋𝑟 = 2𝑉𝑟  

(3) Total area covered by PSA sample (AT): 𝐴𝑇 = 2𝑉𝑟 + 𝑟2𝜋 

(4) Number of microscopic (Z) images (166 × 140 µm2) needed to cover whole surface: 

𝑍 = 2𝑉𝑟 + 𝑟2𝜋𝐴O  

AO = Observable area 

(5) Number of UCNPs (N) on whole surface: 

𝑁 = 2𝑉𝑟 + 𝑟2𝜋𝐴𝑂 ∙ 𝑛 

N: Average number of particles per image 

(6) Capture efficiency (E): 

𝐸 (%) = 2𝑉𝑟 + 𝑟2𝜋𝐴𝑂 ∙ 𝑛 − 𝑛0𝑐 ∙ 𝑉 ∙ 𝑁𝐴 ∙ 100 

N0: Average number of non-specifically bound particles 
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Figure S6: Microscopic detection of individual UCNPs (48 nm in diameter) immobilized on the bottom 
foil of a microtiter plate well using a 60× objective (NA: 1.40) and a 100× objective (NA: 1.49). The 
60× has a 2.8-fold larger field of view but is less sensitive. The error bars show the standard deviation 
between the brightness of individual diffraction limited spots. 

 

Figure S7: Upconversion microscopy images of serial PSA dilutions in assay buffer: A) blank; B) 10 
fg mL−1; C) 100 fg mL−1; D) 1 pg mL−1; E) 10 pg mL−1; F) 100 pg mL−1; G) 1 ng mL−1; H) 10 ng mL−1; 
I) 100 ng mL−1. J) Calibration curve with sigmoidal fit; K) Linear regression of the dependency in the 
double logarithmic plot. LOD of digital ULISA 0.86 pg mL−1, analog ULISA 17.3 pg mL−1. 

  



Research Article 1 

 
VI-135 

 

Table S3: Assay parameters of the PSA detection by digital and analog ULISA. 

Method Sample EC50 (ng mL−1) LOD (pg mL−1) 
Digital ULISA buffer 1.0   0.86 
 25 % serum 1.8   1.21 
Analog ULISA buffer 2.3 17.28 
 25 % serum 5.9 20.34 

 

Table S4: Precision of the digital ULISA. The measurement CV was calculated as the standard 
deviation of three wells divided by the average number of particles per well. The Poisson noise–
associated CV was calculated as √𝑛 𝑛⁄ , where n is the number of individual UCNPs counted on an area 
of 210 263 µm2) (nine microscope image section combined). 

Concentration of PSA Measurement CV (%) Poisson noise–
associated CV (%) 

blank 13.2 5.9 
10 fg mL−1 4.0 5.6 
100 fg mL−1 10.8 5.0 
1 pg mL−1 13.9 4.6 
10 pg mL−1 5.6 3.8 
100 pg mL−1 5.6 2.2 
1 ng mL−1 3.8 0.8 
10 ng mL−1 4.7 0.5 
100 ng mL−1 2.3 0.4 

 

Table S5: Comparison of immunoassay and immunosensing platforms for detecting PSA. 

Method LOD Working range Reference 

Digital assays 

Digital ULISA 1.2 pg mL−1 

(42 fM) 
1 pg mL−1 – 1 ng mL−1 This work 

Single-molecule ELISA 1.5 fg mL−1 
(52 aM) 

1.5 fg mL−1 – 75 fg mL−1 5 

Single-particle time-resolved 
fluorescence 

1.6 pg mL−1 
(50 fM) 

1.6 pg mL−1 – 100 ng 
mL−1 

6 

Analog assays 
Analog ULISA 20.3 pg mL−1 

(707 fM) 
10 pg mL−1 – 10 ng mL−1 This work 

Quantum dot-encoded 
microbeads 

1 ng mL−1 
(35 pM) 

1 ng mL−1 – 10 ng mL−1 7 

Microbead-based 
immunoassay 

136 pg mL−1 
(4.7 pM) 

136 pg mL−1 – 8 ng mL−1 8 

Au NP-based bio-barcode 
assay 

330 fg mL−1 
(11 fM) 

330 fg mL−1 – 33 pg mL−1 9 



Research Article 1 

VI-136 
 

Electrochemiluminescence 
immunoarray 

50 fg mL−1 
(1.7 fM) 

100 fg mL−1 – 1 ng mL−1 10 

Electrochemiluminescence 
with conductive nanospheres 

40 ag mL−1 
(1.4 aM) 

40 ag mL−1 – 10 fg mL−1 11 

Photoelectrochemistry with 
rolling circle amplification 

320 fg mL−1 
(11 fM) 

1 pg mL−1 – 3 ng mL−1 12 

Au NP-enhanced surface 
plasmon resonance 

290 pg mL−1 
(10 pM) 

290 pg mL−1 – 150 ng 
mL−1 

13 

Localized surface plasmon 
resonance 

100 fg mL−1 
(3.5 fM) 

100 fg mL−1 – 5 ng mL−1 14 

UCNPs as labels in 
multianalyte microarray 

170 pg mL−1 

(5.9 pM) 
100 pg mL−1 – 10 ng mL−1 15 

Plasmon excited quantum dots 100 pg mL−1 

(3.5 pM) 
100 pg mL−1 – 100 ng 
mL−1 

16 

Quantum dot-based FRET 
immunoassay 

0.8 ng mL−1 
(28 pM) 

NA 17 

Chemiluminescence imaging 
immunoassay 

7 pg mL−1 
(244 fM) 

10 pg mL−1 – 36.7 ng 
mL−1 

18 

Time-resolved fluorescence 1.6 pg mL−1 
(56 fM) 

1.6 pg mL−1 – 100 ng 
mL−1 

6 

Immuno-PCR 4 pg mL−1 
(139 fM) 

4 pg mL−1 – 49 ng mL−1 19 

Commercial ELISAs 

Abcam ab113327 8 pg mL−1 
(278 fM) 

10.2 pg mL−1 – 2.5 ng 
mL−1 

20 

Abcam ab188389 4.9 pg mL−1 
(170 fM) 

4.1 pg mL−1 – 3 ng mL−1 21 

Biorbyt orb339660 0.5 ng mL−1 
(17 pM) 

1 ng mL−1 – 32 ng mL−1 22 

LifeSpan BioSciences LS-
F25971 

19.1 pg mL−1 
(665 fM) 

54.9 pg mL−1 – 40 ng 
mL−1 

23 

LifeSpan BioSciences LS-
F5207 

80 pg mL−1 
(2.8 fM) 

195 pg mL−1 – 12.5 ng 
mL−1 

24 

OriGene EA100514 10 pg mL−1 
(348 fM) 

312 pg mL−1 – 20 ng mL−1 25 

R&D systems DKK300 69 pg mL−1 
(2.4 pM) 

0.9 ng mL−1 – 60 ng mL−1 26 

Thermo Fisher Scientific 
EHKLK3T 

8 pg mL−1 
(278 fM) 

8 pg mL−1 – 2 ng mL−1 27 
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VII.1. Abstract 

Single-molecule (digital) immunoassays provide the ability to detect much lower protein 

concentrations than conventional immunoassays. As photon-upconversion nanoparticles 

(UCNPs) can be detected without optical background interference, they are excellent labels for 
so-called single-molecule upconversion-linked immunosorbent assays (ULISAs). We have 

introduced a UCNP label design based on streptavidin-PEG-neridronate and a two-step 

detection scheme involving a biotinylated antibody that efficiently reduces non-specific 
binding on microtiter plates. In a microtiter plate immunoassay, individual sandwich immune 

complexes of the cancer marker prostate specific antigen (PSA) were detected and counted by 

wide-field epiluminescence microscopy (digital readout). The digital detection is 16× more 
sensitive than the respective analog readout and thus expands the limit of detection to the 

subfemtomolar concentration range (LOD: 23 fg mL-1; 800 aM). The single molecule ULISA 

shows excellent correlation with an electroluminescence reference method. While the analog 
readout can routinely measure PSA concentrations in human serum samples, very low 

concentrations have to be monitored after radical prostatectomy. Combining the digital and 

analog readout covers a dynamic range of more than three orders of magnitude in a single 
experiment. 

 

VII.2. Introduction 

In recent years, the development of immunoassays has been strongly driven by new 

nanomaterial-based detection labels,1 such as quantum dots,2 europium-based nanoparticles,3 

carbon nanotubes,4 gold nanoparticles,5 silicon nanowires,6 nanozymes7 and upconversion 
nanoparticles (UCNPs).8 Unlike enzymes, nanomaterials are chemically and physically stable,9 

and their properties can be tuned by size and/or composition.10-11 In particular, the anti-Stokes 

emission of UCNPs under NIR excitation (980 nm) prevents autofluorescence, minimizes light 
scattering, and thus enables the detection of analytes without optical background interference. 

UCNPs sequentially absorb two or more photons and emit light of shorter wavelengths 

(NaYF4:Yb,Er: green/red emission or NaYF4:Yb,Tm: blue/800 nm emission).12-13 In contrast 
to organic fluorophores, UCNPs are highly photostable over long periods of time and under 

high excitation intensities,14 which is especially important for the design of labels in single-

molecule immunoassays.15 The ability to detect and count single molecules of an analyte of 
interest (digital readout) opens up the door to reach the ultimate sensitivity in analytical 

chemistry,16-18 because the signal-to-background ratio is not affected when analytes have to be 
measured at ever lower concentrations.19-22  
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Prostate cancer is the most frequently diagnosed type of cancer among men and the fifth 
leading cause of death from cancer worldwide.23 Epithelial cells of the prostate secrete 

prostate-specific antigen (PSA) with typical serum concentrations of less than 4 ng mL-1 in 

healthy men. Higher PSA concentrations are an important indicator of prostate cancer.24-26 The 
removal of the carcinoma by radical prostatectomy leads to a drastic drop of PSA levels,27 

which, however, must be monitored repeatedly and with high sensitivity in order to detect 

cancer recurrence as early as possible.22 Conventional enzyme-linked immunosorbent assays 
(ELISAs) reach limits of detection (LOD) in the range of 100 pg mL-1 as shown in the 

Supplemental Table S1. We previously developed a single-molecule upconversion-linked 

immunosorbent assay (ULISA) by using silica-coated UCNPs conjugated to an anti-PSA 
antibody as a detection label.28 With an LOD of 1.2 pg mL-1, the ULISA was about 10 - 100× 

more sensitive than conventional ELISAs. Non-specific surface binding and the sterically 

constrained PSA-capture efficiency of the UCNP-conjugate, however, limited the sensitivity 
at very low PSA concentrations. 

In this work, we have designed a new single-molecule ULISA scheme as shown in Figure 1.  
We replaced the antibody-silica-UCNPs by streptavidin-coated UCNPs linked via 

poly(ethylene glycol) (SA-PEG-UCNPs) based on the following considerations: First, the 

hydrophilic PEG renders UCNPs highly water dispersible and resistant against aggregation. 
Second, steric hindrance and repulsion effects of surface-bound PEG reduce non-specific 

binding e.g. of serum proteins.29-33 Third, the two-step addition of a biotinylated detection 

antibody followed by SA-UCNPs allows for using a relatively high concentration of the 
detection antibody to efficiently label all PSA molecules immobilized on the surface of the 

microtiter plate. The concentration of the UCNP label (and associated non-specific binding 

effects), however, can be kept much lower because the extremely high affinity of SA and biotin 
(10-15 mol L-1) ensures an efficient binding to the detection antibody.34 
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Figure 1: Schematic representation of UCNP conjugation and sandwich ULISA. A) Alkyne-PEG-
neridronate is bound to the UCNP via coordination of two phosphonate groups of neridronate to surface 
exposed lanthanide ions. Streptavidin is covalently bound to the PEG via a click reaction between the 
alkyne group of the PEG and streptavidin azide. B) 1) A microtiter well is coated with an anti-mouse 
antibody. 2) A mouse monoclonal anti-PSA capture antibody binds to the anti-mouse antibody. 3) PSA 
is captured by the monoclonal anti-PSA antibody. 4) A biotinylated polyclonal anti-PSA antibody 
forms a sandwich immune complex. 5) SA-coated UCNPs bind to the biotinylated primary antibody. 
The individual assay steps are shown in Figure S1. 

 

VII.3. Materials and Methods 

Antibodies were characterized by surface plasmon resonance measurements as described in 
the SI (Figure S2). Random serum samples and data on PSA levels determined by the Elecsys 

electroluminescent immunoassay (Roche Diagnostics, Germany) were provided by a hospital 

in Svitavy, Czech Republic. Streptavidin-coated RD Upcon™ nanoparticles (Erbium-540-SA, 
58 nm in diameter) were provided by Kaivogen (Turku, Finland, TEM images shown in 
Figure S3). 

Preparation and Characterization of SA-PEG-UCNP Labels 

The syntheses of NaYF4:Yb3+,Er3+- and NaYF4:Yb3+,Tm3+-doped UCNPs and of the surface 

ligand alkyne-PEG-neridronate are described in the SI. The surface of UCNPs was modified 
by mixing an aqueous dispersion of UCNPs (10 mL, 14 mg mL−1) with 28 mg of alkyne-PEG-

neridronate (MW ~5160 g mol-1) and stirring for 24 h at room temperature (RT). The alkyne-

PEG-neridronate-functionalized UCNPs were dialyzed (MW cut-off 100 kDa) against water for 
48 h at 4 °C. Streptavidin was attached to the surface ligands via click reaction: A 1-mL 

dispersion of 7 mg alkyne-PEG-UCNPs in 25 mM Tris/HCl (pH 7.5) was mixed with 25 µL 



Research Article 2 

 
VII-145 

 

of streptavidin azide (1 mg mL-1, 7 Bioscience, Germany), 20 µL of sodium L-ascorbate (20 
mg mL-1), and purged with argon for 30 min to remove oxygen. The 1,3-cycloaddition was 

started by adding 10 μL of 50 mM CuSO4 to generate the Cu(I) catalyst in situ. The 

streptavidin-PEG-neridronate-modified nanoparticles (SA-PEG-UCNP, chemical structure 
shown in Figure S4) were sonicated for 10 min and dialyzed (MW cut-off 100 kDa) against 2 

L of 50 mM Tris/HCl (pH 7.5) for 12 h at 4 °C (twice exchanged) and stored in the same buffer 
at 4 °C.  

The morphology of UCNPs was investigated by transmission electron microscopy (TEM; 

Tecnai G2 Spirit Twin 12, FEI, Czech Republic). TEM images were analyzed by ImageJ (NIH, 
USA) to determine the size of UCNPs (Figures S5-S6). Dynamic light scattering (DLS) was 

recorded on a Zetasizer Nano ZS instrument (Malvern, UK) (Figure S7). The activity of 

surface-bound streptavidin was tested using a BSA-biotin assay as described in the SI (Figure 

S8). 

Upconversion-Linked Immunosorbent Assay (ULISA) 

A 96-well microtiter plate (µClear, high binding, Greiner Bio-One) was coated with a 

polyclonal horse anti-mouse antibody (3 µg mL-1, 200 µL, Vector Laboratories, USA) in 
coating buffer (42 mM NaHCO3, 8 mM Na2CO3, 0.05% NaN3, pH 9.6) at 4 °C overnight. The 

following steps were all performed at RT. The plate was washed four times with 250 µL of 

washing buffer (10.4 mM NaH2PO4, 39.6 mM Na2HPO4, 150 mM NaCl, 0.05% NaN3, pH 7.4) 
and blocked for 1 h with 200 µL of washing buffer containing 1% BSA (Carl Roth, Germany). 

After four washing steps, the microtiter plate was incubated with 0.3 µg mL-1 of monoclonal 

mouse anti-PSA antibody (ab403, Abcam, UK) for 1 h in assay buffer (50 mM Tris, 150 mM 
NaCl, 0.05% NaN3, 0.5% bovine gamma globulin (Sigma Aldrich), 0.2% BSA, 0.01% Tween 

20, 0.2% poly(vinyl alcohol) (MW 6000 g mol-1), 1% glucose, 5 mM EDTA and 1 mM KF). 

The microtiter plate was washed four times. For the calibration curve, serial dilutions of a PSA 
standard (Abcam, ab78528, 0.2 mg mL-1) were prepared in assay buffer containing 25% bovine 

serum (Sigma-Aldrich). For the analysis of real samples, 2.5 µL of serum was diluted 400× in 

1 mL of assay buffer/25% bovine serum. Each sample was added in a volume of 100 µL to the 
microtiter wells and incubated for 1 h. The microtiter plate was washed four times and 

incubated with 100 µL of 0.25 µg mL-1 biotinylated anti-PSA antibody (BAF1344, R&D 

Systems, USA) for 1 h. After four washing steps, either 100 µL of 0.7 µg mL-1 commercial 
SA-coated UCNPs (Kaivogen) or 100 µL of 3.5 µg mL-1 SA-PEG-UCNPs were applied to 

each well and incubated for 1 h. The plate was washed four times and left to air dry before the 
analog and digital readout.  

For the analog readout, a custom-built upconversion microtiter plate reader (Chameleon, 

Hidex, Finland) scanned each well in a rectangular grid of 8×8 pixels with 1 s exposure time 
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per pixel and a scanning step size of 0.1 mm.35 The truncated average of the luminescence 
intensities was calculated excluding the 16 highest and the 16 lowest values. For the digital 

readout, 100 µL of glycerol was added to the dry wells to minimize local heating effects during 

NIR excitation (4 W laser, 640 W cm-2). The thin bottom foil (190 µm) of the microtiter wells 
compensated for the short working distance of the high numerical aperture objective (NA 

1.49). A modified epifluorescence microscope (SI) recorded nine wide-field images of 

166×140 µm² per well (total imaging area 0.2 mm2) in a rectangular grid with a step size of 
300 µm and an exposure time of 20 s.28 The software NIS elements (Nikon) automatically 

identified and counted single UCNPs in each image. The total number of UCNPs in all nine 

images was used for the digital data analysis. For both the analog and digital analysis, the 
average and standard deviation were calculated from three wells and analyzed using a four-
parameter logistic function (SI).28 

 

VII.4. Results and Discussion 

Optimization of the UCNP-Label Design 

The sensitivity of the ULISA critically depends on antibodies with a high affinity for the cancer 

marker as well as the design of well-defined detection labels (SA-UCNP). The high affinity of 

capture and detection antibodies to PSA was confirmed by surface plasmon resonance (SPR) 
measurements (Figure S2). We optimized the ULISA using PSA from a commercial sample 

and Er-doped SA-UCNPs. According to the scheme in Figure 1, a microtiter plate was coated 

with an anti-IgG antibody followed by an anti-PSA capture antibody to reduce steric hindrance 
between the microtiter plate surface and the UCNP label. PSA was serially diluted in assay 

buffer and then transferred to the microtiter plate. A biotinylated anti-PSA antibody was added 

followed by an SA-UCNP label. The label concentrations were adjusted individually to 
achieve the optimal balance between a high labeling efficiency and a low non-specific binding. 

The upconversion luminescence was detected both by using an upconversion microtiter plate 

reader (analog mode) and by counting individual immune complexes with a wide-field 
microscope (digital mode). Table 1 shows the effects of different labels and readout modes on 
the immunoassay performance. 
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Table 1: Influence of the type of UCNP label and the readout mode on the ULISA performance. 

Type of UCNP(Er) SA-PEG-UCNP Commercial SA-UCNP Ab-silica-UCNP28 

Size (nm) 30/35a 58 48a 

Label concentration (pM) b ~100 ~3 ~70 

Readout mode analog digital analog digital analog digital 

Non-specific binding c 129 ± 7 49 ± 2 45 ± 19 138 ± 13 274 ± 6 73 ± 10 

Individual spot brightness n.a. 70 ± 89 n.a. 39 ± 28 n.a. 69 ± 67 

Test midpoint (pg mL-1) 2100 600 930 430 5900 1800 

Working range (pg mL-1) 1 – 

1 000 

0.1 – 100 10 – 1 000 1 – 100 100 – 

10 000 

10 – 1 000 

Combined working range 0.1 – 1 000 1 – 1 000 10 – 10 000 

Detection efficiency (%) d n.a. 17 n.a. 3 n.a. 0.5 

LOD (pg mL-1) 0.41 0.023 1.71 0.24 20.3 1.2 

LOD (fM) 14 0.8 60 8.4 700 42 

Number of PSA molecules e ~800 

000 

~50 000 ~3.6×106 ~500 000 ~42×106 ~2.5×106 

Sensitivity enhancement f 18 7 17 

a Average diameter/length of 300 UCNPs determined by TEM. b Calculation in the SI. c Analog readout: 
UCL (CPS), digital readout: number of luminescent spots in the background images (0.2 mm2). d Ratio 
of background corrected PSA molecules and total number of PSA molecules per well (SI). e In a 
microtiter plate well volume of 100 µL. f LOD analog/LOD digital. 

 

The ULISA involving (1) a biotinylated antibody and (2) SA-PEG-UCNPs was 50 times more 

sensitive compared to our earlier study based on antibody-silica-UCNP conjugates.28 The 
lower test midpoint further confirms the improved binding kinetics afforded by the two-step 

label systems. A comparison including SA-PEG-UCNPs (Figure S9) and commercial SA-

UCNPs (Figures S10-S11) shows that the digital readout yields a 7× to 18× lower LOD than 
the respective analog readout of the same microtiter plate experiment. While the label design 

is very important to improve the immunoassay performance in general, the digital readout 

gives a final boost to the assay sensitivity. Additional experiments confirming the long-time 
stability (> 3 months) of the SA-PEG-UCNPs in suspension and evaluating the effects of label 

purification by sucrose gradient centrifugation are described and discussed in the SI (Figures 

S12-S14). 

We furthermore determined an analog microscope readout by integrating the total spot 

intensity of each microscope image and compared it to the digital readout of the same image. 
Since the analog microscope readout was 100-fold less sensitive than the digital readout 
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(Figure S15), the high signal acquisition of the microscope objective (NA 1.49) cannot explain 
the benefits of the digital readout. The digital readout was rather more sensitive because 

detecting and counting of individual UCNPs in the confined area of a diffraction-limited spot 

is independent of the total intensity in the entire imaging area. Especially at low PSA 
concentrations, the total emission of only few UCNPs distributed over a relatively large area 
of 0.2 mm2 is not sufficient to increase the signal above the background. 

Determination of PSA in Human Serum Samples 

For the analysis of PSA in human serum samples, we prepared SA-PEG-UCNPs doped with 
Tm because the NIR-emission (800 nm) of Tm-doped UCNPs is brighter than the emission of 

Er-doped UCNPs and single UCNPs can be counted more easily. Figure 2 shows microscope 

images of PSA dilution series in microtiter plates used for single-molecule counting (digital 
readout). In the background image (no PSA, Figure 2A), only 476 luminescent spots were 

detectable on a total area of 0.2 mm2 due to non-specific binding of UCNP labels to the 

microtiter plate surface. As in any conventional immunoassay, low non-specific binding is 
essential to ensure a low background signal. Figure 2J shows the brightness variation of 

individual luminescent spots that can be attributed to some label aggregation. The following 

example illustrates the advantage of the digital readout compared to the analog readout: If two 
types of UCNP labels containing more or less aggregates show the same degree of non-specific 

binding (e.g. 3 binding events on a given area), the aggregated labels lead to a much higher 

background signal in the conventional readout scheme (Figure 2K, analog signal: 17 UCL) 
compared to the homogeneous labels (Figure 2L, analog signal: 4 UCL). Consequently, the 

digital readout confers robustness against the effects of label aggregation because each 
aggregate—independent of its size—only counts as a single binding event. 
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Figure 2: Digital PSA calibration in assay buffer using SA-PEG-UCNP(Tm) labels. A-I) Wide-field 
upconversion microscopy (λex: 980 nm, λem: 800 nm) showing small image sections (50×50 µm²) of 
serial PSA dilutions. The PSA concentrations are indicated in the panels. J) Brightness distribution of 
300 luminescent spots recorded at a PSA concentration of 100 pg mL-1. K) Small aggregates and L) 
homogeneous nanoparticles affect the background signal of the digital and analog readout in a different 
way. 

