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Universal scaling and diagonal conductivity in the integral quantum Hall effect
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We perform a numerical finite-size study for the static homogeneous diagonal condugtivétythe critical
filling factor 3/2 for different microscopic realizations of the random impurity potential. The variatior ,of
with the system size defines a scaling function. It turns out to be independent of the particular realization of
disorder and also of the Landau-level index. However, the diagonal conductivity in the second-lowest Landau
level varies strongly with disorder. The universal critical conductivity is recovered only asymptotically when
the correlation length of the potential is increased.
[S0163-182698)01724-X

The scaling scenario of the integer quantum Hall effect namic limit® This extrapolation comes with uncertainties in
developed by Pruisken and Khmel'nitcksuggests that the the estimate of the critical conductivity, which make it diffi-
delocalization transition, lying at the heart of the phenom-cult to compare the results for different realizations of the
enon, is similar in many respects to a second-order phaséisorder. However, instead of first estimatiag, from scal-
transition. In impurity potentials with particle-hole symmetry ing functions for different disorder realizations and then
this transition occurs at the center of a Landau level at halfeomparing it is simpler to compare the scaling functions di-
integer filling. Its properties, e.g., the critical exponents andrectly. We show that all computed scaling functions for
the scaling functions, are thought to be universal with respeat,,(L,N) collapse onto a single, universal curve after rescal-
to the microscopic realization of the disorder and also theng of theL and the o, axes.

Landau-level inde£=* The idea of a universal delocalization ~ Our results on the diagonal Kubo conductivity calculated
transition is supported by experimental findifigsand nu-  at the critical filling n=3/2 in the second-lowest Landau
merical calculation§-1* Moreover, the “law of correspond- level can be summarized as follows: Within the range of
ing states* relates integer quantum Hall transitions to frac- system sizes considered the conductivity(\,L,e,N) as a
tional ones and, also, these are believed to be in the sanfanction of the correlation lengtk, the system width_, the
universality clasé.However, it still is a matter of consider- imaginary frequency, and also the Landau levél obeys
able debate, whether the critical conductivity is one of thean universal scaling function:

universal properties or not.Field-theoretical results suggest

that the dissipative conductivity equa4/2h independent of o\, L,e,N)=F(@a(x,N)Le¥?/b(\,N). (1)
the character of the disorder and the Landau-level iridex.
The analysis of various network mod®lsind also several Herea(\,N) andb(\,N) define the rescaling functions

numerical studi€$~2 corroborate this conclusion. The lat- for the system size and the conductivity respectively. The
ter, however, have all been restricted to the lowest Landaaritical conductivity is proportional to the inverse lof\,N).
level. For four different\ in the range from 0.0 to 1.fgiven in

By contrast there is no convincing experimental evidenceunits of the magnetic length it decays from (1.07
for a universal value obrS, 1% In fact, the majority of ~=0.03)e?/h to (0.44+0.04)?/h.
experiments seems to be incompatible with the notion of a Therefore our finite-size study does not lend support to
universal conductivity:**?° Macroscopic inhomogeneities the hypothesis that the critical conductivity is universal with
of the electron density, finite sample size¥® screening, respect to microscopic properties of the random potential in
charging, and other correlation effet&> might seriously higher Landau levels. However, we cannot rule out univer-
impair the experimental observability. However in generalsality as the conductivity turns out to be more sensitive to the
electron interaction effects are expected not to change theystem size than the localization length, so that our system
universality class — at least, if the interaction potential issizes might be too small to see the universal behavior. In
screened so that it drops faster than. %Y long-range potentials we find,, to attain its semiclassical

In this situation it clearly is desirable to put the theoreticalvaluee?/2h independent of the Landau-level ind&x.
ideas to a further test by calculating numerically the critical We use static impurity potentials of varying correlation
conductivity in the second-lowest Landau ley&LL). Nu-  length A and neglect electron-electron interactions com-
merical calculations for the 1LL are notoriously difficult as pletely. All states are assumed to lie in the second-lowest
finite-size effects are known to be extremely important. InLandau level corresponding to a strong-field limit. For rea-
general, one has to consider at least one irrelevant scalirgpns of numerical efficiency the random Landau matrix
field when extrapolating the numerical data to the thermodymodel is used in calculating the matrix elements for varying
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FIG. 1. o, (L&"?, the conductivity in the second-lowest Lan-
dau level forn=0. In the inset the raw data are displayed.

