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Abstract: High-frequency financial data are characterized by a set of ubiquitous sta-
tistical properties that prevail with surprising uniformity, both in their qualitative ap-
pearance as well as their numerical statistical identification. While these ‘stylized facts’
have been well-known for decades and have spurred a plethora of descriptive modeling
approaches in financial econometrics, few approaches towards a behavioral explanation
of these most pervasive time series characteristics exist in the literature. A systematic
explanation or replication of these salient features has been attempted only recently with
simple stochastic models of interacting traders. This chapter first outlines the empirical
‘laws’ that seem to govern financial prices independently of time and space, and high-
lights the challenge that these laws constitute for financial economics. In particular, the
heaviness of the tail of financial returns and the persistence of volatility autocorrelations
indicate a kind of universal preasymptotic behavior of high-frequency data with conver-
gence to the Normal distribution occurring only at relatively low frequencies. After the
introduction to the stylized facts, we turn to models that provide candidate explanations
for these particular empirical findings. While these models draw some inspiration and
justification from the broader current of behavioral finance, their design is closer in spirit
to models of multi-particle interaction in physics than traditional asset-pricing models in
finance. This reflects a basic insight in the natural sciences which contains that similar
regularities like those observed in financial markets (denoted as ‘scaling laws’ in physics)
are often signatures of the complex interaction within multi-unit systems and can only
be explained via the macroscopic interactions of their constituent parts. Since these
emergent properties should be independent of the microscopic details of the system, this
viewpoint advocates negligence of the details of the determination of individuals’ market
behavior and focuses on the study of a few plausible rules of behavior and the emergence
of macroscopic statistical regularities in a market with a large ensemble of traders. This
chapter will review the philosophy of this new approach, its various implementations,
and its contribution to an explanation of stylized facts in finance. The chapter concludes

Lpreliminary draft, prepared for the Handbook of Finance, edited by Thorsten Hens and
Klaus Schenk-Hoppé



with a discussion of the relationship of this approach to more traditional asset pricing
models and open questions to be pursued in future research.
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1 Introduction

The finance literature hast a somewhat ambiguous approach towards the
salient empirical features that characterize financial markets. While they
are identified as ‘stylized facts’ in recent surveys (de Vries, 1994; Pagan,
1996), they have more often been christened as ‘anomalies’ in the past (cf.
Frankfurter and McGoun, 2001, who argue that the increasing (mis)use of
the term ‘anomaly’ in the finance literature is evidence of a propagandistic
"effort to imply that ... the reigning paradigm is irreplaceable..." (from their
abstract)). The difference in language is perplexing: while the former notion
implies an identification of robust features of the data that call for a scien-
tific explanation, the later rather appears to denounce the same features as
a minor nuisance for the established theoretical framework. One certainly
does not do injustice to a large body of theoretical research in finance by
stating that it had almost entirely ignored some of the most pervasive char-
acteristics of financial markets for quite some time. While this does not hold
for all of the stylized facts, it is certainly undisputable for two important
regularities that have motivated a large part of the empirical finance liter-
ature: the fat tails of asset returns and the characteristic time-variation of
their fluctuations. To be honest, a few attempts at explaining these features
on the base of standard modeling frameworks do exist in recent literature
(cf. Vanden, 2005)%, but at least there has been no systematic theoretical

approach towards their explanation within ‘mainstream’ models.

However, it also needs to be emphasized that mainstream finance had not
been careless about empirical results altogether: on the contrary, one of the
most important empirical findings, the martingale character of prices, is at
the heart of its main paradigmatic approach, the efficient market hypoth-
esis. It appears, however, that focusing on the explanation of this single
feature, other equally universal findings have been deliberately neglected
and marginalized as anomalies. The point that will be made in this chapter
is that, from a different perspective, what has been found to be strange

and unexpected behavior of markets, might appear as revealing charac-

2However, his results are rather supportive of an alternative approach. Studying the
capacity of representative agent equilibrium models to account for volatility cluster-
ing, he concludes that "it it doubtful that there exist any representative equilibrium
model... that is consistent with the data" (p. 374).



teristics that could guide the scientist towards a candidate explanation of
price dynamics in financial markets. The surprising insight here is that -
when presented in an appropriate format - the stylized facts so well known
to econometricians and market practitioners would immediately be iden-
tified as scaling laws by natural scientists. Viewed from this perspective,
a picture emerges that differs enormously from that of traditional finance:
scaling laws in natural science are viewed as imprints of “complex” systems
composed of many interacting subunits that have to be explained as a result
of their microscopic interaction. This motivates an approach towards mod-
eling of financial markets that focusing on the interaction of many actors
rather than intertemporal optimization of representative investors. Models
with such an emphasis have been proposed from the early nineties both by
economists dissatisfied with the representative agent methodology as well as
by physicists in the evolving ‘econophysics’ movement. To some extent, the
promise of the scaling approach seems to have materialized: models with
interacting agents of a certain type appear to be quite robust generators of
the formerly mysterious anomalies of fat tails and clustered volatility. This
explanatory power for some of the previously unexplained characteristics of

financial markets might lend some credibility to this new approach.

The remainder of this chapter starts with an outline of the empirical styl-
ized facts that have been of such utmost importance for the development
of stochastic agent-based models. In section 2 we discuss in turn: the mar-
tingale property, fat tails and clustering of volatility and have a cursory
look at other reported regularities. Section 3 highlights the interpretation
of these stylized facts as ‘scaling laws’ and the connotations of this view for
theoretical modeling. Section 4 goes into details about some representative
models in the area: we start with a short exposition of sources of inspira-
tion for these models in 4.1 in the older literature on interaction of different
groups of speculators (e.g. fundamentalists vs. chartists) and then move on
to models that are very explicitly based on microscopic interactions: Kir-
man’s (1993) ‘ant’ model and its financial interpretations is dealt with in
4.2 and the models of interacting speculators proposed by Lux and March-
esi are featured in sec 4.3. More complicated models with a lattice-based
topological structure are considered in sec. 4.4. Section 5 concludes and

tries to provide an assessment of the state of this new approach vis-a-vis



other approaches in the field of behavioral finance.

2 The Stylized Facts of Financial Data

2.1 Martingales, Lack of Predictability and
Informational Efficiency

The one empirical feature that has become a core ingredient of theoretical
models and which a broad literature attempts to explain is the martingale

property of financial prices. It can simply be stated as:
B[Pl = P (1)

where P, denotes the prize of the asset at time ¢ and [; is the available
information set at date t. As a consequence, ownership of the asset can be

viewed as a fair game with expected pay-off equal to zero:
E[Pt+1 _Pt|[t] :O (2)

and the realized price change is a random variable driven by the news arrival
process that leads to a price at time ¢t + 1 after new information arrivals
that differs from its date ¢ conditional expectation:

Py — Py =Py — E[Pa|l] = & (3)

with Ele;] = 0 due to the stochasticity of new information arrivals. With

P1—P

7 and

returns being defined as r;1 =

FE\P || — P,
E[Ttﬂ‘[t} = { tH]’Dt] ta (4)
t

the randomness of price changes carries over to this quantity as well.

A glance at any financial returns series reveals that the lack of predictability
of price changes, Ele;| = 0, is at least a very reasonable characterization
of the data: at first view, the increments of high-frequency returns appear
like random fluctuations about a mean value close to zero with no apparent

asymmetry between positive and negative realizations (cf. the well-known



examples exhibited in Fig.1). The random nature of price changes is ex-
plained by the Efficient Market Hypothesis (EMH) as the imprint of infor-
mational efficiency, i.e. all currently available information of importance
in evaluating the asset in question is already incorporated in the market
price. Therefore, only new information could lead to price changes which
then would be the immediate and unbiased reaction of the market on any
new information item. It is worthwhile to note that the EMH is a the-
ory about market outcomes and originally had only suggested a relatively
vague concept of how this macroscopic outcome might emerge from the
microscopic interaction of a diversity of agents in the market place. This
missing behavioral underpinning has been added by the literature on mar-
ket microstructure and asymmetric information (cf. Glosten and Milgrom,
1985; Kyle, 1985; O’Hara, 1995) who show how the private interaction of
some agents will be revealed via their trading activity and how the market
over time approaches a state of complete revelation of any formerly pri-
vate information. Since what is revealed of the private information of some
better informed agents becomes public information, these models support
the so called semi-strong version of the EMH that specifies I; as the infor-
mation available to all market participants. The stronger version with /;
including even all private information is only valid asymptotically, i.e. after
an infinite number of trading rounds involving the better informed agents.
In these seminal contributions, the price process in the repeated trading

scenario can be shown to follow a martingale.

Traditional finance, thus, provides a well-established body of literature of-
fering a plausible generic explanation of the martingale property, that can
be supported by microeconomic models of price formation under various

institutional settings.

Of course, there are many qualifications to be made from different angles:
first, the lack of predictability of price changes has been questioned in tons
of papers: variance-ratio tests try to recover long swings in stock prices,
trading rules have been tested in-sample and out-of-sample for their ability
to track hidden patterns in price records and artificial intelligence and data
mining techniques have been used for the same purpose (cf. Taylor, 2005
for a comprehensive review). On the theoretical front it is well-known that

allowing for risk aversion instead of the assumed risk neutrality of early



microstructure models leads to efficient markets without the martingale

property (cf. Leroy, 1989).

We do not attempt to go into detail on any of these points in this chapter,
but simply note that markets might only be close to martingale behavior and
that there might be good reasons for why we should expect them to deviate

from perfect efficiency and complete randomness of price movements.

The point we wish to emphasize is rather that the traditional framework
while providing a generic explanation for one of the striking features of Fig.

1, leaves unexplained the remaining set of similarly ubiquitous findings.
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Figure 1: Two typical financial time series: the index evolution and daily increments of

the UK FTSE 100 index and the U.S. NASDAQ.

2.2 Fat Tails of Asset Returns

Fig. 2 highlights the distributional properties of the returns series exhibited
in Fig. 1. A very natural benchmark for characterizing the unconditional
distribution is the Normal distribution. As is well-known at least since
the early sixties (Fama, 1963; Mandelbrot, 1963), however, the Normal
distribution provides a very poor fit to financial returns. As can be seen



from Fig. 2, empirical distributions are, in fact, quite nicely bell-shaped and
symmetric, but typically have more probability mass in their center and tails
than the Normal distribution. While the predominance of small fluctuations
(smaller than expected under the Normal with the same standard deviation)
is apparent from the histogram, the importance of fat tails can be better
grasped from a comparison of empirical returns with simulated Gaussians
(cf. Fig. 3). As can be seen, positive and negative events exceeding, for
example, 5 times the sample standard deviation occur quite regularly in
empirical data while they would have negligible probability in a Gaussian
market. Table 1 provides some evidence that this behavior is truly universal:
for a number of assets it lists the kurtosis statistics and the tail index
(see below for details) for various definitions of the tail region of the data.

Kurtosis is defined as the standardized fourth moment:

= Ty )

()

with 7 the mean value, and o the standard deviation of the sample. The
benchmark of kK = 0 characterizes the Normal distribution and separates
platykurtic (k < 0) from leptokurtic (k > 0) distributions. Leptokurtosis
(at least for uni-modal distributions) has the visual appearance of higher
peaks around the mean and heavier tails than the Normal which is the kind

of shape that we always encounter in returns.

The finding of non-Normality and leptokurtosis as universal properties of fi-
nancial returns has spurred a long-lasting debate on the appropriate stochas-
tic model for the innovations in eq. (3). Stochasticity of returns quite natu-
rally leads to the hypothesis that aggregate returns should obey the Central
Limit Law and, hence, would have to approach the Normal distribution.
However, despite their aggregation over large numbers of high-frequency
price changes, daily returns are apparently non-Normal. Mandelbrot (1963)
and Fama (1963) provided a solution for this conundrum evoking the Gener-
alized Central Limit Law. The basis tenet of this more general convergence
theorem is that the distribution of sums of random variables converges to
an appropriate member of the family of Levy stable distributions. If the
second moment exists, the pertinent member is the Normal distribution (as
a special parametric case of the Levy stable distributions). If the second

moment does not exist, other members of this family are the limiting distri-
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Figure 2: Distributional properties of returns: The left panel exhibits the distribution
of returns of the FTSE (smoothed via a Gaussian Kernel estimator) in comparison
to the Normal distribution with the same mean and standard deviation. The right
panel shows the empirical complement of the cumulative distribution of absolute
returns for four financial indices (the FTSE 100, NASDAQ, CAC 40 and the MSCI
Australia). Note that under the first case of hyperbolic tail behavior in eq. 7, this
amounts to Prob(|returns| > z) ~ =%, In all cases we observe the typical preasymptotic
distribution: the tails are more elongated than under a Normal distribution, but thinner
than under a Levy stable distribution. The broken line illustrates the decay factor of
-3 of the ‘universal cubic law’ claimed by Gopikrishnan et al. (1998). Through not an
equally good fit for all indices, the inverse cubic decay is close to the empirical behavior
of all financial assets.

butions of sums. In particular, these alternative limiting distributions are
all leptokurtic and share the typical deviation of the empirical histogram
from the Normal distribution. While the Mandelbrot/Fama hypothesis has
motivated a large literature on parameter estimation and practical applica-
tion of Levy distributions, it eventually turned out that these models would
largely overstate the frequency of large returns (cf. Figs. 2 and 3 for il-
lustrations). Much of this evidence is owed to the introduction of concepts

from statistical extreme value theory in empirical finance. The key concept



of extreme value theory is the so-called tail index that allows a classification
of the extremal behavior of empirical data and distribution functions, (cf.
Beirlant, Teugels and Vynckier, 1996). The basic result is the classification
of extreme values (maxima and minima) from i.i.d. random variables with
continuous distributions. Denoting by M = max(z1,...,x,) the maximum
of a sample of observations {z;}, it can be shown that after appropriate
change of location and scale the limiting distribution of M belongs to one
of only three classes of distribution functions. More formally, the distribu-
tion of the normalized maximum, Probla, M + b, < z| converges to one of

the following eztreme value distributions (GEVs)

0 <0
exp(—z~%) x>0,

Gra() = {

[ exp(—(~2)*) <0
Ggﬂ(m) N { 1 x>0,

Gs(x) = exp(—e™®) xR

From this typology of extremal behavior, a similar classification of the un-
derlying distribution’s asymptotic behavior in its outer parts, i.e. tails, can
be inferred. Namely, denoting probabilities (Prob(z; < x) = W it follows
directly from the classification of extremes in (6) that if the maximum of a
distribution follows a GEV of type j(j = 1,2, 3), then its upper tail asymp-
totically converges to the pertinent distribution from the following list:

Wla = 1_1,—0471,21

Y
)

Wy = 1—(—2)%-1<2<0, (7)

)

Ws; = 1—exp(—z),z>0.

These three types of tail behavior can be described as hyperbolic decline
(W14), distributions with finite endpoints (Ws,), and exponential decline
(W3). In order to nest all three alternatives, one can integrate the three
limit laws into a unified representation:

Wy =1- (1427 (8)



with v = 1/a (v = —1/a) in the cases W, and W5, and W3 being covered
as the limit v — 0 (o is a parameter for scale adjustment). Estimation
of the tail inder o allows to determine whether a particular distribution
falls into classes 1,2, or 3 and in the case of the one-parameter familiesW, ,
and W, , simultaneously enables one to estimate the decay parameter of the
tail. These estimates would allow to assess whether certain distributional
hypotheses are in conformity or not with the empirical behavior. For exam-
ple, an empirical « (= 1/7) significantly above 0 would allow rejection of
the Normal distribution as well as any other distribution with exponentially
declining tails. The indication of hyperbolic decline would also exclude a
finite endpoint as implied by W5, type distributions. Needless to say, the
estimated o would be an extremely valuable tool in financial engineering as

it could be easily used to compute the probability of large losses and gains
(cf. Lux, 2001).

Table 1 shows that - with some variation depending on the selection of
the tail size - empirical estimates hover within the interval of about 2 to
4. 95 percent intervals from the asymptotic distribution of the pertinent
maximum likelihood estimates allow to demarcate even more sharply the
set of distribution functions that would or would not be in harmony with
such extremal behavior. As an important consequence, the family of Levy-
stable distributions proposed by Mandelbrot (1963) and Fama (1963) would
have heavier tails than the empirical records with their @ being restricted
to the interval ]0,2]. Any empirical « significantly above 2 (as we mostly
find it) would, therefore, speak against the Levy stable model (which, as
a consequence, would hugely overstate the risks of large returns). On the
positive side, an admissible candidate for the unconditional distribution
would be the Student ¢ whose degrees of freedom are equal to its tail index
so that it could be tuned in a way to conform to empirical shapes of return
distributions. Fergussen and Platen (2006) show that for a variety of stock
indices the parameter estimates of a very general family of distributions
(the generalized hyperbolic distributions) cluster in the neighborhood of a
Student t with 3 d.f.

What implications does this phenomenological characterization have for the-
oretical models? First, from the viewpoint of the efficient market theory,

price increments only have to be random. The innovations in eq. 3 could,



Q2 5% Q5% a10% K
FTSE 100 3.21 3.06 2.80 11.10
(2.68, 3.75) (2.70, 2.56) (2.56, 3.03)
NASDAQ 3.31 3.23 2.69 7.36
(2.76, 3.86) (2.85, 3.62) (2.46, 2.91)
CAC 40 3.64 3.17 2.87 4.72
(2.99, 4.29) (2.77, 3.57) (2.62,3.13)
MSCI Aus 3.16 3.61 3.17 46.21
(2.62, 3.71) (3.17, 4.05) (2.90, 3.44)
Table 1: Kurtosis statistics and maximum likelihood estimates for the Pareto tail

index characterizing the extremal law G, and tail distribution W; .. Data are the
same as in Fig. 2 with daily sampling frequency and time horizon 1985 to 2005. The
estimates are given for three different sizes of the tail region (2.5%, 5%, and 10%) with
asymptotic 95% confidence intervals shown in brackets. All results are in good overall
agreement with a ‘universal cubic law’ as postulated in the pertinent literature. The
tendency for a decrease of the estimated coefficient with increasing tail size is usually
seen as reflecting contamination of tail data with observations from the center of the
distribution. With estimated tail indices significantly below 4, the fourth moment would
not exist. The expected divergence of the kurtosis statistics would lead to unstable

estimates in finite samples that increase with sample size.

therefore, be drawn from a Student ¢t as well as any other distribution func-
tion that meets the minimum requirement Ele;] = 0. Since &; reflects the
news arrival process its realm is outside economics and the EMH is agnostic
as to what the the joint distribution of all relevant news items might look
like. However, there is a more subtle issue here: returns over longer time
intervals are aggregates of high-frequency returns (at least under continu-

ous compounding, i.e. for r; = In(p;) — In(p;—1) and approximately so for
__ bt—pt—1

Tt = Pt—1 )

arrival processes, their aggregates should converge towards the Normal dis-

If all high-frequency returns are reflections of i.i.d. news

tribution irrespective of the underlying distribution of single high-frequency
returns. This is simply a consequence of the central limit law. One might
argue that at the level of daily data (the time horizon we have investi-
gated above), returns within liquid markets are already sums of thousands
of intra-daily price changes so that we should have gone through the better

part of the convergence towards the Gaussian shape at this level of time

10



aggregation. Nevertheless, as we have seen above, daily returns are quite
different still from Normally distributed random variates®>. With higher
levels of time aggregation (e.g. monthly returns), we indeed get closer to
the Gaussian as would be expected from the central limit law. The intrigu-
ing aspect about this phenomenology is that if we look at financial data of
a particular time horizon (e.g. daily) we find a kind of universal preasymp-
totic behavior which seems to be independent of location, time and details
of the market structure. To appreciate this universality of the approxi-
mately cubic law of asset returns (Gopikrishnan et al., 1998) note that it
appears to apply to practically all types of financial markets, e.g. various
developed stock markets, foreign exchange markets, precious metals and
emerging markets (Jansen and de Vries, 1991; Longin 1996; Koedijk et al.,
1990; Lux, 1996, Rockinger and Jondeau, 2003). The relevant news arrival
processes might be quite different for all these markets. At least there is
no a priort reason to assume that they should all obey a roughly identical
distribution of news. Furthermore, one might argue that the velocity of
efficient information processing in the trading process might have increased
over time due to technical advances like electronic trading. Nevertheless,
we have no indication that the shape of the return distribution has under-
gone any remarkable changes over the past decades reflecting an increase in
information transmission. It seems that the set of potential events (sum-
marized in the distribution of returns), during a day in a financial market is
always pretty much the same - irrespective of whether trading is organized
via order-driven and quote-driven systems, whether shares are traded on the
floor or electronically and broadly independent of the size of the market.
Despite the agnostic view of distributional properties by the EMH, we might
feel somewhat uncomfortable about the apparent universality of the type of
randomness of price changes. If the return distribution is that robust, addi-
tional factors besides new information in the trading process might be held
responsible for this particular outcome of the market process. However, if

this were the case, the EMH would not offer a full explanation of financial

3This finding had actually motivated the proposal by Mandelbrot and Fama of the
Levy stable distributions. According to a Generalized Central Limit Law these are
the limiting distributions of sums of random variables with infinite second moment
(whereas with a finite second moment, we are back at the classical central limit law).
Unfortunately, the data also speak against the Levy stable hypothesis.

11



price movements and prices would not solely reflect new information.

One might, then, argue that the universality of distributional properties of
asset returns should have its behavioral roots within the trading process and
needs to the explained from the way human subjects interact in financial
exchanges. Sec. 3 will further pursue this avenue by considering it from the
perspective of ‘scaling’ theory developed in the natural sciences. Before we
turn to this unfamiliar approach, we expand on other ubiquitous regularities

in the following subsections.

2.3 Volatility Clustering and Dependency in Higher

Moments

The martingale property of financial prices implies that price differences de-
fine a martingale difference process and are, thus, uncorrelated. In empiri-
cal time series, one typically finds marginally significant positive or negative
autocorrelations at the first few lags for stock and currency returns, respec-
tively. These are, however, believed to reflect particular structural char-
acteristics of particular markets and the way in which prices are recorded:
in stock markets, small positive autocorrelations are probably due to infre-
quent trading for single stocks, and certain common news factors of impor-
tance for the individual components of stock indices. In foreign exchange
markets bounces between the bid and ask price for currency quotes lead
to negative correlation of recorded transaction prices. Since these autocor-
relations, though statistically significant could mostly not be exploited via
pertinent trading strategies they are usually not classified as strong evidence
against the EMH.

However, while almost uncorrelated, asset returns are not i.i.d. stochas-
tic processes. Another glance at Fig. 1 reveals that while the ensemble
of returns over a longer horizon leads to fairly similar distributions across
different sets of data, on shorter time scales we encounter less homogeneous
behavior. The comparison of empirical returns and simulated Gaussian
and Levy stable data in Fig. 3 makes the difference particularly transpar-
ent: while the latter have a very uniform degree of fluctuations, the former

switch between periods of tranquility and more turbulent episodes. The

12



returns generating process is, thus, characterized by non-homogeneity of its
higher moments. This variability in the extent of fluctuations is actually
the reason for the introduction of the concept of a martingale process in
financial economics as it makes no requirement on the noise term except for
Ele;] =04

The lack of i.i.d. properties is also reflected in autocorrelations of simple
transformations of returns. Considering various powers of absolute returns
{|r¢|*}, one typically observes much higher and longer lasting autocorrela-
tions than for the raw series. Fig. 3 illustrates this finding for the most
frequent choices A = 1,2. As can be seen there is strong dependence in
these higher moments. Since powers of absolute returns can be interpreted
as measures of volatility (as they all drop the sign and only preserve the
extent of fluctuations), these results indicate a high degree of predictability
of volatility (in the absence of significant predictability of the direction of

price movements).

While the volatility clustering phenomenon has been known for a long time,
models covering this feature have appeared first with Engle’s (1983) semi-
nal proposal of the ARCH framework that has spurred a plethora of models
with nonlinear dependency in second movements (cf. Taylor, 2005, for an
overview). While most early literature had considered only the second mo-
ment (A = 2), Taylor (1986) pointed out that the first absolute moment
has even more pronounced dependence than the second. Ding, Engle and
Granger (1993) discuss a whole range of positive \’s and find that the high-
est degree of autocorrelation is typically found for A =~ 1. This hierarchy
of strength of dependency meanwhile also counts as an established stylized
fact (Lobato and Savin, 1998).

An important facet of the empirical findings on higher-order dependencies is
the distinction between short-memory and long-memory in autocorrelation
structures. While short-memory processes are characterized by exponen-
tially decaying ACF functions (ARMA models as well as GARCH models
are standard samples), a long-memory process has hyperbolically decaying

autocorrelations which implies a much slower decay with long lasting after

4In contrast to the more restricted concept of a random walk which would require a
constant variance o2 = Var|e;] of the fluctuations.
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Figure 3: Returns of FTSE 100 compared to simulated Gaussian noise and Levy stable
noise without temporal correlation. For better comparability, all three series have been
rescaled so that the sample variance is equal to unity. The tail parameter of the Levy
distribution has been set equal to 1.7, a typical estimate for stock returns. The upper
right-hand shows the pronounced, hyperbolically decaying autocorrelations of squared
and absolute returns which indicate volatility clustering and time-variation of the degree
of fluctuations.

effects of innovations. Inspection of Fig. 3 suggests that the autocorre-
lations of absolute and squared returns are examples of hyperbolic rather
than exponential decline. Indeed, if one considers very long series, the auto-
correlations stay significant over perplexingly long horizons: for daily S&P
500 data over the period 1928-1990 Granger and Ding (1996) report signifi-
cant autocorrelations over 2500 lags, i.e. more than 10 years! The decay of
autocorrelations of squared and absolute returns is, in fact, indicative of a
hyperbolic decline. This implies that, for example, covariances of absolute

returns, would decay according to:
Ellrerieadl] ~ At (9)

Processes with long-memory or long-term dependence have properties very
different from those that only display short memory (cf. Beran, 1994).
In particular, the variance of the sample mean decays to zero at a rate

slower than n~!, and the spectral density diverges at the origin. Findings of

14



long-memory in the mean of certain series have motivated the development
of fractional Brownian motion and autoregressive fractionally integrated
processes while the finding of long-term dependence in the second moment
of financial data has inspired the development of pertinent extensions of
GARCH type and stochastic volatility models (cf. Baillie, Bollerslev and
Mikkelsen, 1996).

2.4 Other Stylized Facts

One important recent addition to the set of time-series characteristics of fi-
nancial data is long-memory of trading volume. It has been known for quite
some time that volume is highly comtemporaneously correlated with volatil-
ity. This pronounced comovement might suggest that both series have more
common characteristics. Convincing evidence for long-term dependence in
volume has been presented in Lobato and Velasco (1998) although the au-
thors also point out that volatility and volume do not share exactly the

same degree of long-term dependence (i.e. have different decay parameters

2.

Recent work on U.S. high-frequency stock market data has come up with the
additional finding of fat tails in the unconditional distribution of transaction
volume (Gopikrishnan et al., 2001) and the number of trades within a time
interval. Gabaix et al. (2003) provide a theoretical framework in which they
combine these findings, the power law of returns and a Zipf’s law for the
size distribution of mutual funds within a choice-theoretic setting for the
trading activity of large investors. However, empirical evidence for the new
regularities is so far restricted to the U.S. data sets investigated by these

authors.

3 The Stylized Facts as ‘Scaling Laws’

The neglect of almost all the prominent features of asset prices except for
their martingale property by the efficient markets paradigm is not too hard
to explain. If one shares the view of informational efficiency being reflected

in the unpredictability of price changes, the price increments are simply
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one-to-one mappings of the news arrival process. As noted above, neither
fat tails nor long-term dependence as properties of price changes are, there-
fore, in contradiction to the EMH. One might, however, be aware that as
a consequence from accepting the empirical facts and the validity of the
traditional EMH view, one would have to concede that ‘news’ in all times

and all places seem to come with the very same underlying distribution.

Interestingly, scientists with a different background who have stumbled over
one of the huge data sets from financial markets have typically arrived at
very different conclusions after detecting the above ‘stylized facts’. Since fi-
nancial data represent the largest available records of human activity, they
have indeed attracted curiosity from various other disciplines. A strong
recent current is that of physicists engaging in empirical analysis and theo-
retical modeling of financial markets. The reaction of these researchers to
the well-known stylized facts of empirical finance was entirely homogeneous
and totally different from the received viewpoint recalled above: natural
scientists saw these as imprints of a complex system with a large number
of interacting microscopic entities. As Stanley et al. wrote in an influential

early contribution pointing out this viewpoint:

“Statistical physics has determined that physical systems which consist of
a large number of interacting particles obey universal laws that are inde-
pendent of the microscopic details. This progress was mainly due to the
development of scaling theory. Since economic systems also consist of a
large number of interacting units, it is plausible that scaling theory can be
applied to economics" (Stanley et al., 1996)

This statement basically argues that since one finds in financial markets
statistical properties similar to those of certain physical (or biological) sys-
tems, the explanation of these characteristics could also be broadly similar.
This assertion has (at least) three components which we may consider in

turn for their empirical validity or plausibility:

(i) Financial stylized facts are analogous to the scaling laws that play a
prominent role in statistical physics. We have spent some effort above
on outlining how empirical finance had arrived at a very parsimonious
characterizations of the fat tails and clustered volatility of returns.

Both the unconditional distribution of large returns (eq. (7)) and the
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(it)

(iii)

conditional dependence structures of their fluctuations (eq. (9)) can
be expressed by hyperbolic decay rates. Such hyperbolic distributional
characteristics are, however, exactly what is denoted as a power or
scaling law in statistical physics. As far as the existence of these
‘laws’ counts as well-established in empirical finance, financial data in

this descriptive sense share the scaling laws of various natural records.

Scaling laws (stylized facts) should typically be robust (universal) and
should, therefore, hold for similar phenomena independent of the mi-
croscopic details. In finance, one could interpret these apparently
unimportant microscopic details as the particular institutional details
of the market microstructure (floor trading vs. electronic trading,
quote versus order driven markets etc.). In fact, while many other
empirical findings do somehow depend on the microstructure, the hy-
perbolic scaling laws are those features that can be found everywhere,
e.g. the cubic law of large returns seems to govern both stock markets
as well as foreign exchange markets with their very different organi-

zation of the trading process.

Scaling laws are the signature of systems with a large ensemble of
interacting units which emerge from the interaction of these subunits
(particles, molecules) and are only dependent on a few basic principles

of interaction.

While this is simply an observation across many different categories
of dynamic processes in physics and other areas of natural science
(examples are turbulent flows or evolutionary processes in biology),
it seems harder to accept this viewpoint for man-made systems. It
appears to imply that we have to disregard the importance of indi-
vidual rational choice which is one of the basic tenets of economic
theory. While we would certainly not deny the rationality (or from a
behavioral perspective rather: attempt towards rational behavior) of
economic agents, we could argue that the diversity of micro-motives,
preferences, endowments, access to information, and degrees of ratio-
nality and deliberation of these agents could be better captured by
a statistical approach than by the optimization of one representative
agent. It might well be that in the presence of this large ensemble

of heterogenous agents, a few basic principles of interaction can be
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found that exert a dominating influence on the macroscopic market
behavior and that prevail in more or less the same way in different
institutional settings (microscopic details). It would, then, be the task
of a theory motivated by the analogy between scaling in physics and
finance to show that this possibility can be substantiated by sensible
stochastic models of asset price dynamics. The relevant literature will

be reviewed in the next section.

Some words of caution on the ‘scaling approach’ have to be added: there
might well be an exaggeration of both the statistical basis and the potential
implications of scaling laws as signatures of complex dynamics in the perti-
nent literature. As concerns the statistical validity, detection of scaling in
the natural sciences is typically based on apparent linearity in some kind of
log-log plot such as Fig. 2: With the necessity of ‘binning’ the data (i.e.,
grouping it into intervals) and the violation of the independence assumption
in the linear regression this approach appears questionable from a method-
ological viewpoint and has often been criticized by economists (Brock, 1999;
Durlauf, 2005, Gallegatti et al., 2006): the ubiquitous declaration of sta-
tistical objects as fractal, self-similar or scaling has also been attacked in a
recent paper in Science. The authors (Avnir et al., 1998) had surveyed all
96 articles in the Physical Review journals over the period 1990 to 1996 that
contained some empirical scaling analysis of natural or experimental time
series. They conclude that the "... scaling range of experimentally declared
fractality is extremely limited, centered around, 1.3 order of magnitude... "
while a true self-similar or fractal object in the mathematical sense would
require infinitely many orders of power-law scaling. They find it doubtful to
accept the claims of most of the pertinent studies that with their often very

small range of magnitude they would indeed have detected scaling behavior.

A number of papers also point out that one could obtain ‘spurious’ or ‘ap-
parent’ scaling behavior for processes without a ‘true’ asymptotic power
law. Gielens et al. (1996) show that one can always find local alternatives
to fat-tailed distribution that possess thin tails (i.e., decline exponentially)
while tail index estimates would indicate a power-law behavior. The tem-
poral scaling characteristics (long-term dependence of absolute moments)
could be obtained as a spurious outcome of certain specifications of GARCH
models (Crato and de Lima, 1996), stochastic volatility models (LeBaron,
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2001), regime-switching processes or even uncorrelated stochastic processes
with heavy tails (Barndorff-Nielsen and Prause, 2001). However, mostly
this alternatives would require a certain degree of fine-tuning of parameters
in order to ‘fool’ the pertinent statistical tests. Given enough flexibility of
parameter selection, it would always be possible to design a local alterna-
tive to a process with power-law characteristics that has no ‘true’ scaling
behavior, but comes arbitrarily close to scaling and could, then, not be dis-
tinguished from a generic power-law mechanism with finite samples. An
example is the Markov-switching multifractal model introduced by Calvet
and Fisher (2001) which has ‘long memory over a finite interval’ that could
be made arbitrarily long by appropriate choice of the specification. This
model had indeed been designed as a well-behaved stochastic process that
provides a close resemblance to the statistically more cumbersome first vin-
tage of multifractal models of asset returns with true scaling behavior (cf.
Mandelbrot et al., 1997). The ubiquity of fat tails and long memory for
financial data might, however, be viewed as support for models that have
these feature generically rather than apparent scaling for particular sets of
parameter values. As concerns the rigor of statistical analysis and the sam-
ple sizes of empirical data for which ‘scaling’ has been declared, pertinent
studies in finance are in a better position than most of the studies in natural
sciences criticized by Avnir et al. (1998). First, financial econometricians
routinely apply more rigorous methods than log-log plots. Most of the re-
search on fat tails in finance is based on the theoretical concepts of extreme
value theory and has adopted state-of-the-art estimators of the tail index
(mostly without reference to the concept of scaling). Similarly, research on
temporal dependence has also used more refined methods from stochastics
(cf. Lux and Ausloos, 2002, for a comparison of the tools used by physicists
and financial econometricians). Second, as for the sample sizes, the litera-
ture had started out typically with daily recorded series, but has moved on
to the immense data-bases of intra-daily high-frequency returns. The per-
tinent literature indicates that both the findings on fat tails and long-term
dependence of volatility in daily data are confirmed for intra-daily records
(cf. Abhyankar et al., 1995, Dacorogna et al., 2001, Bollerslev and Wright,
2000).

Another concern might be the alleged relationship between power-laws and
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‘complex’ interactions of heterogenous subunits. The evidence for such a
relation is mainly illustrative in nature: physics and biology offer a variety
of examples where the non-linear interactions of elementary units results
in overall system characteristics that can be described by power laws. A
famous case is the leading example of self-organized criticality: dropping
grains on piles of sand (or other materials like rice) always leads to a power-
law distribution of avalanches that can be explained by a stochastic process
of the change of local gradients (Jensen, 1998). However, it has also been
critically discussed recently how useful the diffuse labels of complexity the-
ory are (Horgan, 1995). It might also be noted that there exist some simple
explanations for power laws: power-law distributions could be generated
via a combination of exponentials, by taking the inverse of quantities that
themselves obey harmless distributions, or by splitting processes, among
others (cf. Newman, 2004). As has been demonstrated by Granger (1980),
long memory in aggregate data could result from the aggregation process of
heterogenous individual behaviour (a principle that has recently inspired a
new branch of empirical literature in political science, cf. Box-Steffensmeier
and Smith, 1996). However, none of the simple generating mechanisms has
ever been proposed as a source of power laws in financial data and aggre-
gation of individual behaviour might not be inconsistent with the view of
financial markets as a system of interacting agents. It, therefore, seems
worthwhile to explore the ‘complexity’ approach that views scaling as the

consequence of phase transitions and critical phenomena.

4 Behavioral Asset Pricing Models with
Interacting Agents

4.1 Interaction of Chartists and Fundamentalists in

Complex Nonlinear Dynamics

From about the late eighties and early nineties, behavioral approaches to
financial markets gained in momentum. The literature on excess volatil-
ity and overreaction of asset prices to news suggested that psychological

mechanisms and boundedly rational behavior might provide explanations
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for these and other mysterious ‘anomalies’. At the same time, surveys of
trading strategies and expectation formation mechanisms of real-life traders
pointed to the importance of technical trading and adaptive expectations
(Allen and Taylor,1990, Taylor and Allen, 1992). The dollar bubble of the
early eighties was believed to have been at least partially due to positive
feedback trading (Frankel and Froot, 1986) and this perception gave rise to
new interest in models of interacting groups of chartist and fundamentalist
speculators (Beja and Goldman, 1980; Day and Huang, 1990). These models
were framed as systems of difference or differential equations that contained
the asset price as well as some characteristics of investors as state variables.
Some of the pertinent models assumed permanent market clearing, while
others used a sluggish price adjustment rule as a proxy for market mak-
ing activities in the presence of excess demand (ED). While excess demand
functions of the different groups of traders could either be formulated in an
ad-hoc fashion or were derived from particular utility functions, traders were
typically not rational as neither of both groups properly takes into account
the effect of its own trading activity on subsequent price movements. In a
sense (to be detailed below), these contributions were already motivated by
the idea to explain market-wide phenomena as emergent characteristics from
complex interactions, but restricted the level of disaggregation to a small

number of behavioral types with complete homogeneity within groups.

The seminal paper by Beja and Goldman (1980) provides a simple example
of the legacy of models of chartist-fundamentalist interaction. Beja and
Goldman assume simple ad-hoc functional forms for excess demand of fun-
damentalists and chartists. Fundamentalists’ excess demand depends on
the difference between the fundamental value Py (assumed to be known to

them) and the current market price P;:
EDf = CL(Pf - Pt) (10)

where a is a coefficient for the sensitivity of fundamentalists’ excess demand
to deviations of the price from the underlying fundamental value. Assuming
an expected reversal of the market price towards P; together with constant
risk aversion and constant expected volatility such a function could also be
derived from myopic utility maximization using a mean-variance framework
or a negative exponential CARA utility function together with Normally
distributed expected price changes. While this format of fundamentalists’
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excess demand is pretty standard in the literature and can already be found
in early contributions like Baumol (1957), there is more variation in this
literature in the formulation of chartists’ excess demand. The particular
hypothesis employed by Beja and Goldman (1980) is that their excess de-
mand depends on the expected price change w (i.e. expected capital gains

or losses)
ED.=br (11)

where b again captures the sensitivity of the order flow of this group to
expected gains or losses. In a continuous-time framework is the subjective
expectation of the infinitesimal price change %. Beja and Goldman (1980)
invoke a market maker mechanism in order to justify sluggish Walrasian

price adjustment:

C;_]; — P(t) = A(ED; + ED,) = Aa(P; — P,) + br) (12)

with A the price adjustment speed. While this is a phenomenological char-
acterization without microeconomic motivation from the optimization prob-
lem of a market maker, one may note that it closely resembles the micro-
founded price adjustment rules of the literature on price formation under

asymmetric information (e.g. Kyle, 1985).