In addition to variations between repeated measurements, the precision of the digital 

immunoassay depends on the sampling error because a limited number of observed binding 
events is not necessarily representative of all binding events.36 The stochastic nature of discrete 

binding events is also known as the Poisson noise (√𝑛/𝑛), which depends on the number of 

counted spots (n). The Poisson noise is highest at low PSA concentration levels and can be 
reduced by increasing the imaging area. Table S2 shows a Poisson noise of < 5% for all PSA 

concentrations, which is comparable to the variation between repeated measurements. In the 

upper concentration range, the digital readout is limited if diffraction-limited spots cannot be 
distinguished individually any more but rather form a continuous layer.  

The ULISA calibration curves in Figure 3A show that the digital readout reaches a 16× lower 
LOD of 24 fg mL-1 (840 aM) than the respective analog readout of the same microtiter plate 

experiment. This improvement is similar as the 18× lower LOD achieved by using the digital 

mode for the readout of Er-doped SA-PEG-UCNP labels (Table 1). These experiments also 
confirm that the advantages of the digital detection are independent of the type of UCNP label. 

In this context, it should be noted that the dynamic range of the ULISA can be extended by 
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two orders of magnitude (0.1 pg mL-1 - 1 ng mL-1) if the digital readout is used for low PSA 
concentrations and the analog readout for high PSA concentrations.37  

Figure 3: A) Calibration curves of the ULISA in the digital (red, LOD: 24 fg mL-1) and analog (black, 
LOD: 380 fg mL-1) mode. The number of UCNPs(Tm) was determined by microscopy (Figure 2) and 
the upconversion luminescence by a microtiter plate reader. The log scale of the y-axis highlights 
signals in the lower PSA concentration range. LODs (hatched lines) represent three times the standard 
deviation of the background (no PSA) above the baseline of the regression curve. B) Correlation 
between the PSA concentrations in human serum samples determined by using the digital (red line) or 
analog (black line) ULISA and an electroluminescent immunoassay (ECL, digital R2: 0.998, analog R2: 
0.997, Table S4). Error bars indicate the standard deviation of three replicate experiments. 

Random human serum samples with PSA concentrations determined by an 
electrochemiluminescent immunoassay were provided by a hospital. Linearity-of-dilution 

experiments on a serum sample containing 215 pg mL-1 of PSA showed recovery rate 

fluctuations of less than 25% when comparing the analog and digital ULISA with the 
electrochemiluminescent reference method (Table S3). For routine analysis of serum samples, 

we pre-diluted the human serum samples by a factor of 400 because the serum of healthy 

individuals contains PSA concentrations of around 4 ng mL-1.24 The results of the analog and 
the digital readout of the ULISA are in excellent agreement with the values determined by the 
reference method (Figure 3B). 
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VII.5. Conclusions 

In conclusion, the digital ULISA achieves a sub-femtomolar LOD. We used Er3+-doped (LOD: 

800 aM; 2.3 fg of PSA per well) and Tm3+-doped UCNPs (LOD: 840 aM; 2.4 fg of PSA per 

well) and demonstrated that the advantages of the digital readout are independent of the type 
of label. The indirect labeling system consisting of a biotinylated anti-PSA antibody and SA-

UCNPs ensures that the biotinylated antibody without nanoparticle has better access to PSA 

bound to the surface of the microtiter plate. The extremely strong SA/biotin affinity can then 
compensate for the sterically constrained access of the SA-UCNP conjugates to the 

biotinylated antibody on the microtiter plate surface. The digital readout further improves the 

LOD for two reasons: (1) Individual immune complexes/UCNPs can be distinguished from the 
local background signal on a very small area, while the whole imaging area contributes to the 

background signal of the analog readout. (2) The digital readout is largely resistant to label 

aggregation because each aggregate is detected only as a single binding event. Consequently, 
the digital detection of PSA always achieved lower LODs than the respective analog detection, 

and the advantages of the digital mode became more distinctive when the level of non-specific 

binding was low. Reducing non-specific binding and using smaller UCNPs to improve the 
label binding can even further enhance the ULISA performance. A comparison of various PSA 

assays described in the literature (Figure 4) shows that the digital ULISA can readily 

outperform commercial analog immunoassays for the detection of PSA. While the digital 
ELISA based on femtoliter arrays achieves an even lower LOD, the digital ULISA can be 

operated more easily using standard immunoassay protocols. Analyte binding and detection 

can be performed at the same site on a standard microtiter plate, whereas other digital 
immunoassays require a separation step between analyte capture on beads and the detection of 
the labelled immune complex either in femtoliter arrays22 or in glass capillaries.19 
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Figure 4: Comparison of the digital ULISA to PSA assays described in the literature. The relative assay 
performance is indicated as the decadic logarithm of the ratio of LOD0 (digital ULISA) and LODx 
(other PSA assays). Values above 1 refer to lower LODs, and values below 1 to higher LODs compared 
to the digital ULISA (red arrow). Green: single-molecule assays (including commercial platforms), 
blue: non-commercial analog assays, purple: commercial analog assays. References are listed in Table 

S1. 
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VII.7. Supporting Information 

Table S1: Summary of LODs and working ranges of PSA detection platforms. 

Method LOD Working range Reference 

Digital assays 

Digital ULISA SA-PEG 
UCNPs 

23 fg mL-1 

(0.80 fM) 
70 fg mL-1 – 1 ng mL-1  This work 

Digital ULISA Ab-silica 
UCNPs 

1.2 pg mL-1 
(42 fM) 

1 pg mL-1 – 1 ng mL-1 1 

Single-molecule ELISA 1.5 fg mL−1 
(52 aM) 

1.5 fg mL-1 – 75 fg mL-1 2 

Single-particle time-resolved 
fluorescence 

1.6 pg mL-1 

(50 fM) 
1.6 pg mL-1 – 100 ng mL-1 3 

Analog assays 
Analog ULISA SA-PEG 
UCNPs 

0.41 pg mL-1 

(14.3 fM) 
1 pg mL-1 – 10 ng mL-1 This work 

Analog ULISA Ab-silica 
UCNPs 

20.3 pg mL-1 

(707 fM) 
10 pg mL-1 – 10 ng mL-1 1 

Au NP-based bio-barcode 
assay 

330 fg mL-1 

(11 fM) 
330 fg mL-1 – 33 pg mL-1 4 

Au NP-enhanced surface 
plasmon resonance 

290 pg mL-1 

(10 pM) 
290 pg mL-1 – 150 ng mL-1 5 

Chemiluminescence imaging 
immunoassay 

7 pg mL-1 

(244 fM) 
10 pg mL-1 – 36.7 ng mL-1 6 

Colorimetric assay with 
mesoporous silica NPs 

0.36 pg mL-1 

(12.5 fM) 
0.5 pg mL-1 – 10 pg mL-1 7 

Electrochemical sensor with 
Au@Ag-Cu2O nanoparticles 

3 fg mL-1 

(105 aM) 
10 fg mL-1 – 100 ng mL-1 8 

Electrochemical sensor with 
AuNP hybrid nanomaterial 

0.12 pg mL-1 

(4.2 fM) 
5 pg mL-1 – 10 ng mL-1 

 

9 

Electrochemical sensor with 
peptide-DNAzyme conjugates 

2 fg mL-1 

(70 aM) 
5 fg mL-1 – 20 ng mL-1 10 

Electrochemiluminescence 
immunoarray 

50 fg mL-1 

(1.7 fM)  
100 fg mL-1 – 1 ng mL-1 11 

Electrochemiluminescence 
with conductive nanospheres 

40 ag mL-1 

(1.4 aM) 
40 ag mL-1 – 10 fg mL-1 12 

Electrochemiluminescence 
with MOF/Au/G-Quadruplexes 

58 pg mL-1 

(2.0 pM) 
0.5 ng mL-1 – 500 ng mL-1 13 

Immuno-PCR 4 pg mL-1 

(139 fM) 
4 pg mL-1 – 49 ng mL-1 14 

Localized surface plasmon 
resonance 

100 fg mL-1 

(3.5 fM) 
100 fg mL-1 – 5 ng mL-1 15 

Microbead-based 
immunoassay 

136 pg mL-1 

(4.7 pM) 
136 pg mL-1 – 8 ng mL-1 16 
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Photoelectrochemistry with 
rolling circle amplification 

320 fg mL-1 

(11 fM) 
1 pg mL-1 – 3 ng mL-1 17 

Plasmon excited quantum dots 100 pg mL-1 

(3.5 pM) 
100 pg mL-1 – 100 ng mL-1 18 

Quantum dot-based FRET 
immunoassay 

80 pg mL-1 

(2.5 pM) 
80 pg mL-1 – 100 ng mL-1 19 

Quantum dot-encoded 
microbeads 

1 ng mL-1 

(35 pM) 
1 ng mL-1 – 10 ng mL-1 20 

Time-resolved fluorescence 1.6 pg mL-1 

(56 fM) 
1.6 pg mL-1 – 100 ng mL-1 21 

UCNPs as labels in 
multianalyte microarray 

170 pg mL-1 

(5.9 pM) 
100 pg mL-1 – 10 ng mL-1 22 

Commercial ELISAs 
Abcam ab113327 8 pg mL-1 

(0.28 pM) 
10.2 pg mL-1 – 2.5 ng mL-1 23 

Abcam ab188389 4.9 pg mL-1 

(170 fM) 
4.1 pg mL-1 – 3 ng mL-1 24 

Biorbyt orb339660 0.5 ng mL-1 

(17 pM) 
1 ng mL-1 – 32 ng mL-1 25 

Roche Elecsys total PSA 2 pg mL-1 

(70 fM) 
2 pg mL-1 – 100 ng mL-1 26 

LifeSpan BioSciences LS-
F25971 

19.1 pg mL-1 

(665 fM) 
54.9 pg mL-1 – 40 ng mL-1 27 

LifeSpan BioSciences LS-
F5207 

0.2 ng mL-1 

(7.0 pM) 
195 pg mL-1 – 12.5 ng mL-

1 

28 

OriGene EA100514 10 pg mL-1 

(348 fM) 
312 pg mL-1 – 20 ng mL-1 29 

R&D Systems DKK300 69 pg mL-1 

(2.4 pM) 
0.9 ng mL-1 – 60 ng mL-1 30 

Thermo Fisher Scientific 
EHKLK3T 

8 pg mL-1 

(0.28 pM) 
10 pg mL-1 – 2.5 ng mL-1 31 

 

  



Research Article 2 

 
VII-159 

 

 
Figure S1: Schematic representation of the sequential steps of the upconversion-linked immunosorbent 
assay for PSA. 1) The bottom of a microtiter well is coated with an anti-mouse antibody (dark blue). 2) 
A mouse monoclonal anti-PSA capture antibody (light blue) is bound to the anti-mouse antibody. 3) 
The monoclonal anti-PSA antibody captures the PSA antigen (red). 4) A biotinylated polyclonal anti-
PSA antibody (orange) forms a sandwich immune complex. 5) Streptavidin-coated UCNPs (green) 
bind to the biotinylated detection antibody. 

 

Surface Plasmon Resonance (SPR) Measurements 

SPR measurements were performed on an MP-SPR Navi 210A system (BioNavis, Finland) 

and SPR sensor chips with a 200 nm thick carboxymethylated dextran hydrogel coating (CMD 
200 M, BioNavis) for antibody immobilization. First, the surface was activated with mixture 

of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, 200 mM) and N-

Hydroxysuccinimide (NHS, 50 mM) in water (7 min, 20 µL min-1). Next, either an anti-mouse 
antibody (10 min, 20 µL min-1, 50 µg mL-1, Vector Laboratories, USA) or a monoclonal anti-

PSA antibody (10 min, 20 µL min-1, 50 µg mL-1, ab403, Abcam, UK) in acetate buffer (50 

mM, pH 4.5) was immobilized onto the measuring channel of the sensor chip surface. In 
parallel, BSA (10 min, 20 µL min-1, 50 µg mL-1) in acetate buffer was immobilized in the 

reference channel. Remaining reactive sites were then quenched by addition of ethanolamine 

in water (5 min, 20 µL min-1, 1 M, pH 8.5). The surface was blocked by BSA (10 min, 20 µL 
min-1, 1 mg mL-1) in phosphate buffered saline (PBS, 50 mM PO4

3-, 150 mM NaCl, pH 7.4). 

Sensor chips coated with the anti-PSA antibody were now ready for PSA binding.32 In the case 

of surfaces with immobilized anti-mouse antibody, a monoclonal mouse anti-PSA antibody 
(30 min, 6 µL min-1, 20 µg mL-1, ab403, Abcam) in PBS was added. SPR measurements of the 

full sandwich immunocomplexes (Figure S2 A–D) were based on binding of PSA in PBS (30 

min, 6 µL min-1, 0.1 µg mL-1/1 µg mL-1) followed by the addition of a biotinylated polyclonal 
anti-PSA antibody in PBS (1 h, 3 µL min-1, 2.5 µg mL-1, BAF1344, R&D Systems, USA). 

Two PSA incubations were necessary to account for non-specific adsorption of low PSA 

concentrations to the tubing during the first addition. Finally, either SA-PEG-UCNPs (30 min, 
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6 µL min-1, 3.5 µg mL-1/175 µg mL-1, Figure S2 A/B) or commercial SA-UCNPs (30 min, 6 
µL min-1, 2.5 µg mL-1, Figure S2 C/D) were added. For PSA kinetic studies (Figure S2 E/F) 

sequential dilutions of PSA in PBS (20 µL min-1, 0.1–1 µg mL-1) were bound for 10 min 

followed by 10 min of dissociation period. Due to the high binding capacity of the anti-PSA 
capture antibody no surface regeneration was necessary prior to the injection of a new PSA 
dilution. 

 

Figure S2: SPR characterization of immunoreagents and bioconjugates used in the upconversion-
linked immunosorbent assay (ULISA). A, B) Immobilization of an anti-mouse antibody on the sensor 
chip surface, the green/blue line indicates the changes of the resonance angle in the measuring channel, 
the black line changes in the reference channel. C, D) Changes of resonance angle after subtraction of 
reference channel during the sequential addition of PSA, biotinylated anti-PSA antibody and either SA-
PEG-UCNPs (green line) or commercial SA-UCNPs (blue line). E) Immobilization of a monoclonal 
anti-PSA antibody on the sensor chip surface, the purple line indicates the changes of the resonance 
angle in the measuring channel, the black line changes in the reference channel. F) Changes of 
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resonance angle after subtraction of the reference during the sequential injection of PSA (0.1 µg mL-1, 
0.25 µg mL-1, 0.5 µg mL-1, 1 µg mL-1). 

 

 
Figure S3: TEM images of Kaivogen RD Upcon™ Erbium-540-SA A) before surface coating showing 
uniform UCNPs with an average diameter of 45 nm, and B) after surface coating revealing 
homogeneous particles with an average core-diameter of 45 nm and a coating layer of 13 nm thickness. 

 
Synthesis of UCNP Labels 

Materials 

Anhydrous yttrium(III), ytterbium(III), erbium(III) and thulium(III) chlorides (99%), octadec-

1-ene (90%), ammonium hydrogen difluoride, sodium L-ascorbate, copper(II) sulfate, and 2-

amino-2-(hydroxymethyl)propane-1,3-diol (Tris) were purchased from Sigma-Aldrich (St. 
Louis, MO, USA). Alkyne poly(ethylene glycol) succinimidyl ester (alkyne-PEG-NHS; 

Mw = 5 475 Da) was from Rapp Polymere (Tuebingen, Germany). Streptavidin azide was 

purchased from Protein Mods (Madison, WI, USA). Methanol, hexane, acetone, and oleic acid 
were obtained from Lach-Ner (Neratovice, Czech Republic). Cellulose dialysis membranes 

(MW cut-off 3.5, 14 and 100 kDa) were purchased from Spectrum Europe (Breda, Netherlands). 

All other chemicals were purchased from commercial sources and used without further 
purification. Buffers and solutions were prepared with ultrapure water obtained by reverse 
osmosis with UV treatment (Milli-Q Gradient A10 system, Millipore, Germany). 

Synthesis of NaYF4:Yb3+/Er3+ and NaYF4:Yb3+/Tm3+ Core Nanoparticles 

In a typical synthesis,33 either YCl3 (0.78 mmol), YbCl3 (0.2 mmol) and ErCl3 (0.02 mmol) for 
preparation of NaYF4:Yb3+/Er3+ particles, or YCl3 (0.795 mmol), YbCl3 (0.2 mmol), and 

TmCl3 (0.005 mmol) for the preparation of NaYF4:Yb3+/Tm3+ particles were mixed with oleic 

acid (6 mL), and octadec-1-ene (15 mL) in a 100 mL three-neck flask. The mixture was heated 
to 160 °C for 30 min under a gentle Ar flow to form a homogeneous yellowish solution and 

cooled down to room temperature (RT). NaOH (4 mmol) and NH4F·HF (2.5 mmol) were 
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dissolved in methanol (10 mL) and added dropwise to the lanthanide/oleic acid mixture above. 
The mixture was slowly heated at 120 °C under Ar atmosphere until the methanol evaporated 

followed by heating to 300 °C for 1.5 h. After cooling to RT, the NaYF4:Yb3+/Er3+, or 

NaYF4:Yb3+/Tm3+ nanoparticles were collected by centrifugation (6000 g, 15 min), washed by 
ethanol, and redispersed in hexane. 

Synthesis of Core-Shell Nanoparticles  

Core-shell nanoparticles were synthesized as described earlier.34 In a 100 mL three-neck 

round-bottom flask, YCl3 (0.8 mmol) and YbCl3 (0.2 mmol) for Er3+-based particles or YCl3 
(1 mmol) for Tm3+-based particles were mixed with oleic acid (6 mL) and octadec-1-ene (15 

mL) heated at 160 °C for 30 min with stirring under Ar atmosphere. After cooling to RT, core 

NaYF4:Yb3+/Er3+, or core NaYF4:Yb3+/Tm3+ nanoparticles (150 mg) were dispersed in hexane 
and a methanolic solution of NaOH (4 mmol) and NH4F·HF (2.5 mmol) were added dropwise 

and the mixture was slowly heated to 120 °C under Ar atmosphere until hexane and methanol 

evaporated. After heating at 300 °C for 1.5 h, the dispersion was cooled to RT. 
NaYF4:Yb3+/Er3+@NaYF4:Yb3+, or NaYF4:Yb3+/Er3+@NaYF4 nanoparticles were precipitated 

by acetone (10 mL), washed five times with ethanol, and an ethanol/water mixture, redispersed 

in 0.01 M HCl, and dialyzed (MW cut-off 14 kDa) against water for 48 h. The UCNPs were 
stored as an aqueous dispersion at a concentration of 14 mg mL−1.  

Synthesis of Alkyne-PEG-Neridronate  

Sodium neridronate was synthesized as described earlier.35-36 For the preparation of alkyne-

PEG-neridronate, sodium neridronate (0.32 g) was dissolved in PBS (10 mL, pH 7.4) and 

cooled to 4 °C. Dry alkyne-PEG-NHS (0.5 g) was added and the mixture was stirred for 5 h at 
4 °C. The product was dialyzed (MW cut-off 3.5 kDa) against water for 72 h (water exchanged 
9×) and freeze-dried. 

 
Figure S4: Chemical structure of the streptavidin-PEG-neridronate bound to a UCNP via 
bisphosphonate groups. 
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Figure S5: Characterization of Er-doped UCNPs by TEM. A) TEM image of UCNP cores. B) Gaussian 
fit of the size distribution of UCNP cores (diameter 23.5 ± 1.2 nm). C) TEM image of cylindrical 
shaped alkyne-PEG core-shell UCNPs. D) Gaussian fit of frequency distributions of length (green line, 
34.8 ± 1.5 nm) and width (black line, 30.1 ± 1.5 nm) of alkyne-PEG core-shell UCNPs. E) TEM image 
of cylindric SA-PEG core-shell UCNPs. F) Gaussian fit of frequency distributions of length (green 
line, 35.0 ± 1.4 nm) and width (black line, 30.3 ± 1.4 nm) of SA-PEG core-shell UCNPs. In total, 300 
UCNPs were analyzed for each size distribution. 
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Figure S6: Characterization of Tm-doped UCNPs by TEM (A) TEM image of UCNP cores. B) 
Gaussian fit of the size distribution of UCNP cores (diameter 23.8 ± 1.0 nm). C) TEM image of 
cylindrical shaped core-shell UCNPs. D) Gaussian fit of frequency distributions of length (red line, 
37.6 ± 2.0 nm) and width (black line, 28.7 ± 1.8 nm) of core-shell UCNPs. In total, 300 UCNPs were 
analyzed for each size distribution. 

 

 
Figure S7: DLS measurements of Er-doped alkyne-PEG-UCNPs and SA-PEG-UCNPs. A 
hydrodynamic diameter of 96.1 ± 0.4 was found for Alkyne-PEG-UCNPs (black line), for SA-PEG-
UCNPs (green line) the diameter was 109 ± 2 nm resulting in an average increase of 12.9 nm. The PDI 
increased slightly from 0.148 to 0.166. Standard deviations were calculated from three measurements. 
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BSA-Biotin Binding Assay 

A 96-well microtiter plate (µClear, high binding, Greiner Bio-One, Austria) was coated with 

BSA-biotin (0.1; 1; 10 µg mL-1, 100 µL, Sigma Aldrich, Germany) in coating buffer (50 mM 
NaHCO3/Na2CO3, 0.05% NaN3, pH 9.6, 100 µL) overnight at 4 °C. The plate was washed four 

times with washing buffer (50 mM NaH2PO4/Na2HPO4, 0.01% Tween 20, 0.05% NaN3, pH 

7.4, 250 µL) in a microplate washer (HydroFlex, Tecan, Switzerland) and blocked with 
blocking buffer (50 mM NaH2PO4/Na2HPO4, 0.05% NaN3, pH 7.4, 1% BSA, 200 µL) for 1 h. 

After four washings steps the BSA-biotin coated wells and uncoated wells as negative control 

were incubated with serial dilutions of streptavidin-coated UCNPs (100 µL) for 1 h. At the end 
of the incubation time the plate was washed four times, dried on air and scanned using the 
upconversion microtiter plate reader. 

 

Figure S8: Binding test of SA-PEG-UCNPs. Different BSA-biotin concentrations immobilized on a 
microtiter plate and incubated with increasing amounts of SA-PEG UCNPs. A) Freshly prepared Er3+-
doped SA-PEG-UCNPs (0.35 µg mL-1, 3.5 µg mL-1, 35 µg mL-1, 350 µg mL-1). B) Freshly prepared 
Tm3+-doped SA-PEG-UCNPs (0.015 µg mL-1, 0.15 µg mL-1, 1.5 µg mL-1, 15 µg mL-1). C) 90 days old 
Er3+-doped SA-PEG-UCNPs (0.035 µg mL-1, 0.35 µg mL-1, 3.5 µg mL-1, 35 µg mL-1) and D) 90 days 
old Er3+-doped SA-PEG-UCNPs that were purified via gradient centrifugation (0.035 µg mL-1, 0.35 µg 
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mL-1, 3.5 µg mL-1, 35 µg mL-1). Error bars indicate the standard deviation of the UCL of three different 
wells. 
 

