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Wave function statistics at the symplectic two-dimensional Anderson transition: Bulk properties
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The wave function statistics at the Anderson transition in a two-dimensional disordered electron gas with
spin-orbit coupling is studied numerically. In addition to highly accurate exponents (ay=2.172+0.002,
7,=1.642+0.004), we report three qualitative results. (i) The anomalous dimensions are invariant under g
— (1—¢) which is in agreement with a recent analytical prediction and supports the universality hypothesis. (ii)
The multifractal spectrum is not parabolic and therefore differs from behavior suspected, e.g., for (integer)
quantum Hall transitions in a fundamental way. (iii) The critical fixed point satisfies conformal invariance.
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Disordered electron systems that are confined to two spa-
tial dimensions (2D) cannot support a true metallic state be-
cause of Anderson localization.! The underlying physics re-
lates to an interference-enhanced return probability of
quantum mechanical particles due to repeated backscattering
of the same (quenched) disorder configuration. There are ex-
ceptions to the rule, however. For instance, if spin-orbit scat-
tering exists, the return probability is not enhanced but even
depleted and the metallic state survives.> Universal proper-
ties of such metals are described by the symplectic symmetry
class of Gaussian random matrix theories. By increasing the
disorder strength W, a metal-insulator (i.e., Anderson) tran-
sition can be driven in these materials. Its universal proper-
ties have been studied intensively in the last two decades.

One of the controversial questions in the late 1990s con-
cerning the symplectic transition in 2D was about the nu-
merical value of the critical exponent v that describes the
divergence of the localization length when the disorder ap-
proaches its critical value: &~|W-W,|™". In recent work,
Asada et al. have made a very convincing case in favor of
v=2.75 (overview in Table I) employing the SU(2) model.?
A work by Markos and Schweitzer* comes to a similar con-
clusion, v=2.8+0.04, within the Ando model and the debate
is now settled.
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However, this latter work not only has helped to fix v, it
also has reemphasized that another important topic is still
unresolved. Recall that the critical wave functions W(x) at
the boundary between insulator and metal obey a multifractal
statistics.”> This implies that the moments

(PP ~L %%, qeR, (1)
scale with system size L, introducing the exponent spectrum
7,- (The double angular brackets denote a combined spatial
and ensemble average.) A precise numerical determination of
7, has not been undertaken yet. The numerical work pre-
sented in this Rapid Communication is an attempt to close
this gap.

There are several good reasons why one would like to
scrutinize the nature of 7, more closely. For one thing, the
wave function statistics can be measured, in principle, and
promising steps in this direction were made not long ago.®

But also important questions concerning our conceptual
understanding of the localization-delocalization transition are
closely related to multifractality. First, the analytic structure
of 7, is a specific characteristic of the critical field theory of
the transition describing scaling of the local density of states.
For example, it has been proposed that the (integer) quantum

TABLE 1. Overview of results for the symplectic transition in two dimensions. AM: Ando model (Ref. 16); EZM: Evangelou-Ziman
model (Ref. 28); MAt (MAa): multifractal analysis based on scaling of typical (average) amplitudes; TM: transfer matrix; SU(2): SU(2)
model (Ref. 18); &,: reduced anomalous dimension, see Eq. (2). Entries for the same model are in chronological order, starting with the latest

work.
Model Method W, ay=2+0 o, v Reference
SU(Q2) ™ 5.953+£0.001 1.843+0.0013 2.746+0.009 3
AM ™ 5.838+0.007 1.87+0.02 2.8+0.04 4
MAt 5.838+0.007 2.107+0.005 6;=0.111 4
AM MAt 5.86+0.04 6=0.19£0.005 2.41+0.24 23
AM Wave-packet propagation 5.74 6=0.15+£0.02 24
AM MAt 5.74 2.19+£0.03  6,=0.17£0.025 15
EZM MAa 6;=0.16+£0.02 25
6=0.185+0.01 26
Network model 1.83+0.03 2.51+0.18 27
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Hall transition exhibits reduced anomalous dimensions 5q,
T,=d(g-1)+8,9(1-q), (2)

with a special property: §, does not depend on ¢, such that 7,
is parabolic and also invariant under g — 1 —¢. Very recently,
it has been predicted’—based on exact results for the non-
linear o model and invoking the universality hypothesis—
that this last symmetry is a general property of all transitions
belonging to the conventional Wigner-Dyson classes. That is,

8,= 01, 3)

should hold. A numerical verification beyond the framework
of the power law random banded matrix model has not been
reported yet. This would be an interesting test of universality,
since it does not only rely on comparing quantitative values
for some few exponents—which has been the usual
procedure—but rather refers to the analytic structure of an
exponent spectrum. Note that Eq. (3) does not generally hold
outside the conventional symmetry classes. The spin quan-
tum Hall effect is an example for a transition in a nonstand-
ard universality class, where Eq. (3) is manifestly violated.®’

Second, lately it has become clear that near boundaries
multifractality differs from the bulk type: flat interfaces sup-
port their own “surface” spectrum 7*;; in the presence of cor-
ners yet another spectrum is superimposed, etc.!'”