Given the trading strategies of the two groups of investors, price changes
result endogenously from the total imbalance between demand and supply
so that the chartists’ expectations might be confirmed or not. In the pres-
ence of a deviation of expected from realized price movements, chartists are
assumed to adaptively adjust their expectations:

dr , ,

— =7'(t) = c(P'(t) — ) (13)

dt
where c is a parameter for the speed of adaptation of expectations.
Neither of both groups is characterized by rational expectation formation:
chartists react adaptively by assumption so that they will hardly ever
correctly predict price changes. Fundamentalists neglect the existence of
chartists and their influence on price changes so that even if the price re-
verts towards its fundamental value (which might not be guaranteed), the
speed of its reversal towards Py might be different from the hypothesized
adjustment coefficient of eq. (10).
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The model of speculative activity by Beja and Goldman (1980) boils down
to a system of two differential equations (eqs. (13) and (14)). It is typical
for a large body of literature in that it consists of a dynamic system covering
the market price plus some group characteristics that undergo changes over
time in response to the asset price dynamics. It is also quite characteristic of
the broader literature in its main results. The interest of the authors of this
and many subsequent contributions in this vein is mainly in the existence
and stability of a fundamental equilibrium in the presence of non-rational
speculative activity. It is easy to see that the conditions for existence of a
stationary state of the joint dynamics of P and w, P'(t) = «'(t) = 0 lead
to a dynamic equilibrium P* = Py, 7* = 0. The only possible steady state
is, therefore, obtained if both the price equals its fundamental value and
chartists expect no further price changes. In this case, excess demand of
both groups of traders equals zero and the price remains unchanged. It is
slightly more demanding to arrive at results on the stability or instability
of this steady state. Applying the standard stability criteria for systems
of autonomous differential equations, we find that the system converges
asymptotically towards its steady state if the following necessary and suffi-

cient condition is met®:
aX+c(l1 —0X\) >0 (14)
This condition yields the following plausible insights:

(i) high sensitivity of fundamentalists’ (chartists’) excess demand is sta-

bilizing (destabilizing),

(71) whether increased price adjustment speed is destabilizing or not, de-
pends on the relative sensitivity of the chartists” and fundamentalists’
demand schedules. Higher price adjustment speed has a more stabi-

lizing (destabilizing) tendency , ifa > (<)c- b,

(#1i) the influence of the speed of expectation adjustment of chartists is
ambiguous: if 1 — b\ > 0 the systems is always stable independent
of the value of ¢ (since with b < § the market maker’s price ad-
justment succeeds in reducing chartists’ excess demand over time).
Conversely: if b > %, price adjustment triggers even higher order vol-
umes by chartists due to pronounced bandwagon effects. In this case,

®See Beja and Goldman (1980) for details.
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increasing adjustment speed c in their adaptive expectation formation

would have a destabilizing tendency.

The second and third item above illustrate that stabilizing and destabilizing
features of particular chartists strategies could be subtle and could easily
change under different specifications of their strategies. It is worthwhile to
note that this model provides a potential explanation of certain empirical
regularities. If stability condition (14) is satisfied and the eigenvalues of the
dynamic system are complex conjugate numbers (which happens in an open
set of parameter values), the model exhibits overshooting and subsequent
mean reversal in the presence of new information. To see this assume that
the fundamental value of the asset increases from Py to Pro (cf. Fig. 4).
Fundamentalists knowing of the increase of the intrinsic value will start
buying shares. This leads to excess demand and exerts upward pressure on
market prices. The increase of the asset price is interpreted as a positive
trend by chartists who subsequently also start buying shares. Due to this
non-informed source of additional demand, the price will overshoot its new
fundamental value and fundamentalists will switch from the demand to the
supply side leading to mean reversion towards Prs. In the following, the

price will converge to its new fundamental value with damped oscillations.

If the stability criterion (14) is not satisfied, these oscillations would - be-
cause of strong feedback effects from chartists - display an increase rather
than decrease in amplitude. Since the model by Beja and Goldman is framed
as a linear system of differential equations, there would be no limit to the
divergence of the price from the underlying fundamental value. Of course,
such a scenario is unrealistic which essentially means that this baseline
model is silent on the dynamics one would expect under local instability of

the fundamental equilibrium.

Similar dynamic models like the one proposed by Beja and GGoldman with
added nonlinear ingredients have been studied by a number of authors: even
prior to Beja and Goldman, Zeeman (1974) had published a very similar
model that assumed a non-linear reaction function of chartists on observed
price changes which flattens out further away from the fundamental equi-
librium. While Zeeman’s interest is in the application of concepts from

catastrophe theory (demonstrating the possibility of sudden stock market
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Figure 4: Overshooting and mean reversion of market prices after arrival of new in-
formation. Simulation results witha = 0.7, b = 0.8, ¢ = 0.9, A = 1, Py; = 10 and
Py =11.

crashes), Chiarella (1992) showed that the Beja/Goldman model would gen-
erate periodic oscillations around the fundamental equilibrium in the unsta-
ble case if chartists” excess demand function gets sufficiently flat far from the
equilibrium price. Day and Huang (1990) consider another similar model
formulated in discrete time whose ‘information traders’ (equivalent to the
above fundamentalists) trade the more aggressively the farther the market
price is from the fundamental value. With a strong reaction of chartists
destabilizing the fundamental equilibrium, the assumed nonlinear reactions
result in the same combination of centripetal and centrifugal forces like in
Zeeman (1974) and Chiarella (1992): strong reaction of chartists prevents
convergence to the fundamental equilibrium and generates bubble episodes
of overvaluation or undervaluation of the asset. However, once the deviation
of the market price from P becomes too large, either the chartists become
more cautious or the fundamentalists step in more aggressively so that the
price process does not diverge endlessly but rather reaches a turning point
at which the attraction toward the fundamental value dominates over the

positive feedback effect. The global dynamics is, therefore, bounded but not
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asymptotically stable. It does not converge to its (unique) equilibrium, but

also does not exhibit unbounded deviations from the equilibrium.

While Chiarella (1992) in a nonlinear version of the above setting in con-
tinuous time ends up with a closed orbit with constant amplitude, Day and
Huang get an even more exciting outcome: depending on parameter values,
the market could exhibit chaotic fluctuations.® Despite the deterministic ex-
cess demand functions and price formation rule the price trajectories then
appear like the realization of a stochastic process with random switches be-
tween bear and bull markets. The difference in outcomes is mainly due to
the mathematical formalization of the speculative dynamics: while systems
of differential equations are capable of generating chaos only if they consist
of at least three first-order equations (Beja/Goldman and Chiarella only
have two equations), even difference equations of first order can generate
chaotic attractors. The erratic appearance of price paths from a determin-
istic system and the lack of predictability of chaotic systems provided a new
avenue towards an explanation of the stylized facts: despite deterministic
behavioral sources, the systematic forces of the market interactions could
become ‘invisible’ due to the apparent randomness of the chaotic dynam-
ics. A similar avenue is pursued within a model of the foreign exchange
market by DeGrauwe et al. (1993). Assuming simple versions of moving
average rules applied by chartists, they end up with a higher-order system
of difference equations that yields chaotic attractors for a broad range of
parameter values. Interestingly, their model also allows to explain stylized
facts of foreign exchange markets other than merely the deviation between
market exchange rates and their fundamental value. In particular, they
demonstrate that their chaotic process is hard to distinguish from a unit
root process (martingale) by standard statistical tests and that the over-
all dynamics could explain the forward premium puzzle (the finding that
forward rates are poor and biased predictors of subsequent exchange rate

movements). Experiments with a macroeconomic news arrival process in-

6Gu (1995) analyzed market mediating behavior of an active market maker in the
framework of Day and Huang demonstrating that it would be in the interest of this
agent to churn the market rather than calming it down, i.e. choose a price adjustment
speed in the chaotic zone of parameter values.
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dicate that while this incoming information is incorporated into exchange
rates over longer horizons, there is no one-to-one mapping between exchange
rate changes and macroeconomic news in the short-run. The connection be-
tween the currency movements and macroeconomic factors might, then, at
times appear quite loose, explaining the so-called ‘disconnect’ puzzle and

the failure of macroeconomic models to predict exchange rates.

A closely related recent branch of literature is that on "adaptive belief sys-
tems". In contrast to the contributions reviewed above, this class of mod-
els allows agents to switch between different prediction functions (mostly
chosen from the typical chartist and fundamentalist varieties). Thus, the
fractions of agents using particular predictors become additional state vari-
ables in addition to the market price. Early work in this vein was mainly
concerned with the possible bifurcation routes towards chaotic attractors in
these systems (Brock and Hommes, 1997, 1998). Various extensions have
considered a broad variety of prediction functions, have allowed for transac-
tion costs, and have studied the endogenous development of wealth of agent
groups as an alternative to switches due to the success or failure of their pre-
dictions (Gaunersdorfer, 2000; Chiarella, Dieci and Gardini, 2002, Chiarella
and He, 2002, Brock, Hommes and Wagener, 2005, DeGrauwe and Grimaldi,
2006). A recent paper by Gaunersdorfer and Hommes, 2007, is concerned
with a possible mechanism for volatility clustering within this framework.
They demonstrate that in a scenario with coexistence of a locally stable fixed
point and an additional cycle or chaotic attractor superimposed stochastic
disturbances would lead to recurrent switches between both attractors. In
the vicinity of the fixed point, fluctuations will be confined to the stochastic
disturbance, while the endogenous dynamics of the cycle or chaotic attrac-
tors will magnify the stochastic fluctuations. As a consequence, switching
between both attractors will come along with the impression of volatility
clustering and, therefore, could provide a possible explanation of this styl-
ized fact. Gaunersdorfer and Hommes show that estimation of GARCH
parameters produces numbers close to those of empirical data for some pa-
rameterizations of the model. In a related framework, He and Li (2007)
point out that an appropriate combination of noise factors in an otherwise
deterministic chartist-fundamentalist model (both a stochastic fundamental

value and an additional noise component in aggregate excess demand are
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assumed) could lead to absence of autocorrelation in raw returns together
with apparent hyperbolic decay of autocorrelations in squared and absolute

returns.

The adaptive belief models have a close resemblance to a class of models
using machine-learning tools for agents’ expectation formation. The proto-
type of this strand of literature on artificial financial markets is the Santa
Fe artificial stock market (Arthur et al., 1997, LeBaron et al, 1999) that
had already been launched in the early nineties. In this model, traders are
equipped with a set of classifiers of chartist and fundamentalist type to cat-
egorize the configuration of the market and formulate expectations of future
returns based on this classification. Both classifiers and forecast parame-
ters evolve via genetic operations. The main finding of this project is that
dominance of either chartist of fundamentalist components depend on the
frequency of activation of the genetic operations. Under frequent activa-
tion, chartist behavior was found to dominate while with a lower frequency
of activation, fundamentalist classifiers gained in importance. Imposing
‘short-termism’ on the artificial agents, they are apparently forced to focus
on trends rather than on, for example, price-to-dividend ratios. It has also
been shown that the chartist regime had higher volatility than the funda-
mentalist regime, and the later exhibited excess kurtosis as well as positive

correlation between volume and volatility.

Other recent artificial markets include Chen and Yeh (2002) whose traders
are equipped with genetic programming tools rather than classifiers sys-
tems. Simpler models with artificial agents have used genetic algorithms
for parameter selection of trading strategies (Arifovic, 1996, Dawid, 1999,
Szpiro, 1997, Lux and Schornstein, 2005 and Georges, 2006). Due to the in-
herent stochasticity of the evolutionary learning mechanism, some of these
models are closer in spirit to the stochastic models discussed below than to

the deterministic approaches of the early ‘chaos’ literature.

One concern on the body of literature on chartist-fundamentalist models
with a deterministic structure is the lack of convincing evidence of chaotic
dynamics in financial markets. While there had been some hope of detecting
low-dimensional deterministic chaos in financial returns in the early liter-
ature on this subject (Eckmann et al. 1988, Scheinkmann and LeBaron,

1988) it soon turned out that the daily data sets used in these studies were
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too small for reliable estimation of, for example, the correlation dimension
of a chaotic attractor (Ruelle, 1990). The consensus that emerged from this
body of literature was that the empirical evidence for low-dimensional chaos
is weak. One should also note that despite their sensitivity with respect to
initial conditions, low-dimensional attractors are characterized by recurrent
patterns that could probably be exploited too easily by advanced methods
from the toolbox of nonlinear dynamics. Nevertheless, the literature agrees
that there is strong evidence for nonlinearity in that all standard tests for
IID-ness would typically reject their null hypotheses when applied to fi-
nancial returns. However, this nonlinear dependency is mostly confined to
higher moments (GARCH effects) and it might not be uniformly present
in the data. As an interesting exercise by de Lima (1998) demonstrates,
rejection of IID-ness by the popular BDS test in S&P 500 returns over the
eighties happens only if one uses data including the crash of 87. If the series
stops before this event, the data, in fact, look like white noise and would not
reject the null hypothesis. These findings indicate that financial data have
a structure that is even more complex than that of chaotic processes. It
might, therefore, be important to allow for both deterministic and stochas-
tic factors whose interaction could give rise to different behavior in different

time windows.

