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(is short survey reviews the recent literature on the relationship between the brain structure and its functional dynamics.
Imaging techniques such as diffusion tensor imaging (DTI) make it possible to reconstruct axonal fiber tracks and describe the
structural connectivity (SC) between brain regions. By measuring fluctuations in neuronal activity, functional magnetic resonance
imaging (fMRI) provides insights into the dynamics within this structural network. One key for a better understanding of brain
mechanisms is to investigate how these fast dynamics emerge on a relatively stable structural backbone. So far, computational
simulations and methods from graph theory have been mainly used for modeling this relationship. Machine learning techniques
have already been established in neuroimaging for identifying functionally independent brain networks and classifying path-
ological brain states.(is survey focuses on methods frommachine learning, which contribute to our understanding of functional
interactions between brain regions and their relation to the underlying anatomical substrate.

1. Motivation

Similar to molecular biology, neuroscience also faces the
problem to bridge the gap between experimental techniques,
which study the anatomical substrate of neural information
processing and techniques, used to determine functional
interactions between specified brain regions. In molecular
biology, it is known that such a relationship is only loosely
linked such that, on the one hand, different 3D protein
structures may have similar functions, while, on the other
hand, similar 3D structures may exhibit rather different
functions in the metabolism [1]. Still, as even single amino
acid replacements may change the function of the protein
completely, structure and function must be related to a
certain extent. Similarly, in neuroscience, evidence has been
collected over the last two decades suggesting that the

anatomical structure of the neuronal network determines
important constraints to the functional organization of
neuronal activities and concomitant information processing
[2–4]. Hence, they must be somehow interrelated. More-
over, though space interactions (such as, for example,
electromagnetic fields or magnetic dipole-dipole interac-
tions in physics) are not (yet) of relevance in neuroscience,
information processing is confined to the anatomical sub-
strate and thus depends on its structural connectome. Large-
scale activity distribution is mediated via propagating action
potentials; therefore, the spatial organization of neuron
assemblies and their dendritic and axonal connections forms
the underlying physical substrate for information process-
ing. Experimental evidence for neural network topologies
mainly comes from noninvasive neuroimaging techniques
and neuroanatomical methods, while their functional
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variants consider the related inherent dynamics. