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In a microscopic model of fractional quantum Hall liquids with electron-electron interactions and
confinement, we calculate the edge Green’s function via exact diagonalization. Our results for � � 1=3
and 2=3 suggest that, in the presence of Coulomb interaction, ‘‘external’’ parameters such as the sharpness
of the edge and the strength of the edge confining potential, which can lead to edge reconstruction, may
cause deviations from universality in the edge-tunneling I � V exponent. In particular, we do not find any
direct dependence of this exponent on the range of the interaction potential as suggested by recent
calculations in contradiction to the topological nature of the edge.
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The fractional quantum Hall (FQH) effect [1] occurs in a
clean two-dimensional electron system in a strong mag-
netic field. It is formed at certain rational filling factors �:
the ratio of the electron density to the magnetic flux
density. It is a striking manifestation of strongly correlated
physics that leads to a novel incompressible fluid phase of
matter with fractionalized quantum numbers [2]. Wen [3]
has argued that Hall fluids, which lack any kind of local
order parameter associated with a broken symmetry, none-
theless possess topological order. This new order is more
subtle and hence less amenable to a direct experimental
probe. It can manifest itself in the ground state degener-
acies (when the system obeys toroidal boundary condi-
tions) that survive disorder or other symmetry breaking
perturbations. Topological order has a wider generality and
may appear in other highly correlated systems [4]. The
nature of and the transitions among such phases of matter
are subjects of considerable current interest.

Another manifestation of the topological order is the
edge structure of the quantum Hall fluids, which is deter-
mined by the gapped state in the bulk. In particular, for
Abelian Hall states the gapless edge deformations form
chiral Luttinger liquids [5] (CLLs). Thus differences in the
topological order can be discerned from the edge physics.
Tunneling characteristic at the edge has long been regarded
as an experimental means of measuring the topological
order. For tunneling from a three-dimensional (3D) Fermi
liquid, CLL theory leads to a non-Ohmic tunneling I-V
relation I � V�, in sharp contrast to the Ohmic prediction
of a Fermi-liquid-dominated edge.

For the Hall states at � � n=�np� 1� (where n is a
nonzero integer and p is a positive even integer), the
edge for n > 0 does not contain counter propagating modes
and the exponent is � � p� 1, independent of n. The
situation is more complicated for n < 0 where counter
propagating modes can be backscattered. However, in the
presence of strong disorder, the exponent takes on the
universal value � � p� 1� 2=jnj [6]. While experiments
[7–11] have confirmed the nontrivial power law behavior,
they do not completely agree with CLL values [5]. In
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particular, Grayson et al. found a continuous exponent � ’
1:16=�� 0:58 without plateaus for 1=� > 1:4 regardless
of electron mobility, carrier density, and tunneling barrier
thickness. However, more recently, Hilke et al. observed
� ’ 2:0=�� 0:55 for 0:75< 1=� < 1:75 in samples with
low 3D Fermi energies. These results suggest that the
subtleties of the edge may be relevant to the edge-tunneling
exponent, in addition to the bulk filling fraction.

Earlier attempts [12–16] to resolve the apparent discrep-
ancy between experiment and theory have been summa-
rized in [17]. Many of these approaches have invoked
additional physics within the standard theory to address
this shortcoming rather than abandoning the basic CLL
picture. One such addition arises from the presence of a
positive background charge. On purely electrostatic
grounds the electron density near the edge may become
quite different from that of an ideal edge [9]. This effect
can even lead to the reconstruction of the edge [18–21]
provided the background charge is sufficiently far from the
electron layer (which is usually the case in cleaved-edge
samples). As a consequence, the tunneling characteristics
could become sensitive to the edge profile and the universal
tunneling exponents may not necessarily be observed.

Meanwhile, recent studies [22–24] attribute the nonun-
iversality of � to the range of the electron-electron inter-
actions. Tsiper and Goldman (TG) studied the edge wave
function using exact diagonalization in the presence of
Coulomb interaction [22]. They concluded that the tunnel-
ing exponent depends on the range of the interactions.
Crucial to their conclusion is the assumption that the ex-
ponent � may be obtained from the ratio of the electron
occupation numbers of the two outermost occupied orbitals
for the corresponding Laughlin state in the disk geometry,
i.e., � � ��mL

max � 1�=��mL
max�. This relation, however,

has been derived only in the case of ultrashort-range inter-
actions and its validity for the more generic finite range
case is not obvious.

Using composite fermion (CF) theory [25], Mandal and
Jain [23,24] (MJ) have arrived at essentially the same
conclusion. These authors adopted a hard edge by cutting
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off angular momentum larger than mmax � 3�N � 1� for
� � 1=3 and, as TG, ignored the background charge. They
found that for the ultrashort-range potential (which pro-
duces the Laughlin state), the asymptotic edge Green’s
function exponent agreed with CLL theory. On the other
hand, for generic potentials, in particular the Coulomb
potential, a substantial reduction of the exponent from
the CLL value of 3 was observed. MJ attributed this
reduction to the residual repulsion (beyond their hard-
core) among the composite fermions generated by the
long-range Coulomb potential. For � � 1=3, the exponent
is below 2.5 and even larger reductions were found for � �
2=5 and 3=7.

These results are at odds with the predictions of CLL
and, by implication, with one of the most crucial elements
of the FQH physics itself, namely, the concept of topologi-
cal order. The unusual properties of the chiral edge liquid is
understood to be the signature of the topological structure
of the bulk and therefore ought to persist as long as the bulk
exhibits the FQH effect [3]. Hence, one expects the same
exponent irrespective of the range of the interactions so
long as the bulk physics remains the same.

In this Letter we show that there are no fundamental
contradictions with CLL and/or the topological order of
FQH states. In the presence of long-range Coulomb inter-
action, our findings suggest that the details of the edge
confinement is highly relevant to understanding the behav-
ior of the edge-tunneling exponent. We first address the
edge exponent in a system with long-range Coulomb in-
teractions in the absence of neutralizing background
charge. To this end we evaluate the edge Green’s function
by exact diagonalization in a microscopic model of the
FQH liquids. We impose an edge confining potential by
restricting the single-particle angular momentum to be 	
mmax. Our results are as follows: We find that, for � � 1=3,
the tunneling exponent remains unchanged with Coulomb
interaction for soft edges (large mmax). This is in sharp
contrast to the reduction of � as found previously by MJ
for hard edge confinement (small mmax). We then inves-
tigate the effect of the edge potential induced by back-
ground charge in the presence of long-range interactions.
For � � 1=3 and strong confining potential, we obtain the
universal value of � even for hard edges. For weak con-
fining potential, we again observe substantial deviations
from the universal value for hard edges, which may be
highly relevant to the experimental studies [8–10]. We also
find finite-size corrections to � for soft edges, consistent
with the edge reconstruction scenario [18–20]. For � �
2=3, we find behavior consistent with strongly coupled
edges for strong confining potential and with a dominant
� � 1 edge for weak confining potential.

We consider a microscopic model of a two-dimensional
electron gas (2DEG) confined to a two-dimensional disk
with neutralizing background charge distributed uniformly
on a parallel disk of radius a, at a distance d above the
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2DEG. The choice of a �
������������
2N=�

p
guarantees that the disk

enclosesN electrons and exactlyN=�magnetic flux quanta
for the desired filling factor �. The bare Coulomb interac-
tion between the background charge and the electrons
gives rise to the confining potential. We consider electrons
confined to the lowest Landau level (LL) in the symmetric
gauge, and study the following Hamiltonian:

H �
1

2

X

mnl

Vlmnc
y
m�lc

y
ncn�lcm �

X

m

Umc
y
mcm; (1)

where cym is the electron creation operator for the lowest LL
single electron state with angular momentum m. Vlmn is the
matrix element of the Coulomb interaction [26] in the
symmetric gauge. Um is the matrix element of the rota-
tionally invariant confining potential due to the positive
background charge [20]. In this Letter the distances are
measured in units of the magnetic length ‘B �

������������
h=eB

p
.

We diagonalize the Hamiltonian to obtain the exact
many-body ground state  using the Lanczos algorithm.
We then calculate the equal-time edge Green’s function,

Gedge�r� r0� �
h j�y

e �r��e�r0�j i
h j i

; (2)

where �y
e �r� and �e�r0� are field operators, which create

and annihilate an electron at r and r0, respectively, on the
edge of the 2DEG disk with a radius of R and jr� r0j �
2R sin��=2�. The choice of R is not crucial and will be
specified later. In the large jr� r0j limit, the edge Green’s
function is expected to exhibit the asymptotic behavior

jGedge�r� r0�j � jr� r0j�� / j sin��=2�j��: (3)

Because of the relativistic invariance of CLL, the equal-
time and equal-distance exponents of the Green’s function
are equal; the latter is measured in tunneling experiments.

