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We present an ultrahigh-precision numerical study of the spectrum of multifractal exponents �q

characterizing anomalous scaling of wave function moments hj j2qi at the quantum Hall transition. The

result reads �q ¼ 2qð1� qÞ½b0 þ b1ðq� 1=2Þ2 þ � � ��, with b0 ¼ 0:1291� 0:0002 and b1 ¼ 0:0029�
0:0003. The central finding is that the spectrum is not exactly parabolic: b1 � 0. This rules out a class of

theories of the Wess-Zumino-Witten type proposed recently as possible conformal field theories of the

quantum Hall critical point.
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Introduction.—The quantum Hall effect is a famous
macroscopic quantum phenomenon [1,2] whose discovery
gave rise to one of the most active research areas in
condensed matter physics of past three decades. The pla-
teaus with quantized values of the Hall conductivity are
separated by quantum Hall transitions, which represent a
celebrated example of a quantum critical point in a disor-
dered electronic system (for a recent review, see Ref. [3]).
Identification of the critical field theory of the integer
quantum Hall transition remains a major unsolved problem
of condensed matter physics.

One of the key characteristics of the quantum Hall
transition point is the multifractality spectrum governing
fluctuations of amplitudes of critical wave functions.
Specifically, the moments of wave functions scale with
system size L, with a set of anomalous exponents �q,

hj ðrÞj2qi=hj ðrÞj2iq � L��q : (1)

(The angular brackets denote the ensemble averaging.)
Equivalently, one often characterizes multifractality by a
closely related set of exponents �q � dðq� 1Þ þ �q or by

its Legendre transform fð�Þ (‘‘singularity spectrum’’) de-
fined via �q ¼ �0q, fð�qÞ ¼ q�q � �q. Here d is the sys-

tem dimensionality (while d ¼ 2 for the present case of the
quantum Hall transition, we find it useful to keep it as d in
formulas below), and the prime denotes the q derivative.

Zirnbauer [4] and Tsvelik [5,6] conjectured that the
conformal theory of the quantum Hall critical point is of
the Wess-Zumino-Witten type. These proposals imply [7]
that the spectrum �q is parabolic, i.e., that �q defined

according to

�q ¼ �qqð1� qÞ (2)

is in fact q-independent [8]: �q ¼ �. An accurate numeri-

cal analysis of the multifractal spectrum plays, therefore, a
crucial role for identification of the critical theory.

A high-accuracy evaluation of the multifractality spec-
trum was carried out in our earlier work [9]. For this

purpose, we modeled systems of a much larger size than
in preceding works and performed averaging over a large
ensemble of wave functions, as well as a thorough analysis
of finite-size effects. It was found that the spectrum is
close-to-parabolic [�q ’ �qð1� qÞ, with � ¼ 0:262�
0:003], thus showing that, if deviations from parabolicity
are present, they are rather small (of the order of 1%).
While the data of Ref. [9] were showing some indications
for such deviations, they were smaller than the numerical
uncertainties. The latter originate from statistical noise
(limited size of the data set) and from finite-size effects
affecting the scaling relation (1) which is used to extract
�q.

The goal of the present Letter is to determine the �q

spectrum with an ultrahigh precision and to give an ulti-
mate answer on the question, ‘‘Is the multifractality spec-
trum of the quantum Hall transition strictly parabolic?’’
For this purpose, we improve upon the earlier numerical
analysis in two different ways. First, we utilize a statistical
ensemble that contains approximately 10 times more
samples than the one used before [9]. Second, we employ
a recently discovered [10] ‘‘reciprocity relation’’

�q ¼ �1�q (3)

for a better control of finite-size corrections.
Relation (3) implies a symmetry of the �q spectrum

around the point q ¼ 1=2. Consequently, an expansion of
�q about this point has a form

�q=d ¼ b0 þ b1ðq� 1=2Þ2 þ b2ðq� 1=2Þ4 . . . : (4)

To verify or to exclude parabolicity of �q, the prefactor b1
of the quadratic term (and possibly those of higher-order
terms) in Eq. (4) should be determined numerically. This is
the purpose of the present work. Wewill provide numerical
evidence that the corrections to parabolicity do not vanish.
Specifically, we obtain b0 ¼ 0:1291� 0:0002 and b1 ¼
0:0029� 0:0003, the nonzero b1 implying that the para-
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bolicity is not exact. The corresponding value of �0 [posi-
tion of the apex of the singularity spectrum fð�Þ] is �0 ¼
dþ �0 ¼ 2:2596� 0:0004.