=10"%(0), e=10"4(0), e=5%10*4<), £¢=10"3(+). The
dashed line indicates the power law?.

FIG. 3. Zoom into the critical regime of the universal scaling

function for o (N,\,Le¥?) for the second-lowest Landau level

(N=1) and potential correlation lengths=0(O), A=0.75{),
A=1.0(¢), andA=1.5(A), and forN=0 with A\=0(+), A=1

(X). Inset: The scaling coefficienta(\) (empty symbols and

\.25-27 S0 far this model has been successfully used in th&™) (filled symbolg for N=1.

accurate calculation of various critical properties in the inteithin L=8 andL =140, & within 10°° and 103, and\
gral quantum Hall effect?32528as in previous work®'®  within 0.0 to 1.5.

we use a fast iterative Green-function method to calculate the In Figs. 1 and 2 the numerical results for correlation
static conductivityo,,(L,e,\) as a function ofA and the lengthsA=0 and\=0.75 are depictedThe complete data
sample widthL. & denotes the imaginary frequency. The for all other\ will be published elsewhereClearly the dy-
thermodynamic limit is obtained in the limit—« first and  namical exponert equals 2 in a diffusive system. Therefore
thene —0*. To reduce statistical errors to a 2% level systemall data collapse onto one curve when we plot the conduc-
lengths betweeivl =4x 10° for the large systems and up to tivities as function ofLe2 The linear behavior of the scal-
M=10" for the smaller systems have been necessary. T#'d function at small arguments.? is a consequence of the
cover a wide parameter range the system width was variefinite sample size. We have indicated it by dashed lines.

As shown in the scaling plot, Fig. 3, all data of
oyw(N\,L,e,N) in the 1LL and also the data obtained for the

10° ' - ' OLL with A=0,1 can be mapped onto a universal scaling
4 function when one rescalds and o, axis?® This is our
7 W@L central result. Taken at face value our calculation supports
R the hypothesis of a universal transition with respect to disor-
ey der and the Landau-level index.
é@ The rescaling factora(\) for the system size anbl(\)
< 10" } Kz i for the conductivity of theN=1 Landau level are displayed
o /0 10° . oy in the inset. Here it can clearly be seen that the amplitude of
g: léA < gg g@ the scali_n_g fqnction B(\) that is p_rop_or'_cional to the critical
o { 10" b X / i conductivity in the thermodynamic limit has a pronounced
°§ 0§ i N )oAg’ TABLE |. Scaling factors and critical conductivities obtained
o10° F //ZA g’ E from the data in Fig. 3. The valug) has been calculated in Ref. 13
102 b @ o g i from the dynamic conductivity in the—0 limit.
4:( 1 10 L 100 N A a b oy(e’lh)
10" 10° 1 0.00 1.00 1.00 1.070.03
Le™? 1 0.75 0.94 1.90 0.560.03
1 1.00 0.90 2.30 0.470.04
FIG. 2. oy(L&e¥ in the second-lowest Landau level far 1 1.50 0.86 2.48 0.440.05
=0.75. Inset: raw datag=10 %(0), £=2x10"5(0), &=5 0 0.00 0.73 2.06 0.520.04
X107 3(A), e=10"40), 6=2X10"4V), e=3X104D>), ¢ 0 1.00 0.78 2.31 0.460.04
=5x%10 4(<). The dashed line indicates the power la?, and 0 2.00 0.56-0.02 (*)

the solid line isory=€?/2h.
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FIG. 4. Scaling towards the estimated fixed point value
=(1.07+0.03)%%h. (The symbols are the same as in Fig. Bhe FIG. 5. The unscaled data for the second-lowest Landau level.