Wide-Field Upconversion Microscopy 

For near infrared excitation, a 980 nm continuous wave laser diode (4 W, WSLS-980-004-H-

T, Wavespectrum, China) was coupled to a motorized TIRF/Epifluorescence illuminator unit 

(Ti-TIRF-E, Nikon, Japan) of a conventional epifluorescence microscope (Eclipse Ti-E, 
Nikon, Japan) via a multimode optical fiber (105 µm fiber core, 0.22 NA, Wavespectrum). The 

laser was controlled by a computer equipped with an analog output module (PCI-6723, 

National Instruments, USA). The optical filter cube consisted of a long-pass excitation filter 
(λcut-on = 875 nm, Schott, Germany), a dichroic mirror suitable for multiphoton applications 

(λcut-on = 830 nm, AHF Analysentechnik, Germany), and a band-pass filter transparent for the 

green emission of Er3+-doped UCNPs (λ = 535 ± 70 nm, OD980 ≈ 6, Chroma, USA). For the 
800 nm emission of Tm3+-doped UCNPs (λ = 809 ± 81 nm, AHF Analysentechnik) bandpass 
filter was used. A 100× objective with a high NA of 1.49 (CFI HP Apochromat TIRF, Nikon) 

and a 5.5-megapixel vacuum cooled sCMOS camera (Neo, Andor Technology, UK) were used 
for image acquisition. The whole optical setup resulted in a power density of 640 W cm-2 in 
the focal plane.1 

 

Data Analysis 

For the analog as well as the digital readout, mean and standard deviation were calculated for 

three wells and the LODs were determined by a non-linear regression using a four-parameter 

logistic fit. The graphs are shown in double logarithmic scale for better visual representation 
of the low values, however, the original data (linear scale) was fitted. In the four-parameter 
logistic function: 𝑌 = 𝑌max − 𝑌bg1 + ([PSA]EC50 )𝑠 + 𝑌bg 

[PSA] is the concentration of prostate specific antigen and Y either the upconversion 
luminescence (analog readout) or the number of particles counted under the upconversion 

microscope (digital readout). The parameter Ymax marks the highest point of the sigmoidal 

curve while Ybg is the lowest point corresponding to the background signal. The point where 
the difference between Ymax and Ybg is reduced by 50% is the half maximal effective 
concentration or EC50 and the slope at the inflection point is indicated as s. 
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Figure S9: Upconversion microscopy images using Er-doped SA-PEG-UCNPs as a label for the 
detection of PSA. A-I) 50×50 µm² sections of upconversion microscopic images. Images correspond 
to serial dilutions of PSA as indicated. J) The brightness distribution of 500 luminescent spots recorded 
in panel F shows a CV of 130% (SD of spot UCL / average spot UCL). K) Calibration curves (analog 
readout: black; digital readout: green) based on a 4-parameter logistic regression model. The 
logarithmic scale of the Y-axis visualizes signals at low PSA concentrations. Hatched lines indicate the 
LOD values and where obtained by adding three times the standard deviation of the background to the 
baseline values of the regression curve. 
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Figure S10: Upconversion microscopy images using commercial Er-doped SA-UCNPs as a label for 
the detection of PSA. A-I) 50×50 µm² sections of upconversion microscopic images. Images 
correspond to serial dilutions of PSA as indicated. J) The brightness distribution of 500 luminescent 
spots recorded in panel F shows a CV of 70% (SD of spot UCL / average spot UCL). K) PSA calibration 
curves (analog readout: black; digital readout: blue) based on a 4-parameter logistic regression model. 
The logarithmic scale of the y-axis visualizes signals at low PSA concentrations. Hatched lines 
correspond to the LOD values and indicate the baseline of the regression curve plus three times the 
standard deviation of the background. 
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Figure S11: Upconversion luminescence of individual SA-UCNPs recorded under NIR excitation 
(power density: 640 W cm-2, exposure time: 20 s). Gaussian fit of the intensity cross-section of a single 
diffraction-limited spot (top)  with full width at half maximum (FWHM) and respective microsocpe 
images (bottom). A) Commercial UCNPs (Kaivogen), and B) in-house synthesized SA-PEG-
UCNP(Er). 

 

Calculation of Capture Efficiency 

Diameter of µClear Well: 6.58 mm; sample volume: 100 µL 

(1) Filling height (h): ℎ = 𝑉𝐴𝑊 

AW: area of microplate well. ℎ = 𝑉𝑟2 ∗ 𝜋 

r: radius of microplate well. 

(2) Lateral area (AL): 𝐴𝐿 = 𝑉𝑟2 ∙ 𝜋 ∙ 2𝜋𝑟 

𝐴𝐿 = 2𝑉𝑟  
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(3) Total area covered by PSA sample (AT): 𝐴𝑇 = 2𝑉𝑟 + 𝑟2𝜋 

(4) Number of microscopic images (Z, 166.04 µm*140.09 µm) needed to cover the whole 
surface: 

𝑍 = 2𝑉𝑟 + 𝑟2𝜋𝐴𝑂  

AO: observable area. 

(5) Number of UCNPs (N) on whole surface: 

𝑁 = 2𝑉𝑟 + 𝑟2𝜋𝐴𝑂 ∙ 𝑛 

n: average number of particles per image. 

(6) Capture efficiency (E): 

𝐸 (%) = 2𝑉𝑟 + 𝑟2𝜋𝐴𝑂 ∙ 𝑛 − 𝑛0𝑐 ∙ 𝑉 ∙ 𝑁𝐴 ∙ 100 

n0: average number of non-specifically bound particles. 

c: theoretical molar PSA concentration. 

NA: Avogadro constant 

 

Nanoparticle Purification by Sucrose Gradient Centrifugation 

Three sucrose (for microbiology, Merck, Germany) solutions (10%; 20%; 35% w/v) were 

prepared in Tris buffer (50 mM Tris, 136 mM NaCl, 0.05% NaN3, 1 mM KF, pH 7.5). A UCNP 
dispersion (50 µL, 3.5 mg mL-1) was transferred to a 1.5 mL vial and successively 

underlayered by 200 µL of (1) 10% sucrose, (2) 20% sucrose, and (3) 35% sucrose. The sample 

was centrifuged for 30 min at 750 g. The top 250 µL of the dispersion containing the 
homogeneous fraction of UCNPs was carefully removed, transferred to a new vial and 

sonicated for 30 s before further experiments. DLS measurements showed that the 

polydispersity index (PDI) of purified labels as reduced by 35% compared to non-purified 
labels (Figure S12B). The surface functionality was confirmed by immobilizing biotinylated 
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BSA in a microwell, incubating with purified SA-PEG-UCNPs and comparing the 
upconversion luminescence to a negative control (Figure S5D). 

 
Figure S12: DLS measurements of purified and non-purified Er-doped alkyne-PEG-UCNPs and SA-
PEG-UCNPs that were stored for 90 days in 50 mM Tris buffer (pH 7.5; 4 °C). A) DLS measurement 
of Alkyne-PEG-UCNPs before purification (black line, diameter: 99.6 ± 0.8 nm, PDI: 0.122 ± 0.005) 
and after sucrose gradient centrifugation (30 min at 750 g, purple line, diameter: 63.3 ± 0.2 nm, PDI: 
0.074 ± 0.015). B) DLS measurement of SA-PEG UCNPs before purification (green line, diameter: 
109.2 ± 1.3 nm, PDI: 0.168 ± 0.017) and after sucrose gradient centrifugation (30 min at 750∙g, orange 
line, diameter: 81.8 ± 0.56 nm, PDI: 0.111 ± 0.023). 

 

Influence of Nanoparticle Heterogeneity on the ULISA Performance 

The ULISA was performed using either non-purified or purified SA-PEG-UCNPs. Microscope 
images recorded at a PSA concentration of 100 pg mL-1 were used for determining the 

luminescence heterogeneity among 400 individual diffraction-limited spots. The coefficient of 

variation (CV) decreased from 130% before purification to 80% after purification. Figure S14 
shows histograms of the luminescence distribution (A) before and (B) after label purification. 

The absence of intensity values above 250 a.u. in Figure S14B indicates that gradient 

centrifugation removed larger aggregates efficiently. The difference in the digital and analog 
LOD conferred by purified labels (Figure S15) was only marginal and within the normal 

variation of the ULISA. Independent of label purification, however, the digital readout was 7–
8× more sensitive than the analog readout.  
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Figure S13: A) Intensity distribution of non-purified SA-PEG-UCNPs that were stored over 90 days 
in Tris buffer (50 mM Tris, pH 7.5). B) Intensity distribution of gradient centrifugation-purified SA-
PEG-UCNPs. The mean intensity of individual UCNPs bound as part of the sandwich immunocomplex 
on the bottom of a microtiter plate was determined in the microscope software by placing regions of 
interest (ROIs) of identical sizes over the luminescent spots. A frequency count of the mean intensities 
was performed, and the data was arranged in histograms with a bin of 10. For the histogram, the mean 
intensities of 400 individual UCNPs (randomly selected) were measured and background corrected. 
 

 
Figure S14: Digital and analog ULISA for PSA using non-purified and purified SA-PEG-UCNPs that 
were stored over 90 days in Tris buffer (50 mM Tris, pH 7.5). A) ULISA using non-purified SA-PEG-
UCNPs (LOD digital: 0.29 pg mL-1; LOD analog: 1.90 pg mL-1). B) ULISA using SA-PEG-UCNPs 
that were purified via sucrose gradient centrifugation (LOD digital: 0.21 pg mL-1; LOD analog: 1.66 
mg mL-1). The assay was performed in 25% bovine serum diluted with assay buffer. Calibration curves 
(analog readout: black lines; digital readout: green lines) were based on a 4-parameter logistic 
regression model. The logarithmic scale of the Y-axis visualizes signals at low PSA concentrations. 
Hatched lines indicate the LOD values that were obtained by adding three times the standard deviation 
of the background to the baseline values of the regression curve. 
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Figure S15: PSA calibration curves (analog readout by averaging the pixel intensities over the whole 
microscopic image: black; digital readout: green) based on a 4-parameter logistic regression model. 
The logarithmic scale of the y-axis visualizes signals at low PSA concentrations. Hatched lines 
correspond to the LOD values (digital: 23 fg mL-1, microscope analog: 3.7 pg mL-1) and indicate the 
baseline of the regression curve plus three times the standard deviation of the background. 

 

Table S2: Precision of the digital ULISA. The CV was calculated by dividing the standard deviation 
of three wells by the average number of UCNPs per well. The Poisson noise was calculated by dividing 
the square root of the average number of UCNPs in an area of 0.2 cm2 (9 images of 166 × 140 µm2 

combined) by the average number of UCNPs in that area (√𝑛/𝑛). 
PSA 

(pg 

mL-1) 

Average 

number of 

UCNPs 

Experimental 

CV (%) 

Poisson 

noise CV 

(%) 

0 441 ± 2 0.4 4.8 
0.001 477 ± 3 0.5 4.6 
0.01 543 ± 5 0.9 4.3 
0.1 570 ± 17 2.9 4.2 
1 688 ± 29 4.2 3.8 
10 1230 ± 120 9.9 2.8 
100 6800 ± 400 5.0 1.2 
103 34400 ± 1000 2.8 0.5 
104 47100 ± 700 1.4 0.5 
105 50500 ± 500 0.9 0.4 

 

Table S3: Linearity-of-dilution experiments for the determination of PSA concentrations in a human 
serum sample by using the analog and digital ULISA. The expected PSA concentration was determined 
by an electrochemiluminescent reference method. 
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 Analog ULISA Digital ULISA 

dilution 

factor 

(DF) 

measured 

(pg mL-1)  

x DF 

expected  

(pg mL-1) 

Recovery 

(%) 

measured 

(pg mL-1)  

x DF 

expected  

(pg mL-1) 

Recovery 

(%) 

2 172.7 ± 
19.8 

215 

80.3 ± 
9.2  

159.7 ± 
11.6 

215 

74.3 ± 
5.4 

4 173.7 ± 
8.2 

80.8 ± 
3.8 

183.2 ± 
31.0 

85.2 ± 
14.4 

6 178.4 ± 
18.3 

83.0 ± 
8.5 

166.9 ± 
16.0 

77.6 ± 
7.5 

8 186.4 ± 
15.2 

86.7 ± 
7.1 

184.0 ± 
19.4 

85.6 ± 
9.0 

10 178.8 ± 
5.8 

83.1 ± 
2.7 

167.5 ± 
7.2 

77.9 ± 
3.4 

15 187.0 ± 
18.2 

87.0 ± 
8.5 

190.8 ± 
19.4 

88.8 ± 
9.0 

20 246.1 ± 
1.2 

114.4 ± 
0.6 

198.9 ± 
6.3 

92.5 ± 
2.9 

25 228.1 ± 
21.2 

106.1 ± 
9.9 

219.2 ± 
10.8 

101.9 ± 
5.0 

 

Table S4: PSA concentrations of human serum samples determined either by an ECL reference method 
or after 400× dilution by the digital/analog ULISA. 

S
a
m

p
le

 

ECL 

ng mL-1 

Analog ULISA Digital ULISA 

measured 

(pg mL-1) 

corr. (400x) 

(ng mL-1) 

measured 

(pg mL-1) 

corr. (400x) 

(ng mL-1) 

1 30.64 ± 1.50 75.44 ± 1.77 30.18 ± 0.71 74.23 ± 6.00 29.69 ± 2.40 

2 9.23 ± 0.45 27.79 ± 1.14 11.12 ± 0.46 25.60 ± 2.10 10.24 ± 0.84 

3 5.32 ± 0.26 18.58 ± 0.80 7.43 ± 0.32 13.45 ± 1.08 5.38 ± 0.43 

4 2.08 ± 0.10 8.39 ± 0.38 3.36 ± 0.15 5.97 ± 0.27 2.39 ± 0.11 

5 1.08 ± 0.05 5.56 ± 1.56 2.22 ± 0.63 3.14 ± 0.92 1.26 ± 0.37 

6 0.22 ± 0.01 3.65 ± 0.52 1.46 ± 0.20 2.00 ± 0.19 0.80 ± 0.08 
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VIII.1. Abstract 

Immunohistochemistry (IHC) and immunocytochemistry (ICC) are routinely employed for the 

microscopic identification and diagnosis of cancerous cells in histological tissues and cell 

cultures. The maximally attainable contrast of conventional histological staining techniques, 
however, is low. While the anti-Stokes emission of photon-upconversion nanoparticles 

(UCNP) can efficiently eliminate optical background interference, excluding non-specific 

interactions of the label with the histological sample is equally important for specific 
immunolabeling. To address both requirements, we have designed and characterized several 

UCNP-based nanoconjugates as labels for the highly specific detection of the cancer biomarker 

HER2 on various breast cancer cell lines. An optimized streptavidin-PEG-neridronate-UCNP 
conjugate provided an unsurpassed signal-to-background ratio of 319, which was 50-fold 

better than conventional fluorescent labeling under the same experimental conditions. In 

combination, the absence of optical interference and non-specific binding lays the foundation 
for computer-based data evaluation in digital pathology. 

VIII.2. Introduction 

Breast cancer is the second most frequent type of cancer worldwide, with approximately 2.1 

million new cases reported worldwide every year.1 The incidence continues to increase despite 
the implementation of mammography screening, and improvement of adjuvant systemic 

therapy.2 Human epidermal growth factor receptors (HER or ErbB) are membrane receptors 

that play important roles in biological processes like apoptosis, cell migration, differentiation, 
and proliferation. In 10–30% of all breast cancer patients, the HER2 receptor is overexpressed 

on cancer cells, which increases the rate of cell proliferation. The association with rapid cancer 
growth and poor prognosis render HER2 as an important cancer biomarker.3-5 

IHC enables the detection and localization of antigens in histological tissues, which is routinely 

employed for the identification and diagnosis of cancerous cells.6 Protocols, antibody labeling, 
and new staining techniques can be optimized by ICC, where target cells are cultivated and 

prepared similarly as real tissue samples. While the combination of hematoxylin and eosin 

(H&E) represents the principle chemical counterstaining approach,7 antibodies labeled with 
enzymes,8 fluorophores,9, 10 or nanoparticles11-13 are required for the specific detection of 

cancer biomarkers in IHC and ICC. For example, the antibody–horseradish peroxidase label 

oxidizes 3,3’-diaminobenzidine (DAB) with hydrogen peroxide, and the brown product 
precipitating at the target site is visible by light microscopy.14, 15 
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Typically, pathologists screen images of tissue sections individually by visual inspection, 
which is a time-demanding procedure. Digital pathology aims at an accurate, automated, and 

faster screening and diagnosis of tissue slides aided by artificial intelligence16 to account for a 

growing population, longer life expectation, as well as the need for personalized medicine. To 
improve the accuracy and analysis time in clinical diagnosis, it is desirable to have high-quality 

images with labels that generate a high signal to background ratios and are—in the optimal 
case—compatible with other staining techniques like the H&E staining.17 

Photon-upconversion nanoparticles (UCNPs), such as NaYF4:Yb,Er or NaYF4:Yb,Tm, were 

used as an alternative labeling strategy in IHC and ICC experiments.18-20 Unlike conventional 
fluorophores, UCNPs sequentially absorb two or more photons and emit light of shorter 

wavelengths (anti-Stokes emission), which prevents autofluorescence, minimizes light 

scattering, and opens the possibility for multiplexing with standard fluorescence but also with 
counterstaining methods like the H&E staining.21 Additionally, UCNPs are not affected by 

self-quenching and are resistant against photobleaching.22, 23 Non-specific adsorption of labels 

to cells and other surfaces, however, strongly influences the practical detection capabilities. 
Thus, UCNPs with low levels of non-specific binding are urgently needed. We previously used 

UCNPs coated either with bovine serum albumin (BSA)24 or PEG25 to reduce non-specific 
binding in microtiter plate-based immunoassays. 

In pioneering work, the Tanke group18 introduced the first upconversion labeling technique for 

IHC and ICC based on sub-micron-sized ground phosphor powders covered with a silica shell. 
Other groups26 have since employed silanization,19, 20 encapsulation by 5-mercaptosuccinic 

acid and polyallylamine hydrochloride,27 or polyethylene glycol (PEG)28 to prepare 

upconversion labels for IHC or ICC. Here, we have designed several well-defined streptavidin-
UCNP nanoconjugates for labeling the HER2 receptor on the surface of breast cancer cells 

(Figure 1). We have evaluated the labeling performance of the upconversion labels in terms 

of non-specific binding and background reduction. A quantitative comparison to fluorescent 
labels demonstrated that UCNP labels are a highly valuable addition to the existent staining 
repertoire. 
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Figure 1: Scheme of the ICC assay. After blocking of the surface (not shown), the primary antibody 
binds to the HER2 receptor on the surface of the cells, followed by a biotinylated secondary antibody, 
and the detection UCNP-streptavidin conjugates. 

 

VIII.3. Materials and Methods 

Chemicals and Buffers 

The list of chemicals is provided in the Supporting Information (SI). Phosphate buffer (PB; 50 

mM NaH2PO4/Na2HPO4, pH 7.4), phosphate-buffered saline (PBS; PB with 150 mM NaCl), 
Tris buffered saline (TBS; 50 mM Tris, 150 mM NaCl, pH 7.5), TBS-T buffer (TBS with 

0.05% Tween 20), antibody dilution buffer (10% SuperBlock in PBS, 0.05% Tween 20, and 

0.05% NaN3, pH 7.5), SB assay buffer (10% SuperBlock in TBS, 1 mM KF, 0.05% Tween 20, 
and 0.05% NaN3, pH 7.5), BSA/BGG assay buffer (0.2% bovine serum albumin, 0.5% bovine 

γ-globulin, 50 mM Tris, 150 mM NaCl, 5 mM EDTA, 0.2% PVA, 1% glucose, 0.01% Tween 

20, 1 mM KF, and 0.05% NaN3, pH 7.5), and epitope retrieval buffer (10 mM Tris, 1 mM 
EDTA, 0.05% Tween 20, pH 9) were produced in double-distilled water and filtered through 
a 0.22 μm membrane (Magna Nylon 47 mm; GVS, USA). 

Preparation of UCNP-Streptavidin Labels 

For the preparation of the Alkyne-PEG-Ner linker, 30 mg of neridronate (Ner; Merck, 
Germany) was dissolved in 128 µL of 1 M NaOH under sonication, followed by the addition 

of 398 µL of PB (pH 7.6). Then, 500 µL of 15 mM Alkyne-PEG-NHS (α-N-

hydroxysuccinimide-ω-alkyne polyethylene glycol, MW 3000; Iris Biotech, Germany) in PB 
(pH 7.6) was added and incubated overnight at 4 °C. The reaction mixture was dialyzed against 

double-distilled water (1.8 L) in a Float-A-Lyzer G2 dialysis device (MWCO = 500–1000 Da, 

Fisher Scientific, Germany) at 4 °C for 72 h, double-distilled water was 12× changed. The 
purified, colorless Alkyne-PEG-Ner was lyophilized (Alpha 1-2, Christ, Germany) and stored 
at 4 °C.29 
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Oleic acid-capped UCNPs were synthesized by high-temperature co-precipitation, as described 
in the SI.30 UCNPs (10 mg) dispersed in cyclohexane were mixed with an equivalent volume 

of dimethylformamide (DMF) and approx. 1 mg of NOBF4 (Merck, Germany) was added per 

mg of UCNPs. UCNPs were incubated for 20 min at 30 °C under shaking to remove oleic acid 
from the nanoparticle surface and mediate a phase transfer from cyclohexane to DMF. After 

discarding the upper cyclohexane phase, chloroform was added in excess to the dispersion in 

DMF to precipitate the UCNPs. UCNPs were then purified for 5 min by centrifugation (1000 
g), redispersed in DMF, precipitated with chloroform and separated for 5 min by centrifugation 

(1000 g). The UCNP pellet was redispersed in 1 mL of double-distilled water containing 2 mg 

of the Alkyne-PEG-Ner linker and incubated overnight at 4 °C. The Alkyne-PEG-Ner-UCNP 
conjugates were dialyzed for 72 h in a Float-A-Lyzer G2 dialysis device (MWCO = 100 kDa, 

Fisher Scientific) against double-distilled water (1.8 L) containing 1 mM KF at 4°C. The 
dialysis medium was 9× exchanged. 

For the functionalization with streptavidin, Alkyne-PEG-Ner-UCNPs (7 mg in 700 µL water) 

were diluted with 300 µL of Tris-HCl (75 mM, pH 7.5) and an aqueous solution of L-ascorbic 
acid sodium salt (20 µL, 20 mg/mL). The mixture was purged with argon for 40 min, then 

50 µL streptavidin azide (7 Bioscience, Germany; 1 mg/mL) in 25 mM Tris-HCl (pH 7.5) was 

added, and the mixture was purged for another 10 min. The click-reaction was started by 
adding 10 µL CuSO4 5 H2O (25 mM in double-distilled water). After 45 min purging with 

argon, the suspension was dialyzed in a Float-A-Lyzer G2 dialysis device (MWCO = 100 kDa) 

against 500 mL TBS containing 1 mM KF and 0.05% NaN3 at 4 °C for 72 h (dialysis medium 
9× exchanged).25 The structure of SA-PEG-Ner-UCNPs is shown in Figure 2A. The 

preparation of SA-PEG-Alen-UCNPs (Figure 2B) and SA-BSA-UCNPs (Figure 2C) is 
described in the SI. 
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Figure 2: Chemical structures of UCNP-streptavidin labels. A) SA-PEG-Ner-UCNP, B) SA-PEG-
Alen-UCNP, and C) SA-BSA-UCNP. 
 

UCNP-conjugates were purified by sucrose gradient centrifugation. Solutions of 10%, 20%, 

and 35% w/v sucrose were prepared in TBS (containing 1 mM KF, 0.05% NaN3). A sucrose 

gradient was formed in a microtube by underlaying successively 50 µL of the UCNP sample, 
10% sucrose (200 µL), 20% sucrose (200 µL), and 35% sucrose (200 µL). After centrifugation 

(750 g) for 15 min, the top layer (250 µL) was taken for subsequent experiments. Purified SA-

PEG-Ner-UCNPs were stored at 4 °C. KF was included in the storage buffer in order to avoid 
the dissolution of UCNPs.31 
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Characterization of UCNP Conjugates 

The UCNPs and their conjugates were characterized using transmission electron microscopy 
(TEM), optical spectroscopy, dynamic light scattering (DLS), nanoparticle tracking analysis 

(NTA), single-particle upconversion microscopy, liquid chromatography coupled with tandem 
mass spectrometry (LC-MS/MS), and in microtiter plate-based assay as described in the SI. 

