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Density Expansion for Transport Coefficients: Long-Wavelength versus Fermi Surface
Nonanalyticities
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The expansion of the conductivity in2-d quantum Lorentz models in terms of the scatterer densityn
is considered. We show that nonanalyticities in the density expansion due to scattering processes with
small and large momentum transfers, respectively, have different functional forms. Some of the latter
are not logarithmic, but rather of power-law nature, in sharp contrast to the3-d case. In a2-d model
with point-like scatterers we find that the leading nonanalytic correction to the Boltzmann conductivity,
apart from the frequency dependent weak-localization term, is of ordern3y2. [S0031-9007(97)02948-7]
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It is well known from the statistical mechanics of fluid
that for transport coefficients, as opposed to thermo
namic quantities, no virial or density expansion exists [
Let us consider a classical Lorentz gas [2], i.e., a sin
particle moving in a static array of scatterers with sc
terer densityn, as a simple model of a classical fluid. I
such a system in three dimensions (d ­ 3), the diffusion
coefficient,D, as a function ofn has the form,

DyD B ­ 1 1 D1n 1 D2 lnn2 ln n 1 D2n2 1 osn2d .

(1a)

Here D B denotes the Boltzmann diffusivity,D1, D2 ln,
andD2 are numbers, andosn2d denotes terms that vanis
faster thann2 for n ! 0. In 2D systems, a similar
nonanalyticity appears, but at one lower order in t
density expansion,

DyD B ­ 1 1 D1 lnn ln n 1 D1n 1 osnd . (1b)
The nonanalyticities in Eqs. (1a) and (1b) are n

specific to the Lorentz models, but are also present
real fluids [3]. They are a result of long range dynamic
correlations in the system. If one performs a clus
expansion in ad-dimensional system, then ring collision
i.e., processes where the scattered particle collides wi
scatterer to which it returns after having scattered of
number of other scattering centers, lead to a logarithm
infinity in the density expansion at ordernd21 [4]. This
divergence is cut off by the mean-free path. Throu
the density dependence of the latter, this translates
a logarithmic nonanalyticity at that order. The nature
the higher order terms is not known, but they are believ
to also contain logarithmic nonanalyticities.

Since the mechanism that is believed to lead to th
effects in classical systems is rather general, one wo
expect a similar effect to occur in the transport coef
cients of quantum mechanical particles. This is inde
the case [5]. Although the leading expansion parame
is different [6], and performing the classical limit to mak
contact with the classical ring collisions is nontrivial [7
one obtains for a 3D quantum system again an expan
of the form given in Eq. (1a). Specifically, all of the co
0031-9007y97y78(14)y2768(4)$10.00
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efficients in Eq. (1a) have been calculated for a quantu
Lorentz model that is a good representation of electro
injected into helium gas [8]. It is apparent from the de
tails of these calculations, although not from the resu
that in a quantum system there are two physically d
tinct sources of the logarithmic nonanalyticity. These a
(1) long-wavelength contributions, i.e., those dominat
by scattering processes with a momentum transfer on
order of an inverse mean-free path, and (2) Fermi surfa
contributions, which are dominated by momentum tran
fers close to2kF , with kF being the Fermi momentum. In
a dilute system, these two length scales are well separa
Again, the nature of the higher terms is not known, but i
spection of some individual terms makes it appear like
that the next term in Eq. (1a) is of the formn3sln nd2.

In this Letter we show that the fact that both o
the mechanisms mentioned above yield a logarithm
nonanalyticity is characteristic ofd ­ 3, and that in
d ­ 2 some of the Fermi surface contributions lead to
power lawnonanalyticity of the formn3y2. Moreover, we
find that in a 2D quantum Lorentz model with pointlik
scatterers, the leadingn ln n nonanalyticities cancel, so
that then3y2 term is theleadingnonanalyticity, apart from
the frequency dependent weak-localization logarithm th
appears in a 2D quantum system. The density expans
for the frequency dependent conductivity,ssvd, (which
in a quantum system is easier to calculate than
diffusivity) in such a model thus takes the form,

Re ssvdysB ­ 1 1
2
p

g

2e
lnsvtd

1 s1 ln
g

2e
ln

µ
g

2e

∂
1 s1

g

2e

1 s3y2

µ
g

2e

∂3y2

1 o

µ
g

2e

∂3y2

, (2a)

where we have left out contributions that vanish
v ! 0. HeresB ­ e2etys2pmd denotes the Boltzmann
conductivity,t is the scattering mean-free time,m is the
electron mass,e ­ k2

F , andg ­ myt ­ nsT kF , with sT

the totals-wave cross section, is a convenient expansi
© 1997 The American Physical Society
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parameter that is proportional to the impurity density. T
lnsvtd term is the so-called weak-localization correctio
(see below), whose prefactor has been known for so
time. For the remaining coefficients in Eq. (2a) we find

s1 ln ­ 0, s1 ­
2
p

s1 2 ln 2d, s3y2 ­ 3y2
p

2 .