Method.—In order to find the critical eigenstates, we
employ the same numerical strategy that has been devel-
oped before [9]. We determine the lattice time evolution
operator U for the Chalker-Coddington network model
[11,12] with periodic boundary conditions and N ¼ 2Ld

nodes. For each realization of disorder, eight eigenstates
 �ðrÞ with eigenvalues closest to unity are found with a
standard sparse matrix package [13–15] from exact diag-
onalization of U. (In the Chalker-Coddington model, the
spatial coordinate r labels the links of the network.) We
study systems with L ¼ 16; 32; 64; . . . ; 1024 with
�106 samples for the smallest sizes and �104 for the
largest ones. The statistical analysis proceeds via calculat-
ing the average inverse participation ratios

Pq ¼ Nhj 2jqi: (5)

The symbol h. . .i in Eq. (5) indicates the combined averag-
ing of the amplitude moments j �ðrÞj2q over (i) all spatial
points (links) r in the sample, (ii) the energy window
considered (here always eight eigenstates  � per sample),
and (iii) the statistical ensemble of samples with different
microscopic realizations of disorder. The average inverse
participation ratios Pq thus obtained obey the scaling law

Pq ¼ cqðNÞN�ðq�1Þ��q=d: (6)

The coefficients cq become independent of N in the limit

N ! 1.
As an alternative approach, we consider the ratio

Lq ¼ hj 2jq lnj j2i
hj 2jqi � ðlnPqÞ0 ¼ ��q

d
lnN þ ðlncqÞ0;

(7)

whose scaling yields the exponent �q ¼ �0
q þ d. In this

way, the exponent �q is studied directly, i.e., without

invoking a numerical differentiation which can signifi-
cantly increase the error bars. In analogy with Eq. (4),
we can expand �0

q around q ¼ 1=2:

�0
q ¼ ð1� 2qÞ~�q;

~�q
d

¼ a0 þ a1

�
q� 1

2

�
2 þ � � � :

(8)

The coefficients of both expansions are related via a0 ¼
b0 � b1=4, a1 ¼ 2b1 � b2=2, . . ..

The averages entering Eqs. (5) and (7) are readily ob-
tained numerically. It is beneficial to perform the scaling
analysis of the ratio (7) in addition to that of Eq. (5) for
several reasons. First, the curvature of �q is more clearly

seen in the q derivative �0
q. Second, the finite-size correc-

tions are different in the cases of Eqs. (5) and (7), so that an
agreement between the obtained exponents provides an
additional confirmation of the validity of the N ! 1 ex-

trapolation procedure. Also, the relation a1 ¼ 2b1 � b2=2
allows one to extract the coefficient b2 of the quartic term
in Eq. (4) out of parabolic fits for �q and ~�q.

Numerical results.—We begin the analysis of our nu-
merical results by verifying the reciprocity relation (3). To
this end, we consider the ratio

rq ¼ N2q�1
Pq
P1�q

¼ Nð�1�q��qÞ=d cqðNÞ
c1�qðNÞ : (9)

The reciprocity relation (3) implies that the leading powers
should cancel, so that rq exhibits only subleading correc-

tions in 1=N. The log-linear plot (Fig. 1, upper row) shows
that rq saturates in the large N limit with a very well

defined asymptotic value. Thus, we confirm reciprocity
for the exponent spectrum of the integer quantum Hall
effect, as expected [10]. Since the exponent relation must
hold only in the asymptotic regime, we can draw another
conclusion which is important for the subsequent analysis:
The observed saturation of rq provides evidence that our

numerically accessible sample sizes are indeed large
enough in order to be able to study the true asymptotics.
Similar to rq, we consider the logarithmic derivative

sq � ðlnrqÞ0 ¼
2d� �q � �1�q

d
lnN þ ðlncqc1�qÞ0;

(10)

which also saturates well inside the numerical window; see
Fig. 1, lower row. Thus, the true asymptotics of �q may be

studied by means of Eq. (7) with available system sizes,
too.
Having gone through important prerequisites, we now

turn to the analysis of the main data. In order to determine a
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FIG. 1 (color online). Upper row: Ratio rq of inverse partici-
pation numbers Pq and P1�q [Eq. (9)] at q ¼ 0:6, 1, and 1.5

(from left to right). The flat asymptotics indicates the validity of
the reciprocity relation �q ¼ �1�q. Small deviations from the

constant behavior at the largest system sizes are due to residual
statistical noise. Lower row: Analogous plots for the logarithmic
derivative sq ¼ ðlnrqÞ0 defined in Eq. (10).
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set of relatively small exponents �q to an accuracy con-

siderably better than 1%, we have developed the following
procedure. In each panel of Fig. 2, we plot for fixed q a
family of curves labeled by a parameter �:

FqðNÞ ¼ PqN
q�1þ�ð1�qÞq: (11)

For the particular family member for which FqðNÞ be-

comes independent of N in the limit of large N, we can
conclude that � ¼ �q=d. From such a procedure, we ex-

tract the function �q without having to resort to any (multi-

parameter) fitting procedure. Similarly, by studying yet
another family of curves

~F qðNÞ ¼ Lq þ lnN½1þ ð1� 2qÞ~��; (12)

we have direct access also to the function ~�q [see Eq. (8)]

without the need for numerical differentiation.
The functions �q and ~�q representing the main result of

this Letter are displayed in Fig. 3. Also shown is �q=qð1�
qÞ as derived from the earlier evaluation of the exponents
[9] (the size of corresponding error bars is indicated by
dotted lines). Figure 3 clearly shows that the curvature in
�q, which apparently has already left its trace in the earlier

data, now fully reveals itself thanks to the reduced error
bars. Even more pronounced is the resulting structure in the
derivative ~�q. It is reassuring to notice that the new data

confirm our previous finding for b0 but provide a much
better accuracy: b0 ¼ 0:1291� 0:0002. Our new result for
the curvature of �q is b1 ¼ 0:0029� 0:0003, which is

clearly nonvanishing. These results are in full agreement
with those obtained by a fit to ~�q (see the caption to Fig. 3).