Immunolabeling of Cells 

Breast cancer cell lines BT-474 (ATCC HTB-20), MCF-7 (ATCC HTB-22), and MDA-MB-
231 (ATCC HTB-26) were cultivated in high-glucose Dulbecco’s Modified Eagle’s Medium 
(complete DMEM; Sigma-Aldrich, Germany) supplemented with 10% fetal bovine serum in a 

humidified atmosphere of 5% CO2. The cells were trypsinized 24 h before the fixation, 
centrifuged at 1,000 g for 5 min and resuspended in complete DMEM. An aliquot of 50 µL of 

the cell suspension was pipetted onto a sterile glass slide (KnittelGlass, Germany) in a 

cultivation dish and cultivated in drops for 4 h to confine the cells in a small area appropriate 
for the staining procedure. After 4 h, the cell slides were overlaid with complete DMEM and 

cultivated for another 20 h. Then the cell slides were washed 3 times with 100 mM phosphate-

buffered saline containing 150 mM NaCl (pH 7.2). After removing buffer residues, the slides 
were submerged into an ice-cold (−20 °C) methanol:acetone (1:1) fixative solution for 6 min. 
The slides were dried at room temperature and stored at −20 °C. 

Formalin-fixed paraffin-embedded (FFPE) cells and cancer tissue were obtained from AMS 

Biotechnology (UK). BT-474 and MDA-MB-231 cell pellet slides expressing different levels 

of the HER2 antigen were used for ICC experiments, and slides with breast tumor tissue 
sections from surgical resection (Infiltrative Ductual Carcinoma, HER2 positive; AMS-8009) 

for IHC experiments. Human tissue samples were collected in the US under informed consent 

and in accordance with the ethical standards of the responsible committee (institutional and 
national) and with the 1964 Helsinki declaration. The slides were first dewaxed using xylene 

(mixture of isomers; 3× 5 min) and rehydrated in 99% ethanol (2× 5 min), 90% ethanol (2× 5 

min), and water (5 min). Afterwards, the heat-induced epitope retrieval was performed by 
placing the slides in epitope retrieval buffer pre-heated to 60 °C and heating to 80 °C for 20 

min in a water bath. The slides were allowed to cool to room temperature for 20 min and then 
transferred to TBS. After 2 min, the slides were removed from the buffer. 

H&E staining was performed according to the manufacturer’s instructions (H&E Fast Staining 
Kit; Carl Roth, Germany). After antigen retrieval, the FFPE slides were incubated in H&E 
solution 1 for 6 min, rinsed with deionized water for 10 s, followed by differentiation in 0.1 % 

HCl for 10 s. The slides were rinsed under flowing deionized water for 6 min, incubated in 
H&E solution 2 for 30 s, and washed under flowing deionized water for 30 s. 
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For HER2-labeling, cell sections (~0.5 cm in diameter) and tissue sections (~1.5 cm in 

diameter) were encircled with a PAP pen liquid blocker (Science Services, Germany). After 
drying of the PAP pen marking, the slides were washed for 1 min in TBS. Either 50-µL droplets 

(for ICC experiments) or 150-µL droplets (for IHC experiments) of the following solutions 

were applied to the slides at room temperature. After blocking with concentrated SuperBlock 
containing 0.05% Tween 20 for 60 min and washing 3 times for 5 min with TBS, the slides 

were incubated with a rabbit anti-HER2 antibody (ab134182, Abcam, UK; 1 µg/mL in 

antibody dilution buffer) for 1 h. In a negative control experiment, the slides were incubated 
in the same dilution buffer without the anti-HER2 antibody. After washing with TBS (3× 5 

min), biotinylated anti-rabbit antibody was applied (111-065-144, Jackson ImmunoResearch, 

UK; 2 µg/mL in antibody dilution buffer, 1 h). Next, the slides were incubated with the purified 
UCNP conjugate (35 µg/mL) in SB assay buffer for 1 h. The slides were washed with TBS-T 

buffer (2× 5 min), TBS (5 min), and incubated with DAPI (1 µg/mL in TBS) for 20 min. 

Finally, the slides were washed with TBS, a glass cover slip was mounted using 6 µL of TBS, 
and the slide was imaged under the upconversion microscope. 

A streptavidin-5(6)-carboxyfluorescein conjugate (SA-FAM) was synthesized as described in 
the SI32 and used as a label for conventional fluorescence microscopy. A solution of 10 µg/mL 

SA-FAM in SB assay buffer was employed, with the same staining protocol as described for 
the UCNP labels.  

Microscope Imaging 

The H&E staining was recorded under a bright-field transmission microscope (OBE 114; Kern 

Optics, Germany) equipped with a 40× objective (NA 0.65) and an 8.1-megapixel CMOS 

camera (ODC825; Kern Optics). The ImageJ plugin Landmark Correspondences was used to 
align bright-field images to upconversion luminescence images. 

Cells were imaged on a modified inverted wide-field epifluorescence microscope (Eclipse Ti, 
Nikon, Japan).33 For UCNP excitation, a 980 nm continuous-wave laser diode (4 W, 

Wavespectrum, China) was coupled via a multi-mode optical fiber (105 µm fiber core, NA = 

0.22, Wavespectrum) into a motorized TIRF illuminator unit (Nikon). The optical filters for 
UCNP excitation consisted of a long-pass excitation filter with a cut-on at 830 nm (Schott, 

Germany), a dichroic mirror with a cut-on at 875 nm (AHF Analysentechnik, Germany), and 

either a green band-pass filter (535 ± 70 nm) for the emission of Er3+-doped UCNPs, or a NIR-
filter (809 ± 40 nm) for the emission of Tm3+-doped UCNPs. A fiber-optical mercury lamp 

(Intensilight, Nikon) served as an excitation source for fluorescent dyes and optical filter sets 

(Chroma, USA) were selected for DAPI (λex = 365 ± 20 nm, λdichroic = 357 ± 35 nm, λem = 445 
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± 30 nm) and carboxyfluorescein (λex = 480 ± 20 nm, λdichroic = 470 ± 20 nm, λem = 530 ± 30 
nm). The emission light was collected with a 40× water immersion objective (CFI Apo LWD 

40× WI Lambda-S, NA = 1.15, Nikon) and recorded on a 5.5-megapixel vacuum-cooled 

sCMOS camera (Neo 5.5, Andor, UK), which resulted in a field of view of 416 × 351 μm2. 
The microscope was controlled using NIS Elements 4.5 Advanced Research (Nikon). 

Bleaching experiments were performed under continuous excitation over a period of 20 min. 
Time lapse images were acquired every 30 s using an excitation time of 2s (SA-PEG-Ner-

UCNPs) or 200 ms (SA-FAM), respectively. A region of interest of 200×200 µm2 was selected 

and the average intensity was measured for each image. After subtraction of the background 
signal, the intensities were plotted against time. 

Luminescence Scanning 

For upconversion scanning, a modified microplate reader (Chameleon, Hidex, Finland) was 

used.34 Images of the cell pellet slides were acquired by defining several squares that were 
raster-scanned (18 × 18 points, 500 µm steps) with an exposure time of 500 ms. A microplate 

reader (Upcon, Labrox, Finland) was used for fluorescence scanning. Carboxyfluorescein was 

excited at 485 nm, and the emission light was collected at 535 nm. Squares of 18 × 18 points 
with a step size of 500 µm were scanned with an exposure time of 1 s. The imaging data were 

analyzed with ImageJ (National Institutes of Health, USA).35 Circular regions of interests 

(ROIs) of identical size were placed over the area containing the cells followed by averaging 
the gray values of all pixels included in the ROI. After data evaluation, the images were 

processed in Origin 2019b (OriginLab, USA). Bilinear interpolation increased the image 
resolution five-fold. 
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VIII.4. Results and Discussion 

Characterization of UCNP Labels 

For efficient immunocytochemistry, it is essential that labels are bright enough for an easy 
detection without optical background interference and label the cancer biomarker with high 

specificity but not to the support material or non-target cell materials (non-specific binding). 

We designed UCNP labels coated with PEG or BSA (Figure 2) that are promising candidates 
for avoiding non-specific binding.24, 25 

Tm3+-doped UCNPs display strong NIR emission at 801 nm (Figure S1) and have a 
homogeneous size distribution with an average diameter of 44 nm as determined by TEM 

(Figures 3A and 3B). DLS measurements showed that the hydrodynamic diameter increased 

from 88.7 nm (PDI 0.264) with oleic acid coating to 141.7 nm (PDI 0.234) after the preparation 
of the SA-PEG-Ner-UCNP conjugate (Figure S2A). The presence of streptavidin on the 

nanoparticle surface was further confirmed by LC-MS/MS (Table S1). Sucrose gradient 

centrifugation removed bigger aggregates, which decreased the average conjugate size to 
78.7 nm and improved the particle homogeneity (PDI: 0.187). Nanoparticle tracking analysis 

(NTA) (Figure S2B) showed a main peak at 70.5 nm in both the non-purified and the purified 

sample, which can be attributed to the non-aggregated conjugate while the decrease in the 
number of bigger particles (100–250 nm) indicates the successful purification. The dilution of 

UCNPs during purification was also measured by NTA. A dilution factor of 10.5 ± 3.6 was 
calculated from three independent purification experiments. 

The label homogeneity was further investigated by immobilizing SA-PEG-Ner-UCNPs on a 

microtiter plate coated with biotinylated BSA (BSA-biotin) and detecting them individually 
under the upconversion microscope. The non-purified conjugate exhibited a peak of the 

brightness distribution at 179 a.u. per diffraction-limited spot and a coefficient of variation 

(CV) of 87% (Figure 3C). After purification, the peak brightness slightly decreased to 163 
a.u. and the labels were more homogeneous (CV: 66%, Figure 3D). The removal of larger 

aggregates is evident from the absence of peaks above 600 a.u. Detailed microscopy images 
are shown in Figure S3. 
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Figure 3: (A) TEM image of oleic acid-capped UCNPs; B) UCNP size distribution evaluated by TEM 
(average diameter: 44.2 nm; FWHM 4.0 nm). Brightness distribution of C) non-purified and D) purified 
SA-PEG-Ner-UCNPs; the insets show the upconversion microscopy images. Functional 
characterization of E) non-purified and F) purified conjugate in a BSA-biotin ULISA assay. The error 
bars correspond to standard deviations of three independent microtiter plate wells. 

 

The BSA-biotin microtiter plate assay was further used for the functional characterization of 
the different nanoconjugates. Blocking with 10% SuperBlock yielded higher specific signals 

than BSA blocking, especially at low BSA-biotin coating concentrations. This effect was 

independent of the UCNP label concentration (Figure S4). As the background signal of non-
specific binding was in both negligible, 10% SuperBlock was chosen for all further 

experiments. Both non-purified (Figure 3E) and purified (Figure 3F) SA-PEG-Ner-UCNPs 
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(Figure 2A) enabled specific binding to BSA-biotin with low levels of non-specific binding. 
The purification had no significant effect on the signal-to-background ratio (S/B), which 

increased with label concentration from ~6× at 0.35 μg/mL SA-PEG-Ner-UCNP to 566× at 35 

μg/mL SA-PEG-Ner-UCNP. Alendronate and a longer PEG (Figure 2B) were used to 
conjugate streptavidin to the surface of UCNPs via copper-free click chemistry (strain-

promoted BCN). Compared to the SA-PEG-Ner-UCNP, the alendronate-based conjugate 

resulted in a 5–10-fold lower S/B in the BSA-biotin assay (increasing from 1.1× for 0.07 μg/mL 
to 12.4 for 7 μg/mL). This can be explained by a lower amount of reactive PEG linker and, 
therefore, less streptavidin, which leads to a smaller change of the hydrodynamic diameter 

after conjugation (Figures S5 and S6). SA-BSA-UCNP conjugates (Figure 2C) were prepared 
based on larger Er3+-doped UCNPs with a hexagonal prism shape covered by a carboxylated 

silica layer. Gradient centrifugation had almost no effect on the hydrodynamic diameter, 

indicating a highly uniform conjugate preparation, and further experiments were performed 
with the non-purified SA-BSA-UCNP sample. Single-particle microscopy confirmed the 

highly uniform sample preparation (CV: 43%). In the BSA-biotin microtiter plate assay, the 

conjugate provided a high S/B of ~100× for all label concentrations (Figure S7). The results 
of all three UCNP nanoconjugates are summarized in Table 1. The SA-FAM conjugate was 

also characterized by the BSA-biotin microtiterplate assay (Figure S8). Due to the generally 

higher background of fluorescence, lower S/B were observed, however, the general trend of 
improvement with the increasing label concentration remained (from 5× for 0.4 µg/mL to 10× 
for 400 µg/mL). 
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Table 1: Characterization of UCNP labels. 

Label SA-PEG-Ner-UCNP SA-PEG-Alen-UCNP 

(Figure S5 and S6) 

SA-BSA-UCNP 

(Figure S7) 

UCNP NaY0.80Yb0.18Tm0.02F4 NaY0.895Yb0.100Er0.005F4 

Diameter 

(TEM / DLS) 

44.2 ± 4.0 nm / 88.7 nm (PDI 0.264) height 80.5 ± 4.7 nm; 

diameter 105.6 ± 4.3 nm 24 

/ 126.6 nm (PDI 0.008) 

SA-UCNP-

conjugate 

Before 

purification 

After 

purification 

Before 

purification 

After 

purification 

Before 

purification 

After 

purification ⌀HD (DLS) 141.7 nm 

(PDI 0.234) 

78.7 nm 

(PDI 0.187) 

106.2 nm 

(PDI 0.143) 

91.7 nm 

(PDI 0.201) 

142.4 nm 

(PDI 0.074) 

135.0 nm 

(PDI 0.128) 

Single-

particle 

microscopy a 

179 a.u. 

CV 87% 

163 a.u. 

CV 66% 

186 a.u. 

CV 99% 

193 a.u. 

CV 70% 

126 a.u. 

CV 43% 

n.d. 

a peak of intensity distribution; the exposure times were adjusted to account for the different brightness 

of Tm3+ and Er3+-doped UCNPs 

 

ICC based on UCNP Labels 

The HER2 antigen expressed on the surface of BT-474 cells was labeled with different UCNP 

conjugates. DAPI (blue emission) served as a counterstain for visualizing the nucleus. 

Figure S9 shows microscope images after labeling with the SA-BSA-UCNP conjugate. Due 
to the relatively large UCNP size (~90 nm), individual labels are visible (z-scan experiment is 

shown in Figure S10), but the overall S/B was only 2. This may be explained by two effects: 

(i) the carboxylated silica shell is not completely shielded by the BSA and leads to non-specific 
binding, and (ii) the BSA can also contribute to the non-specific binding. This finding is in 

agreement with the testing of the nanoparticle dilution buffer. In both cases, the presence of 

BSA (either in the buffer or on the nanoparticle surface) led to the increase of the non-specific 
binding. 

In order to avoid the use of serum proteins for ICC staining and reduce the label size, we 
developed conjugates based on smaller UCNPs (44 nm). The oleic acid on the as-synthesized 

UCNPs was replaced by PEG-alendronate via a ligand exchange reaction, and streptavidin was 

subsequently bound by a copper-free click reaction (SA-PEG-Alen-UCNP). The microscope 
images (Figure S11), however, show that this label did not only bind to HER2 on the cell 
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surface but also stained the nucleus as evident from the overlapping DAPI and upconversion 
channels. In general, the S/B was low (5 at a label concentration of 7 μg/mL and 2 at a label 
concentration of 35 μg/mL). 

The third label was also based on 44 nm UCNPs but conjugated to PEG-neridronate and 

attached to streptavidin via copper-mediated click chemistry (SA-PEG-Ner-UCNP). A label 

concentration of 35 μg/mL improved the S/B to 29 compared to a concentration of 7 μg/mL 
(S/B 6) (Figure S12). Individual bright spots in the images of the negative control, however, 

indicated that aggregated labels deposited on the sample and had a negative impact on the S/B. 

Therefore, we removed such aggregates by sucrose gradient centrifugation (Table 1). 
Furthermore, the SA-PEG-Ner-UCNP labeling efficiency strongly depended on the blocking 

conditions. Both 10% SuperBlock (SB assay buffer) and BSA/BGG assay buffer allowed for 

a clear distinction between specific labeling of HER2-positive BT-474 cells and respective 
control experiments without primary antibody (Figure S13). The SB assay buffer, however, 

reduced the non-specific binding much more efficiently, and slightly improved the specific 

signal, which increased the S/B from 23 to 319 (Figure S13C, F; with enhanced contrast of 
the upconversion background image in Figure S14). We assume that serum proteins of the 

BSA/BGG buffer led to a higher degree of non-specific binding in ICC, which is different from 
the optimal blocking conditions for immunoassays in a microtiter plate format.25 
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Figure 4: SA-PEG-Ner-UCNP labeling of HER2-positive FFPE BT-474 cells: A) DAPI channel, 
B) upconversion channel, C) overlay. Negative control (without primary antibody): D) DAPI channel, 
E) upconversion channel, F) overlay. G) Upconversion scan of the cell pellets; H) average 
upconversion intensities. The error bars indicate the standard deviations of intensities in the cell pellet. 

 

Figure 4 shows microscope image sections (full images are shown in Figure S15) and 
upconversion scans of BT-474 cell pellets labeled with purified SA-PEG-Ner-UCNP in an 

optimal concentration of 35 μg/mL and under optimal blocking conditions. The circle around 

the cell pellet in Figure 4G shows the hydrophobic marking of the PAP pen, which leads to 
some non-specific label adsorption. The area where the cells were inspected, however, was not 

affected. Furthermore, there was no overlap between the green (upconversion) and the blue 

(DAPI) channel, confirming that SA-PEG-Ner-UCNPs did not bind to DNA. The thickness of 
the cell pellets did not allow for focusing all cells in a single image. Focusing on different z 

positions (± 1.6 µm) in the same cell section (Figure S16) confirmed that image blurring was 

a result of the shallow depth of field but independent of the labels. We then compared the 
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HER2-positive FFPE cells to HER2-negative FFPE cells under the same experimental 
conditions using the SA-PEG-Ner-UCNP label. Upconversion scanning resulted in 40× lower 

specific signals on HER2-negative MDA-MB-231 cells than on HER2-positive BT-474 cells. 

Essentially no signal was visible, neither in the microscopy images nor in the upconversion 
scans (Figure S17).  

We have also demonstrated that upconversion-based HER2-labeling is compatible with H&E 
staining (Figure S18). In ICC experiments, H&E staining of the BT-474 FFPE cells did not 

interfere with the upconversion signal acquisition, which indicates that both procedures are 

well compatible and are applicable to IHC experiments where H&E staining is a standard 
procedure. HER2-positive tumor tissue sections were then labeled with SA-PEG-Ner-UCNPs 

to show their performance in IHC experiments. There was a 12× difference between images 

taken with and without primary antibody (Figure S19). The lower S/N compared to the 
cultured cell lines can be explained by the more heterogeneous composition of tumor tissues 

which contain healthy cells as well as various types of tumor cells and thus display different 
HER2 expression levels.  

To confirm that the efficiency of SA-PEG-Ner-UCNP labeling is independent of the cell 

preparation, we cultivated the BT-474 cell line as well as two HER2-negative cell lines, MDA-
MB-231 and MCF-7, in-house (Figure 5; individual detection channels shown in Figure S20). 

While HER2-positive BT-474 cells again showed a very high degree of specific labeling, very 

low upconversion signals were detected on the two HER2-negative cell lines. A slightly higher 
HER2 expression on MCF-7 cells compared to MDA-MB-231 cells was reported in the 

literature.36 The average signal intensities of the cultivated cells were three times lower 

compared to the FFPE cells because of the lower cell density in the detection area. The results 
of all labeling experiments are summarized in Table 2. 
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Figure 5: SA-PEG-Ner-UCNP labeling of cultivated breast cancer cell lines. Overlay images (DAPI 
and upconversion channels) of A) BT-474 cells, B) MCF-7 cells, and C) MDA-MB-231 cells. 
D) Upconversion scan of the cell pellets; E) average upconversion intensities. The error bars indicate 
the standard deviation of three independent cell pellets slides. 

Table 2: Summary of histological labeling results. 

Cell line 
HER2 

expression37 

Cell 

preparation 

SA-PEG-Ner-UCNP SA-FAM 

UCL (× 103 a.u.) ratio Fluor. (× 103 a.u.) ratio 

BT-474 3+ 

FFPE 680 ± 210 
319 a 

91 ± 10 
6.1 a 

FFPE, no Ab 2 ± 5 14.9 ± 1.3 

Cell culture 220 ± 21 – 25 ± 7 – 

MCF-7 0–1+ Cell culture 2.2 ± 0.4 100 b 7.8 ± 1.7 3.2 b 

MDA-MB-231 0–1+ Cell culture 0.98 ± 0.11 223 c 6.36 ± 0.12 3.9 c 

a Signal to background (S/B, no primary antibody) 
b Ratio of HER2 positive BT-474 cell culture to HER2 negative MCF-7 cell culture 
c Ratio of HER2 positive BT-474 cell culture to HER2 negative MDA-MB-231 cell culture 



Research Article 3 

VIII-196 
 

ICC Based on Fluorescent Labels 

To compare the UCNP label performance with standard fluorescence labeling, FFPE cells 
(Figure 6) and cell cultures (Figures S21 and S22) were labeled with a fluorescent SA-FAM 

conjugate. Both the specific and the non-specific signal increased at higher concentrations of 

SA-FAM, and the S/B improved from 4 at a label concentration of 1 µg/mL to 6 at 10 µg/mL 
(Figure S23). Fluorescent labeling, however, always resulted in a relatively high background 

signal (FFPE cells: Figure 6K and Figure S24 shows the fluorescence background of the 

image with enhanced contrast; cell cultures: Figure S21E), which can be explained by cellular 
autofluorescence, cross-talk between the detection channels and non-specific binding of the 

SA-FAM conjugate. The bright circles in the fluorescence scan (Figure 6G–J) indicate the 

autofluorescence of the PAP pen marking, but did not affect the analysis of the cell pellet. SA-
FAM labeling resulted in a maximum S/B of only 6.1. The results of the fluorescence labeling 

experiments are summarized in Table 2. The superior performance of the SA-PEG-Ner-UCNP 

label (S/B 319) is clearly evident from a 50-fold wider dynamic range of upconversion 
measurements, which enables a much finer distinction between HER2-expression levels on 

different cancer cell lines. We have also compared the photostability of the SA-PEG-Ner-

UCNPs with the SA-FAM (Figure S25). The signal of SA-FAM decreased by 59% over a 20-
min observation interval. By contrast, the signal of the UCNP labels was stable over the same 

time period and even increased slightly because the drying sample resulted in a lower 

quenching effect of the upconversion luminescence by water. Finally, the use of UCNP-based 
labels avoids the risk of photoconversion of DAPI, which can result in significant interferences 
for the readout in fluorescein channel.38 
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Figure 6: Fluorescence SA-FAM labeling of HER2-positive FFPE BT-474 cells: A) DAPI channel, B) 
fluorescein channel, C) overlay. Negative control (without primary Ab): D) DAPI channel, E) 
fluorescein channel, F) overlay. Fluorescence intensity scans of G) specific labeling, H) negative 
control (no primary antibody), I) incubation with DAPI only, and J) autofluorescence. K) Average 
fluorescence intensities measured in the cell pellets. The error bars indicate standard deviations of 
intensities in the cell pellets. 
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VIII.5. Conclusions 

We have prepared and characterized three types of streptavidin-UCNP conjugates to evaluate 

their labeling performance in ICC as compared to conventional fluorescence labeling. The 

design of the nanoparticle surface architecture and blocking conditions were essential for an 
efficient ICC procedure. PEG-coated UCNPs showed lower levels of non-specific binding than 

BSA-coated labels (SA-BSA-UCNP). Similarly, a blocking buffer composition without serum 

proteins further reduced the level of non-specific binding. HER2-positive BT-474 cells showed 
the highest specific signals after labeling with SA-PEG-Ner-UCNPs and extremely low 

background interference as observed by wide-field upconversion microscopy as well as 

upconversion scanning (S/B 319). By contrast, conventional fluorescence labeling only 
achieved an S/B of 6. Consequently, the optimized SA-PEG-Ner-UCNP labeling protocol 

resulted in a 50-fold wider dynamic range than fluorescence labeling, which allows for a much 

finer distinction between HER2-expression levels. The absence of optical background 
interference under 980 nm excitation in combination with extremely low levels of non-specific 

binding clearly demonstrate the potential of UCNPs as alternative labels in ICC and IHC. The 

high S/B is a great advantage especially for computer-based data evaluation in digital 
pathology. Without cross-talk between fluorescence channels, UCNP labeling can readily be 
combined with H&E staining for multiplexed applications. 
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VIII.7. Supporting Information  

Materials and Methods 

Chemicals and Reagents 

Alendronate (pharmaceutical grade), neridronate, 5-azidopentanoic acid (APA), (1R,8S,9s)-
bicyclo[6.1.0]non-4-yn-9-ylmethyl N-succinimidyl carbonate (BCN-NHS), 5(6)-

carboxyfluorescein (FAM), 5-carboxyrhodamine N-succinimidyl ester (Rh-NHS), nitrosyl 

tetrafluoroborate (NOBF4), bovine γ-globulin (BGG), bovine serum albumin (BSA), 
biotinylated BSA (BSA-biotin), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC), N-

hydroxysulfosuccinimide sodium salt (sulfo-NHS), copper(II) sulfate pentahydrate, L-ascorbic 

acid sodium salt, DAPI, Tween 20, and 2-(N-morpholino)ethanesulfonic acid (MES) were 
purchased from Merck  (Germany). Dry dimethylformamide (DMF), streptavidin, and 

SuperBlock TBS (SB) were obtained from Thermo Fisher Scientific (USA). Streptavidin-azide 

was obtained from 7 Bioscience (Germany). α-N-hydroxysuccinimide-ω-alkyne polyethylene 
glycol (MW 3000, Alkyne-PEG-NHS) was purchased from Iris Biotech (Germany). α-amino-

ω-carboxy polyethylene glycol (MW 5000, NH2-PEG-COOH) was purchased from Rapp 

Polymere (Germany). Poly(vinyl alcohol) (PVA; 6 kDa) was purchased from Polysciences 
(USA). All other common chemicals were obtained in the highest quality available from Merck 

or Carl Roth (Germany). Dialysis buffer consisted of 100 mM H3BO3, 80 mM Na2CO3, pH 
9.4. 