(2b)

Equations (2a) and (2b) constitute our result. Befo
we sketch its derivation, let us explain the physic
origin of the g3y2 term in Eq. (2a). In a degenerat
system of noninteracting fermions, the Pauli princip
restricts the phase space that is available in scatte
processes. These restrictions lead, e.g., to the w
known nonanalyticity of the Lindhard function at
momentumq ­ 2kF . The nature of this nonanalyticity is
dimensionality dependent; it is logarithmic ind ­ 3, and
a square root ind ­ 2. The same phase space restrictio
lead to related nonanalyticities in the scattering cro
section, and hence in the transport coefficients. This
precisely what we find. The effect we predict is thus
consequence of the sharpness of the Fermi surface.
related to other phenomena resulting from the degene
nature of a Fermi gas atT ­ 0, like, e.g., the Friedel
oscillations, and the Kohn anomaly.

We now outline the derivation of our results. Let u
consider the standard Edwards model of noninteract
electrons ind ­ 2 in an environment of static, spatiall
random scatterers. The model Hamiltonian reads

H ­
X
k

sek 2 mday
kak 1

X
k,q

V sqday
k1qy2 ak2qy2 , (3)

where a
y
k and ak denote the creation and annihilatio

operators, respectively, for electrons with wave vectork,
m is the chemical potential,V sqd is the Fourier transform
of the electron-impurity scattering potential, andek ­
k2y2m. Throughout this Letter we use units such th
h̄ ­ 1. Also, we will be working at zero temperature
so we put m ­ eF ­ k2

Fy2m. Since we are dealing
with noninteracting electrons, spin just leads to triv
factors of 2 and can be omitted. Standard diagramm
perturbation theory [9] is formulated in terms of retard
(R) and advanced (A) zero temperature Green’s function

G
R,A
k,p svd ­

ø
k

Ç
1

v 2 H 6 i0

Ç
p

¿
, (4a)

and their impurity averaged counterpartshGR,A
k,p svdjdis,

where h· · ·jdis denotes the average over the quench
disorder. It is most convenient to keep only the lowe
order contribution to the self-energy in the averag
Green’s function, so we will use as the building bloc
of our perturbation theory the following approximation
hGR,A

k,p svdjdis,

G
R,A
k ­

1
v 2 sek 2 eFd 6 igy2m

. (4b)
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In writing Eq. (4b), we have specialized to the case
pure s-wave scattering, or a pointlike impurity potentia
i.e., we have putV sqd ; U ­ gy4p2m2 [10].

The transport coefficient of interest to us, viz. th
dynamical conductivityssvd, can be expressed in term
of Green’s functions by means of the Kubo-Greenwo
formula,

Re ssvd ­
e2

pm2
Re

X
k,p

kzhGR
k,psvd GA

p,ksv ­ 0d

2 GR
k,psvd GR

p,ksv ­ 0djdispz , (5)

This expression can be used to systematically expands

in powers ofg. Such an expansion has been set up
Ref. [6], and in Ref. [8] all diagrams were identified tha
contribute up to and including orderg2 in d ­ 3. The
classification of the diagrams with respect to the order
g they contribute to doesnot carry over to other values of
d, but it turns out that the diagrams that contribute to t
terms shown in Eq. (2a) form a subset of those conside
in Ref. [8]. They are shown in Figs. 1–3.

All of these diagrams can be expressed in terms
integrals over combinations of two functions,J11 and
J12, that are convolutions ofGR and GA. At zero
frequency they are defined as

J1nsqd ­
Z

dk
1

e 2 k2 1 ig
1

e 2 sk 2 qd2 1 ing
,

(6a)

with n ­ 6. Doing the integrals yields, ind ­ 2,

J11sqd ­
2p

qw11

flnsw11 1 qd 2 lnsw11 2 qdg ,

(6b)

J12sqd ­
22ip
w12

∑
ln

µ
w12 1 2g 2 iq2

w12 1 2g 1 iq2

∂
1

1
2

ln

√
e 2 ig
e 1 ig

!
1 ip

∏
, (6c)

where

w11 ­
q

wsqd 2 4ig, w12 ­
q

2q2wsqd 1 4g2 ,

(6d)

with wsqd ­ q2 2 4e.
The only diagrams that contribute to theg3y2 term

in Eq. (2a) are (e), (f), and (g) in Fig. 1. In order t
demonstrate how the nonanalyticity arises, let us consi
diagram (g) as an example. After simple manipulation
its contribution to the conductivity can be written as

ss1gd

sB
­

µ
g

2e

∂
2 4e2

p8

Z
dq ReJ11sqd RefJ11sqdg2. (7)

Here we have putv ­ 0, and have kept only the leading
contribution for g ! 0. It is now easy to see how the
2769
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FIG. 1. Simple diagrams that contribute to the terms show
in Eq. (2a). For (f ) and ( j) there is one equivalent symmetr
diagram (not shown) that also contributes, and the comp
conjugates of (b)–(f ) and (h)–( j) contribute as well. Th
“triangulated” line in (b) denotes Green’s function, Eq. (4b
with its value atg ­ 0 subtracted to avoid double counting
(a) yields sB 1 Osg2d and serves to normalize all othe
contributions. (e)–(g) contribute to theg3y2 term.