We thus conclude that, although the curvature of �q is

numerically rather small (b1 is approximately 50 times
smaller than b0), it is nonzero: The multifractality spec-
trum �q of the quantum Hall transition is not parabolic.

Surface exponents.—So far, a network model with torus
geometry (i.e., without boundary) has been considered.
Recently, it has been shown [16] that wave function fluc-
tuations near surfaces exhibit their own multifractal spec-
trum with exponents �s

q, defined in full analogy to Eq. (1)

via

hj j2qis=hj j2iqs � L��s
q ; (13)

with the exception that here the average h. . .is is performed
over the vicinity of the boundary only. In general, the
surface exponents �s

q are not related to their bulk counter-

parts in any simple manner.
To study the boundary exponents, we consider the

Chalker-Coddington network of cylinder geometry, i.e.,
periodic in one direction and with hard-wall (full reflec-
tion) boundary conditions in the other direction. The aver-
aging h. . .is is performed over those network links that are
located directly at the boundary (and includes the ensemble
and the energy window averaging, as before). We parame-
trize the surface spectrum in analogy with the bulk case
[Eqs. (2), (4), and (8)] labeling the corresponding parame-
ters by a superscript ‘‘s.’’ The results for �sq and ~�sq are
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FIG. 2 (color online). Family of curves FqðNÞ ¼
PqN

q�1��ðq�1Þq for q ¼ 0:6, 1.1, and 1.5 (top: left, center, and

right) and q ¼ 0:4, �0:1, and �0:5 (bottom: left, center, and
right). Each data set is labeled by a parameter �, which increases
from a minimum to a maximum value (given in the upper plots)
in steps of 0.0004. The value of � for which FqðNÞ is flat

determines the anomalous exponent �q ¼ d�qð1� qÞ. Such

saturating data sets are marked with solid symbols (left: 4;
center:�; right:h); typical error in the corresponding value of �
does not exceed 0.001. The change in symbols (i.e., in �) for
saturating data sets illustrates a q dependence of �q and thus

gives direct, unprocessed evidence of nonvanishing quartic terms
in �q.
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FIG. 3 (color online). The exponents �q ¼ �q=qð1� qÞ (�)
and ~�q ¼ �0

q=ð1� 2qÞ (�) obtained from Fig. 2 and analogous

analysis for other values of q. The curvature in �q and ~�q implies

that the multifractal spectrum �q is not parabolic. Also shown

are results of the earlier work [9] (solid line). Dotted horizontal
lines indicate earlier error bars in the regime 0 	 q 	 1. Dashed
lines represent parabolic fits with b0 ¼ 0:1291� 0:0002, b1 ¼
0:0029� 0:0003 (left) and a0 ¼ 0:1282� 0:0001, a1 ¼
0:0063� 0:0005 (right). Combination of these data yields a
rough estimate of the quartic term b2 ¼ �0:001� 0:001.
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shown in Fig. 4. It is seen that the nonparabolicity of the
multifractality spectrum (difference of �sq and ~�sq from a

constant) is present at the boundary as well and is, in fact,
considerably more pronounced than in the bulk. The ratio
Rq ¼ �sq=�q has a clear q dependence, with a minimum at

the symmetry point q ¼ 1=2, where it takes the value
R1=2 ¼ 1:434� 0:005. It is also worth noticing that Rq is

appreciably smaller than 2, a value naturally expected for
critical theories expressed in terms of a free bosonic field.

Conclusions.—In summary, we have studied numeri-
cally the wave function statistics at the quantum Hall
critical point. We have verified that the reciprocity rela-
tion (3) holds and have used it to control systematic errors
related to the finite-size effects. In combination with a very
large size of the statistical ensemble, this has allowed us to
reach unprecedented accuracy in determination of the
multifractality spectrum �q, with the error bars reduced

by almost an order of magnitude compared to the earlier
work. The result shown in Fig. 3 reads �q ¼ 2qð1� qÞ

½b0 þ b1ðq� 1=2Þ2 þ b2ðq� 1=2Þ4 þ � � ��, with b0 ¼
0:1291� 0:0002, b1 ¼ 0:0029� 0:0003, and b2 ¼
�0:001� 0:001. The obtained spectrum shows clear non-
parabolicity [b1 � 0], thus excluding a broad class of
theories of the Wess-Zumino-Witten type as candidates
in the conformal field theory of the quantum Hall transi-
tion. These results are corroborated by the analysis of the
surface multifractality.
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dent study by Obuse et al. [17], who came to the same
conclusions.
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FIG. 4 (color online). The surface exponents �sq ¼ �s
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