Synthesis and Conjugation of UCNPs 

Synthesis of UCNPs 

YCl3 ·  6 H2O (728 mg, 2.1 mmol), YbCl3 ·  6 H2O (209 mg, 0.54 mmol), and TmCl3 ·  6 H2O 

(23 mg, 0.06 mmol) were dissolved in methanol (20 mL) and added into a 100-mL three-neck 

round-bottom flask containing oleic acid (9 g) and 1‐octadecene (19.7 g). The solution was 
heated to 160 °C for 30 min under an N2 atmosphere and then cooled to 50 °C. Then, the 

protective atmosphere was disconnected, and the solution of NH4F (445 mg, 12.0 mmol) and 

NaOH (300 mg, 7.5 mmol) in methanol (20 mL) was added to the intensively stirred solution. 
The N2 atmosphere was reconnected, and the solution was stirred for 30 min. The temperature 

was carefully increased up to 150 °C, avoiding extensive boiling to ensure the evaporation of 

methanol. After that, the solution was rapidly heated using the rate of ~10 °C per minute. At 
300 °C, the heating was carefully regulated to 305 °C within two or three minutes. The flask 

was kept under N2 flow at 305 °C for 150 min. The fluctuation of temperature was ± 3 °C 

during this time. Finally, the flask was placed on another stirrer and rapidly cooled to room 
temperature under air flux. The resulting nanoparticles were precipitated by adding 

isopropanol (30 mL) and collected by centrifugation (1,000 g, 10 min). The pellet was washed 
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with methanol (30 mL), centrifuged (1,000 g, 10 min), and dispersed in cyclohexane (20 mL). 
By adding methanol (100 mL), the nanoparticles precipitated rapidly without the need for 

centrifugation. The precipitate was dispersed in cyclohexane (30 mL) and slowly centrifuged 
(50 g, 20 min) to separate coarse particles from the final product.1 

Preparation of SA-PEG-Alen-UCNP Conjugate 

NH2-PEG-COOH (MW = 5000, 32 mg, 3.2 mM) was dissolved in 2 mL PBS (0.1 M, pH 7.4) 

followed by the addition of BCN-NHS in DMF (40 µL, 5.54 mg, 475 mM). The reaction 

mixture was incubated at 4 °C overnight. The resulting BCN-PEG-COOH was dialyzed for 48 
h in a Float-A-Lyzer dialysis device (MWCO = 500–1000 Da) against ddH2O (1.8 L, 6× 

exchanged) at 4 °C and 24 h against MES buffer (100 mM, 0.5 M NaCl, pH 6.0, 200 mL, 3× 

exchanged). The purified BCN-PEG-COOH was activated by the addition of EDC (12 mg, 8 
mM) and sNHS (20 mg) for 15 min. Alendronate (5 mg) dissolved in NaOH (1 M, 50 µL) was 

added to the activated PEG linker, incubated 4 h at room temperature, and then overnight at 4 

°C. The resulting BCN-PEG-Alen was dialyzed 72 h in a Float-A-Lyzer dialysis device 
(MWCO = 500–1000 Da) against ddH2O (2× exchanged per day). The purified product was 
stored at 4 °C.2 

For the preparation of SA-PEG-Alen-UCNPs, oleic acid capped UCNPs (10 mg) in 

cyclohexane were mixed with an equivalent amount of DMF, followed by the addition of 

NOBF4 (approx. 1 mg per mg UCNPs). UCNPs were incubated for 20 min at 30 °C while 
shaking. The cyclohexane phase was removed, and the particles precipitated by adding an 

excess of chloroform. UCNPs were purified by centrifugation (1000 g, 5 min), redispersed in 

DMF, precipitated with chloroform and separated by centrifugation (1000 g, 5 min). An 
aqueous solution of BCN-PEG-Alen (750 µL, 16 mg/mL) was added to the UCNP pellet 

followed by 1 min sonication and 24 h incubation at room temperature. BCN-PEG-Alen-

UCNPs were dialyzed for 48 h against Tris/borate (200 mL, 50 mM Tris, 50 mM borate, pH 
8.6, 6× exchanged) in a Float-A-Lyzer G2 dialysis device (MWCO = 100 kDa).  

For the preparation of SA-PEG-Alen-UCNPs, streptavidin azide (1 mg/mL. 100 µL) was added 
to a dispersion of BCN-PEG-Alen-UCNPs (10 mg, 750 µL) in Tris/borate buffer and the 

mixture was dialyzed in a Float-A-Lyzer G2 dialysis device (MWCO = 500-1000 Da) 

overnight against MES (250 mL, 100 mM, pH 4.5, 3× exchanged). For purification, the 
mixture was dialyzed in Float-A-Lyzer G2 (MWCO = 100 kDa) for 48 h at 4 °C against 500 

mL of TBS (1 mM KF, 0.05% NaN3, 6× exchanged). The purified SA-PEG-Alen-UCNPs were 
stored at 4 °C. 
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Preparation of SA-BSA-UCNP Conjugate 

The SA-BSA-UCNP conjugates were prepared according to our previous work.3 In the 
synthesis, click-reactive BSA-alkyne conjugate was first prepared and bound to carboxylated 

silica-coated UCNPs,4 followed by copper-free click reaction with click-reactive streptavidin-
azide. 

To prepare the fluorescent click-reactive BSA-alkyne conjugate, 2.92 mg of BCN-NHS was 

dissolved in 20 μL of DMF and mixed with 1.72 mg of Rh-NHS dissolved in 100 μL of DMF. 
Afterward, the solution was mixed with 1880 μL of dialysis buffer with 132 mg of BSA for 4 
h. The conjugate was dialyzed four times overnight against 500 mL of dialysis buffer. 

For the preparation of click-reactive UCNPs, 1 mg of carboxylated UCNPs was centrifuged 

(1700 g, 10 min) and redispersed in 200 μL of 100 mM sodium MES, 30 mM Na2CO3, pH 6.0 

with 0.4 mg of EDC and 0.2 mg of sulfo-NHS and the dispersion was sonicated for 10 min. 
Afterwards, the activated UCNPs were centrifuged (3300 g, 1 min) and immediately 

redispersed in 200 μL of 100 mM sodium MES, 30 mM Na2CO3, pH 6.0 containing 0.5 mg of 

BSA-alkyne. After 90 min of mixing at room temperature, the UCNP-BSA-alkyne conjugate 
was centrifuged and redispersed five times in 50 mM Tris with 50 mM H3BO3 pH 8.6 (1700 
g, 15 min, 200 μL of buffer). 

To prepare fluorescent click-reactive streptavidin-azide, free carboxyl groups of APA and 

FAM were first activated using EDC/sulfo-NHS chemistry. The 1.4 mg of APA was dissolved 

in 100 μL of DMF and mixed with 100 μL of 100 mM sodium MES, pH 6.1 containing 3.8 mg 
of EDC and 4.3 mg of sulfo-NHS and the solution was shaken for 1 h at room temperature. 

The 1.5 mg of FAM was dissolved in 100 μL of DMF and mixed with 400 μL of 100 mM 
sodium MES, pH 6.1 containing 15 mg of EDC and 3.5 mg of sulfo-NHS. After 1 h of reaction, 
50 μL of activated FAM and 20 μL of activated APA solutions were mixed together with 5.2 
mg of streptavidin dissolved in 60 μL of dialysis buffer. The solution was mixed for 4 h at 
room temperature, followed by five times overnight dialysis against 500 mL of dialysis buffer.5 

To perform the copper-free click-conjugation reaction, 1 mg of click-reactive UCNP-BSA-

alkyne was centrifuged (1700 g, 15 min), and the pellet was redispersed with 2.5 mg of click-
reactive streptavidin-azide in 500 μL of dialysis buffer. The solution was dialyzed four times 
overnight against 250 mL of 100 mM sodium MES, pH 4.5. The change of pH enabled 

electrostatic attraction of the UCNPs with streptavidin and allowed an efficient click-
conjugation. The final SA-BSA-UCNP conjugates were centrifuged (1700 g, 15 min), 

redispersed in 50 mM Tris, 50 mM H3BO3, pH 8.6 to a final concentration of 5 mg/mL and 
stored at 4 °C.6 
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Characterization of UCNPs and their Conjugates 

Transmission Electron Microscopy 

A 6 µL droplet of oleic acid-capped UCNPs dispersed in cyclohexane was placed on a 400-

mesh copper EM grid coated with a continuous carbon layer and incubated at room temperature 
for 5 min. Afterwards, the droplet was removed, and the adsorbed particles on dried grids were 

imaged by transmission electron microscope Tecnai F20 (FEI, Czech Republic). The 

dimensions of individual particles were analyzed using ImageJ imaging software (National 
Institutes of Health, USA).7 

Emission Spectra Measurement 

Emission spectra were measured in an Aminco Bowman 2 spectrofluorometer (SLM Aminco, 

USA) using a 980 nm continuous-wave laser excitation (4 W) that was fiber-coupled into the 
device in a 90° angle to the detector. A UCNP dispersion (1 mg/mL, 500 µL) in cyclohexane 

was transferred into a fused silica cuvette, and the high voltage of the detector was adjusted to 

prevent detector saturation. The emission spectra were measured in 2 nm steps from 300 to 
950 nm and a scan rate of 2 nm/s. 

Dynamic Light Scattering and Nanoparticle Tracking Analysis 

The hydrodynamic diameters of UCNPs and conjugates were determined by DLS using 

Zetasizer Nano ZS (Malvern, UK). The dispersion of 7 µg/mL of oleic acid capped UCNPs (in 
cyclohexane) and bioconjugate (in TBS) was used for the characterization.  

The concentration of the conjugate and hydrodynamic properties were also studied using NTA. 
The dispersion of UCNPs in TBS buffer was injected into the measurement cell of the 

NanoSight NS300 (Malvern, UK), and the tracking was performed at 25 °C as three cycles per 
60 s. 

Single-Particle Upconversion Microscopy 

Single-particle upconversion microscopy was used to evaluate the intensity distribution of the 

conjugates. No. 1 glass cover slips (1.5 × 1.5 cm2) were cleaned by piranha solution (3:1 

mixture of concentrated sulfuric acid and 30% hydrogen peroxide; 20 min), washed with 
deionized water and modified by cationized bovine serum albumin (cBSA; 200 µL, 20 min). 

After washing with deionized water, the slide was incubated with UCNPs (0.7 µg/mL) for 20 
min, washed again with deionized water, and dried with nitrogen.8 

The cover slips were mounted with glycerol and imaged using an upconversion microscope 

with 40× objective. The images were taken with 5 s exposure time, and the mean intensities of 
the individual UCNPs were determined in the microscope software (NIS elements, Nikon) by 
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placing regions of interest (ROIs) of identical sizes over the luminescent spots. Mean 
intensities of 400 randomly selected UCNPs were measured and background corrected, 
frequency count was performed, and the data were arranged in a histogram. 

LC-MS/MS Analysis 

The successful conjugation of streptavidin to the surface of UCNPs was further verified by 
LC-MS/MS. The samples of conjugate (100 µL, 3.5 mg/mL) were washed twice by 200 µL of 

50 mM ammonium bicarbonate buffer (AB), followed by resuspending in 15 µL of AB. The 

proteins were digested by trypsin (1 µg) for 2 h at 37 °C. Afterward, the UCNPs were removed 
by centrifugation (14,000 g, 10 min) and the resulting peptides were extracted using 

acetonitrile (addition of acetonitrile was followed by vortexing of the sample and evaporation 
of acetonitrile by rotary evaporator to a final volume of 15 µL).3 

The LC-MS/MS analysis was performed using RSLCnano with a Q-TOF detector (Thermo 

Fisher Scientific, USA). The 65-min LC gradient was used for LC-MS analyses; MS and 
MS/MS spectra were recorded in a time of flight analyzer (TOF). The MS/MS data were 

processed using Proteome Discoverer software (version 1.4; Thermo Fisher Scientific, USA). 

The search engine Mascot (version 2.6; Matrix Science, USA) was used to search the cRAP 
contaminant database (version 181122; The Global Proteome Machine Organization), which 

contains 112 protein sequences, including the target sequence of streptavidin (P22629-cRAP). 

Peptide confidence was assessed based on Mascot expectation value, only peptides with high 
confidence value (p < 0.01) were considered for final data evaluation. 

Testing of Conjugate Functionality in BSA-Biotin Assay 

A 96-well microtiter plate (μClear, high binding, Greiner Bio-One, Austria) was coated with 

100 μL of BSA-biotin in coating buffer (50 mM NaHCO3/Na2CO3, 0.05% NaN3, pH 9.6) at 4 

°C overnight. Afterwards, the plate was washed four times with 250 μL of washing buffer and 
blocked for 1 h with 200 μL of concentrated SuperBlock with 0.05% Tween 20. After four 

washing steps, 100 μL of the UCNP conjugate sample was added and incubated for 1 h. Finally, 
the plate was washed four times and allowed to dry.9 

The readout was performed using Hidex Chameleon reader. Each well was scanned in a 

rectangular grid of 8 × 8 pixels with 1 s exposure time per pixel and a scanning step size of 
0.1 mm. The truncated average of the luminescence intensities was calculated, excluding the 

16 highest and the 16 lowest values. Averages and standard deviations were calculated from 
the truncated averages of three independent wells.10 

The immunoassay for the testing of the SA-FAM was performed using the same experimental 

conditions, except switching the UCNP conjugate for SA-FAM conjugate. The readout was 
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performed using Labrox reader. Each well was scanned in the grid of 8 × 8 pixels, with an 
exposure time of 500 ms and step size 0.1 mm. The data evaluation was performed in the same 
way as in the case of upconversion scans. 

Preparation of Fluorescent Streptavidin 

The 1.5 mg of FAM was dissolved in 100 μL of DMF and mixed with 400 μL of 100 mM 
sodium MES, pH 6.1 containing 15 mg of EDC and 3.5 mg of sulfo-NHS. After 1 h of reaction, 

50 μL of activated FAM was mixed with 20 μL of MES buffer and 5.2 mg of streptavidin 
dissolved in 60 μL of dialysis buffer. The solution was mixed for 4 h at room temperature, 
followed by five times overnight dialysis against 500 mL of dialysis buffer.3, 5 
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Results and Discussion 

Characterization of Labels 

 

Figure S1: Upconversion luminescence spectrum of Tm3+-doped UCNPs under 980 nm excitation. 

 

 

Figure S2: A) DLS of oleic acid-capped UCNPs in cyclohexane, SA-PEG-Ner-UCNP conjugate in 
Tris buffer and purified SA-PEG-Ner-UCNP conjugate in Tris buffer. B) NTA of non-purified and 
purified SA-PEG-Ner-UCNP conjugate. 
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Table S1: Proteins found in the SA-PEG-Ner-UCNP conjugate by LC-MS/MS. 

Protein 

family 

Accession ID Description Score Num. of 

sequences 

emPAI 

1 P22629-cRAP Streptavidin (cRAP) OS=Streptomyces 

avidinii PE=1 SV=1 
4522 6 a 1.46 

2 P04264-cRAP Keratin, type II cytoskeletal 1 (cRAP) 
OS=Homo sapiens GN=KRT1 PE=1 
SV=6 

1321 19 1.30 

3 P35527-cRAP Keratin, type I cytoskeletal 9 (cRAP) 
OS=Homo sapiens GN=KRT9 PE=1 
SV=3 

840 18 1.32 

4 iRT-fusion-cRAP iRT Kit Fusion - real (cRAP) 501 9 4.88 
5 P00761-cRAP Trypsin (cRAP) OS=Sus scrofa PE=1 

SV=1 
464 4 0.6 

6 Q8N1N4-cRAP Keratin, type II cytoskeletal 78 
(cRAP) OS=Homo sapiens 
GN=KRT78 PE=2 SV=2 

76 3 0.17 

7 P02662-cRAP-B6E Alpha-S1-casein (cRAP-B6E) 
OS=Bos taurus GN=CSN1S1 PE=1 
SV=2 

54 1 0.12 

8 P15252-cRAP Rubber elongation factor protein 
(cRAP) OS=Hevea brasiliensis PE=1 
SV=2 

50 1 0.21 

9 P02769-cRAP-B6E Serum albumin (cRAP-B6E) OS=Bos 

taurus GN=ALB PE=1 SV=4 
37 2 0.09 

10 Q5D862-cRAP Filaggrin-2 (cRAP) OS=Homo sapiens 
GN=FLG2 PE=1 SV=1 

29 1 0.01 

11 Q02413-cRAP Desmoglein-1 (cRAP) OS=Homo 

sapiens GN=DSG1 PE=1 SV=2 
22 1 0.03 

a Protein sequence coverage: 44%. 
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Figure S3: Upconversion microscopy images of A) non-purified and B) purified SA-PEG-Ner-UCNP 
conjugates. 

 

 

Figure S4: Functional characterization of the SA-PEG-Ner-UCNP conjugate in the BSA-biotin ULISA 
assay. A) Optimization of blocking conditions with UCNP label in concentration of 35 μg/mL, SB – 
10% SuperBlock in Tris buffer, BSA – 1% BSA in Tris buffer. B) Optimization of SA-PEG-Ner-UCNP 
label dilution and buffer, SB – 10% SuperBlock in Tris, AS – assay buffer. The error bars correspond 
to the standard deviation of three wells. 
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Figure S5: DLS of oleic acid-capped UCNPs in cyclohexane, SA-PEG-Alen-UCNP in Tris buffer, and 
purified SA-PEG-Alen-UCNP conjugate in Tris buffer. 

 

 

Figure S6: Characterization of the SA-PEG-Alen-UCNP conjugate. Brightness distribution of A) non-
purified and B) purified conjugate. The insets show the upconversion microscopy images. Functional 
characterization of C) non-purified and D) purified conjugates in BSA-biotin assay. The error bars 
correspond to the standard deviation of three wells. 
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Figure S7: A) TEM image of silica-coated Er3+-doped UCNPs; B) upconversion luminescence 
spectrum (980 nm excitation) of silica-coated UCNPs; C) DLS of silica-coated UCNPs, SA-BSA-
UCNP conjugate, and purified SA-BSA-UCNP conjugate. D) Upconversion microscopy image of non-
purified SA-BSA-UCNP conjugate, and E) brightness intensity distribution. F) Functional 
characterization of SA-BSA-UCNP conjugate in BSA-biotin assay. The error bars correspond to the 
standard deviation of three wells. 

 

Figure S8: Binding of the streptavidin-carboxyfluorescein (SA-FAM) conjugate to BSA-biotin 
adsorbed on the surface of microtiter plate. The error bars correspond to the standard deviation of three 
wells.  
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ICC based on UCNP Labels 

 

Figure S9: ICC staining of HER2-positive FFPE cells using SA-BSA-UCNP conjugate: A) DAPI 
channel, B) upconversion channel, C) overlay. Negative control: D) DAPI, E) upconversion, F) 
overlay. G) Upconversion scan of the cell pellets; H) average upconversion intensities. The error bars 
correspond to the standard deviations of intensities in the cell pellet. 
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Figure S10: ICC staining of HER2-positive cells measured SA-BSA-UCNP label measured at three 
focus heights. Focus +1.6 μm: A) DAPI, B) upconversion, C) overlay. Focus 0 μm: D) DAPI, E) 
upconversion, F) overlay. Focus −1.6 μm: G) DAPI, H) upconversion, I) overlay. 
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Figure S11: The effect of SA-PEG-Alen-UCNP label concentration on ICC staining of BT-474 cells. 
Overlay images (DAPI and upconversion channels) of label in the concentration of 35 μg/mL in A) 
specific binding and B) negative control. Upconversion scan of the cell pellet for C) specific binding 
and D) negative control; E) average upconversion intensities. Overlay images of label in the 
concentration of 7 μg/mL in F) specific binding and G) negative control. Upconversion scan of the cell 
pellet for H) specific binding and I) negative control; J) average upconversion intensities. The error 
bars correspond to the standard deviations of intensities in the cell pellet. 
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Figure S12: The effect of non-purified SA-PEG-Ner-UCNP label concentration on ICC staining of 
BT-474 cells. Overlay images (DAPI and upconversion channels) of label in the concentration of 35 
μg/mL in A) specific binding and B) negative control. Upconversion scan of the cell pellet for 
(C) specific binding and D) negative control; E) average upconversion intensities. Overlay images of 
label in the concentration of 7 μg/mL in F) specific binding and G) negative control. Upconversion 
scan of the cell pellet for H) specific binding and I) negative control; J) average upconversion 
intensities. The error bars correspond to the standard deviations of intensities in the cell pellet. 
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Figure S13: The effect of blocking conditions on ICC staining of BT-474 cells using SA-PEG-Ner-
UCNPs. Overlay images (DAPI and upconversion) of cells blocked by SuperBlock: A) specific 
binding, B) negative control, C) negative control with enhanced contrast; and by BSA/BGG assay 
buffer: D) specific, E) negative, F) negative with enhanced contrast. G) Upconversion scan of the cell 
pellets, SB – SuperBlock, AS – assay buffer; H) average upconversion intensities. The error bars 
correspond to standard deviations of intensities in cell pellet. 
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Figure S14: The effect of blocking conditions on the negative control (without primary antibody) in 
ICC staining of BT-474 cells blocked by SuperBlock: A) DAPI channel, B) upconversion channel with 
enhanced contrast, C) Overlay; and BSA/BGG buffer D) DAPI, E) upconversion, F) overlay. 
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Figure S15: ICC staining of HER2-positive FFPE cells using SA-PEG-Ner-UCNPs: A) DAPI channel, 
B) upconversion channel, C) overlay. Negative control: D) DAPI, E) upconversion, F) overlay. 
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Figure S16: ICC staining of HER2-positive cells measured using SA-PEG-Ner-UCNPs measured at 
three focus heights. Focus +1.6 μm: A) DAPI, B) upconversion, C) overlay. Focus 0 μm: D) DAPI, E) 
upconversion, F) overlay. Focus −1.6 μm: G) DAPI, H) upconversion, I) overlay. 
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Figure S17: ICC staining of HER2-positive BT-474 cells and HER2-negative MDA-MB-231 cells 
using SA-PEG-Ner-UCNP label. BT-474 cells: A) DAPI channel, B) upconversion channel, 
C) overlay. MDA-MB-231 cells: D) DAPI channel, E) upconversion channel, F) overlay. 
G) Upconversion scan of the cell pellets; H) average upconversion intensities. The error bars 
correspond to the standard deviations of three independent cell pellets. 
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Figure S18: ICC staining of freshly cultivated cells using SA-PEG-Ner-UCNP of BT-474 cells: A) 
DAPI channel, B) upconversion channel, C) overlay; MCF-7 cells D) DAPI, E) upconversion, F) 
overlay; MDA-MB-231: G) DAPI, H) upconversion; I) overlay. 
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Figure S19: ICC staining of HER2-positive BT-474 cells with H&E counterstain. A) Brigh-field 
channel (H&E), B) upconversion channel, C) overlay. 