nonanalyticity arises. Equation (6b) shows that, in t
limit g ! 0, J11 contains a singularity of the form
sq 2 2kFd21y2. A q integration oversJ11d3 thus leads
to a g21y2 term. Since sJ11d3 first appears in the
integrands at orderg2, the leading singularity produced
by this mechanism is of the formg3y2. Asymptotic
analysis yields the prefactor of the nonanalyticity, whic
gives a contribution to the numbers3y2 in Eq. (2a)
as stated in Table I. Similarly, an integral oversJ11d2

produces an lng, and this mechanism contributes t
the prefactors1 ln in Eq. (2a). Another contribution to
s1 ln comes from the “long-wavelength” terms, whic
manifest themselves as integrals

R
dqfJ12sqdg2. Such

integrals arise from Fig. 1(d) [in Fig. 1(c) they cancel
2770
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FIG. 2. Infinite resummations that contribute to the term
shown in Eq. (2a). The complex conjugates of (b)–(d
contribute as well.

and Fig. 1(a). The fact that ind ­ 2 two powers ofJ12

are sufficient to produce a logarithm accounts for the fa
that this nonanalyticity appears already at linear order
g. Finally, some of the diagrams discussed so far, and
of the remaining ones, contribute to the analytic term
orderg. The various contributions are listed in Table I.

The infinite resummation denoted by diagram (a)
Fig. 2 plays a special role in our perturbation theory, an
deserves some discussion. This “crossed ladder” resu
mation is the only diagram where the zero-frequency lim
needs to be handled with some care, since it is related
the so-called weak-localization anomaly, i.e., the fact th
the conductivity of disordered noninteracting electrons
d ­ 2 contains a lnvt in perturbation theory, and that
the true zero-frequency value ofs is zero [11]. Taken
at face value, the diagram is finite atv ­ 0, since the
resummation leads to a structure1yf1 2 gJ12sqdyp2g.
ExpandingJ12 in powers ofg leads to a diffusion pole,
i.e., a1yq2 singularity, at lowest order, but the subleadin
contribution ofOs1d to J12sq ­ 0d seems to protect the
singularity. This is misleading, however, since it is we
known that the crossed ladder is an approximation to
exact vertex partLsq, vd that has anexactdiffusion pole,
Lsq, vd , 1ys2iv 1 q2yDd, with D the diffusion coef-
ficient [12]. Indeed one can show that there exist class
of diagrams that cancel the mass in the simple cross

FIG. 3. Definition of the vertices in Fig. 2.
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TABLE I. Contributions of diagrams as shown in Figs. 1 a
2 to the coefficients in Eq. (2a). No entry means that
diagram does not contribute for structural reasons, while a z
indicates no contribution due to cancellations.

Diagram s1 ln s1 s3y2

1(b) 2yp

1(c) 0
1(d) 22yp 2s8ypdln 2
1(e) 2

p
2y2

1(f)
p

2
1(g)

p
2y4

1(h) 0
1(i) 0
1( j) 0
2(a) 2yp s4ypdln 2

2(b)12(c)12(d) s2ypdln 2

ladder, order by order in perturbation theory [13]. A
though formally of higher order ing, these contributions
lead to the logarithmic singularity stemming fromL be-
ing protected only by a finite frequency, andnotby g. On
a more formal level, strict perturbation theory in powe
of g violates a Ward identity that reflects particle num
ber conservation in the presence of time reversal inv
ance. By choosing a self-energy that is related to
crossed ladder vertex correction by means of this W
identity, one can construct a conserving approximat
for L which has the diffusion pole built in. Replacin
the small-q part of the crossed ladder by the approp
ate exact diffusion pole then leads to the term lnvt with
a prefactor as first reported by Gor’kovet al., Ref. [11],
and made rigorous by Kirkpatrick and Dorfman [6], a
shown in Eq. (2a). Apart from this, the first term in th
infinite crossed ladder resummation also contributes to
coefficientss1 ands1 ln; see Table I.

We have ascertained that no other diagrams contrib
to the terms we are considering. For simple diagra
it is easy to show, by a combination of the diagra
rules with power counting, that diagrams with more th
three impurity lines cannot contribute. For the infin
resummations, the same type of argument shows
dressing the diagrams shown in Fig. 2 by addition
impurity lines leads to terms that vanish faster thang3y2.
Finally, arguments analogous to those employed befor
d ­ 3 [8] show that one need not consider diagrams w
more than one ladder or crossed ladder resummation.

We also mention that the temperature dependent c
ductivity is easily obtained from ourT ­ 0 result by
a convolution with the derivative of a Fermi functio
[8,14]. At low temperatures, theg3y2 anomaly then gets
translated into aT 3y2 dependence at fixed scatterer de
sity. After subtracting out the weak-localization term, th
should be observable, at least in principle, in experime
of the type reported by Adams [15].
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