4.2 Kirman's Model of Opinion Formation and

Speculation

While a few attempts at modeling stochastic economies of interacting agents
have been published decades ago (most notably Follmer’s seminal 1974 pa-
per), a more systematic analysis of stochastic interactions only started in
the nineties and was largely confined to models of trading in financial mar-
kets. The first study that gained wider prominence within the economics
literature is Kirmans’s (1991, 1993) model of herding through pair-wise con-
tacts. Its mechanism of contagion of opinions - which in principle could be
applied to a variety of problems in economics and beyond - has also been
used as an ingredient in models of interacting chartists and fundamental-
ists and serves to highlight the differences in results brought about by an

intrinsically stochastic rather than deterministic framework.
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We start with the basic stochastic interactions considered in Kirman’s ap-
proach. The motivation for Kirmans’s model stems from experiments on
information transmission among ants. If a group of foraging ants is offered
two identical sources of food in the vicinity of their nest, a majority of the
population will be found to exploit one of both resources at any point in
time. This concentration comes about by chemical information transmis-
sion via pheromones by which successful pioneer ants recruit followers and
guide them to the same manger. The higher concentration of pheromone on
one of the two paths to both food sources stimulates more and more ants to
exploit the same source. However, if experiments last long enough, random
switches are observed in the preferred source and, averaging over time, a bi-
modal distribution is found for the number of ants collecting food from one
source. The switch is believed to be caused by evaporation of pheromones
together with random search of ants not yet recruited for the exploitation
of one resource. This combination of concentrated exploitation and random
search is often viewed as an evolved optimal foraging strategy that achieves
a balance between the costs and benefits of undirected search and exploita-
tion of known resources (cf. Deneubourg et al. 1990). It also counts as one
of the leading examples of natural optimization and has motivated together
with similar findings of seemingly purposeful self-organized behavior in in-
sect societies the new brand of “ant algorithms” in the artificial intelligence
literature (Bonabeau, Dorigo and Theraulaz, 1999).

Kirman (1993) has come up with a stochastic model of this recruitment
process of foraging ants. Following the experimental setup, he assumes
ants (agents) have two alternatives at their disposal (which might be food
sources, opinions, or strategies like chartism and fundamentalism). FEach
individual is assumed to adhere to one of both alternatives at any point in
time. There exists a fixed number of N agents, k£ of whom are currently
subscribing to alternative 1. Hence, the probability that a randomly chosen

agent belongs to group 1 (2) is £ and =%, respectively.

The state of the system, then changes over time by a combination of re-

cruitment and random changes (random search):

1. individuals meet pairwise and exchange information on their respec-
tive strategies or opinions. From these meetings, any agent might

come out convinced or persuaded that the choice of the other is more
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preferable. This happens with a constant probability 1 —§ (0 denoting

the probability of holding on to one’s own former strategy or opinion).

2. individuals can also change their opinion or strategy without meeting
others in an autonomous fashion, say due to idiosyncratic factors.

This random change happens with a probability e.

Within a small time interval (small enough to allow for at most one pairwise
encounter) the number & of individuals of type 1 can, consequently, undergo

the following changes:

k+1 with probability py,
k— { k with probability 1 — p; — po, (15)
k —1 with probability ps.

Both probabilities in eq. (15) are determined by simple combinatorial con-

siderations:
N —k k
p1 =Prob((k - k+1) = N (e+(1- 5)m) (16)
k N —k
pr=Prob(k > k—1) = (et (1-0)7—) (17)

The resulting stochastic process converges to a limiting distribution which
for large N and small € can be approximated by the symmetric Beta distri-

bution:

f(z) = const.z® (1 —xz)*! (18)

e(N-1)
1-9

strength of the autonomous component € and the recruitment probabil-

where x = % and the shape parameter o = depends on the relative
ity 1 — 6. The equilibrium distribution may have a unimodal or bimodal
shape: for e > ﬁ the distribution will be unimodal with a concentration
of probability mass around the mean value g If we increase the herding
propensity, however, the population dynamics will undergo what is denoted
a “phase transition” at € = zlv;j with the equilibrium distribution changing
from unimodal to bimodal. Fig. 5 illustrates the different possibilities for
the distribution of opinions together with examples of stochastic simula-
tions for the uni-modal and bi-modal case. Note that in the bi-modal case,
the mean value of the equilibrium distribution is stillg but it is the least

probable realization to be observed in a simulated time series. Probability
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mass is rather concentrated at the extreme ends which means that a ma-
jority of agents will follow most of the time one of both alternatives. This
also means that although all agents are governed by the same conditional
probabilistic laws, the emergent global configuration may be inhomogeneous
with alternating phases of dominance of one or the other strategy. If we
assume that the two alternatives in question are chartist and fundamen-
talist strategies, we would observe waves of popularity of one or the other
alternative among traders due to non-economic forces (Frankel and Froot,
1986, and Liu, 1996, offer some evidence for changes in population of both
types of strategies in foreign exchange markets). From a certain perspective,
such an added non-economic explanation for the popularity of chartist and
fundamentalist trading strategies could have some appeal: in an efficient
market, both alternatives would be inferior to a single buy-and-hold strat-
egy so that some reasons outside the realm of economics would be needed to
explain their perseverance and popularity among traders! However, these
non-economic forces would lead to dependence between agents. The lack of
independence of individuals’ deviations from rational behavior would pre-
vent applicability of a suitable law of large numbers. As a consequence,
irrationality would not be washed out in the aggregate but would exert a

non-negligible influence on equilibrium prices.

Kirman (1991) had already incorporated his recruitment mechanism into a
chartist-fundamentalist framework. His model is formulated as a monetary
model of the foreign exchange market. This implies that the equilibrium ex-
change rate is determined by the uncovered interest parity condition (UIP).
Summarizing the fundamental macroeconomic factors influencing the do-
mestic and foreign interest rates via a compound contemporaneous macro

variable x;, the equilibrium log exchange rate is obtained as:

St =T+ 5Em,t [Sﬂ,l] (19)

"Kaldor (1939) already argued that there might be a representation bias that might
lead to a steady inflow of new speculators even in the presence of the net losses of

“... even if speculation as a whole

the population of existing speculators as a whole:
is attended by a net loss, rather than a net gain, this will not prove, even in the long
run, self-corrective. For the losses of a floating population of unsuccessful speculators
will be sufficient to entertain permanently a small body of successful speculators; and
the existence of this body of successful speculators will be a sufficient attraction to

secure a permanent supply of this floating population.” (p.2).
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Figure 5: The two possible scenarios of Kirman’s ant model: The population might

0.0

fluctuate around the mean value k/2 with an equal number of agents in both groups
(left-hand side) or it might tend towards a uniform statek = 0 or £k = N with inter-
mittent switches between both polar cases due to the randomness of the recruitment
process (right-hand side). Parameters are § = 0.15, N = 100 and ¢ = 0.02 and 0.002,
respectively. The upper panels show simulations of both cases, the lower panels exhibit
the frequency of observations % in these simulations.
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where 0 is the discount factor and E,;, ;[S;11] is the market-wide expectation

of the future exchange rate entering via UIP.

The traditional monetary approach would, of course, assume rational ex-
pectation formation. Any current information on future changes of macroe-
conomic fundamentals (components of z,,7 =t + 1, + 2,...) would, then,
be incorporated into current spot rates via their correctly predicted influ-
ence on future equilibrium exchange rates. Upon iterative solution of (19),
the fundamental value Sy; would be obtained. Analogously to Beja and
Goldman and the related literature on speculative models of asset price for-
mation, rational expectations are replaced in Kirman’s model by the non-
rational expectations of chartists and fundamentalists. Kirman assumes the

standard format of fundamentalists’ expectations:
Ef,t[ASt-l-l] == (I(Sﬁt — St_l) (20)

with AS; 11 = S;41 — S and a simple trend following rule for chartists.
In our representation of chartists’ expectation function we slightly modify

Kirman’s original set-up:
Ec,t [AStH] = b(Stfl - St72>~ (21)

The number of agents formulating their expectations in one or the other
way is assumed to change under the influence of the stochastic recruitment
process so that the aggregate forecast of the exchange rate, F,,[S;.1], is
given as a weighted average whose weights change stochastically with the

group occupation numbers:

Emi[Siy1] = Emi[ASea] + 5
= St + thth [ASH_ﬂ —+ (1 — wt)Ecﬂg [ASt+1]. (22)
Setting w; = %, we obtain:
k N —k
Em,t [Sﬂ,l] - St —|— NEf,t[AStJrl] + Ec,t[ASH»l]- (23)

In Kirman’s simulations of this model, weights are not exactly identical to

group occupation numbers, but are given by agents’ assessment of what the
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majority opinion might be. For this purpose, every agent is assumed to
receive a noisy signal of the majority opinion. Assuming that agents follow
this perceived majority, the aggregate of these signals is, then, used instead
of the raw outcome from the population model, k;. In addition, the social
dynamics occurs at a faster time scale than price formation in the foreign
exchange market. In particular, in the results reported in various papers
(Kirman, 1991, 1992; Kirman and Teyssiére, 2002), the group occupation
numbers are sampled after 10,000 pairwise encounters in order to implement
the weights in the unit time steps of eq. (23). However, all these refinements
are of minor importance. The more important insight is that we end up
with a complex dynamic system in which the process of social interactions
between agents exerts a crucial influence on the relatively conventional (in
the light of the previous sec. 4.1) speculative process component. To see
this, plug (21) and (20) into (19):

St =x; + wta(vat - St—l) + (]. — wt)b(St_l — St_g). <24)

For constant fractions of chartists and fundamentalists, this is only slightly
different from the model of Beja and Goldman. Despite the formulation in
the tradition of monetary models of the exchange rate, the different formal-
ization of chartists’ expectations and the discrete rather than continuous-
time framework, we easily recover the stabilizing and destabilizing tenden-
cies of both groups. In particular, for the extreme casesw; = 1 and w; = 0,
we immediately see that the system would be unconditionally unstable if all
traders adopted the chartist forecast rule (w; = 0). In the case of complete
dominance of fundamentalists, we would find stability of the fundamental
equilibrium in the case a < 1 (as with a > 1 fundamentalists would overre-
act to a discrepancy between the current price and the fundamental value).
Furthermore, for the system of two interacting groups, stability conditions
can be expressed in terms of group occupation numbers. For a constant
w; = w, this second-order difference equation would have an asymptotically
stable equilibrium if the following conditions were satisfied:

i) w>1-3

SN 2brl
(i) w < 5

Note that the second condition is always met if fundamentalists’ reaction

is not excessive (a < 1). The autonomous recruitment dynamics can be
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seen as a driving factor that sweeps the speculative dynamics back and
forth between stable and unstable configurations. As can be inferred from
a typical simulation, the stochastic fluctuations of the prevailing majorities
lead to different characteristic phases in the market’s dynamics. During
phases dominated by fundamentalists, the exchange rate stays close to its
fundamental value while speculative bubbles emerge if the majority turns
to the chartist forecast rule. Bubbles collapse together with the stochastic
switches from the chartist majority back to the fundamental majority. Kir-
man (1992) shows that standard tests would mostly not reject the unit root
hypothesis for simulated time series while Kirman and Teyssiére (2002) test-
ing for long-term dependence in absolute and squared returns find robust
indication of long-term dependence with decay parameters in the range of
those obtained with empirical data. Although we do not get the full set of
stylized facts reviewed in sec. 2, the sweeping through a bifurcation value
(threshold for a qualitative change of the dynamics) due to superimposed
stochastic forces is a more general phenomenon that also occurs in other
models of interacting agents. As we will see below, in a slightly different
framework, it appears to be a potential key mechanism generating fat tails

and clustered volatility.

Alfarano, Lux and Wagner (2007) study a continuous-time version of the
‘ant process’. In their model, the speculative dynamics is closer to the Beja
and Goldman legacy. They assume constant fractions of fundamentalists
and chartists, but have the number of buyers and sellers among chartists
being determined by the social interaction dynamics above. Using tools
from statistical physics, they derive approximate closed-form solutions for
conditional and unconditional moments of returns of their asset price pro-
cess. They show that leptokurtosis and volatility persistence are generic
features of this model, although neither the unconditional distribution nor
the autocorrelations exhibit ‘true’ power-law decay. However, Alfarano and
Lux (2007) show in a closely related model that up to a characteristic time
scale the temporal characteristics would closely resemble that of a process
with ‘true’ long memory and the deviation from ‘true’ asymptotic scaling be-
havior could only be detected for very long (simulated) time series. Gilli and
Winker (2003) have estimated via a heuristic grid search method Kirman’s
(1991) model for the U.S.3-DEM exchange rate and have obtained parame-
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ter estimates within the bi-modal regime. Alfarano, Lux and Wagner (2005)
developed an approximate ML approach for a similar model that generalizes
the previous framework by allowing for asymmetric autonomous transition
rates between groups. This added feature leads to arbitrary asymmetries in
the limiting distribution of the population configuration depending on pa-
rameter values which translates into subtle asymmetries in the distribution
of returns. Since a higher autonomous tendency towards one group leads
to a certain dominance of one strategy, the empirical parameter estimates
provide some evidence on the average population composition in the market
under investigation. As it turns out, parameter estimates of this asymmet-
ric ant model indicate that stock markets mostly have a higher fraction of

chartists than foreign exchange markets.

4.3 Beyond Local Interactions: Socio-Economic Group

Dynamics in Financial Markets
4.3.1 Social Interactions: A General Framework

Pairwise interactions as they appear in the seminal ant model are just one
way to formalize the interpersonal influences between economic agents. The
first systematic investigation into the effects of mutual non-economic inter-
action between agents in an economic setting is due to Follmer (1974). He
studied the existence and uniqueness of the equilibria in a system of markets
and pointed to the existence of a phase transition from a unique prize vector
to a “polarized” multi-modal state with increasing strength of interpersonal
spillovers. This phenomenon is similar to the bifurcation from uni-modality
to bi-modality in the ant model and can be found in various broadly similar

approaches.