 

 

 

Figure S20: A) Upconversion intensity scans of the breast cancer tissue sections labeled with SA-PEG-
Ner-UCNPs. B) Average upconversion intensities. The error bars indicate the standard deviations of 
intensities in the cell pellet. 
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ICC based on Fluorescent Labels 

 

Figure S19: ICC staining of freshly cultivated cells using SA-FAM. Overlay images (DAPI and 
fluorescence) of cell lines: A) BT-474, B) MCF-7, C) MDA-MB-231. D) Fluorescence intensity scan, 
E) average fluorescence intensities measured in the cell pellets. The error bars correspond to the 
standard deviation of three independent cell pellets. 
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Figure S20: ICC staining of freshly cultivated of BT-474 cells using SA-FAM: A) DAPI channel, B) 
fluorescein channel, C) overlay; MCF-7 cells D) DAPI, E) fluorescein, F) overlay; MDA-MB-231: G) 
DAPI, H) fluorescein; (I) overlay. 
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Figure S21: ICC staining of FFPE BT-474 cell pellets using SA-FAM in concentration of 10 µg/mL 
A) specific, B) negative control, C) negative control with enhanced contrast and 1 µg/mL D) specific, 
E) negative control, F) negative control. 2D fluorescence intensity scans (fluorescein channel) of: G) 
10 µg/mL specific, H) 10 µg/mL negative; I) 1 µg/mL specific; J) 10 µg/mL negative. K) Average 
fluorescence intensities measured in the cell pellets. The error bars correspond to standard deviations 
of intensities in cell pellet. 
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Figure S22: Fluorescence images (overlay signal of DAPI and fluorescein channels) of negative 
controls in ICC. No detection label, DAPI stained nuclei: A) standard contrast settings, B) enhanced 
contrast. No detection label, no DAPI: C) standard contrast, D) enhanced contrast. 
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Figure S25: The photostability of ICC staining of the HER2-positive BT-474 FFPE cells. Staining by 
SA-PEG-Ner-UCNPs after A) 0 min, and B) 20 min of 980 nm excitation. C) Background corrected 
upconversion signals fitted with linear function. Staining by SA-FAM after D) 0 min, and E) 20 min 
of 480 nm excitation. F) Background corrected fluorescence signals fitted with exponential function. 
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IX. Single-Molecule Enzyme Measurements 

Enzymes are biocatalysts that reduce the activation energy of chemical reactions, enabling 

reactions that would not occur under mild conditions. Conventional enzyme kinetics are 

measured in bulk solution, meaning that the reaction rates of thousands of enzymes are 
averaged. As a result, heterogeneities in the reaction rates of individual enzyme molecules 

remain hidden. In 1961, Boris Rotman developed a technique to measure the activity of single 

enzyme molecules.1 In his work, he sprayed a highly diluted enzyme-substrate solution onto a 
silicone oil leading to the formation of small droplets. Because of the high enzyme dilution, 

the number of enzyme molecules was lower than the number of droplets resulting in many 

empty droplets, some that contained a single enzyme molecule, and a neglectable number of 
droplets held more than a single molecule. Droplets that included at least one enzyme molecule 

showed an increase in fluorescence over time, which was monitored with a microscope 

(Figure 1). Rotman observed that individual enzyme molecules in droplets of the same size 
displayed variations in their catalytic activities, which is today known as static heterogeneity 
in the substrate turnover rates. 

 

Figure 1: Photo of enzyme-substrate droplets on silicone oil. Droplets that contain at one enzyme 
molecule show an increasing fluorescence over time. Reprinted with permission from1. Copyright 1961. 

While Rotman’s idea of confining individual enzyme molecules in aqueous droplets to restrict 
the diffusion of the fluorescent product was groundbreaking, it had some problems. First, the 
droplets varied in size, accounting for that the diameter of each droplet had to be measured to 

obtain the enzyme activity. Second, the substrate can slightly dissolve in the silicone oil, 

leading to product diffusion over time. Third, the spraying process might not be optimal for 
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the enzyme stability and could cause denaturation of some enzyme molecules. Consequently, 
the technique of Rotman was further evolved to account for these problems.  

The group of Noji2 developed highly homogeneous arrays of micrometer-sized chambers, with 
a volume of less than 100 fL in PDMS. It was shown that slightly polar molecules do not 

diffuse through the PDMS, which is essential to prevent leaking of the substrate and its 

fluorescent product. It was possible to monitor the substrate turnover of individual GAL 
molecules. The group of David R. Walt developed femtoliter arrays etched into optical fiber 

bundles with 240,000 individual wells.3 A linear relationship between the enzyme 

concentration and the number of fluorescent wells could be observed. It was concluded that 
the technique is of potential use for ultrasensitive bioassays (which turned out to be true, 
ChapterIV.6.2). 

Liebherr et al.4 fabricated femtoliter arrays in fused silica arrays and observed the reaction rates 

of a wildtype GUS compared to an in vitro partially evolved GUS, aiming to evolve GUS into 

GAL. They proved that the single-molecule kinetics agreed with the traditional Michaelis-
Menten kinetics. By arranging the different substrate turnover rates of individual enzyme 

molecules into histograms, the activity distributions were obtained. It was found that GUS had 

the smallest distribution, whereas the evolved GUS and GAL displayed higher variations in 
their activities. The authors proposed that the broadening in the activity distributions is related 

to a higher acceptance of substrate molecules, which means that enzyme populations with a 

small size activity distribution are specialized molecules that catalyze only one reaction. 
Enzyme populations with broad distributions in their substrate turnover rates can potentially 

accept different substrate or even catalyze different reactions. From the evolutionary point, this 

mechanism could have helped primordial cells adapting to new substrates despite a low gene 
content. 

To obtain statistically relevant data for single-molecule enzyme kinetics, many enzyme 
molecules must be monitored. This can be either achieved by conducting many experiments 

or by increasing the size (i.e. number of wells) of the fL-array. It is not possible to load each 

well of the fL-array with a single enzyme molecule, instead a highly diluted enzyme dilution 
is applied on the array and the enzyme molecules distribute statistically over the array. If the 

enzyme concentration is too high, all the wells will include an enzyme molecule but many of 

them will include two or more enzymes, which has to be strictly avoided. A mathematical 
model to calculate a suitable enzyme concentration is the Poisson distribution: 𝑃µ(𝑥) = 𝑒−µµ𝑥𝑥!  
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For a single-molecule experiment 𝑃µ(𝑥) is the probability that exactly 𝑥 enzyme molecules are 
present in a well if the average number of enzyme molecules per well is µ. If the ratio of 

enzymes to wells is 1/20, then µ is 0.05. The probability that two enzyme molecules (𝑥 = 2) 

are present in one of the wells is 0.1%. The probability that exactly one enzyme molecule is 
present in a well 𝑃0.05(1) is less than 5% (1 enzyme in every 20th well). Consequently, a large 
array is needed to prevent wells that are occupied with more than one enzyme molecule. 

The following chapter describes the use of large fL-arrays consisting of 62,500 wells etched 

into fused silica to analyze the turnover rates of single GAL and GUS molecules. These are 

used to calculate the free energy of activation of the enzymatic reactions of single enzyme-
molecules. The results obtained were used to adapt the current transition state theory to account 
for dynamic and static heterogeneities present in enzyme populations. 
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X.1. Abstract 

Transition state theory (TST) provides an important framework for analyzing and explaining 

the reaction rates of enzymes. TST, however, needs to account for protein dynamic effects and 

heterogeneities in enzyme catalysis. We have analyzed the reaction rates of β-galactosidase 
and β-glucuronidase at the single molecule level by using large arrays of femtoliter-sized 

chambers. Heterogeneities in individual reaction rates yield information on the intrinsic 

distribution of the free energy of activation (ΔG‡) in an enzyme ensemble. The broader 
distribution of ΔG‡ in β-galactosidase compared to β-glucuronidase is attributed to β-

galactosidase’s multiple catalytic functions as a hydrolase and a transglycosylase. Based on 

the catalytic mechanism of β-galactosidase, we show that transition state ensembles do not 
only contribute to enzyme catalysis but can also channel the catalytic pathway to the formation 

of different products. We conclude that β-galactosidase is an example of natural evolution, 

where a new catalytic pathway branches off from an established enzyme function. The 
functional division of work between enzymatic substates explains why the conformational 

space represented by the enzyme ensemble is larger than the conformational space that can be 
sampled by any given enzyme molecule during catalysis. 

X.2. Introduction 

TST has provided a very fruitful framework for explaining the catalytic power of enzymes: an 

enzyme binds the transition state much more tightly relative to the substrate to decrease the 

activation energy. Growing evidence for protein dynamic effects, however, make it necessary 
to replace the concept of a single well-defined transition state structure by a transition state 

ensemble.1 In particular, single molecule studies have revealed catalytically relevant 

heterogeneities along the reaction coordinate (dynamic heterogeneity) but also among different 
molecules in an enzyme population (static heterogeneity).2 An integrated picture of these two 

types of heterogeneities in enzyme catalysis, however, is still missing, yet, because: (1) Most 

single enzyme molecule studies can only observe a single molecule at a time such that it is 
difficult to obtain statistically relevant information on the enzyme population. (2) 

Heterogeneities among individual enzyme molecules have been attributed to experimental 

conditions such as surface immobilization rather than to different enzyme conformers (3). The 
focus of conventional transition state theory is to explain the catalytic mechanism in a given 

enzyme molecule. Therefore, differences between enzyme molecules do not fall under the 
scope of conventional transition state theory. 

Previously, we addressed the first and second point by isolating hundreds of individual enzyme 

molecules without a surface immobilization step in large arrays of homogeneous femtoliter-
sized chambers etched into the surface of fused silica slides.3 The individual substrate turnover 
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of β-D-galactosidase (GAL)4-5 and β-D-glucuronidase (GUS)6 has been analyzed in parallel 
using similar fluorogenic reactions, which created the fluorescent product resorufin and was 

monitored by wide-field epifluorescence microscopy (Figure 1). Both enzymes feature a 

distinct static heterogeneity of long-lived conformational states that do not interconvert over 
time, as also observed by others.7-9 In a complementary approach, the Xie group used the same 

fluorogenic reaction to investigate the waiting time distribution between two subsequent 
catalytic events of individual GAL molecules (dynamic heterogeneity).10 

 

Figure 1: Schematic section of 250x250 (62 500) homogeneous wells each defining a volume of 38 fL 
on the surface of a fused silica slide (grey). To isolate single enzyme molecules, the femtoliter arrays 
are filled with 1.8 pM of either GAL or GUS (one enzyme molecule in 20 chambers) together with a 
large excess of fluorogenic substrate and then tightly sealed (not shown). Only chambers containing a 
single enzyme molecule hydrolyze the substrate to resorufin (orange), which is recorded by wide-field 
fluorescence microscopy. The distribution of single molecule substrate turnover rates provides 
information on the conformational heterogeneity in an enzyme population. 
 
GAL (465 kDa) and GUS (273 kDa) are evolutionary related family 2 glycosyl hydrolases 

from Escherichia coli11 that are frequently used for constructing gene fusion markers.12 Both 
enzymes are homotetramers of known crystal structures13-14 and comprise four identical 

catalytic sites located at the interface of two neighboring monomers. They hydrolyze similar 

glycosidic substrates involving a double displacement reaction mechanism with retention of 
configuration at the anomeric carbon. GAL is highly specific for D-galactose and GUS for D-

glucuronide but either enzyme has low specificity for the second part of the substrate (the 

leaving group). After substrate binding, the enzyme conformation changes along the reaction 
coordinate to assist in the formation of the first transition state.15 The nucleophilic residues 

Glu-537 in GAL16 or Glu-504 in GUS17 form a covalent glycosyl-enzyme intermediate with 

the anomeric carbon of D-galactose or D-glucuronid, respectively. A second glutamate (Glu-
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461 in GAL and Glu-413 in GUS) supports this reaction as a general acid/base catalyst. During 
the formation of the first transition state the leaving group is released. The reaction coordinate 
passes through a second transition state to hydrolyze the glycosyl-enzyme (Figure 2). 

   

Figure 2: Free energy diagram and catalytic pathways of β-glucurondiase (GUS) or β-galactosidase 
(GAL), respectively. Both enzymes form two transition states (TS) to complete a catalytic cycle. k2 
leads to the formation of a covalent enzyme-substrate intermediate, which decomposes with k3. GAL, 
however, is also able to perform a transgalactosylation reaction with glucose (x), which leads to the 
formation of allolactose (k4). These alternative pathways occur in equal amounts (Adapted from ref. 18). 
 
Here, we reanalyze our previous work on single molecule reaction rates of GAL4 and GUS6 to 
develop a new framework of transition state ensembles that accounts for dynamic and static 

heterogeneity. The distribution of reaction rates in an enzyme population provides information 

on the distribution of activation energies, thus characterizing the transition state ensemble. For 
this aim, GAL and GUS represent excellent model systems because their mode of catalysis is 

very similar and they have been investigated extensively for many decades on the bulk and 
more recently on the single molecule level. 
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X.3. Experimental Section 

Buffers, Enzymes and Substrates 

All enzyme experiments were conducted in phosphate buffered saline (137 mM NaCl, 10 mM 

Na2HPO4, 2 mM KH2PO4, 2.7 mM KCl, pH 7.4) containing either 0.05 mg/mL of bovine 
serum albumin (BSA, Sigma-Aldrich, www.sigmaaldrich.com), 1 mM of MgCl2 and 0.005 % 

of Tween 20 (Sigma-Aldrich) for GAL experiments or 0.05 mg/mL of BSA for GUS 

experiments. GAL from E. coli was purchased from Sigma-Aldrich as a lyophilized powder 
(Grade VIII) and reconstituted to 2 µM in PBS/MgCl2. His-tagged GUS from E. coli was 

expressed in E. coli, purified by nickel chelate chromatography and its concentration was 

determined by Bradford assay or absorption spectroscopy as described earlier.6 The purity of 
both enzyme preparations was confirmed by SDS gel electrophoresis. Enzyme aliquots were 

snap-frozen in liquid nitrogen and stored at -80 °C. Resorufin-β-D-galactopyranoside (Iris 

Biotechnology, www.iris-biotech.de) served as a substrate for GAL, and resorufin-β-D-
glucuronide (Sigma-Aldrich) as a substrate for GUS. Their product resorufin (Thermo Fisher, 

www.lifetechnologies.com) was used to standardize fluorescent signal intensities. Millimolar 

stock solutions of these substrates and the product were prepared in DMSO, aliquoted and 
stored for up to 6 months at -20 °C. 

Bulk Enzyme Experiments 

Bulk enzyme activities were determined in microtiter plates. An enzyme concentration of 36 

pM was employed because a single enzyme molecule in a 38-fL compartment correlates to a 
bulk concentration of 36 pM without compartmentalization. Substrate saturation curves of both 

enzymes were recorded by measuring the turnover of various substrate concentrations (λex = 

544 nm, λem = 575 nm, Fluostar Optima, bMG-Labtech, www.bmglabtech.com). The 
fluorescence intensities were calibrated by using resorufin standard solutions. 

Single Enzyme Molecule Experiments in Femtoliter Arrays 

Arrays of 250 × 250 (62 500) cylindrical wells of 4 µm in diameter and 3 µm depth (38 fL) 

were formed in the surface of fused silica slides by photolithography and reactive ion etching 

as described earlier.4 When a highly diluted enzyme concentration of 1.8 pM is filled into an 
array of 38-fL wells, a ratio of 1 enzyme molecule in 20 wells is obtained. The probability 

Pµ(x) that exactly x enzyme molecules are enclosed in any given well is given by the Poisson 
distribution (Eq. 1): 𝑃µ(𝑥) = 𝑒−µ∙µ𝑥𝑥!  Eq. 1 
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where µ  is the average number of enzyme molecules per well (µ  = 0.05). Under these 
conditions, most wells remain empty but the probability of finding more than a single enzyme 
molecule in a well is negligible (P0.05(>1) ≤ 0.001). 

The femtoliter array was mounted on a custom-built array holder on top of an inverted epi-

fluorescence microscope (Eclipse Ti-E, Nikon, www.nikoninstruments.com).4 Just prior to 

each measurement, enzyme solutions were diluted and mixed with respective fluorogenic 
substrates to yield a final enzyme concentration of 1.8 pM. Approximately 8 µl of the solution 

were dispensed on the femtoliter array, which was tightly sealed by a polydimethylsiloxane 

(PDMS) gasket under well-defined mechanical pressure. Time lapsed imaging was started 
within two minutes. Every 30 s, four wide-field images (each covering approximately 5 000 

wells) of different sections of the array were taken consecutively using an exposure time of 

200 ms. Excitation light from a fiber-optical mercury illuminator (Intensilight, Nikon) was 
dimmed (ND 4 or ND 8) and filtered for resorufin (λex = 577 ± 10 nm, λem = 620 ± 60 nm, 

Chroma Technology, www.chroma.com). Images were recorded with a 20x objective (FI60 

Plan Apo, NA 0.75, Nikon) on a cooled sCMOS camera (Andor Technology, 
www.andor.com).  

Analyzing Single Enzyme Molecule Data 

Fluorescence time traces of single enzyme molecules were background-corrected by 

subtracting the fluorescence signals of wells containing no enzyme and calibrated by 
measuring the fluorescence of resorufin standard solutions in the femtoliter array. The velocity 

of an individual enzyme molecule (vi) was calculated from the initial substrate turnover rate 
over 2 min and follows a modified Michaelis-Menten equation as described earlier:9 𝑣𝑖 = 𝑘𝑐𝑎𝑡 [𝑆]𝐾𝑀+[𝑆]        Eq. 

2 

Steady-state conditions apply for single enzyme molecule experiments assuming a constant 

probability of finding any given enzyme molecule in the enzyme-substrate complex (ρES) 
rather than a constant concentration of [ES].  

Hundreds of vi were averaged to obtain a representative enzyme ensemble (<v>) for the 
regression of single molecule substrate saturation curves: 〈𝑣〉 = 𝑘𝑐𝑎𝑡 [𝑆]𝐾𝑀+[𝑆]        Eq. 

3 

The coefficient of variation (CV %) of a large number (n) of vi indicates the velocity 
distribution within an enzyme population: 
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𝐶𝑉 = 100 × √ 1𝑛−1 ∑ (𝑣𝑖−〈𝑣〉)2𝑛𝑖=1〈𝑣〉       Eq. 

4 

According to transition state theory (TST), the internal states of the reactant (here the substrate 
S) and the transition state (X‡) are in a Boltzmann distribution. Hence, there is a local 

equilibrium between S and X‡ and the rate constant kTST for the formation of product P is given 
by: 𝑘𝑇𝑆𝑇 = 𝜅 𝑘𝐵𝑇ℎ 𝑒−∆𝐺‡/𝑅𝑇       Eq. 

5 

where kB is Boltzmann’s constant, T is the absolute temperature, h is Planck’s constant, ΔG‡ is 
Gibbs free energy defining the energy barrier between S and X‡, R is the gas constant and κ is 

the transmission coefficient. κ can be taken as unity if we assume no re-crossing of the energy 

barrier between the product P and S. Hence, the reaction rate is directly proportional to the 
equilibrium concentration of X‡. In enzymatic reactions, the formation of an enzyme-X‡ 

complex strongly reduces the free energy of activation (ΔG‡) and the experimentally 
observable macroscopic rate constant kcat provides a good estimate for kTST.19 

As GAL and GUS are homotetramers (n=4), the contribution of each subunit to the overall 

enzyme activity is ks
cat = kcat/n. Consequently, the free energy of activation (ΔG‡) can be 

calculated from single molecule experiments for any [S] by inserting Eq. 3 into Eq. 5 and 
rearranging to ΔG‡: ∆𝐺‡ = − ln (〈𝑣〉𝑛 𝐾𝑀+[𝑆][𝑆] ℎ𝑘𝐵𝑇) 𝑅𝑇       Eq. 

6 

In analogy, the distribution of ΔG‡ in an enzyme population is calculated for any [S] by 
inserting Eq. 2 into Eq. 5 and rearranging to ΔG‡: ∆𝐺‡𝑖 = − ln (𝑣𝑖𝑛 𝐾𝑀+[𝑆][𝑆] ℎ𝑘𝐵𝑇) 𝑅𝑇      Eq. 

7 

The single molecule experiments can only access the average activity of all four subunits in a 

tetramer. Thus, the distribution of ΔG‡ calculated from Eq. 7 (expressed as the standard 

deviation σ) would only be correct if all four subunits (n=4) had the same activity. Considering 
that each subunit is independent, however, the distribution of ΔG‡ among the subunits is larger 
than the apparent distribution (Appendix I): 𝜎𝑠𝑢𝑏𝑢𝑛𝑖𝑡 = 𝜎𝑎𝑝𝑝√𝑛       Eq. 8 
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Determination of Substrate Autohydrolysis Rates 

Three 100-µM solutions of both resorufin-β-D-galactopyranoside and resorufin-β-D-

glucuronide were prepared in the respective PBS buffers and stored at room temperature in the 

dark. Over the course of one month, several 100 µl samples of the substrate solutions were 
taken to measure the increase in the fluorescence of the autohydrolysis product resorufin over 

time (λex = 544 nm, λem = 575 nm, Fluostar Optima, bMG-Labtech). The samples were 

compared to a freshly prepared 100 µM substrate sample (control). The fluorescence intensities 
were calibrated by using resorufin standard solutions. The calculation of the autohydrolysis 
rates is described in the Appendix and  ΔG‡ of the uncatalyzed reaction is given by: ∆𝐺‡ = − ln (𝑘𝑛𝑜𝑛 ℎ𝑘𝐵𝑇 ) 𝑅𝑇       Eq. 