Also, in principle, an edge could break a bulk symmetry
and thus would not even share the bulk universality class. In
fact, the unraveling of surface multifractality could lead to a
paradigmatic shift of our present understanding of critical
wave function statistics. Clearly, a prerequisite for all this is
a detailed knowledge of bulk properties.

Third, finally, a relation between &, and the ratio A, of
width and localization length of quasi-1D strips exists:

A.=1/m6, (4)

which is exact if the critical 2D fixed point is conformally
invariant."! Tt is believed that conformal invariance (CI) is a
generic property of localization-delocalization transitions in
2D. For instance, it has been demonstrated to hold at the
integer quantum Hall transition.'>!3 Exceptions are not
known so far, but Eq. (4) can be used as a test of CI. In this
respect, recent numerical results are alarming. It is reported*
that §,=0.107+0.005 and A.=1.87+0.02; thus the product
7N .6,=0.629+0.036 would signal a strong violation of Eq.
(4) and therefore absence of CI.!'*

In this Rapid Communication, we present a numerical
high-precision study of &, at the 2D symplectic transition.
Our particular aim is to answer three qualitative questions.
(i) Is &, a constant, so 7, is parabolic? (ii) If not, does it obey
the symmetry relation Eq. (3) confirming the universality
hypothesis? (iii) Is the fixed point conformally invariant?

Most earlier works analyzed typical moments in small
ensembles, where finite-size effects make it difficult to ob-
tain reliable error bars. By contrast, we employ scaling of
typical and average moments in very large ensembles with
big system sizes. Errors can thus be reduced by almost an
order of magnitude. In order to cross-check, we analyze the
two most important microscopic models. Results thus ob-
tained agree very well. Specifically, we find that &, is not a
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constant and the symmetry relation (3) is satisfied.

On a quantitative level, we obtain 8,=0.180+0.002 (both
models), 8=0.173£0.003 (Ando model), and &
=0.172+0.002 [SU(2) model]. Together with Eq. (4) and the
earlier result® A,=1.843 we arrive at 7A,.8,=0.996+0.012.
Thus numerical evidence is provided that the symplectic
fixed point obeys CI, in agreement with general expectations.

Models. We consider a tight-binding Hamiltonian on a
two-dimensional square lattice with nearest neighbor cou-

pling

+ 4
H= 2 €Ci sCiot 2 Vi,o;_i,o’cik,a'cj,o" ’ (5)
i,o

(i,j),o,0"

where czg (¢;,) denotes a creation (annihilation) operator of
an electron with spin ¢ on site i.

In the Ando model,'® the on-site energies ¢; are taken
independently from the interval [-W/2,W/2] with a homog-
enous distribution. The hopping matrix V; .; ,» reflecting the
spin-orbit coupling is chosen as

Vi,o’;i+k,o" = [VO exp(iaka-k)]a,a'” k= Xy, (6)

with o,0, denoting Pauli matrices and the parameters V
=1 and 6,=m/6. We have determined the critical disorder
strength independently via analysis of the critical level
statistis.!” Our finding W,=5.85+0.025 agrees well with ear-
lier work.*

The second model, the SU(2) model, has been introduced
by Asada, Slevin, and Ohtsuki.'® In addition to the on-site
energies €, now also the hopping matrix V;.; o+ is random.
It is taken to be uniformly distributed over the entire group
SU(2) using the group invariant (Haar) measure.'8

H is implemented on square (L X L)-size lattices with pe-
riodic boundary conditions. For our numerical diagonaliza-
tion of the resulting 21> X 2L* matrices we use an inverse
iteration routine coupled with direct sparse solvers in order
to obtain the eigenvalues and wave functions with energies
closest to zero.'? (Cf. Ref. 20.)

Multifractal analysis. Our multifractal analysis proceeds
by analyzing the scaling behavior of the average moments of
wave function amplitudes, Eq. (1).

In order to analyze the critical behavior we take the dis-
order value W,.=5.84 (for states at energy zero being critical)
in the Ando model. For the SU(2) model we employ W,
=5.953 in order to have a mobility edge at energy e=1.% The
average (1) has been performed over an ensemble of wave
functions that have been calculated in systems of sizes L
=16,24,32,48,64,96,128,192,256 (the last two values
were not used in all cases). For each disorder realization 64
wave functions closest to the critical energy have been taken
into account; all together the number of wave functions in
the ensemble is typically 4Xx 107 (L=16) to 3X10° (L
=256).