In the following section, we outline another model in the chartist-
fundamentalist tradition that uses a formalization of interactions that can
be viewed as the opposite extreme to pairwise influences: traders will be
assumed to be influenced by the overall mood of the market, i.e. an aver-
age of the influence from all their fellow traders. Such an overall influence
allows to study the macroscopic dynamics more easily via so-called mean-

field approximations. As it will be seen most qualitative results of the simple
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model that follows are in harmony with the findings reported above. The
added advantage (besides the generalization of previous results) will be that
this framework allows to illustrate a general avenue towards the analysis of
macroscopic quantities in stochastic systems of interacting agents that can
be compared to typical stochastic models applied in empirical finance. Our
particular framework is adopted from Lux (1995). As in Kirman‘s model,
a population is divided into two camps, say, optimistic and pessimistic (or:
bullish and bearish) individuals, whose average mood can be captured by

the opinion index x:

n+ — N_
L 2
o IN (25)

with n4(n_) the current number of optimists (pessimists) and 2V the over-
all number of agents. Individuals are assumed to revisit their choice of
opinion from time to time and to have a tendency to switch to the majority
opinion. With an overall ‘field’ effect (i.e., all other individuals exerting the
same influence on any one), the group pressure can be modeled via some
feedback effect from the macroscopic configurationz on individual decisions.
This feedback leads to migration of individuals between both groups under
the influence of the overall ‘field’ of the average opinion. Formally, these
transitions might be specified by Poisson processes in continuous time with

n_n

rates p,_ and p_, for an individual from the group to switch to the "-+"
group and vice versa. The canonical function used for transitions in particle

physics is the exponential which motivates an ansatz of the following type:

pi— = v-exp(az);p_y = v - exp(—ax). (26)

Obviously, eq. (26) supposes positive probabilities for agents to migrate be-
tween groups, but hypothesizes a stronger tendency for migration following
the dominating opinion: if x > 0 (z < 0), the majority of the population
can be found in the "+" ("-") group and the probability for other agents
to join this group is larger than that of members of the majority to switch
to the minority view. We, thus, have a very direct formalization of social
interaction or herding among the members of our population. Note that
eq. (26) includes two parameters: v which captures the general frequency
of revision of opinion within our population and o which parameterizes the

strength of the herding effect. Because of the assumed Poisson nature of
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the switches of opinion, we can easily come up with probabilities for move-
ments of agents from one group to another during a certain time intervalAt.
For small time increments At the simultaneous movements of two or more
individuals during an interval At become increasingly unlikely and can be
completely neglected in the limit At — 0. In addition, the probability for
an individual to switch from one group to the other converges top, At and
p_At. Since these Poisson processes are assumed to be the same for all
members of the optimistic and pessimistic group, respectively, we can infer
the transition rates for group occupation numbers as the limiting cases of
conditional probabilities w(n; + 1, At|n;,t) for i € {“4+7,“ ="}

w(nyg + 1,t + At|ng,t)

AI}SIE}O At = w(n-l- + 1|n+7 t) =N_-Pi—, <27)
. wn_ + 1L, t+Atn_,t) B
A AL = w(n- +1|n_.t) =nyp_. (28)

Denoting by n = (ny —n_) = «N the socio-economic configuration with
ne{-N,-N+1,...,N—1,N},andz € {-1,-1++,...,0,..., 2L 1},
the opinion dynamics leads to a sequence of switches fromn to one of the
neighboring values n £ 1 (or from z to = + %) in irregularly spaced time
intervals. A complete description of the dynamic process is obtained via
the so-called Master equation which captures the change in time of the
probabilities Q(n, t) or Q(x,t) over all candidate states n or x, respectively.
This amounts to a system of differential equations for the probability flux

which in our case can be written as:
dQ(z;t) 1 1 1 1
— = wl(x—FN)P(x—l—N;t)vaT(x—N)P(x—

inflow of prob. to state x

N; t) (29)

N

— (w,(@) + wi (@) Plas1).

~
outflow of prob. from x

The transition rates for the changes of x by one unit :l:% are identical to the
rates introduced in eq. (27) and (28) translated into the pertinent transition

rates of the intensity x:

(@) = n_ps_ = (1 - &)Nps_,w,(2) = nap_s = (L+)Np_s.  (30)
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Note that the rates wy(z) and w(z) are both state dependent and non-
linear due to our formalization of the individual transition ratesp,_ and
p_+. While one could in principle use the Master equation in order to
simulate the time development of our dynamic process, it is certainly too
complicated to allow an analytical solution. The major advantage of this
formalization consists, however, in its use as a starting point to derive more
manageable approximations. One potential avenue consists in performing
a Taylor series approximation to the Master equation itself leading to the
so-called Fokker-Planck equation whose use is illustrated in Fig. 7. A sec-
ond complementary approach is to investigate macroscopic characteristics
of the dynamic process, e.g. first, second or higher moments, whose im-
plementation also requires the Master equation formalism. The details of
both approaches have been nicely laid out in the monographs Weidlich and
Haag (1983), Aoki (1996) and Weidlich (2002). We will not go into too
much detail here but simply illustrate some of the main results that can be

obtained for our opinion dynamics.

Let us start with the first moment of the opinion index, i.e. 7;, whose
time change characterizes the most probable development of the system

conditional on the initial condition zy and time ¢ = 0. Since the mean is
defined by:

Ty = Z I‘Q(Z’;t), <31)

its change in time can be computed exactly only under complete knowledge

of the dynamics of the probability distribution over all statesx:

A7~ dQ(z:t
d—izzx%. (32)

r=—1

The exact time evolution covered in eq. (32) can be approximated in a

Taylor series expansion around the current mean Ty to various degrees of

accuracy. To first order, we obtain a self-consistent differential equatiort:
dzy

E = aac,l(x_t)’ (33)

¥Note that the first derivative vanishes because of E[(z — Z)a}, ;(T)] = 0
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while to second-order accuracy, a correction term involving the varianceos?
enters the equation:
dI_t 1 "

% = ijl(f> -+ 50'3619371(5). (34)

The function a,; in eqs. (33) and (34) is denoted the first jump moment. It
gives the expected change of the system conditional on the previous realiza-
tion. Evaluated at the current expectation, Z; (conditional on some critical
condition) it allows to track the mean-value dynamics of the system. In the
case of an infinite population, (33) would be exact. For finite populations,
however, the influence of higher moments has to be taken into account. Eq.
(34) includes the next higher term in the Taylor series expression of (32)

involving the second moment.

Higher-order expansions would involve higher-order moments in the addi-
tional entries on the right-hand side of the equation. An example for the

determination of the jump moment a,; can be found below.

The dynamics of higher moments are obtained analogously. For example,

the second moment 27 = Y 2?Q(x;t) changes over time according to:

d— d it
957 =y 2l (35)

T

while the time change of the variance o2 is given by:

%ai = %(F —7?) = 45 0zl (36)
and can be solved using egs. (34) and (31). Taylor series expansions of these
exact equations again lead to approximations of various orders of accuracy
involving non-linear functions of various moments on the right-hand side.
One immediate consequence is that any model involving a group dynamics
like the one under investigation (or a broad range of alternative population
processes) entails autoregressive dependence in higher moments as well as
cross-dependencies between moments It has already been pointed out by
Braglia (1990) and Ramsey (1996) that stochastic systems based on micro-
scopic interactions (like our illustrative example) provide a generic avenue

towards interesting non-trivial dynamics in higher moments and, therefore,
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a potential behavioral explanation for the ubiquitous ARCH effects in fi-
nancial data. Of course, it would have to be seen whether the direction
and scope of autoregressive dependency in any hypothesized micro model is
in qualitative and quantitative agreement with the empirical stylized facts.
Interestingly, Braglia (1990) already argued that it would be natural to
interpret a cross-dependence between the mean and second moment as a
fads effect. Lux (1998) provides a fully worked out analysis of the inter-
actions between first and second moments in an asset pricing model with

non-rational speculators along the lines of our present framework.

Let us return to our particular model of social imitation. Implementing
eq. (33), the exact mean-value dynamics turns out to be determined by the

average change of the configuration, a ;:

% = 35 @ - Q) = 4,1 Q(ast). (37)

xT

Since possible movements within an infinitesimal time step are restricted to

neighboring states, ' — x can only assume values % and —%, so that:

a1 = 01 () + () 2. (38)

Since wy and w)(x) are identical to wq(n) and w|(n) in eq.(30) we end up
with

1 1
Uz = N”—er— - N”+P—+
= (1—x)ve®™ — (1 —x)ve ™" (39)

Using the hyperbolic trigonometric functions this can be rewritten as:

az1 = 2v{tanh(ax) — x} cosh(az). (40)

The exact mean value equation is thus:
dry

7 Z 2v{tanh(ax) — x} cosh(ax) P(z;t). (41)

Its first-order Taylor series approximation around z; leads to the self-
consistent differential equation:
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dr,
d_tt = 2u{tanh(az) — z} cosh(az), (42)
while the second-order approximation involves a correction factor due to

fluctuations around the mean:

dz, - _
- = 2u{tanh(az) — T} cosh(az) +
v{(a* — 2a)sinh(aZ) — Ta cosh(az))o? (43)

which already reveals a rich nonlinear structure of interactions between first
and second moments. Note that o2 is time-changing as well. Approximating
the dynamic law (36) for o2 to first-order one would arrive at an equation
that also depends on both the first and second moments,z; and 2. Combin-
ing the second-order approximations of the first moment and the first-order
approximation of the second moment would, thus, lead to a self-consistent
system of two (highly nonlinear) first-order differential equations.

We proceed by investigating the properties of the first-order approximation,

eq. (42). Since cosh(.) > 0 for all x, the condition for a steady state of the

mean value dynamics is:
4o _ 0 & x* = tanh(ax*). (44)
dt

Since tanh(.) is bounded between —1 and 1 and its local slope at 0 is equal

to 1, we arrive at the following insights concerning the equilibria of the

system:
e a < 1 implies existence of a stable, unique equilibrium zj = 0,

e o > 1 gives rise to multiple equilibria, 2* , 2, z} with 2} = —2* > 0,
of which the outer ones are stable and the middle one,z, is unstable,
cf. Fig. 6.

The bifurcation from a unique steady state to multiple steady states shows
that the interaction intensity needs to surpass a certain critical value for a
‘polarized’ state to emerge. If interaction is weak (v < 1) the system would

fluctuate around a balanced state with, on average and in expectation, as
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Figure 6: Two cases of the social dynamics with mean-field effect. If the interaction
intensity is weak (o = 0.8), minor fluctuations around a balanced disposition among the

(192

population occur, while a majority of “+” or “-” agents emerges with strong interactions
(e.g. for « = 1.2). The bifurcation is similar to the one in Kirman’s model, but there is

no tendency to totally uniform behavior.
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many optimistic as pessimistic agents. Beyond the critical value (o > 1),
however, a snow-ball like process of infection would result in the emergence

1k

of either a majority of “+” or “-” agents. Note that the level of the major-
ity 7. depends on the intensity o (cf. Fig. 6). Multiplicity of equilibria
of the mean-value dynamics corresponds to bi-modality of the stationary
distribution. The steady states 2% correspond to the two modes of the dis-
tribution while the unstable steady state zj is identical to the anti-mode,
i.e. the local minimum of the stationary distribution. In the bi-modal case,
the dynamics of the probability distribution would switch from a concen-
tration around the initial state to a bimodal shape according to the two
equally likely paths the system could take in the medium and long run.
Fig. 7 shows an example of such a transient density simulated via numer-
ical integration of an approximation to the Master equation (the so-called
Fokker-Planck equation) equation. In contrast to the complete character-
ization of the stochastic process via its transient density, the mean-value
dynamics would ‘only’ indicate the most likely path leading to the nearby
mode z*% or z*. This quasi-deterministic approximation would, therefore
neglect possible recurrent switches between 2% and x* due to stochastic

fluctuations.

If we interpret our social dynamics as a formalization of a ‘fads’ process
in our asset market, the agents could be viewed as noise traders switching
between bullish and bearish disposition. How much this fads component
influences the asset price, would, then, depend on the intensity of interac-
tion: with o small, no dominating majority opinion would emerge among
the noise traders and their influence would be minor because the irrational
influences would cancel out each other in the aggregate (in fact, if both the
optimistic and pessimistic noise traders would have the same order volume,
average excess demand of the irrational agents would be equal to zero, see
below). If, on the contrary, interaction is strong, one would observe more
coherence among the noise traders’ activities leading to a dominance of ei-
ther optimists or pessimists at any point in time. The resulting dominance
of either buyers of sellers would presumably lead to price changes away
from some rationally determined fundamental value. The next section con-
cretizes these thoughts by embedding our model of social imitation into a

simple asset pricing model along the lines of Beja and Goldman (1980).
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Figure 7: FExample of a transient density computed via numerical integration of the
Fokker-Planck equation. Parameters are « = 1.2,v = 4 and N = 50. From a
deterministic initial condition, o = 0, the system is seen to converge towards the known
bi-modal stationary distribution over time (the time horizon shown isT = 2 unit time

intervals).
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4.3.2 An Asset Pricing Model with Social Interactions

In this application, we interpret the former “+” and “” groups as bullish
and bearish speculators, who are influenced by herd effects together with

observed price changes. Their transition probabilities, therefore, include

two terms:
Qg
P = vepar + —p (t)), (45)
«
p_y = vexp(—ayx — fp'(t)), (46)

where the price change p'(t) reinforces or weakens the herding tendency
depending on whether its sign is in harmony or not with a bullish (bearish)
attitude.” Following the lines of our previous derivations, we can establish
the mean value dynamics for the opinion index for the average bullish or
bearish market sentiment (which is pretty close in its structure to some
published indices of investor sentiment):

dz,

=L = 2v{tanh(an; + %p'(m — %, cosh(an 7 + %p'@)) (47)

In order to close the model, we have to add a hypothesis for price adjust-
ment. A simple possibility is Walrasian price adjustment in reaction to
excess demand (ED) with a certain adjustment speed [3:

P'(t) = ar = PBED. (48)
dt
Following Beja and Goldman (1980), excess demand in our financial market
could be decomposed into two components: excess demand by chartists
(ED.) and excess demand by fundamentalist traders (EDy).
The chartists might be just those whom we have classified as bullish or
bearish in the agent-based component of the model. If chartists have a

trading volume ¢. this amounts to:

ED.= (ny, —n_)t.=2Nuxt, = 2T, with T,=2Nt, (49)

ny—n_
2N

contrast will have their excess demand depending on the difference between

following the definition of the opinion indexz = . Fundamentalists, in

Division by v of the second term is for technical reasons: An agent considers the price
change during the mean time interval between switches between groups (which is

vh).
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the perceived fundamental value p;y and the current market price:
EDy =T¢(P; — P), (50)

with T the proportional trading volume of fundamentalists. Putting both

components together, we arrive at the price adjustment equation?’

dP _
Eqgs. (47) and (51) formalize our interdependent dynamic system in which
the group dynamics influences the price dynamics and the price development
feeds back on investor sentiment.

In studying the resulting system, we might first explore the question of

existence and uniqueness or multiplicity of equilibria. Steady states of the
dz, _ dP
dt T dt
that the new second component of the herding probabilities is zero in any

joint opinion and price dynamics require = 0. Since this implies

steady state, we arrive at the joint condition:

dz dP T.
Ty = 0= tanh(a17;) =7; and P/ = T
f

Inspection reveals the following:
(i) for oy <1 we have a unique equilibrium 7y together with P* = Py.

(ii) for @ > 1 we encounter the two majority equilibria z% and z* (now

bullish and bearish majorities) with pertinent prices P} = %—fﬁ—i— P.

Hence, if herding is weak (case (i)) the price converges to the fundamental
value (on average); if herding is strong (case(ii)), the equilibrium price comes
along with an overvaluation or undervaluation of the asset compared to its
fundamentals.

However, there are additional possibilities in this more complex system:
both xj and the majority states % could be unstable (stability conditions
are more involved than in the one-dimensional case). In such a scenario,
the market performs almost regular cycles between overvaluation and un-

dervaluation accompanied by investor sentiment oscillating between bullish

10The price equation could in principle, also be formalized as a Poisson process with
transition probabilities for price changes in upward and downward direction, cf. Lux
(1997).
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Stable Symmetric Bubble Equilibria
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Figure 8a: The case of symmetric “bubble” equilibria: the system tends towards(z? , P})
or (z* , P*) but also switches occasionally between phases with overvaluation and under-
valuation. Parameters arev = 0.5,8 = 1,7, =Ty = 0.5, Pf = 10,1 = 1.2, a0 = 0.75,
and N = 100.
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Cyclical Dynamics
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Figure 8b: The case of cyclical variation between bullish and bearish phases. Parameters
as before except for a; = 1.1, a3 = 0.95.

and bearish majorities, cf. Fig. 8. Expanding our methodology above to
the 2D case, we could also characterize the fluctuations in different market
phases via the variance dynamics and the time development of the covari-
ance between P and 7, cf. Lux (1997).

4.3.3 Realistic Dynamics and the ‘Stylized Facts’

Of course, neither stationary bubbles nor persistent cycles are realistic sce-

narios for financial markets.!! One obvious criticism is that agents maintain

HThe second part of this statement needs some modification: note that a cycle in mean
values will appear more or less blurred in single realizations of the stochastic process.
This distortion might go as far as to leave no apparent trace of cyclical dynamics. Lux
and Schornstein (2005) investigate a more complicated model of a foreign exchange
market with agents using genetic algorithms to evolve their strategies. Simulations
of this model look extremely realistic in terms of returns and their statistical prop-
erties. Nevertheless, an analysis of the mean-value dynamics reveals a clear cyclical
underlying dynamics which materializes itself only with a very large population of
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their potentially unprofitable strategies forever without learning from past
experience. This criticism could be faced by allowing agents to adopt to
their environment using some learning or artificial intelligence algorithm

for the choice and adaptation of their strategies.

We have reviewed some of the contributions in this vein above in sec. 4.1.
Here we adopt a very simple mechanism to slightly increase the degree of
smartness of our agents. Following Lux and Marchesi (1999, 2000) we allow
agents to switch between the fundamentalist and chartist (or noise trader)
strategy on the base of a rough measure of their supposed profitability. As
it will be seen, this slight extension suffices to remove predictability of mar-
ket movements to a large degree and also leads to simulated asset prices
that share the ubiquitous stylized facts or scaling laws of empirical data.
We will argue later that this example might also serve to reveal a general
mechanism for generating realistic behavior that could also be identified in
some alternative models.

The new ingredient of switches between noise traders and fundamentalists
is introduced via exponential transition probabilities along the lines of egs.
(45) and (46). Formally, four new Poisson transition rates have to be in-
troduced for the propensity of fundamentalists to switch to the optimistic

(pessimistic) noise trader camp and vice versa:

pif = U2——-6XP(U51)
Pr+ = U2— exp(—Uz1),
P-y = 2— exp(Uz2),
Pr— = U2—€XP( Us).

The forcing functions Us ; and Us » depend on the difference between the mo-
mentary profits earned by noise traders and fundamentalists, respectively.

We specify these functions as:

r+ L4& P;— P
Uzy = as{——-% = R — 5|1~} (53)

(54)

traders.
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The first term of both functions represents the current profit of noise traders
from the optimistic and pessimistic camp, respectively. The second term
is the expected profit of fundamentalists after reversal to the fundamental
value. Excess profits of the optimistic chartists consist of nominal divi-
dends (r) and capital gains (dP/dt). Division by the actual market price
(P) yields the revenue per unit of the asset. Subtracting the average real re-
turns of alternative investments (or safe interest rate R) gives excess returns.
Pessimistic noise traders, in contrast, leave the market for the asset under
consideration so that their excess profits consist of the alternative return
R minus the sum of forgiven dividends plus capital gains of the pertinent
stock. It is somewhat harder to come up with a formalization of fundamen-
talists’ profits. Fundamental activity is based on a perceived discrepancy
between the market price and the fundamental value P # Py. Profits from
the pertinent traders are, however, expected profits only and will be mate-
rialized only if the stock price will have reverted towards its fundamental
value. Because of the time needed for a reversal towards fundamental val-
uation and the potential uncertainty of this reversal, expected profits by
fundamentalists have to be discounted by a factor s < 1. Otherwise, we
tread fundamentalist speculation in periods of overvaluation and underval-
uation symmetrically by computing the expected gain per unit of the asset

as |2 5 |, Note that the fundamentalists’ profits did not contain dividends:

This negligence is due to the assumption that they use the long-run ex-
pected asset price Py for computing real dividends and that r/P; = R,
i.e. (risk-adjusted) dividends are the same for alternative investments if the

price is equal to its fundamental value.

This new component endogenizes the fraction of chartists and fundamental-
ists which necessitates some adjustment in thex — P dynamics as well. In
particular, the opinion index x now refers to the numbers of optimists and

pessimists within the noise trader group whose overall population is also

changing over time, z = “="=. Furthermore, the formalization of excess

demand has to take into account the changing numbers of noise traders and

N

fundamentalists as well. Denoting by z the fraction of noise traders, z =

2N
we modify eq (51) accordingly:
dP
o = B(EDy+ ED.) = f(x2Tr + (1 — 2)Ty(P; — P)). (55)

Investigating the overall mean-value dynamics, the system evolution can
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be characterized by the time change of the expectations ofz, z and p. We
restrict ourself here to reporting the main results for the pertinent system
of three differential equations. As detailed in Lux and Marchesi (2000), for
this quasi-deterministic system the following characterization of its steady

states can be obtained:

e there are three types of steady states:
(i) 2* =0, P* = Py with arbitrary z,
(ii) z* =0, z* = 1 with arbitrary P,
(iii) 2* = 0, P* = Py with arbitrary z,

e 1o steady states exist with both 2* # 0 and P* # P.

The second result indicates that the additional assumption of switching be-
tween strategies due to profit differentials prevents emergence of stationary
bubbles. Quite obviously, such lasting situations of overvaluation or under-
valuation would give rise to differences in profits between groups so that they
could not persist any more. The first part of the results indicates the types
of equilibria that would be admitted under flexible strategy choice: there
could be either a price equal to its fundamental value (on average) together
with a balanced disposition of noise traders and an arbitrary composition
of the overall population with respect to noise traders and fundamentalist
strategy (i), there could be a dominance of noise traders (z* = 1) with an
arbitrary price development (ii), or a dominance of fundamentalists with
P again equal to Py on average (iii). All three categories are continua of
equilibria rather that isolated fixed points as there is one ‘free’ variable.
The more interesting of these possibilities is (i), while (ii) and (iii) are rel-
atively uninteresting so-called absorbing states whose existence is hard to
avoid in a population dynamics (if one group dies out by chance, it has
no way to get into existence again). Inspecting type (i) equilibria, their
most interesting feature is the indeterminateness of the population (i.e. of
z). After some reflection, this outcome seems quite natural: If agents are
allowed to switch between strategies, then, in an equilibrium, none of the
surviving strategies should have a higher pay-off than others. This is the
case in our model almost by definition of a steady state: if there are no price
changes any more and the price is equal to its fundamental value, both the
noise traders and fundamentalists would report excess profits equal to zero.

Switching between subgroups would then occur unsystematically leading to
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permanent changes of z along the continuum of steady states due to the

stochastic elements of our process.

The set of results obtained for the mean-value dynamics of the extended
model appears to indicate that the slight steps towards more rationality
of agents represented in eqs. (53) and (54) weeds out the weird cyclical
and bubble processes of the simpler model presented in sec. 4.3.2. In
any case, the interesting equilibria are characterized by a price fluctuating
around its fundamental value and a balanced disposition of noise traders,
i.e. no more built-up of coherent optimistic or pessimistic majorities. A
glance at the stability properties of these equilibria adds some additional
insights. As shown in Lux and Marchesi (2000), an equilibrium along the
line (z* = 0, P* = Py, z*) is unstable '? if

22vi (a1 + e 22T, — 1) +2(1 — 2%)asf2" T,/ Py — (1 — )Ty > 0 (56)
or

aqp > 1+@3% <57)

holds. The most interesting aspect of these results is that (56) defines a
region z* € [0,%Z] in which the dynamics reverts to the continuum after
disturbances, while for z beyond the threshold value Z, the dynamics be-
comes unstable. Since the stochastic components lead to ongoing changes
of z along the continuum of equilibria, the system might wander from time
to time from the subset of stable equilibria (z < Z) to that with repelling
dynamics. The instability in the region z > 7 is due to the strong reaction
on price changes in a population dominated by noise traders. Fig. 9 shows
that stronger fluctuations set in if the system gets close to or surpasses the
threshold zZ. Apparently, these fluctuations have the appearance of volatility
clusters. They hold on for some time but die out due to inherent stabilizing
tendencies that become effective out-of-equilibrium. Namely, strong fluctu-
ations lead to relatively large deviations from the fundamental value and
former noise traders are induced to switch to fundamentalist behavior in

large numbers.

12Gince we have a continuum rather than isolated fixed points it is more convenient to
express the stability properties in terms of conditions for instability rather than for
stability.
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The combination of deterministic and stochastic forces (incorporated in the
stochastic formalization of agents’ behavior) leads to repeated switches be-
tween turbulent and tranquil episodes. It is worthwhile to emphasize that
despite a certain number of free behavioral parameters the qualitative out-
come of this process is entirely generic: all combinations of parameters
lead to a continuum of equilibria with stochastic switching between attrac-
tive and repulsive phases.!® As demonstrated in Lux and Marchesi (1999)
and Chen, Lux and Marchesi (2001) the apparent proximity of simulated
returns to empirical records is reflected in agreement of many important
statistics with empirical stylized facts. In particular, both the scaling laws
of large returns and the hyperbolic decay of autocorrelations of squared
and absolute returns are reproduced by the data from this artificial market
and the pertinent estimates of, for example, tail indices and decay expo-
nents of autocorrelations of squared and absolute returns, are numerically
close to their typical values for empirical data. Switching between strategies
also eliminates autocorrelations in raw returns to a large extent so that the
apparent predictability of cyclical ups and downs of the simpler model of
sec. 4.3.2 does not carry over to the extended framework. The lack of pre-
dictability seems plausible since the outbreak of fluctuations is triggered by
the stochastic part of unsystematic population movements in the vicinity of
the fundamental equilibrium. As a result, the market appears to be char-
acterized by speculative efficiency. Allowing for an additional news arrival
process, the market price is found to closely track the fundamental value
albeit with temporary deviations that manifest themselves in a broader lep-
tokurtotic distribution of returns compared to changes of the fundamental

value.

