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Universal scaling and diagonal conductivity in the integral quantum Hall effect
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We perform a numerical finite-size study for the static homogeneous diagonal conductivitysxx at the critical
filling factor 3/2 for different microscopic realizations of the random impurity potential. The variation ofsxx

with the system size defines a scaling function. It turns out to be independent of the particular realization of
disorder and also of the Landau-level index. However, the diagonal conductivity in the second-lowest Landau
level varies strongly with disorder. The universal critical conductivity is recovered only asymptotically when
the correlation length of the potential is increased.
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The scaling scenario of the integer quantum Hall effe1

developed by Pruisken and Khmel’nitzki�

2 suggests that the
delocalization transition, lying at the heart of the pheno
enon, is similar in many respects to a second-order ph
transition. In impurity potentials with particle-hole symmet
this transition occurs at the center of a Landau level at h
integer filling. Its properties, e.g., the critical exponents a
the scaling functions, are thought to be universal with resp
to the microscopic realization of the disorder and also
Landau-level index.2–4 The idea of a universal delocalizatio
transition is supported by experimental findings5–7 and nu-
merical calculations.8–13 Moreover, the ‘‘law of correspond
ing states’’14 relates integer quantum Hall transitions to fra
tional ones and, also, these are believed to be in the s
universality class.4 However, it still is a matter of consider
able debate, whether the critical conductivity is one of
universal properties or not.15 Field-theoretical results sugge
that the dissipative conductivity equalse2/2h independent of
the character of the disorder and the Landau-level inde3,4

The analysis of various network models16 and also severa
numerical studies11–13 corroborate this conclusion. The la
ter, however, have all been restricted to the lowest Lan
level.

By contrast there is no convincing experimental eviden
for a universal value ofsxx

c .16–18 In fact, the majority of
experiments seems to be incompatible with the notion o
universal conductivity.6,19,20 Macroscopic inhomogeneitie
of the electron density,17 finite sample sizes,12,13 screening,
charging, and other correlation effects21,22 might seriously
impair the experimental observability. However in gene
electron interaction effects are expected not to change
universality class — at least, if the interaction potential
screened so that it drops faster than 1/r .23

In this situation it clearly is desirable to put the theoretic
ideas to a further test by calculating numerically the criti
conductivity in the second-lowest Landau level~1LL!. Nu-
merical calculations for the 1LL are notoriously difficult a
finite-size effects are known to be extremely important.
general, one has to consider at least one irrelevant sca
field when extrapolating the numerical data to the thermo
570163-1829/98/57~23!/14829~4!/$15.00
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namic limit.9 This extrapolation comes with uncertainties
the estimate of the critical conductivity, which make it diffi
cult to compare the results for different realizations of t
disorder. However, instead of first estimatingsxx

c from scal-
ing functions for different disorder realizations and th
comparing it is simpler to compare the scaling functions
rectly. We show that all computed scaling functions f
sxx(L,N) collapse onto a single, universal curve after resc
ing of theL and the sxx axes.

Our results on the diagonal Kubo conductivity calculat
at the critical filling n53/2 in the second-lowest Landa
level can be summarized as follows: Within the range
system sizes considered the conductivitysxx(l,L,«,N) as a
function of the correlation lengthl, the system widthL, the
imaginary frequency«, and also the Landau levelN obeys
an universal scaling function:

sxx~l,L,«,N!5F„a~l,N!L«1/2
…/b~l,N!. ~1!

Here a(l,N) and b(l,N) define the rescaling function
for the system size and the conductivity respectively. T
critical conductivity is proportional to the inverse ofb(l,N).
For four differentl in the range from 0.0 to 1.5~given in
units of the magnetic length!, it decays from (1.07
60.03)e2/h to (0.4460.04)e2/h.