For comparison, we first consider the ultrashort-range
hard-core potential, for which the Laughlin state is the
exact ground state. We do not include the background
confining potential, but choose the ground state with the
appropriate total angular momentum. Figure 1(a) shows
the edge Green’s function (R �

������������
2N=�

p
) for the Laughlin

state with 6–9 electrons at filling fraction � � 1=3. We use
least-squares fits to match our data to the power law
jG���j � j sin��=2�j�� close to j sin��=2�j � 1, and obtain
� � 3:2� 0:2. The error bar reflects the dependence of �
on system size and range of data to fit. This result is in good
agreement with � � 3 as predicted by the CLL theory.
jG���j for N � 6 shows weak oscillation around the power
law fitting curve, but the finite-size effects become very
weak for N � 7. In Fig. 1(b), we replot jGj as a function
of jr� r0j. We observe perfect scaling even for distances
jr� r0j as small as one magnetic length, which is a strong
indication that finite-size effects are indeed negligible.

Next we consider the long-range Coulomb interaction.
There is an important difference here with the ultrashort-
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FIG. 2. The edge Green’s function jGj of 8 electrons at � �
1=3 with Coulomb interaction and the background charge con-
fining potential for (a) mmax � 23 before (d � 1:0) and after the
edge reconstruction (d � 1:8), and (b) mmax � 23 and 29 with
d � 1:8. The straight lines are power law fits with � � 2:2 and
3.2 in (a), and � � 2:2 and 3.0 in (b), respectively.
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FIG. 1. The edge Green’s function jGj for the Laughlin state with 6–9 electrons at filling fraction � � 1=3 (a) as a function of
j sin��=2�j and (b) as a function of jr� r0j. (c) jG���j for 8 electrons with Coulomb interaction confined to orbitals with the largest
angular momentum mmax � 23–29. (d) jG�jr� r0j�j for N � 6–9 electrons with Coulomb interaction confined to orbitals with mmax �
�N � 1�=�� 5 for � � 1=3. The lines in the log-log plots (a)–(d) correspond to a power law behavior with � � 3:2.
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range potential as far as the edge is concerned. In the
Laughlin state the maxmimum angular momentum of a
given electron cannot exceedmL

max � �N � 1�=�. For more
generic interaction potentials there will not be such a hard
cutoff and therefore the basis set needs to be enlarged to
find the angular momentum cutoff beyond which the prop-
erties of the system converge. Figure 1(c) plots jGedgej for
the Coulomb interaction and N � 8 electrons at filling
fraction � � 1=3 for an increasing number of orbitals
(mmax � 1 since we label from m � 0). We define the
edge by choosing R �

��������������������������
2�mmax � 1�

p
hereafter. For

mmax < 26 (hard edge), we find a weak oscillation of
jGedgej even near the largest distance of the system.
These oscillations are probably induced by the competition
between the long-range interaction and the edge confine-
ment. Similar oscillations, existing generically at other
filling fractions, can also be observed in the electron den-
sity profile in the presence of the Coulomb interaction
[18,22]. Therefore, fitting jGedgej to Eq. (3) to extract �
may not produce an accurate exponent. On the other hand,
for mmax > 26 (soft edge), jGedgej can be fit very well by
the power law with � � 3:2� 0:2, which is the same as
the ultrashort-range interaction exponent. In Fig. 1(d), we
again show a scaling plot of jGj over jr� r0j for N � 6–9
electrons and mmax � �N � 1�=�� 5 at � � 1=3, again
for the Coulomb interaction. Even with long-range inter-
actions, the data shows good scaling with only small
deviations at length scales below 8. We note that the choice
of mmax here is the same as in Ref. [22]. The difference in
the exponent is caused by the manner in which it was
determined. We have verified that the formula used by
TG does not agree with the exponent in the Green’s
function.

