VOLUME 78, NUMBER 14 PHYSICAL REVIEW LETTERS 7 RRIL 1997

Density Expansion for Transport Coefficients: Long-Wavelength versus Fermi Surface
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The expansion of the conductivity I+d quantum Lorentz models in terms of the scatterer density
is considered. We show that nonanalyticities in the density expansion due to scattering processes with
small and large momentum transfers, respectively, have different functional forms. Some of the latter
are not logarithmic, but rather of power-law nature, in sharp contrast t8-thease. In &-d model
with point-like scatterers we find that the leading nonanalytic correction to the Boltzmann conductivity,
apart from the frequency dependent weak-localization term, is of efder [S0031-9007(97)02948-7]

PACS numbers: 51.10.+y, 05.60.+w

It is well known from the statistical mechanics of fluids efficients in Eq. (1a) have been calculated for a quantum
that for transport coefficients, as opposed to thermodytorentz model that is a good representation of electrons
namic quantities, no virial or density expansion exists [1].injected into helium gas [8]. It is apparent from the de-
Let us consider a classical Lorentz gas [2], i.e., a singleails of these calculations, although not from the result,
particle moving in a static array of scatterers with scatthat in a quantum system there are two physically dis-
terer densityn, as a simple model of a classical fluid. In tinct sources of the logarithmic nonanalyticity. These are
such a system in three dimensiomns=t 3), the diffusion (1) long-wavelength contributions, i.e., those dominated
coefficient,D, as a function of: has the form, by scattering processes with a momentum transfer on the

. 2 2 2 order of an inverse mean-free path, and (2) Fermi surface

D/Dp =1+ Din + Dywn”Inn + Don” + o(n%). contributions, which are dominF;ted by m(oznentum trans-

(1a) fers close t@ky, with kr being the Fermi momentum. In

Here D denotes the Boltzmann diffusivityD,, Dapn, a dilute system, these two length scales are well separated.

and D, are numbers, and(r2) denotes terms that vanish Ag@n, the nature of the higher terms is not known, but in-
faster thann? for n — 0. In 2D systems, a similar spection of some individual terms makes it appear likely

nonanalyticity appears, but at one lower order in thehat the nexttermin Eq. (1a) is of the for(In n)*.
density expansion, In this thter we show that the f{;\ct that both of_
D/Dg—1+D Inn + Din + o(n) 1b the mech.anlsms mentlone_d 'above yield a Iogarlfchmlc
B " Dypnlnn + Din +oln).— (b)  ponanaiyticity is characteristic off = 3, and that in
The nonanalyticities in Egs. (1a) and (1b) are noty = 2 some of the Fermi surface contributions lead to a
specific to the Lorentz models, but are also present "E)ower lawnonanalyticity of the forru3/2. Moreover, we
real fluids [3]. They are a result of long range dynamicakind that in a 2D quantum Lorentz model with pointlike
correlations in the system. If one performs a clusterscatterers, the leadingInn nonanalyticities cancel, so
expansion in al-dimensional system, then ring collisions, that then?/2 term is theleadingnonanalyticity, apart from
i.e., processes where the scattered particle collides with @e frequency dependent weak-localization logarithm that
scatterer to which it returns after having scattered off &ppears in a 2D quantum system. The density expansion
number of other scattering centers, lead to a logarithmiggr the frequency dependent conductivity(w), (which
infinity in the density expansion at ordef "' [4]. This  in a quantum system is easier to calculate than the

divergence is cut off by the mean-free path. Throughyiffusivity) in such a model thus takes the form,
the density dependence of the latter, this translates into

a logarithmic nonanalyticity at that order. The nature of  Re ;(w)/op = 1 + 2y IN(w7)
the higher order terms is not known, but they are believed 2€

to also contain logarithmic nonanalyticities. I In<l> 7

Since the mechanism that is believed to lead to these 26 \2e "¢
effects in classical systems is rather general, one would 3/2 3/2
expect a similar effect to occur in the transport coeffi- + 03/2<—> 0<Z> . (29)

cients of quantum mechanical particles. This is indeed

the case [5]. Although the leading expansion parametewhere we have left out contributions that vanish as
is different [6], and performing the classical limit to make @ — 0. Hereog = e’e7/(2mm) denotes the Boltzmann
contact with the classical ring collisions is nontrivial [7], conductivity, r is the scattering mean-free time, is the
one obtains for a 3D quantum system again an expansicelectron masse = k#, andy = m/r = norkg, with o7