Therefore our finite-size study does not lend support
the hypothesis that the critical conductivity is universal w
respect to microscopic properties of the random potentia
higher Landau levels. However, we cannot rule out univ
sality as the conductivity turns out to be more sensitive to
system size than the localization length, so that our sys
sizes might be too small to see the universal behavior
long-range potentials we findsxx to attain its semiclassica
valuee2/2h independent of the Landau-level index.24

We use static impurity potentials of varying correlatio
length l and neglect electron-electron interactions co
pletely. All states are assumed to lie in the second-low
Landau level corresponding to a strong-field limit. For re
sons of numerical efficiency the random Landau mat
model is used in calculating the matrix elements for vary
14 829 © 1998 The American Physical Society
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14 830 57B. M. GAMMEL AND F. EVERS
l.25–27 So far this model has been successfully used in
accurate calculation of various critical properties in the in
gral quantum Hall effect.9,12,13,25,28As in previous work12,13

we use a fast iterative Green-function method to calculate
static conductivitysxx(L,«,l) as a function ofl and the
sample widthL. « denotes the imaginary frequency. Th
thermodynamic limit is obtained in the limitL→` first and
then«→01. To reduce statistical errors to a 2% level syste
lengths betweenM543105 for the large systems and up t
M5107 for the smaller systems have been necessary.
cover a wide parameter range the system width was va

FIG. 1. sxx(L«1/2), the conductivity in the second-lowest Lan
dau level for l50. In the inset the raw data are displayed.«
51025(h), «51024(L), «5531024(v), «51023(1). The
dashed line indicates the power law«L2.

FIG. 2. sxx(L«1/2) in the second-lowest Landau level forl
50.75. Inset: raw data,«51025(h), «5231025(s), «55
31025(n), «51024(L), «5231024(,), «5331024(x), «
5531024(v). The dashed line indicates the power law«L2, and
the solid line issxx5e2/2h.
e
-

e

o
d

within L58 andL5140, « within 1025 and 1023, and l
within 0.0 to 1.5.

In Figs. 1 and 2 the numerical results for correlati
lengthsl50 andl50.75 are depicted.~The complete data
for all otherl will be published elsewhere.! Clearly the dy-
namical exponentz equals 2 in a diffusive system. Therefo
all data collapse onto one curve when we plot the cond
tivities as function ofL«1/2. The linear behavior of the scal
ing function at small arguments«L2 is a consequence of th
finite sample size. We have indicated it by dashed lines.

As shown in the scaling plot, Fig. 3, all data o
sxx(l,L,«,N) in the 1LL and also the data obtained for th
0LL with l50,1 can be mapped onto a universal scali
function when one rescalesL and sxx axis.29 This is our
central result. Taken at face value our calculation supp
the hypothesis of a universal transition with respect to dis
der and the Landau-level index.

The rescaling factorsa(l) for the system size andb(l)
for the conductivity of theN51 Landau level are displaye
in the inset. Here it can clearly be seen that the amplitude
the scaling function 1/b(l) that is proportional to the critica
conductivity in the thermodynamic limit has a pronounc

TABLE I. Scaling factors and critical conductivities obtaine
from the data in Fig. 3. The value~* ! has been calculated in Ref. 1
from the dynamic conductivity in thev→0 limit.

N l @ l # a b sxx
c (e2/h)

1 0.00 1.00 1.00 1.0760.03
1 0.75 0.94 1.90 0.5660.03
1 1.00 0.90 2.30 0.4760.04
1 1.50 0.86 2.48 0.4460.05
0 0.00 0.73 2.06 0.5260.04
0 1.00 0.78 2.31 0.4660.04
0 2.00 0.5060.02 ~* !

FIG. 3. Zoom into the critical regime of the universal scalin
function for sxx(N,l,L«1/2) for the second-lowest Landau leve
(N51) and potential correlation lengthsl50(s), l50.75(h),
l51.0(L), and l51.5(n), and for N50 with l50(1), l51
(3). Inset: The scaling coefficientsa(l) ~empty symbols! and
b(l) ~filled symbols! for N51.
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57 14 831UNIVERSAL SCALING AND DIAGONAL CONDUCTIVITY . . .
dependence onl. The dependence of the factora(l) rescal-
ing the system size on the potential correlation length, on
other hand, is much weaker.