So far we have excluded the background confining
potential. Without the background charge, electrons tend
to move to the edge to reduce their Coulomb repulsion.
This seems to induce strong density oscillations near the
edge, extending into the bulk rather than forming a roughly
uniform droplet. Nor does this model conform to the ex-
periments where a confining potential is always present.
Figure 2(a) shows the edge Green’s function for 8 electrons
with mmax � 23 (hard edge) with the corresponding con-
fining potential for � � 1=3. For d � 1:0, where there is no
16680
edge reconstruction (strong confining potential), we find
that G��� agrees very well with a power law of G�
j sin��=2�j� with � � 3:2� 0:1. This is equal to the ex-
ponent, for soft edges, in the absence of confining poten-
tial. In this case the background has largely mitigated the
combined effects of the long-range repulsion and the hard
edge confinement. However, this changes for d > dc �
1:5, due to edge reconstruction. For d � 1:8> dc (weak
confining potential), G��� increases its value as a result of
electrons moving closer to the edge and changes� to 2:2�
0:1. Again, one can see this qualitatively on the electro-
static level; the electron occupation ratio in the lowest
Landau level near the edge is larger than 1=3. We next
relax the cutoff in angular momentum space and compare
G��� for two different mmax for d � 1:8 [Fig. 2(b)]. For
mmax � 29 (soft edge), G��� shows a crossover from a
power law with � � 5:0 to one with � � 3:0 near
j sin��=2�j � 0:75. This suggests that the true asymptotic
behavior in the reconstructed case can only be observed at
a larger length scale. Such behavior agrees qualitatively
with the edge reconstruction corrections to � at short
distances: �� / v =v

2 [19,27], where v and v are ve-
locities of neutral and charge modes, respectively.
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The significant drop in � for � � 1=3 in the case of hard
edges corroborates the previous results for long-range
interactions [22–24]. While it is impossible to determine
with certainty what happens in the thermodynamic limit,
we agree with the assessment of MJ that these reductions
are not finite-size artifacts, notwithstanding the large dis-
tance oscillations we find in G. However, our results for
soft edges appear to show that the nonuniversal behavior
has more to do with the details of edge confinement than
the range of the interaction potential. Indeed, Figs. 1 and 2
suggest that the edge confinement, throughmmax as well as
d, is relevant to � in the presence of long-range interac-
tions. These issues are moot for the ultrashort-range inter-
actions (unless mmax < �N � 1�=�, in which case the
Laughlin state cannot even be realized). As pointed out
in Ref. [24], the CF ground state with one CF exciton
involves only single-particle states with m 	 mmax �
3�N � 1�, corresponding to the hard edge in our study. It
would be interesting to find the precise CF state that would
correspond to our soft edge profile.

We have also studied the behavior of the edge Green’s
function at other filling fractions, such as � � 2=3, which
is not investigated in the CF approach of MJ. The � � 2=3
droplet can be regarded as a � � 1=3 hole droplet super-
imposed on a � � 1 electron droplet. It therefore supports
an inner � � 1=3 edge and an outer � � 1 edge [28].
Figure 3 compares the edge Green’s function for 18 elec-
trons in 27 orbitals (hard edge) with the corresponding
confining potential for d � 0:2 and 2.0. For strong confin-
ing potential (d � 0:2), we find, by fitting G��� to a power
law, that � � 1:4 regardless of mmax. This is close to
1=� � 1:5 and we speculate that the two counter propagat-
ing edge modes strongly couple and reconstruct into a
dominant charge mode and a negligible neutral mode. On
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the other hand, for weak confining potential (d � 2:0), we
find � � 1:0, which probably is the fingerprint of the
reconstructed outer edge of the � � 1 fluid.
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[14] U. Zülicke and A. H. MacDonald, Phys. Rev. B 60, 1837

(1999).
[15] D.-H. Lee and X.-G. Wen, cond-mat/9809160.
[16] A. Lopez and E. Fradkin, Phys. Rev. B 59, 15323

(1999).
[17] L. S. Levitov, A. V. Shytov, and B. I. Halperin, Phys.

Rev. B 64, 075322 (2001).
[18] X. Wan, K. Yang, and E. H. Rezayi, Phys. Rev. Lett. 88,

056802 (2002).
[19] K. Yang, Phys. Rev. Lett. 91, 036802 (2003).
[20] X. Wan, E. H. Rezayi, and K. Yang, Phys. Rev. B 68,

125307 (2003).
[21] Y. N. Joglekar, H. K. Nguyen, and G. Murthy, Phys. Rev. B

68, 035332 (2003).
[22] V. J. Goldman and E. V. Tsiper, Phys. Rev. Lett. 86, 5841

(2001); E. V. Tsiper and V. J. Goldman, Phys. Rev. B 64,
165311 (2001).

[23] S. S. Mandal and J. K. Jain, Phys. Rev. Lett. 89, 096801
(2002).

[24] S. S. Mandal and J. K. Jain, Solid State Commun. 118, 503
(2001).

[25] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[26] S. M. Girvin and T. Jach, Phys. Rev. B 28, 4506 (1983).
[27] A. Melikidze and K. Yang (private communication).
[28] A. H. MacDonald, Phys. Rev. Lett. 64, 220 (1990).