of the form given in Eq. (1a). Specifically, all of the co- the totals-wave cross section, is a convenient expansion
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parameter that is proportional to the impurity density. Theln writing Eq. (4b), we have specialized to the case of
In(w7) term is the so-called weak-localization correctionpure s-wave scattering, or a pointlike impurity potential,
(see below), whose prefactor has been known for somee., we have puv(q) = U = y/47>m? [10].
time. For the remaining coefficients in Eq. (2a) we find  The transport coefficient of interest to us, viz. the
) dynamical conductivityo(w), can be expressed in terms
oin=0, o ==(1-12), o3, =3/2V2. of Green’s functions by means of the Kubo-Greenwood
& (2b) formula,

2
Rer(w) = — 5 Re 3 k{GF,(w) Gpx(w = 0)
k.p

— Gitp(@) Gix(@ = Oaisp: (5)

This expression can be used to systematically expand
A powers ofy. Such an expansion has been set up in
ef. [6], and in Ref. [8] all diagrams were identified that
contribute up to and including order? in d = 3. The
classification of the diagrams with respect to the order in
. . -~ they contribute to doesot carry over to other values of
asquare root il = 2. The same phase space restrictions; ', i jt tyrns out that the diagrams that contribute to the

lead to related nonanalyticities in the scattering cros$a s shown in Eq. (2a) form a subset of those considered
section, and hence in the transport coefficients. This i§, reat. [8]. They are shown in Figs. 1—3.

precisely what we find. The effect we predict is thus a ol of these diagrams can be expressed in terms of
consequence of the sharpness of the Fermi surface. It fﬁtegrals over combinations of two function&"+ and
related to other phenomena resulting from the degeneratg-— o+ are convolutions olGR and GA. At zero
nature of a Fermi gas af = 0, like, e.g., the Friedel freql’Jency they are defined as

oscillations, and the Kohn anomaly.

We now outline the derivation of our results. Let us T (g) = ] dk 1 1

consider the standard Edwards model of noninteracting e —k2+iy e—(k —q?+ivy’
electrons ind = 2 in an environment of static, spatially

Equations (2a) and (2b) constitute our result. Before
we sketch its derivation, let us explain the physical
origin of the y¥2 term in Eq. (2a). In a degenerate
system of noninteracting fermions, the Pauli principle
restricts the phase space that is available in scatteri
processes. These restrictions lead, e.g., to the wel
known nonanalyticity of the Lindhard function at a
momentumg = 2kr. The nature of this nonanalyticity is
dimensionality dependent; it is logarithmic éh= 3, and

random scatterers. The model Hamiltonian reads (6a)
with » = *. Doing the integrals yields, id = 2,
=Y (e~ walax + Y Viaatrgpacan. @) oo TR
K k4 T (q) = [(In(ws+ + g) — In(w+y — g)],
+ . T qw++
where a, and ax denote the creation and annihilation (6b)
operators, respectively, for electrons with wave vedtpr . -
w is the chemical potential/(q) is the Fourier transform I (g) = —2177[ |n<W+f + 2y —ig >
of the electron-impurity scattering potential, arg = Wy wi— + 2y + iq?
k%/2m. Throughout this Letter we use units such that 1 € — iy ]
i =1. Also, we will be working at zero temperature, YL iy + ”T] (6c)

SO we putu = ep = kr/2m. Since we are dealing
with noninteracting electrons, spin just leads to trivialwhere
factors of 2 and can be omitted. Standard diagrammatic

perturbation theory [9] is formulated in terms of retarded w. . = {w(q) — 4iy, wi_ = \/—qZW(q) + 42,
(R) and advancedd| zero temperature Green'’s functions, (6d)

o - {1 e o).

with w(q) = ¢ — 4e.

o _ ‘A The only diagrams that contribute to the’/? term

and their impurity averaged counterpaf§i , (w)lais,  in Eq. (2a) are (), (f), and (g) in Fig. 1. In order to
where {---}qi; denotes the average over the quenche@iemonstrate how the nonanalyticity arises, let us consider
disorder. It_ is most convenient to keep only the Iowestdiagram (g) as an example. After simple manipulations,
order contribution to the self-energy in the averagedts contribution to the conductivity can be written as

Green'’s function, so we will use as the building blocks o) )
of our perturbation theory the following approximationto ¢~ _ <l>24%] dq ReJ " (q) Re[J*H (@ (7)
2¢ )