9 

 

X.4. Results and Discussion 

GAL and GUS are very stable and non-glycosylated enzymes that hydrolyze similar resorufin-

β-D-glycosides and release the same fluorescent product resorufin, thus establishing very 

similar biochemical model systems. Analyzing the heterogeneity in the activity of individual 
enzyme molecules additionally requires homogeneous and reproducible reaction conditions in 

each chamber of the femtoliter array. We efficiently blocked non-specific surface binding and 

confirmed that the static heterogeneity in an enzyme population is independent of the type of 
femtoliter array (fused silica vs. polydimethylsiloxan (PDMS)) as described earlier.4  

Here, we isolated hundreds of individual enzyme molecules together with their respective 
fluorogenic substrates in femtoliter chambers etched into the surface of fused silica slides 

(Figure 1). The accumulation of resorufin in enzyme-occupied chambers was recorded by 

fluorescence microscopy (Figure 3) to calculate initial substrate turnover rates over 2 min 
when substrate depletion and photobleaching were negligible. At the lowest substrate 

concentration ([S] = 12.5 µM, ~290 000 substrate molecules per chamber), both enzymes 

displayed on average substrate turnover rates of ~50 s-1, which was well distinguishable from 
chambers containing no enzyme.  
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Figure 3: Single molecule enzyme kinetics of GAL and GUS in femtoliter arrays. A concentration of 
1.8 pM GAL A) or GUS B) yields one enzyme molecule in every twentieth femtoliter chamber that 
hydrolyzes a glycosidic substrate (100 µM). The generation of the fluorescent product resorufin 
(orange) is shown after 120 s. C) Single molecule images of GAL (green circles) and GUS (blue 
triangles) are recorded every 30 s and six individual time traces are plotted against time. D) Single 
molecule (hatched line) and bulk (solid line) substrate saturation curves of GAL (green circles) and 
GUS (blue squares). The mean reaction rate and standard deviation of at least three independent 
experiments are plotted. Error bars indicate the standard deviation between independent measurements. 

 
Bulk and Single Enzyme Molecule Catalysis as Compared to Autohydrolysis 

Figure 2D shows substrate saturation curves of GAL and GUS obtained either from a 
conventional bulk reaction or from an ensemble of individual enzyme molecules (<v>, Eq. 3). 

Both enzymes display a similar activity at low [S], but the activity of GAL increases more 

strongly when [S] is increased. Maximum [S] were chosen according to the limited substrate 
solubility in aqueous buffer. Compared to GAL’s natural substrate lactose (KM = 1.35 mM), 

the hydrolysis of aromatic aglycons such as resorufin is characterized by a lower KM of 0.05 

to 0.5 mM20 because the active center of GAL binds aromatic aglycons more tightly than 
glucose.21 As this range of KM falls into the limit of substrate solubility, we calculated KM only 

from GAL bulk experiments that could be performed up to [S] = 200 µM. The lower KM of 

GUS was accessible from bulk as well as single molecule experiments, which essentially 
yielded the same results because the calculation of KM does not depend on the enzyme 

concentration. By contrast, substrate turnover rates and kcat calculated from bulk reactions are 
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apparently lower than the respective single enzyme molecule rates because even highly 
purified enzyme preparations typically contain a fraction of inactive enzyme molecules4 

Despite differences in KM and kcat, both enzymes expose a similar catalytic efficiency (kcat/KM). 
All kinetic constants derived from the substrate saturation curves are summarized in Table 1. 

Table 1: Rate constants of uncatalyzed, bulk and single molecule enzyme reactions. 

 Substrate 

(S) 

Resorufin-β-D-

galactopyranosid

e 

Resorufin-β-D-

glucuronide 

Non-enzymatic t½ 10 years 23 years 
knon 2.2±0.2 ×10-9 s-1 1.0±1.6 ×10-9 s-1 
ΔG‡

non 121 kJ/mol 123 kJ/mol 
Enzymatic  GAL GUS 

Bulk* 
KM 235 ± 24 µM 62 ± 9 µM 
kcat 1000 ± 200 s-1 170 ± 20 s-1 
kcat/KM 4.3×106 s-1 M-1 2.8×106 s-1 M-1 

Single 
molecule 

KM n.d. 65 ± 7 µM 
kcat n.d. 350 ± 20 s-1 
kcat/KM 4.7×106 s-1 M-1** 5.3×106 s-1 M-1 
ΔG‡

cat 57.9 kJ/mol 61.4 kJ/mol 
Rate enhancement kcat/knon 4.6×1011 3.5×1011 
Catalytic 
proficiency 

(kcat/KM)knon 2.1×1015 M-1 4.8×1015 M-1 

*GAL bulk measurements up to [S] = 200 µM, **kcat/KM determined at [S]<<KM, (second order rate 
constant). 
 
Resorufin-β-D-galactopyranoside and resorufin-β-D-glucuronide show slow but distinct 

autohydrolysis rates (knon, Supporting Information) under ambient conditions because 

aryloxides such as the resorufin anion are less basic (pKa ≈ 7)22 and thus better leaving groups 
compared to alkoxide anions.23 Relating the catalytic efficiency to the non-catalyzed reaction 

yields the catalytic proficiency ((kcat/KM)knon, Table 1), which indicates the enzyme’s 
capability to lower the activation energy ΔG‡.24 GAL and GUS have similar catalytic 
proficiencies within the typical broad range found for enzymes. 

Distribution of Reaction Rates in a Population of Individual GAL and GUS 

Molecules 

For analyzing the static heterogeneity in an enzyme population, we assembled individual 

substrate turnover rates of GAL and GUS as histograms separately for each [S] (Figure 4). 
The peaks of the histograms in the upper panels of Figure 4A-3E relate to the data of the 

substrate saturation curves in Figure 3D. Each enzyme displays a distinct distribution of 

reaction rates, which is independent of [S] as shown by normalizing the histograms (lower 
panels of Figure 4A-4E). In contrast, the static heterogeneity strongly depends on the enzyme: 
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The reaction rates of GAL are significantly more widely distributed (CV ≈ 42 %) compared to 
GUS (CV ≈ 27 %, Figure 4F). 

 
Figure 4: Single molecule substrate turnover distribution of GAL (green) and GUS (blue) in the 
presence of A) 12.5 µM, B) 25 µM, C) 50 µM, D) 100 µM, and E) 150 µM substrate. The histograms 
in the upper panels show several hundred individual substrate turnover rates (vi) from one representative 
femtoliter array experiment. The frequency (f(v)/c) is the number of enzyme molecules per bin divided 
by the total count of observed enzyme molecules. The binning times (GAL: 12.5 s-1, GUS: 6.25 s-1 at 
12.5 µM) are chosen to scale with the increase of [S]. The lower panels show the normalized distribution 
of reaction rates of at least three independent experiments (vi/<v>, bin: 0.2), where <v> is the average 
substrate turnover in each experiment. F) Coefficient of variations (CV, Eq. 4) of individual substrate 
turnover rates in an enzyme population are independent of [S] but significantly different between GAL 
and GUS (unpaired t tests, p ≤ 0.01). 
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The histogram of GAL determined at [S] = 100 µM (Figure 4D) is consistent with the broad 
distribution of reaction rates reported in an earlier study based on femtoliter arrays fabricated 

in glass-optical fiber bundles.25 In this study, the Walt group demonstrated that single GAL 

molecules interconvert between different activity states upon heating to 47 °C, but the activity 
distribution essentially remains the same after each heating step. The Craig group26 

investigated individual GAL molecules by using capillary electrophoresis and found that 

crystallization of GAL does not reduce the activity distribution in an enzyme population. 
Furthermore, the Yeung group compared the activity of lactate dehydrogenase with the 

inorganic catalyst Os(VIII) in femtoliter arrays etched into fused silica slides. While the 

enzyme activity was heterogeneous, the reaction of the inorganic catalyst was homogeneous.27 
These complementary single molecule experiments confirm that the distribution of reaction 

rates is an intrinsic feature of the enzyme rather than a result of the experimental platform or 
the enzyme preparation. 

As an inherent catalytic feature of an enzyme, the distribution of reaction rates can be attributed 

either to heterogeneity in the formation of the enzyme-substrate complex or to heterogeneity 
in the catalytic step (kcat) as discussed earlier.9 According to Equation 2, a heterogeneous rate 

of enzyme-substrate complex formation would affect the overall enzyme reaction only if [S] < 

KM but not under substrate saturation ([S] >> KM) such that we should expect the distribution 
of reaction rates to become narrower with increasing [S]. The normalized histograms of Figure 

4, however, clearly show a uniform distribution independent of [S]. Consequently, differences 

in the individual catalytic activity of these enzymes are a result of heterogeneity in kcat. The 
macroscopic rate constant kcat can be used as an approximation for kTST in order to calculate 
ΔG‡ (Equation 5). 

Figure 2 shows that catalysis by GUS and GAL actually involves two subsequent transition 

states. This distinction is necessary to zoom in from the macroscopic rate constants to 

individual reaction steps (microscopic rate constants) of the catalytic machinery. While less 
literature information is available on GUS, the galactosylation (k2) and degalactosylation step 

(k3) of GAL have been investigated in detail using various substrates.23, 28 The galactosylation 

step, which releases the leaving group, is rate-limiting for lactose and other alkyl-β-D-
galactopyranosides.23 In case of aryl-β-D-galactopyranosides, however, k2 and k3 are more 

similar, and k3 was found to be the rate-limiting step for many substrates with good leaving 

groups.18, 23 As the leaving group has no influence on the mechanism of the degalactosylation 
step, the macroscopic rate constant kcat of the best GAL substrates can never exceed the limit 

set by k3. The group of Huber determined a k3 of 1060 s-1 for wildtype GAL,29 but slight 

variations of k3 due to different reaction conditions should be taken into account. As kcat for 
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the hydrolysis of resorufin-β-D-galactopyranoside approaches k3, we assume k3 to be the rate-
limiting step that determines ΔG‡. 

Transition State Ensemble of Enzyme Catalysis 

The distribution of ΔG‡ in an enzyme population can be calculated by applying transition state 
theory (Equation 7) to the distribution of reaction rates (Figure 4). The distribution of ΔG‡ is 

necessarily independent of [S] as confirmed by plotting the histograms separately for each [S] 
(Figure 5).  

 

Figure 5: Distribution ΔG‡ in a population of single GAL (A-D, green) and GUS (E-I, blue) molecules 
determined at various [S] (A, E: 12,5 µM; B, F: 25 µM; C, G: 50 µM; D, H: 100 µM; I: 150 µM. The 
occurrence is the number of enzyme molecules per bin (0.5 kJ/mol). ΔG‡ follows a Gaussian 
distribution.  

 
Thus, we assembled all single molecule rates of GAL and GUS determined at various [S] into 

a single distribution of ΔG‡ (Figure 6). It should be noted that the histograms of ΔG‡ are 
normally distributed whereas the histograms in Figure 4 follow a Boltzmann distribution 

because lowering the activation barrier increases the reaction rate exponentially. In terms of 
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statistical thermodynamics, the different distributions represent the connection between 
microscopic states and macroscopic observables of a canonical ensemble.  

 
Figure 6: Distribution of the activation energy ΔG‡ in a population of a few thousand single GAL 
(green) and GUS (blue) molecules determined at various [S]. ΔG‡

i is calculated according to Equation 

7. The frequency (f(ΔG‡)/c) is the number of enzyme molecules per bin (0.5 kJ/mol) divided by the 
total number of enzyme molecules. The histograms follow a Gaussian distribution indicated by the 
hatched lines, whereas the solid Gaussian curves include the intramolecular heterogeneity of ΔG‡ 
(Equation 8, n=4) expressed as mean (µ) ± standard deviation (σ): GAL=57.82±2.02 kJ/mol and 
GUS=61.42±1.31 kJ/mol. 
 
The combined substrate turnover of all four subunits in a tetrameric enzyme generates the 
fluorescent product observed in a femtoliter chamber. Thus, the histograms in Figure 6 are 

oblivious of the intramolecular heterogeneity in a tetramer as though all four subunits featured 

equal substrate turnover rates. To account for the additional intramolecular heterogeneity 
among the four independent subunits we derived Equation 8, which shows ΔG‡ to be twice as 

broadly distributed (solid lines in Figure 6) as it appears from the histograms. The averaging 

effect of the tetramer, however, does not depend on absolute ΔG‡ values and comparing the 
width of the uncorrected distributions (hatched lines in Figure 6) yields relative information 

on the catalytic heterogeneity of both enzymes. Furthermore, Equation 8 enables us to 

compare the distribution of ΔG‡ between enzymes consisting of one (monomer), two (dimer), 
four (tetramer) or any other number of subunits. 

Transition state theory reduces the analysis of all kinetic steps along the reaction coordinate, 
which are typically not observable experimentally, to the rate-limiting step (kTST) passing 

through the transition state (X‡). While classical transition state theory defines X‡ as a single 

saddle point on the potential energy surface embedded in a homogeneous environment, the 
dynamic structure of proteins results in a heterogeneous reaction environment consisting of a 
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broad range of activated enzyme conformations (substates) that amplify the structural variation 
of the transition state.1 Such a transition state ensemble defines a hypersurface and allows for 

many parallel reaction pathways to occur, a view strongly supported by the advent of single 

molecule studies.30 Consequently, we can distinguish three characteristic cases depending on 
kTST relative to the rate of conformational interconversion (kIC):31  

(1) If kTST >> kIC, an enzyme ensemble consists of preexisting conformers that do not 
interconvert on a time scale relevant for the experiment. Consequently, each conformer 

behaves like an independent enzyme with a distinct rate constant (kTST
1, kTST

2, kTST
n). This case 

is referred to as static heterogeneity as shown in Figure 6. (2) If kTST ~ kIC, interconversion of 
the conformers occurs on the same time scale as the catalytic reaction and the enzyme can be 

in a different conformation each time when a new catalytic cycle starts. As each conformer 

defines a distinct enzyme-X‡ complex, we expect to observe a multi-exponential rate of product 
formation (kTST

1, kTST
2, kTST

n) in a transition state ensemble. While the decay rate of the 

transition state is not observable in a steady-state bulk experiment, single molecule 

experiments have revealed different waiting times between subsequent substrate turnover 
events thus indicating variation in kTST. For example, the Xie group reported variations in the 

waiting time of GAL in the order of 10–3 s to 10 s.10 The waiting time distribution is 

independent of [S]32-33 for the same reason that we discussed above for the [S]-independent 
distribution of ΔG‡. The higher kTST relative to kIC the more coupled are subsequent substrate 

turnover events, which is manifest as memory effects. The case-2 scenarios are summarized as 

dynamic heterogeneity. (3) In the last case (kTST << kIC), the conformers are in rapid 
equilibrium. No heterogeneity in ΔG‡ is observed experimentally because the reaction moves 
along a single pathway paved by the weighted average conformation. 

It is important to note that these three cases are not mutually exclusive but rather reflect 

different dimensions of what is observable experimentally. In an enzyme, a large number of 

substates are arranged hierarchically in tiers on the conformational energy landscape.34 
Depending on the height of energy barriers separating the substates, conformational 

interconversions are more or less likely, but occur concurrently at different tiers. Furthermore, 

the height of the energy barriers between substates is temperature-dependent, such that the 
three cases are a function of temperature. Substates that interconvert rapidly at ambient 

temperature become fixed at low temperatures.35 In the opposite direction, individual GAL 

molecules that display a distinct turnover rate can convert to a new state with a different 
turnover rate after a short heating pulse to 47 °C.25 Enzymes from thermophilic organisms are 

only active at high temperatures and thus clearly demonstrate that the right balance between 

kTST and kIC at each tier is a precondition for the catalytic function of an enzyme. The 
requirement to maintain this delicate structural balance also provides an explanation why 
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enzymes—unlike other catalysts—do not follow a typical Arrhenius behavior with increasing 
temperature. 

Figure 7 dissects intramolecular (accessible as dynamic heterogeneity) and intermolecular 
(accessible as static heterogeneity) variability of conformers in an enzyme population. Each 

slice represents a single enzyme molecule existing as a distinct subset of conformers. This 

scheme illustrates that the substrate-enzyme interaction does not involve the entire catalytically 
potent conformational space. Subsets of conformers that are not accessible through 

conformational sampling at room temperature are obviously not required to promote catalysis. 

While frozen in time upon protein folding, all subsets of conformers in an enzyme population 
are members of the canonical ensemble. 

 

Figure 7: Kinetic scheme of the catalytic network in an enzyme population consisting of a large number 
of conformers. In a single enzyme molecule, the enzyme-substrate complex forms with an ensemble of 
interconverting conformers. Each conformer passes through a series of conformational changes along 
and vertical to the reaction coordinate, which leads to the formation of the transition state ensemble 
(X‡

a, X‡
b, X‡

n) and promotes barrier crossing from the substrate (blue) to the product region (orange). 
Thus, many parallel catalytic pathways are possible in each enzyme molecule (dynamic heterogeneity). 
Different enzyme molecules (E1, E2, E3, En) have distinct sets of conformers available for forming the 
transition state ensemble (static heterogeneity). While the scheme does not show the four subunits of 
the tetrameric enzymes GUS or GAL, the subunits can mechanistically be considered as independent 
enzyme molecules (if no allosteric effects are involved) without any implications for the general 
viability of the scheme. 
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The fact that there are more catalytically potent conformers than can possibly be used by any 
given enzyme molecule raises the question about the role of static heterogeneity and the 

difference between GAL and GUS. In our previous work,6 we compared the distribution of 

reaction rates in wildtype GUS to a mutant GUS containing four amino acid substitutions 
(T509A/S557P/N566S/K568Q) close to the catalytic center.36 While wildtype GUS is highly 

specific for β-glucuronides, the mutant catalyzes β-glucuronides, β-galactosides and various 

related glycosidic substrates. This promiscuous activity - a typical feature of so-called 
generalists - was found to be associated with a broader distribution of reaction rates and 

indicated a functional division of work within the enzyme population such that each enzyme 

molecule with its distinct set of conformers can hydrolyze different types of substrate.6 
Following this view, here we may attribute part of the static heterogeneity to the catalytic 

promiscuity regarding the substrate’s aglyconic leaving group. This promiscuous activity, 
however, cannot be the only reason for the much broader distribution of reaction rates in GAL 
because both enzymes accept a broad range of leaving groups and k3 (on which the leaving 

group has no influence) rather than k2 is the rate limiting step for the hydrolysis of resorufin-

galactopyranoside. If we appreciate transition state ensembles as the dividing surface between 
substrate and product region and consider the general reversibility of enzyme catalysis, we can 
as well change the perspective to investigate the specificity of product formation.  

Biological Relevance of Enzymatic Heterogeneity 

The catalytic mechanisms of GUS and GAL are very similar (Figure 2) and the formation of 

the transition state involves larger conformational rearrangements along the reaction 

coordinate. The most striking catalytic difference is a consequence of their respective mode of 
gene regulation. While β-glucuronides bind to the gus repressor and induce the gus operon,12, 

37 lactose cannot induce the lac operon directly. Instead GAL first converts lactose to 

allolactose, which then binds to the lac repressor.38 Consequently, GAL needs to combine three 
catalytic tasks: (1) the hydrolysis of lactose to galactose and glucose, (2) the transglycosylation 

of lactose to allolactose and (3) the hydrolysis of allolactose to galactose and glucose. The rates 
of hydrolysis and transglycosylation are equally high (each 50 %) and independent of [S].39  

The need for GAL to induce its own expression has been known as the “lactose paradox”.40 

Similarly, the lactose transporter (permease) - one of the three structural genes under control 
of the lac operon - needs to be present first before lactose can enter the cytoplasm, where it is 

converted to allolactose and finally induces the lac operon. This curiously long feedback loop 

is not altogether a paradox because even the repressed lac operon is occasionally transcribed 
to low levels of mRNA, which leads to a few copy numbers of GAL and permease per cell.41 

Compared to GUS, however, this type of indirect gene regulation is less efficient because it 

leads to a long lag phase of GAL expression.42 There are further inconsistencies with the 
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current textbook knowledge on the catalytic role of GAL: (1) GAL has an unusual high KM of 
1.35 mM for the hydrolysis of lactose.20 (2) E. coli—like other Enterobacteriales—is found in 

the large intestine of mammals while lactose is degraded in the small intestine, and (3) E. coli 

inhabits the adult mammalian intestine but not the infant intestine. Thus, from an ecological 
point of view, lactose is only a minor source of food for E. coli. By contrast, mammals feeding 

on plants consume large amounts of galactoysl lipids in chloroplasts that are degraded to 

galactosyl glycerol in the intestinal tract.43 Boos found that galactosyl-glycerol is an excellent 
substrate for GAL,44 induces the lac operon directly to high levels and enters the uninduced 

cell by a constitutive galactose permease,42 thus allowing for a more efficient gene regulation 
and use of galactosyl glycerol as a food source compared to lactose.  

Although galactosyl-glycerol is the primary substrate of GAL its role in the breakdown of 

lactose is not irrelevant or a fortuitous side reaction as Huber pointed out.15 After all, each new 
trait evolution can act on starts as a random mutation. Indeed, GAL contains a specific glucose 

binding site45 and evolutionary alignment studies with GAL from various organisms have 

shown that glucose binding site contains a specific “allolactose synthesis motif” co-selected 
with lac repressors.15 Allolactose is a structural mimic of galactosyl glycerol and thus can 

induce the lac operon. The multifunctionality, however, poses a dilemma for the glucose 

binding site: The formation of allolactose requires a high glucose affinity to hold back glucose 
for the intramolecular transglycosylation reaction (k4), while the hydrolytic reaction (k3) 

requires a low glucose affinity to empty the catalytic center quickly for the next turnover 

cycle.15 From a biochemical view, the glucose binding site is not well defined and glucose is 
bound in multiple conformations46 with a moderate dissociation constant of 17 mM45 to keep 
a balance between these conflicting demands. 

A systematic investigation of an active site loop comprising amino acid residues 794-803, 

which can toggle between an open and closed conformation, yielded a better mechanistic 

understanding of GAL’s multifunctionality. During transition state formation, the loop moves 
~1.1 nm to close over the active site. Specific amino acid substitutions can shift the equilibrium 

between open and closed conformation. For example, if either Gly-79447 or Ser-79618 are 

replaced by alanine, the closed loop conformation dominates, which improves the 
galactosylation step (k2) but decreases the hydrolysis rate (k3) by a factor of five. Consequently, 

it was suggested that the loop serves a clasp to fix glucose for the subsequent transglycosylation 
reaction (k4).15  

Our results support this hypothesis: The heterogeneity of GAL reflects the variability of the 

equilibrium constant between open and closed loop conformation. Roughly, two 
subpopulations of the ensemble can be distinguished, one where the open conformation 

dominates (k3 > k4) and another where the closed conformation dominates (k3 < k4). The 
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specialized enzyme subsets channel one catalytic pathway towards hydrolysis and the other 
pathway towards the production of allolactose. We do not have to assume a strict separation 

of these two subsets, there can be a rather continuous range of intermediate equilibrium 
constants. 

The wider heterogeneity of GAL can be explained by an incomplete adaption to lactose as a 

relatively new food source for E. coli, e.g. resulting from the widespread use of milk in the diet 
of human adults starting 5 000 - 10 000 years ago.48 Broadening the catalytic spectrum of GAL 

by a few point mutations in the amino acid sequence as a first step of adaption seems to be 

easier to implement than evolving a new repressor. As the lac operon is under negative control, 
a new repressor released by lactose would be useless unless it is also released by galactosyl 

glycerol. The most efficient way of gene regulation of the lac operon by lactose would 
probably require gene duplication. 

 

X.5. Conclusions 

We have developed a framework of transition state ensembles integrating dynamic and static 

heterogeneity. The distribution of activation energies (ΔG‡) in an enzyme population is a 

fundamental parameter for understanding enzyme substrate interactions. The distribution of 
ΔG‡ in GAL was much broader compared to GUS and indicates that there are more 

catalytically potent conformations in an enzyme population than can be accessed by any given 

enzyme molecule. We conclude that transition state ensembles do not only contribute to 
enzyme catalysis but can also channel the catalytic pathway to the formation of different 

products. Distinct conformational subsets in an enzyme population enable GAL to act 
simultaneously as a hydrolase and a transglycosylase.   