Lux and Marchesi (2000) argue that the underlying mechanism of peri-
odic switching between stable and unstable states due to stochastic forces
constitutes a relatively general scenario to generate realistic ARCH type
dynamics. In behavioral models, it seems natural that an equilibrium will
be characterized by an arbitrary mixture of equally successful strategies and
that the stability of such steady states will depend on the current distri-
bution of strategies among the population. Models with similar features

13The dynamics is also qualitatively similar in the extreme cases wherez = 0 as still
stabilizing forces out-of-equilibrium prevail.
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Figure 9: Example of a simulation of the model of Lux and Marchesi (1999). Parameters
are o = 0.8,a0 = 1,03 =0.5,v; = 1,02 = 0.6,T, =T¢ = 2.5,6 = 0.75 and R = 0.0004.
The fundamental value has been shifted downward by two units to provide better
visibility. As can be observed, the price mostly tracks closely the fundamental value
but shows occasional large deviations from this benchmark. The development of the
fraction of noise traders or chartists in the upper right-hand panel indicates that large
fluctuations of returns and large degrees of mispricing occur if many traders follow
the chartist strategy. The broken line in the upper right-hand panel demarcates the
theoretical bifurcation value Z = 0.46 in this case.
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have been proposed by Giardina and Bouchaud (2003) with a larger set
of strategies, and Arifovic and Gencay (2000), and Lux and Schornstein
(2005). The latter have a totally different set-up, a two-country general
equilibrium model of the foreign exchange market with agents choosing con-
sumption and interest strategies via genetic algorithms. Despite this very
different framework, the dynamics of returns seems to be governed by a
similar mechanism like that of the above stock market dynamics: there is a
continuum of steady states with indeterminateness of investment decisions
(in steady state, the revenue from domestic and foreign assets is the same),
but random deviations from the steady state (brought about by the inherent
randomness of genetic algorithms) destabilize this steady state and lead to
an onset of fluctuations. The original framework by Lux and Marchesi has
recently been extended by Pape (2007a, b) who reformulates traders’ behav-
ior as position-based trading (in this way keeping track of their inventories)
and adds both a second risky asset and a risk-free bond. As it turned out,
the main mechanisms of the original model still are found to be at work in
this richer set-up leading to similarly realistic simulations. 1t is worthwhile
to point out that the combination of stochastic and deterministic forces in
these models is also similar to that of Kirman‘s population dynamics re-
viewed in sec 4.2. in that it leads to movements back and forth across a

stability threshold of the underlying deterministic benchmark system.

4.4 Lattice Topologies of Agents’ Connections

The models reviewed in secs. 4.2 and 4.3 are among the first contributions
to allow for social interactions among agents in an economic context. How-
ever, they adopt very different assumptions as the design of their social
interactions: while Kirman (1993) allows for pair-wise interactions only (af-
ter random encounters of agents), Lux (1995) and Lux and Marchesi (1999)
use a mean-field approach. The later implies that all agents influence all
other agents with the same intensity or - in the language of network theory -
that the social interactions are embedded in a fully connected network with
equal weights of its modes. Although we do not have reliable information on
market participants’ social networks, both of the above alternatives might

not be very realistic. Even if a certain simple topology of interactions might
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be acceptable for a first approach towards social influences, one could be
concerned about the intensity of social interactions in relation to the size of
the market (the number of agents). As Egenter et al. (1999) show, stylized
facts do vanish in the model of Lux and Marchesi (1999), if one increases
the number of agents while keeping the parameters of social interactions
constant. The reason is that due to the law of large numbers, fluctuations
of noise traders’ mood become more and more moderate with increasing V.
With the opinion index z staying close to its steady state valuex* = 0 most
of the time, the emergence of an optimistic or pessimistic majority occurs
less often so that the frequency of small price bubbles declines. The intrin-
sic chartist ‘information’ component, then, loses its importance against the
fundamental component in egs. (53) and (54) so that the profit differential
works in favor of the fundamentalist strategy. As a consequence, the aver-
age fraction of noise traders gets smaller and smaller with increasing/V, and
the distribution of returns gets closer and closer to the assumed Gaussian
distribution of the news arrival process. The ‘interesting dynamics’ with
their fat tails and clustered volatility are, therefore, a finite size effect and
do not survive in the limit N — co. Essentially, this is a consequence of the
law of large numbers as the market excess demand is an aggregate over N
Poisson processes for individual traders. Obviously, the correlation between
agents brought about by their social interactions is not strong enough to
undo the effect of aggregation. With more than about 5000 socially inter-
acting agents the model converges to returns following a pure white noise.
A similar result is obtained for the very different artificial foreign exchange
market with genetically generated strategies in Lux and Schornstein (2005).
As it seems, the genetic operations of selection, recombination and mutation
also lead to a reduced intensity of interpersonal coupling with an increasing
number of agents, so that the dynamics loses its stochastic appearance with
increasing numbers of market participants. Again, interesting and realistic
dynamics are only obtained for markets with up to a few thousand traders.
These findings are disturbing in so far, as empirical stylized facts are ob-
served in quite the same way with practically the same estimated scaling
exponents for markets of all sizes. In this sense, the universality of the
empirical records is not reproduced by the above stochastic models. On the
other hand, the universality of non-Gaussian behavior of all known finan-

cial markets implies that there probably is strong coupling between traders
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in real life. With the largest markets having populations of the order of
10% or more market participants, the law of large numbers would imply
Gaussian behavior if all these agents would act independently (or with suf-
ficiently weak correlation). The universal non-Gaussianity, then, appears
to indicate that financial markets have a typical number of effectively inde-
pendent agents which is much smaller than their nominal number of market

participants.

The challenge for models of social interactions would, therefore, be to come
up with an explanation of this insensitivity with respect to system size.
Alfarano, Lux and Wagner (2007) discuss this problem for a variant of
Kirman’s ant model. They show that if the frequency of pairwise encoun-
ters increases linearly with the number of agents, the resulting dynamics
remains qualitatively the same for any number N of agents. In contrast,
if the frequency of encounters is kept constant, the system converges to a
Gaussian limit with increasing V. Quite similar to the experiments of Egen-
ter et al. (1999), the relative importance of the herding component against
the autonomous switching propensity declines if one does not adjust the
former to the system size. The intensity of interpersonal coupling is only
preserved in this model, if the frequency of pair-wise exchange increases
with the number of potential partners for exchange!* Certainly, an ever
increasing probability of pair-wise exchange is somewhat hard to digest in
its literal interpretation. Departing from the extremes of either pair-wise
interactions or fully connected social systems, network topologies of agents’
social interactions might be a promising avenue to explore how the inten-
sity of social coupling might plausibly change with system size. Alfarano
and Milakovic (2007) modify the ant model by replacing pair interactions
by neighborhood effects within various network topologies. Increasing the
number of agents but keeping the parameters of the network generating
mechanism fixed, they note that most popular network designs (regular,
scale-free and ‘small-world’ networks) cannot overcome the N-dependency
within their generating mechanism, i.e. without adapting crucial parame-
ters. The only case in which the generating mechanism keeps the intensity

of communication constant for varying numbers of agents by the very na-

4Finite-size effects in alternative models of opinion formation are investigated in Toral
and Tessone (2007).
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ture of its construction is the random network. While these results sound
somewhat disappointing, they have only focused so far on the mechanical
structure of various topologies. Incentives of agents to form links could lead
to changes of the connectivity with system size which remains to be investi-
gated. Interestingly, Alfarano and Milakovic (2007) also show that allowing
for a small number of independent agents who only influence others with-
out being prone to social influences themselves (unilateral links) changes
the outcome and allows for prevalence of interesting dynamics whatever the
number of herding agents (cf. also Schmalz, 2007).

A different type of network structure has been used in a related paper by
Cont and Bouchaud (2000). Essentially, their contribution is an adaptation
of the seminal percolation model from statistical physics. In this framework,
agents are situated on a lattice with periodic boundary conditions. Each
site of this lattice might initially be ‘occupied’ with a certain probability
p or empty with probability 1 — p. Groups of occupied neighboring states
form clusters. In Cont and Bouchaud (2000) occupied sites are traders and
clusters are subsets of synchronized trading behavior (i.e. all members of a
cluster are buyers or sellers, or remain inactive). The type of activity of a
cluster is determined via random draws. The market price is again driven by
an auctioneer equation depending on excess demand over all clusters. Since
the underlying formal structure has been extensively studied in physics, cer-
tain known results for the cluster size distribution can be evoked and due
to the simple link between cluster distribution and price changes carry over
to returns. In particular, one knows that both distributions will follow a
power law if the probability for the connection of lattice sites is close to
a critical value, the so-called percolation threshold. However, the power-
law is characterized by an exponent 1.5, in contrast to the empirical law
with decay rate ~ 3. In the baseline version of the model, higher moments
are uncorrelated so that the percolation model could not explain volatility
clustering either. Despite (or because of) these deficits, the framework of
Cont and Bouchaud has spawned a sizeable literature (mostly published in
physics periodicals) that tries to get its time series characteristics closer to
empirical scaling laws. Interesting extensions of the original model include
Stauffer et al. (1999) and Eguiluz and Zimmerman (2000) who generate

autocorrelations in higher moments via sluggish changes of cluster configu-
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rations. In view of the above discussion, it is worthwhile to note that the
critical connection probability at the percolation threshold is N-dependent
and, therefore, has to be adjusted with system size in order to guarantee a

power-law distribution of the clusters.

More realistic time series are obtained in some alternative lattice models:
Tori (2002) considers an Ising type model with interactions restricted to
nearest neighbors, while Bartolozzi and Thomas (2004) propose a cellular
automaton structure with similar neighborhood influences between traders.
In both models, realistic time series seem to be a robust outcome without
the need of fine-tuning certain parameter values. However, due to the com-
plexity of these structures, it is hard to single out what key features of these
models are responsible for the interesting dynamics. It is unknown so far
whether the realistic features of those models persist for large populations

of traders or not.

5 Conclusions

The present chapter has reviewed recent models that try to explain the
characteristics of financial markets as emergent properties of interactions
and dispersed activities of a large ensemble of agents populating the market
place. This view has a certain tradition starting in the early nineties (or
even earlier if one includes contributions of the 70s like Zeeman’s, 1974)
when chaotic processes based on simple behavioral assumptions have been
proposed as an explanation of the apparent randomness of financial data. As
it turned out in subsequent research, market statistics are in all likelihood
more ‘complex’ than data from low-dimensional chaotic attractors and seem
to be characterized by an intricate mixture of randomness and nonlinear
structure in higher moments. The most pervasive characteristics of the
particular stochastic nature of financial markets are the power laws for large
returns and autocorrelations of volatility. Similar system-wide features are
the typical imprints of large systems of interacting subunits in the natural

sciences.

Inspired by these analogies, some recent models have proposed simple struc-

tures that could reproduce the empirical findings to a high degree with
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statistics that are even quantitatively close. This appears the more remark-
able since ‘mainstream’ theory has offered hardly any hint at the generat-
ing forces behind the stylized facts, let alone models with precise numerical
predictions. Offering explanations for hitherto unexplained observations is
typically what characterizes a new, superior paradigm. This new view also
opens the stage for entirely new avenues of research and questions that could
not even have been formulated before. Among these questions, the most
important task for future research might be the explanation of theuniversal
preasymptotic behavior of financial markets, i.e. the answer to the question
why they are not subject to the law of large numbers (as they should if they
were populated by independent agents).

From the viewpoint of mainstream finance, it might be a threatening expe-
rience to see some basic stylized facts explained by models that have hardly
anything in common with a traditional representative-agent approach. How-
ever, what the above models offer are just those ingredients that critics of
the mainstream have been emphasizing for a long time. As a prominent
example, Kindleberger (1989) has stressed the importance of psychological
factors and irrational behavior in explaining historical financial crises. In
fact, recent micro structure literature has allowed for irrational components
like overconfidence or framing (e.g. Daniel et al., 1998, Barberis and Huang,
2001), with highly interesting results. While the analysis of certain types of
non-rational behavior and its consequences might explain important facets
of reality, an explanation of the overall characteristics of the market might
require a different approach. Proponents of mainstream finance have, in
fact, criticized a lack of unifying framework in the behavioral finance liter-
ature. Most notably, Fama (1998) noted that a variety of psychological bi-
ases could be used to explain various anomalies, but that behavioral finance
models were unable to explain the ‘big picture’ and to capture the ‘menu
of anomalies better than market efficiency’ (Fama, 1998, p. 241). While
stochastic models of interacting agents have so far not focused on overreac-
tion and other return anomalies they appear to be able to provide generic
explanations for the ‘deeper’ anomalies of fat tail and volatility clustering.
Although they are mostly not micro-based in the sense of featuring utility
maximization or alternative psychological decision mechanisms, they might

provide a broader macroscopic picture of emergent properties of microeco-
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nomic interaction embedding the diverse deviations from perfect rationality
at the micro level. Since we probably encounter a wide variety of trading
motives, strategies, and degrees of (non-)rationality and (lack of) foresight
among agents, a stochastic approach might be required to compensate for
our ignorance of the microscopic details. This is the starting point of the
above models. The present stochastic approach could, therefore, be seen
as complementary to the focus of the previous strands of the behavioral fi-
nance literature on particular behavioral observations in that it tries to infer
macroscopic regularities via a simple representation of the diverse collection

of the boundedly-rational behaviorial types in real markets.
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