The data indicate a decrease of the critical conductiv
between the short-range limitl50 andl51.0 by 50% as
given in Table I. In the present case we use the data fol
50 in the 1LL for ‘‘calibration’’ that have the smallest sta
tistical errors and the smallest variation ofsxx(L«1/2) in the
limit of a large argument.

In what follows we turn our attention to the scaling fun
tion F itself. Quite generally, near criticality one expectsF
to have an expansion

F~x!5Fc2ax2y1••• ~2!

that describes the finite size corrections toFc in the thermo-
dynamic limit x→` in terms of a power law.

As can be seen from Fig. 4 this is indeed the case.
estimate for the exponent isy51.6560.1. This result is not
quite as accurate as the outcome for the conductivity: On
one hand, the power law proper can be observed only
vicinity not larger than 30% of the fixed point value o
sxx ~see Fig. 4!. On the other, statistical fluctuations and
systematical error in our data due to a finite epsilon keep
from approaching the maximum closer than approximat
2–3 %. Hence the accessible interval for the variation ofsxx
is not larger than an order of magnitude.

In what follows we discuss our results within the fram
work of the scaling theory of second-order phase transitio
According to the latter one would expect a scaling relatio

sxx~g1 ,g2 ,..,L !5LxsB~g1L2yirr,1,g2L2yirr,2,..!, ~3!

where xs denotes the scale dimension of the conductiv
Assuming that the scaling indicesyirr,1 ,yirr,2 of the two most
important irrelevant scaling fields are strictly positive o
can expand the scaling functionB in the coupling constants
g1 ,g2 and obtains

FIG. 4. Scaling towards the estimated fixed point valuec
5(1.0760.03)e2/h. ~The symbols are the same as in Fig. 3.! The
dashed line displays the power law withy51.6560.1.
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sxx~g1 ,g2 ,..,L !5Lxs(Bc1a1g1L2yirr,11a2g2L2yirr,2

1o~L22yirr,1,L22yirr,2,L2yirr,3!. ~4!

Bc is a number that coincides with the conductivity sin
xs50. The exponentyirr,1 has been identified previously.9 It
describes the corrections due to the finite system size to
amplitude of the scaling functionL(L) of the localization
length at criticality. In studies using the random Landau m
trix model9 and the Chalker network model30 one finds simi-
lar results:yirr,150.3560.05 in agreement with an analytica
conjectureyirr,15D2/221/n whereD2 denotes the second o
the generalized multifractal dimensions.30 One expectsyirr,1
to describe the approach to the thermodynamic limit
samples large enough.

For l,1 we do not observe the exponentyirr,1 . One pos-
sible explanation is that the corresponding amplitudea1 in
the expansion 4 is small. Alternatively, the system siz
could be smaller than an irrelevant length scale so that
cannot see universal behavior including the universal c
ductivity. Instead we observe power-law behavior with
exponentyirr,251.6560.1 While this scenario explains th
discrepancy in the exponents and the nonuniversal con
tivity, the fact that we see scaling of our data for alll re-
mains unexplained. Moreover, we cannot find any numer
clues that the conductivity approaches the universal valu
0.5 when the system size increases.

In the case of the long-range potential,l51 the data are
not incompatible with the expected exponentyirr,1 ~broken
line! andsxx50.5 as can be seen in Fig. 5 where we sh
the unscaled data forN51 andl50,0.75,1.@For compari-
son, the power law withy51.65, as obtained from the co
lapse of all data onto the universal scaling function~Fig. 4!,
is displayed.#

In conclusion we have found that the conductivity at t
quantum phase transition between two Landau levels ca

FIG. 5. The unscaled data for the second-lowest Landau le
~The symbols are the same as in Fig. 3.! The dashed line indicate
the power law withy50.4 and the solid line is the fit withy
51.65.
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described by a universal scaling function that is independ
of the Landau-level index and of the particular realization
the random impurity potential. This conjecture has be
tested forN50,1 andl50 to 1.5. In long-range potential
the universal conductivity is recovered.
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