This observation of a functional division of work is in line with our previous work on in vitro 

evolved GUS.6 As an example of natural evolution, we see a new trait branching off from an 
established catalytic function.49 We may even speculate that the new catalytic function of GAL 

allowing for the breakdown of lactose is the bacterial equivalent to the lifelong production of 

human lactase in European-derived populations.48 Both enzymes may have evolved as an 
adaption to the increased nutrition from milk, the only dietary source of lactose.  
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X.6. Appendices  

Calculation of the Standard Deviation of ΔG‡ in a Multimeric Enzyme (Equation 8)50-51 

If a multimeric enzyme consists of n independent catalytic subunits, each enzyme molecule 

represents a random sample of X1, X2, … Xn (i.e. ΔG‡
1, ΔG‡

2, … ΔG‡
n) of size n taken from a 

larger population (i.e. the transition state ensemble) with mean µ  and variance σ2. 

1) Expected Value (E) of Sample Mean �̅�: 

𝐸(�̅�) = 𝐸 [∑ 1𝑛𝑛
𝑖=1 𝑋𝑖] = 1𝑛 [𝐸(𝑋1) + 𝐸(𝑋2) + ⋯ + 𝐸(𝑋𝑛)] 

Because Xi are identically distributed and thus have the same mean, 𝐸(𝑋𝑖) can be replaced by 
µ: 𝐸(�̅�) = 1𝑛 [µ + µ + ⋯ + µ] = 1𝑛 [𝑛µ] = µ 

which shows that the mean of the sample mean �̅� is the same as the mean of individual Xi. 

2) Variance (Var) of Sample Mean �̅�: 

𝑉𝑎𝑟(�̅�) = 𝐸[(�̅� − µ)2] = 𝐸 [(∑ 1𝑛𝑛
𝑖=1 𝑋𝑖 − ∑ 1𝑛𝑛

𝑖=1 µ𝑖)2] = 𝐸 [(∑ 1𝑛𝑛
𝑖=1 (𝑋𝑖 − µ𝑖))2] 

And:  𝑉𝑎𝑟(�̅�) = 1𝑛2 𝐸[(𝑋1 − µ1)2] + 1𝑛2 𝐸[(𝑋2 − µ2)2] + ⋯ + 1𝑛2 𝐸[(𝑋𝑛 − µ𝑛)2] 
Because Xi are identically distributed and thus have the same variance σ2, E[(Xi - µ i)2] can be 
replaced by σ2: 𝑉𝑎𝑟(�̅�) = 1𝑛2 [𝜎2 + 𝜎2 + ⋯ + 𝜎2] = 1𝑛2 [𝑛𝜎2] = 𝜎2𝑛  

The variance of the sample mean decreases with increasing sample size 𝑛. 

Thus, we can calculate the decrease of the standard deviation of ΔG‡ when observing a 

multimeric enzyme in a femtoliter chamber: �̅� is the mean substrate turnover of the 4 subunits 
(denoted as “apparent”) and Xi is the substrate turnover of each subunit. 𝜎𝑎𝑝𝑝2 = 𝜎𝑠𝑢𝑏𝑢𝑛𝑖𝑡2𝑛  

And:                                                     𝜎𝑠𝑢𝑏𝑢𝑛𝑖𝑡 = 𝜎𝑎𝑝𝑝√𝑛 
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Calculation of Substrate Autohydrolysis Rates 

The average fluorescence intensity of three freshly prepared control samples (I0) was 
subtracted from the average of 3 to 4 autohydrolysis samples (It) and divided by the slope (m) 
of the calibration curve to calculate the amount of hydrolyzed resorufin ([P]t): [𝑃]𝑡 = 𝐼�̅� − 𝐼0̅𝑚  

Integration of the differential representation of a first order reaction yields the reaction rate 
coefficient (knon) of the non-catalyzed reaction (autohydrolysis): 

𝑘𝑛𝑜𝑛 = −ln (1 − [𝑃]𝑡[𝑆]0)𝑡  

where [S]0 is the initial substrate concentration (100 µM, at t=0) and t the incubation time of 
the substrate. The half-life of the substrate in solution is t½ = ln2/knon. 
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X.8. Supporting Information  

Calculating the Half-Life of Substrate Autohydrolysis 

Calibration 

For quantification of hydrolysed substrate, a resorufin calibration curve was created. A 

resorufin stock solution (1 mM in DMSO) was diluted to 10 µM in assay buffer. 100, 200, 300, 
400 and 500 nM dilutions were prepared by diluting the 10 µM resorufin solution with assay 

buffer. 100 µl of each resorufin dilution and a blank (assay buffer only) were pipetted in 

triplicates into a black microplate (Greiner Microlon, 96 well, non-binding) and the emission 
of resorufin was measured (λex=544 nm, λem=570 nm) in a microplate reader (FluoStar Optima, 

BMG). The average intensity of three measurements was calculated and the blank value 

subtracted from each intensity. A linear regression analysis with a fixed intercept at zero was 
performed in the graphical analysis software Origin 2017.  

 
Figure S1: Resorufin calibration curve. The fluorescence intensities of 0, 100, 200, 300, 400 and 500 
nM resorufin concentrations were measured and plotted against the respective resorufin concentrations. 
The error bars indicate the standard deviation of three measurements.  

Substrate 

Four 100 µM resorufin-β-D-galactopyranoside dilutions were obtained by diluting a 20 mM 

stock solution (in DMSO) with assay buffer. Analogously four 100 µM resorufin-β-D-

glucuronide were obtained by diluting a 3 mM stock solution with assay buffer. Both substrate 

dilutions were stored for the length of the experiment at room temperature, under exclusion of 
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light. At certain time intervals the resorufin intensity was measured in 100 µl of each dilution 

and compared to a freshly prepared 100 µM substrate solution (control).  

Calculations 

First the average fluorescence intensity of three freshly prepared control measurements (I0) 

was calculated and subtracted from the average of 3 to 4 substrate measurements (It) (Equation 

1). 𝐼�̅� − 𝐼0̅ = 𝐼ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑒𝑑      (1) 

The resulting corrected intensity values were divided by the slope (m), derived from the 
calibration curve, which provides the amount of resorufin hydrolyzed in nM ([P]t, Equation 

2).  𝐼ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑒𝑑𝑚 = [𝑃]𝑡     (2) 

The reaction rate coefficient (knon) of the non-catalyzed reaction (autohydrolysis) was 

calculated using Equation 3, which was derived from the integration of the differential 
representation of a first order reaction. 

𝑘𝑛𝑜𝑛 = −ln (1−[𝑃]𝑡[𝑆]0)𝑡      (3) 

[S]0 is the starting concentration of the substrate (100 µM, at t=0) and t the incubation time of 

the substrate in seconds. Inserting knon into Equation 4 gives the half-life of the substrate in 
solution. 𝑡1/2 = ln 2𝑘𝑛𝑜𝑛      (4) 

The activation energy (ΔG‡) for the uncatalyzed reaction is given as: ∆𝐺‡ = − ln (𝑘𝑛𝑜𝑛 ℎ𝑘𝐵𝑇 ) 𝑅𝑇     (5)
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Distribution of ΔG‡ in GAL and GUS 
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Figure S2: Distribution of the activation energy ΔG‡ in a population of single GAL (green) and GUS 
(blue) molecules determined at various [S]. ΔG‡

i was calculated according to Eq. 6. The frequency 
(f(ΔG‡)/c) is the number of enzyme molecules per bin (0.5 kJ/mol) divided by the total number of 
enzyme molecules. 
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XI. Summary and Conclusions 

This thesis builds on photon-upconversion nanoparticles (UCNPs) as background-free 

luminescent labels in bioaffinity assays using antibodies as recognitions elements. UCNPs are 

nanocrystals that can absorb two or more near-infrared (NIR) photons and emit light with 
higher energy (anti-Stokes emission). The NIR excitation drastically reduces the measurement 

background by avoiding autofluorescence and minimizing light scattering. Together with a 

high photostability and constant emission (no blinking), UCNPs have become an excellent 
label for many bioanalytical applications. The aim of this work was to develop UCNP-based 
assays with the possibility to perform a single-molecule (digital) readout. 

The first part of the thesis describes the development of immunoassays from a historical 

perspective and explains the fundamental building blocks needed for affinity assays. Various 

assay formats are described. The structure, function, and preparation of antibodies is explained. 
Alternative recognition labels like aptamers and molecularly imprinted polymers (MIPs) are 

critically discussed, and important label types are examined in detail. Cornerstones in the 

immunoassay development are highlighted using selected examples from the literature. The 
definition, advantages, and challenges of digital (single-molecule) affinity assays are discussed 

with respect to different label types, such as enzymes, small molecular labels, and 
nanoparticles. 

The first research article describes the development of an immunoassay for counting individual 

molecules of the cancer biomarker prostate-specific antigen (PSA) with UCNPs coupled to an 
anti-PSA antibody. Individual UCNPs bound to a PSA molecule were visualized using a 

modified epifluorescence microscope that was equipped with a 980 nm-laser. The PSA 

concentration was determined in a digital way by counting the number of luminescent spots 
visible in a defined area of the microplate. Synthesis of the detection conjugate was optimized 

with respect to minimizing the aggregation of the nanoparticles, and the quality was controlled 
using agarose gel electrophoresis. 

The digital upconversion-linked immunosorbent assay (ULISA) reached a low limit of 

detection (LOD) of 1.2 pg/mL (42 fM) and covered three orders of magnitude for PSA spiked 
in 25% blood serum, which was approximately 10× more sensitive than commercial ELISA 

kits. It was demonstrated that the digital readout is superior to the conventional analog readout 

of the same microtiter plate using a plate reader equipped with a 980 nm-laser, which resulted 
in an LOD of 20.3 pg/mL (700 fM, 17× higher LOD). A combination of both readout methods 

increased the working range to four orders of magnitude from 1 pg/mL to 10,000 pg/mL. The 

compatibility with standard microplate assay procedures and the high sensitivity make the 
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ULISA a powerful alternative to existing assays and will have a substantial impact in the 
future. 

The second research article focused on the surface modification of UCNPs to reduce non-
specific binding, while simultaneously increasing the sensitivity of the PSA detection by 

exploiting the strong affinity of streptavidin towards biotin. A linker consisting of neridronate, 

a bisphosphonate that strongly coordinates to lanthanide ions, was chosen to anchor a long 
polyethylene glycol (PEG) spacer with an incorporated alkyne group at the other end. The 

alkyne group was used for the covalent immobilization of streptavidin azide onto the UCNPs, 
via a copper-catalyzed click reaction. 

Like the ULISA with antibody-UCNP conjugates, the digital ULISA with streptavidin-PEG-

UCNPs improved the analog readout by a factor of 16. The strong affinity between biotin and 
streptavidin led to a 50× higher sensitivity compared to the former assay, which led to a 

subfemtomolar LOD of 800 aM (~50,000 PSA molecules in 100 µL sample) in 25% blood 

serum. The results obtained for real patient samples were in excellent agreement with results 
obtained from a standard method based on electrochemiluminescence (Elecsys, Roche). 

In Research article 3, the unique photophysical properties of UCNPs were exploited for the 
immunochemical labeling of a cancer marker on the surface of cells. We demonstrated that 

UCNP labeling is compatible with standard fluorescence labeling techniques but achieves 

unsurpassed signal to background ratios. We designed and characterized three different SA-
UCNP conjugates and compared the results with a standard fluorescence-based readout using 
SA conjugated to 5(6)-carboxyfluorescein (SA-FAM).  

It was found that our previously established SA-PEG-neridronate-UCNPs showed the highest 

specific binding and, at the same time, the lowest non-specific signal among the three tested 

SA-UCNP conjugates. The signal-to-background ratio of SA-PEG-neridronate-UCNPs was 
319, a 50-fold increase compared to the SA-FAM conjugate (signal to background of 6). 

Control experiments confirmed the specificity of the UCNP staining. The results demonstrated 

that UCNPs are a valuable addition to the existing repertoire of immunochemical labeling 
techniques. 

Research article 4 focuses on the analysis of enzyme kinetics at the single-molecule level. This 
research is closely related to the digital immunoassay established by the company Quanterix 

(Chapter IV.6.2). The conventional transition state theory (TST) is used to analyze and explain 

the reaction rates of enzymes. However, it does not account for static heterogeneity and 
dynamic effects in proteins, revealed by single-molecule measurements. We analyzed the 

reaction rates of individual β-D-galactosidase (GAL) and β-D-glucuronidase (GUS) molecules 

in large arrays of femtoliter-sized wells, revealing a static heterogeneity. The reaction rate 
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distributions gave access to the intrinsic distributions of the free energy of activation (ΔG‡) of 
GAL and GUS.  

A broader distribution of ΔG‡ was found for GAL than for GUS, which is potentially caused 
by the multiple catalytic reaction pathways of GAL as a hydrolase and transglycosylase. 

Different catalytic reactions of GAL require more catalytically potent conformations for 

individual enzyme molecules in the enzyme population compared to GUS. Reaction rates of 
single enzyme molecules do not change over time (10 min). This indicates that each enzyme 

molecule has a broader set of conformations than it can access during catalysis. We adapted 

the TST for these findings by assuming transition state ensembles that can not only drive the 
enzymatic catalysis but also channel the reaction pathway. 

The aim of this thesis was to employ UCNPs as labels for highly sensitive immunoassays. 
With the first two research articles, the digital ULISA was successfully introduced and set the 

foundation for a new generation of digital immunoassays. It was further shown that UCNPs 

are exceptional labels for the immunochemical labeling of cells. Especially the low background 
of the UCNP label could have significant impact on tissue diagnostics in the (near) future. 
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XII. Zusammenfassung und Fazit 

Die vorliegende Arbeit basiert auf der Verwendung von Photonen-aufkonvertierenden 
Nanopartikeln (engl.: photon-upconversion nanoparticle, UCNP) als optische Markierungen 

in Antikörper-basierten Bioaffinitätstests (oder Bioaffinitätsassays). UCNPs sind 

Nanokristalle, die zwei oder mehrere Photonen im Nahinfrarotbereich (NIR) absorbieren und 
daraufhin Licht mit höherer Energie emittieren (anti-Stokes Emission). Durch die NIR 

Anregung wird die Autofluoreszenz der Matrix unterdrückt und die Streuung des 

Anregungslichtes minimiert, so dass der Messhintergrund drastisch reduziert wird. In 
Kombination mit der hohen Photostabilität und konstanten Emission (kein Blinken) sind 

UCNPs zu hervorragenden Markierungen für viele bioanalytische Anwendungen geworden. 

Das Ziel dieser Arbeit war die Entwicklung von UCNP-basierten Assays, die zudem die 
Möglichkeit zum Einzelmolekülnachweis von Analyten bieten (digitales Auslesen). 

Der erste Teil dieser Arbeit beschreibt die Entwicklung von Immunoassays aus historischer 
Sicht und erklärt die grundlegenden Bestandteile, die für Affinitätsassays benötigt werden. Es 

werden verschiedene Formate von Immunoassays beschrieben. Die Struktur, Funktion und 

Herstellung von Antikörpern wird erläutert, zudem werden alternative Erkennungselemente 
wie Aptamere und molekular geprägte Polymere (engl.: molecularly imprinted polymers, 

MIPs) ausführlich diskutiert. Besondere Meilensteine in der Entwicklung von Immunoassays 

werden unter Verwendung von ausgewählten Beispielen aus der Literatur hervorgehoben. Die 
Definition, Vorteile und Herausforderungen von digitalen (Einzelmolekül) Affinitätsassays 

werden anhand von verschiedenen Markierungsarten wie Enzymen, molekularen Markern und 
Nanopartikeln diskutiert. 

Die erste Originalarbeit beschreibt die Entwicklung eines Immunoassays, der auf dem Zählen 

einzelner Moleküle des Krebsmarkers Prostata-spezifisches Antigen (PSA) beruht. 
Individuelle UCNPs, die an PSA Moleküle gebunden waren, wurden unter einem 

modifizierten Epifluoreszenzmikroskops, das mit einem 980 nm-Laser ausgestattet wurde, 

sichtbar gemacht. Anschließend wurde die PSA-Konzentration digital ermittelt, indem die 
Anzahl an lumineszenten Punkten in einem definierten Bereich eines Mikrowells gezählt 

wurde. Die Synthese der Nachweismarkierungen wurde optimiert, um die Aggregation der 

Partikel zu minimieren, und die Qualität der Konjugate wurde durch Agarose-
Gelelektrophorese kontrolliert. 

Der UCNP-basierte digitale Immunoassay (engl.: upconversion-linked immunosorbent assay, 
ULISA) erreichte eine Nachweisgrenze (engl.: limit of detection, LOD) von 1,2 pg/mL (42 fM) 

in 100 μL Probenvolumen und ermöglichte es, die PSA Konzentration über einen Bereich von 
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drei Größenordnungen in 25% Blutserum zu bestimmen. Damit war der digitale ULISA ca. 
10× sensitiver als kommerzielle ELISA-Tests. Um den Vorteil des digitalen Auslesens zu 

zeigen, wurde der PSA Assay zudem mit einem Mikrotiterplatten-Lesegerät, welches mit 

einem 980 nm-Laser ausgestattet war, gemessen (analoges Auslesen). Die analoge 
Auslesemethode erreichte eine LOD von 20,3 pg/mL (700 fM) und war somit 17× höher, als 

das digitale Zählen der Partikel. Eine Kombination beider Auslesemethoden vergrößerte den 

Arbeitsbereich des Assays auf vier Größenordnungen von 1 pg/mL bis 10.000 pg/mL. Die 
Kompatibilität mit herkömmlichen Assayprotokollen und die hohe Sensitivität machen den 
ULISA zu einer vielversprechenden Alternative zu etablierten Immunoassays. 

Die zweite Originalarbeit konzentriert sich auf die Oberflächenmodifikation von UCNPs, um 

gleichzeitig die unspezifische Bindung der Partikel zu reduzieren und die Sensitivität der PSA-

Bestimmung weiter zu verbessern. Dabei wurde die starke, nicht-kovalente Interaktion 
zwischen Streptavidin (SA) und Biotin ausgenutzt. Zunächst wurde ein langer 

Polyethylenglykol (PEG)-Linker synthetisiert, der an einem Ende ein Bisphosphonat 

(Neridronat) trug und an dem anderen ein Alkin. Das Bisphosphonat diente dabei als Anker 
zwischen dem PEG und dem UCNP, da es eine starke Komplexbindung zu den Lanthanoid-

Ionen an der Oberfläche des Partikels ausbilden kann. Die Alkin-Gruppe wurde dann für die 

kovalente Immobilisierung von SA durch eine Kupfer-katalysierte Click-Reaktion mit SA-
Azid verwendet.  

Wie der zuvor beschriebene ULISA, verbesserte auch hier die digitale Auslesemethode den 
analogen Modus um einen Faktor von 16. Die starke Interaktion zwischen den SA-PEG-

neridronat-UCNPs und Biotin führte zu einer 50× höheren Sensitivität, im Vergleich zum 

ULISA mit Antikörper-gekoppelten UCNPs, was eine LOD im sub-femtomolaren Bereich 
ermöglichte (800 aM, ~50.000 PSA Moleküle in 100 µL, in 25% Blutserum). Der ULISA mit 

Serumproben echter Patienten zeigte eine hervorragende Korrelation mit einer 
Referenzmethode, die auf Chemilumineszenz beruhte (Elecsys, Roche). 

In der dritten Originalarbeit wurden die einzigartigen photophysikalischen Eigenschaften von 

UCNPs für die spezifische Markierung eines Brustkrebsmarkers an der Oberfläche von Zellen 
genutzt. Es wurde gezeigt, dass das spezifische Anfärben mit SA-funktionalisierten UCNPs 

kompatibel mit konventionellen Markierungsmethoden ist, jedoch ein unübertroffenes Signal-

zu-Hintergrund Verhältnis bietet. Es wurden drei verschiedene SA-basierte UCNP Konjugate 
hergestellt und die Ergebnisse der immunochemischen Färbung mit einer fluoreszenten 
Verbindung aus SA und 5(6)-Carboxyfluorescein (SA-FAM) verglichen. 

Die bereits zuvor beschriebenen SA-PEG-Neridronat-UCNPs zeigten die höchste spezifische 

Bindung und gleichzeitig das niedrigste unspezifische Signal unter den drei getesteten SA-

UCNP Nachweisreagenzien. Somit konnte ein sehr hohes Signal-zu-Hintergrund Verhältnis 
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von 319 erreicht werden, welches 50× höher war als die Standardmethode mit SA-FAM 
(Signal-zu-Hintergrund von 6). Kontrollexperimente mit Zelllinien, die den Krebsmarker nur 

geringfügig exprimieren, bestätigten die Spezifität der SA-PEG-Neridronat-UCNPs. Die 

Ergebnisse zeigen, dass UCNPs eine vielversprechende Erweiterung zum bereits bestehenden 
Portfolio an Markierungstechniken für die Immunhistochemie darstellen. 

Die vierte Originalarbeit beschäftigt sich mit Enzymkinetiken auf der Einzelmolekülebene. 
Diese Arbeit ist eng mit dem digitalen Immunoassay der Firma Quanterix (Kapitel IV.6.2) 

verwandt. Die konventionelle Theorie des Übergangszustandes (engl.: transition state theory, 

TST) wird verwendet, um die Reaktionsgeschwindigkeiten von Enzymen zu bestimmen. 
Jedoch berücksichtigt die konventionelle TST weder die statische Heterogenität noch 

dynamische Effekte innerhalb einer Enzympopulation, die durch Einzelmolekülexperimente 

nachgewiesen worden sind. In dieser Arbeit wurden einzelne Moleküle der β-D-Galactosidase 
(GAL) und β-D-Glucuronidase (GUS) in Arrays, die aus zehntausenden Femtoliter-großen 

Wells bestehen, eingeschlossen und deren Reaktionsraten analysiert. Die Ergebnisse zeigten, 

dass eine statische Heterogenität in den Geschwindigkeiten der Enzyme innerhalb einer 
Population vorliegt. Die Verteilung der Reaktionsraten wurde verwendet, um die intrinsischen 
Verteilungen der freien Aktivierungsenergie (ΔG‡) von GAL und GUS zu bestimmen. 

GAL zeigte eine breitere Verteilung von ΔG‡ als GUS, was darauf zurückzuführen sein könnte, 

dass GAL mehrere katalytische Funktionen aufweist als GUS. So kann GAL neben der 

hydrolytischen Spaltung von Laktose, auch die Transglycosylierung von Laktose zu 
Allolaktose katalysieren. Diese verschiedenen Funktionalitäten benötigen—im Gegensatz zu 

GUS—mehr katalytisch aktive Konformationen, die einzelne GAL-Moleküle innerhalb einer 

Population einnehmen können. Da die Reaktionsraten einzelner Enzymmoleküle über einen 
langen Zeitraum (10 min) konstant sind, lässt sich daraus schließen, dass jedes Enzymmolekül 

eine größere Ausstattung an möglichen Konformationen besitzt, als es während der Katalyse 

einnehmen kann. Die TST wurde insoweit angepasst, dass TST Ensembles nicht nur die 
enzymatische Katalyse, sondern auch deren potentielle Reaktionswege berücksichtigen. 

Das Ziel dieser Arbeit war es UCNP-basierte Nachweisreagenzien für hochsensitive 
Immunoassays zu entwickeln. Mit den ersten beiden Artikeln wurde der nachweisstarke 

digitale ULISA eingeführt und legte den Grundstein für eine neue Generation von digitalen 

Immunoassays. Im dritten Artikel wurde die Vielseitigkeit der synthetisierten UCNP-
Markierungen anhand des immunochemischen Nachweises von Krebsmarkern auf Zellen 

gezeigt. Besonders das hohe Signal-zu-Hintergrund Verhältnis von UCNPs könnte künftig 
einen starken Einfluss auf die Histologie haben. 
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