(The symbols are the same as in Fig. Bne dashed line indicates
the power law withy=0.4 and the solid line is the fit witly
=1.65.

dashed line displays the power law wigh=1.65+0.1.

dependence oN. The dependence of the factaf\) rescal-

ing the system size on the potential correlation length, on the

other hand, is much weaker. 04x(91,02,..,L)=L%(B°+a;g,L Yimi+a,g,L ~Yim2
The data indicate a decrease of the critical conductivity oy oy .

between the short-range limit=0 and\=1.0 by 50% as +o(L w7 Pim2, [ 7irs). 4

given in Table I. In the present case we use the data\ for

=0 in the 1LL for “calibration” that have the smallest sta- ;¢ js a number that coincides with the conductivity since

tistical errors and the smallest variation@f,(Ls"?) inthe  x_=0. The exponeny;,, has been identified previoushyit

limit of a large argument. describes the corrections due to the finite system size to the
In what follows we turn our attention to the scaling func- amplitude of the scaling function (L) of the localization

tion F itself. Quite generally, near criticality one expedts  |ength at criticality. In studies using the random Landau ma-

to have an expansion trix modeP and the Chalker network mod@bone finds simi-
lar results:y;, 1=0.35=0.05 in agreement with an analytical
F(x)y=F¢—ax Y+ 2 conjecturey;, ;= D,/2— 1/v whereD, denotes the second of

the generalized multifractal dimensiotsOne expects/ 1
that describes the finite size correctionsAoin the thermo-  to describe the approach to the thermodynamic limit for
dynamic limitx—« in terms of a power law. samples large enough.

As can be seen from Fig. 4 this is indeed the case. Our For\<1 we do not observe the exponeft,. One pos-
estimate for the exponent ys=1.65+-0.1. This result is not  sible explanation is that the corresponding amplitagen
quite as accurate as the outcome for the conductivity: On théhe expansion 4 is small. Alternatively, the system sizes
one hand, the power law proper can be observed only in 8ould be smaller than an irrelevant length scale so that we
vicinity not larger than 30% of the fixed point value of cannot see universal behavior including the universal con-
oyx (see Fig. 4 On the other, statistical fluctuations and aductivity. Instead we observe power-law behavior with an
systematical error in our data due to a finite epsilon keep uexponenty;, ,=1.65+0.1 While this scenario explains the
from approaching the maximum closer than approximatelyiscrepancy in the exponents and the nonuniversal conduc-
2-3 %. Hence the accessible interval for the variatioorgf  tivity, the fact that we see scaling of our data for allre-
is not larger than an order of magnitude. mains unexplained. Moreover, we cannot find any numerical

In what follows we discuss our results within the frame- clues that the conductivity approaches the universal value of
work of the scaling theory of second-order phase transitions).5 when the system size increases.

According to the latter one would expect a scaling relation  In the case of the long-range potentiak=1 the data are
not incompatible with the expected exponemny, (broken
o4(91,92,..,L)=L%B(g,L Yim1,g,L " Yim2, .}, (3) line) andox=0.5 as can be seen in Fig. 5 where we show
the unscaled data fad=1 and\=0,0.75,1.[For compari-
where x,, denotes the scale dimension of the conductivity.son, the power law witty=1.65, as obtained from the col-
Assuming that the scaling indices; 1 ,Yir > Of the two most  lapse of all data onto the universal scaling functiéig. 4),
important irrelevant scaling fields are strictly positive oneis displayed]
can expand the scaling functidhin the coupling constants In conclusion we have found that the conductivity at the
01,0, and obtains quantum phase transition between two Landau levels can be
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described by a universal scaling function that is independent We are grateful to W. Brenig and P. Kratzer for many
of the Landau-level index and of the particular realization ofhelpful discussions. In particular we would like to thank D.
the random impurity potential. This conjecture has beerBelitz for stimulating “blackboard discussions.” This work
tested forN=0,1 and\=0 to 1.5. In long-range potentials was supported by the DFG and in part by the NSF under
the universal conductivity is recovered. Grant No. DMR-95-1018%F.E).
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