The exponents 7, are readily extracted from a power-law
fit as suggested by Eq. (1).>! In Fig. 1 we plot the reduced
dimensions J, defined in (2) as obtained for both models. It
incorporates our three main results.
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FIG. 1. Reduced anomalous dimension &, as defined in Eq. (3)
for the Ando model (dashed, W,.=5.84) and the SU(2) model (solid,
W,=5.953). Additionally, anomalous dimensions Eq obtained from
typical inverse participation ratios are shown (<) for the latter
model. Dashed lines indicate the estimated error (20) in &. Inset:
blowup of the solid line behavior near g=0.5 now represented by
O. Data near ¢=0 and g=1 suffer from noise amplification [divid-
ing by ¢(1—¢) in Eq. (2)] and have therefore been omitted. Filled
symbols (@) show original trace after reflection at g=0.5. Dot~
dashed line indicates parabolic fit (offset 1073) with &;,,=0.1705
and curvature &{,=0.0043.

(i) We determine §,=0.172+0.002. The value satisfies
Eq. (4) and thus the consistency check on CI is positive. The
good accuracy stems mainly from large statistics and the
fact, that finite size corrections in the SU(2) model turn out
to be extremely small at g=1.5. As can also be seen from
Fig. 1, the Ando model gives a similar result.

(ii) The function &, satisfies the symmetry relation Eq.
(3). Thus the universality postulate is confirmed. The inset of
Fig. 1 shows that part of the full curve &,, for which numeri-
cal data are available at both points, ¢ and its image 1—gq.
[The numerical procedure that we work with is limited to g
=—1; more negative values would require a coarse graining
in order to overcome the divergence of the moments (1) re-
lated to zeros of the wave functions.] A symmetric shape of
the curve is clearly displayed in the regime of best accuracy,
-05=<¢g=1.5.

(iii) The set of exponents &, does not reduce to a con-
stant, e.g., 8, has a small but nonzero curvature &;,. Detect-
ing &/, requires high-precision data, because the numerical
window is limited to ¢=<2.0. At larger values, (a) finite-L
effects proliferate [in the Ando model faster than in SU(2)],
so deviations between solid and dashed lines increase. And
(b) moments {{|W|?%)) for large g probe the tails of the dis-
tribution function, so that typical values and averages differ
from each other. Then, error bars tend to become large due to
undersampling.?’ The parting of the three curves at g=2
visible in Fig. 1 is a consequence of these effects.

representing 9,— &y; for values, see legend. Slight deviations be-
tween models are due to larger errors in finite-size extrapolation of
Ando model. For that model, results for two values of W are given
to illustrate that the uncertainty in W, is not a precision-limiting
factor. Note that &,— 8y, agrees well with curvature &, seen in
Fig. 1.

As a sensitive test for variability of &, we investigate in
Fig. 2 the ratio

(L) = [ W Py L] at-a (w1 (7)

encompassing only unprocessed data. It scales as (),(L)
~L~%%%12 and therefore any slope in In () signalizes that
9, deviates from 6,,=0.1705£0.001. Data for (), at g
=1.5,2.0 are shown in Fig. 2. It clearly exhibits a linear trace
with the nonzero slope indicative of curvature in &,. Note
that finite-size effects are very small, so that &,- 6/, can be
extracted with good accuracy.

A more conventional object than &, to characterize the
wave function statistics is the Legendre-transformed f(«a)

=qa-1,,a,=3d7/dq, displayed in Fig. 3. Even though we
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FIG. 3. f(a) spectrum from data of Fig. 1, SU(2) model. f(a) is
slightly asymmetric and not a parabolic function, which would have
meant f(a)=2-(a—2-38))*/45,.
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have obtained 7, only for g=-1/2 and therefore are re-
stricted to a=< a;,», the spectrum can be reconstructed also at
values o= ay), by making use of Eq. (3).” Then deviations
from parabolicity obtrude.

Summary. The multifractal spectrum of wave functions at
the 2D symplectic Anderson transition has been calculated in
the Ando and SU(2) models with high precision. On a quali-
tative level, our results demonstrate that the critical fixed
point is conformally invariant with a nonparabolic spectrum
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7, Furthermore, 6,=0,_,, as predicted from calculations
within the nonlinear o model and thus supports the univer-
sality hypothesis.

We recently learned about a closely related project, with
partly overlapping results.?

We thank L. Schweitzer and K. Yakubo for useful corre-
spondence and A. D. Mirlin for valuable discussions and
suggestions on the manuscript.
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