{Gicp (©)}ais, b
1 b Here we have pu = 0, and have kept only the leading
(4b) contribution fory — 0. It is now easy to see how the
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FIG. 2. Infinite resummations that contribute to the terms
shown in Eq. (2a). The complex conjugates of (b)—(d)
contribute as well.

and Fig. 1(a). The fact that ish = 2 two powers of/ "~
are sufficient to produce a logarithm accounts for the fact
that this nonanalyticity appears already at linear order in
v. Finally, some of the diagrams discussed so far, and all
of the remaining ones, contribute to the analytic term at
ordery. The various contributions are listed in Table |I.
The infinite resummation denoted by diagram (a) in
Fig. 2 plays a special role in our perturbation theory, and
deserves some discussion. This “crossed ladder” resum-
mation is the only diagram where the zero-frequency limit
needs to be handled with some care, since it is related to
the so-called weak-localization anomaly, i.e., the fact that
the conductivity of disordered noninteracting electrons in
d = 2 contains a Inw7 in perturbation theory, and that
the true zero-frequency value of is zero [11]. Taken
FIG. 1. Simple diagrams that contribute to the terms showrdt face value, the diagram is finite at = 0, since the
in Eq. (2a). For (f) and (j) there is one equivalent symmetricresummation leads to a structutg[1 — yJ ' (¢q)/#7>].

diagram (not shown) that also contributes, and the CompleExpandinglJr’ in powers ofy leads to a diffusion pole,

conjugates of (b)—(f) and (h)—(j) contribute as well. The; 2 i ; i
“triangulated” line in (b) denotes Green’s function, Eq. (4b), L.e., al/q" singularity, at lowest order, but the subleading

with its value aty = 0 subtracted to avoid double counting. COntribution ofO(1) tO,J+ (g = 0) seems to protect the
(@) vields o + O(y?) and serves to normalize all other Singularity. This is misleading, however, since it is well
contributions. (e)—(g) contribute to the’/? term. known that the crossed ladder is an approximation to an
exact vertex pari\ (¢, w) that has amexactdiffusion pole,
A(g,w) ~ 1/(—iw + ¢*/D), with D the diffusion coef-
nonanalyticity arises. Equation (6b) shows that, in th(:)ﬁciept [12]. Indeed one can show that there_ exist classes
- RS : : ' of diagrams that cancel the mass in the simple crossed
limt y —0, J contains a singularity of the form
(g — 2kp)~'2. A ¢ integration over(J**)? thus leads
to a vy '/2 term. Since(J**)? first appears in the
integrands at ordey?, the leading singularity produced
by this mechanism is of the form/2. Asymptotic = + + ..
analysis yields the prefactor of the nonanalyticity, which
gives a contribution to the numbess,, in Eg. (2a)

4
A
v

A
A
A
4

as stated in Table I. Similarly, an integral over**)? >
produces an Iy, and this mechanism contributes to % f
the prefactoro, in Eqg. (2a). Another contribution to = + +
o1 comes from the “long-wavelength” terms, which
AR

manifest themselves as integrafsiq[J " (¢)]*>. Such
integrals arise from Fig. 1(d) [in Fig. 1(c) they cancel], FIG. 3. Definition of the vertices in Fig. 2.
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TABLE I.  Contributions of diagrams as shown in Figs. 1 and We gratefully acknowledge helpful discussions with
2 to the coefficients in Eg. (2a). No entry means that theT R. Kirkpatrick. This work was supported by the NSF
diagram does not contribute for structural reasons, while a zernder Grant No. DMR-95-10185
indicates no contribution due to cancellations. ' '

Diagram Ol In (oA g3/

1(b) 2/

1(c) 0 * i

1(d) .y —8/m)In 2 Present address: Victron Inc., 2530 Zanker Rd., San Jose,

1(f) J2 [1] Se(_e, e.g., R._Peu_erlsSur_prlses in Theoretical Physics

1(g) J2/4 (Prlnceton Umvers;ty_, Princeton, 1979), Chap. 51 for a

1(h) 0 nontechnical descnptlo_n; for a recent technical review, see

1(i) 0 J.R. Dorfman, T.R. Kirkpatrick, and J.V. Sengers, Ann.

1(j) 0 Rev. Phys. Chgm45, 213 (1994).

2(a) 27 (4/7)n 2 [2] I_:or a discussion of Lorent_z models, see E.H. Hauge,
2(b)+2(c)+2(d) @/m)n 2 in Transport Phenomenagdited by G. Kirczenow and

J. Marro, Lecture Notes in Physics No. 31 (Springer, New
. . York, 1974), p. 337.
ladder, order by order in perturbation theory [13]. Al- 3] |n a 2D real classical fluid, the static diffusivity does

though formally of higher order iry, these contributions not exist due to long-time tail effects, so one also needs
lead to the logarithmic singularity stemming frofm be- to consider the frequency dependence. A similar effect
ing protected only by a finite frequency, andtby v. On occurs in the quantum Lorentz model to be studied below.
a more formal level, strict perturbation theory in powers [4] The role of ring collisions in this context has sometimes
of y violates a Ward identity that reflects particle num- been disputed; see R.F. Fox, Phys. Rev.2A 3216
ber conservation in the presence of time reversal invari- _ (1983).

] J.S. Langer and T. Neal, Phys. Rev. Ldt6, 984 (1966);

ance. By choosing a self-energy that is related to thel®
Y g 9y J. Weinstockibid. 17, 130 (1966).

crossed ladder vertex correction by means of this Ward[e] TR, Kirkpatrick and J.R. Dorfman, Phys. Rev. 26,

identity, one can cons_truc@ a conserving apprOXImz":ltlon 1022 (1983); see also T.R. Kirkpatrick and D. Belitz,
for A which has the diffusion pole built in. Replacmg_ Phys. Rev. B34, 2168 (1986).
the smallg part of the crossed ladder by the appropri- (7] p, Resibois and M. G. Velarde, Physica (Utrecht) 541
ate exact diffusion pole then leads to the ternmtnwith (1971).
a prefactor as first reported by Gor’ket al., Ref. [11], [8] K.I. Wysokinski, Wansoo Park, D. Belitz, and T.R.
and made rigorous by Kirkpatrick and Dorfman [6], and Kirkpatrick, Phys. Rev. 52, 612 (1995).
shown in Eq. (2a). Apart from this, the first term in the [9] See, e.g., G.D. MaharMany-Particle PhysicgPlenum
infinite crossed ladder resummation also contributes to the  Press, New York, London, 1981), Chap. 7. _
coefficientse; and o ,; see Table I. [10] In d = 3, pures-wave scattering is an excellent approxi-
We have ascertained that no other diagrams contribute ~ Mation to the scattering processes in certain systems [8].
to the terms we are considering. For simple diagrams, M ¢ =2 this is not the case, and a more realistic de-
it is easy to show, by a combination of the diagram scription of the scattering process woqld lead to quantita-
. v . . tive changes of our coefficients. In particulaf, = 0 may
rules V_V'th pQWGF counting, that dlc_’;lgrams with mo_re _than hold only for pointlike scatterers. However, the existence
three impurity lines cannot contribute. For the infinite of the y%/2 term is independent of this approximation.
resummations, the same type of argument shows thai1] E. Abrahams, P.W. Anderson, D.C. Licciardello, and
dressing the diagrams shown in Fig. 2 by additional T.V. Ramakrishnan, Phys. Rev. Le#2, 673 (1979) first
impurity lines leads to terms that vanish faster tha?ﬁz. showed thato(w = 0) = 0 in d = 2. The connection
Finally, arguments analogous to those employed before in  with the crossed ladder was pointed out by L. P. Gor'kov,
d = 3 [8] show that one need not consider diagrams with ~ A.l. Larkin, and D.E. Khmel'nitskii, Pis'ma Zh. Eksp.
more than one ladder or crossed ladder resummation. Teor. Fiz.30, 248 (1979) [JETP Lett30, 228 (1979)].
We also mention that the temperature dependent con- FOr @ review of this subject, see P.A. Lee and T.V.
ductivity is easily obtained from ouf = 0 result by Ramakrishnan, Rev. Mod. Phy§7, 287 (1985). The

. ; L . . importance of considering both the frequency and the
a convolution with the derivative of a Fermi function density dependence af has been stressed by D. Belitz

3/2
[8,14]. At low temperatures, the*/> anomaly then gets and T.R. Kirkpatrick, Rev. Mod. Phy$6, 261 (1994).

translated into &3/2 dependence at fixed scatterer den—[12] D. Vollhardt and P. Wélfle, Phys. Rev. 22, 4666 (1980).
sity. After subtracting out the weak-localization term, this[13] we thank T.R. Kirkpatrick for a discussion of this point.

should be observable, at least in principle, in experimentgl4] D. A. Greenwood, Proc. Phys. Sotl, 585 (1958).
of the type reported by Adams [15]. [15] P.W. Adams, Phys. Rev. Lets5, 333 (1990).
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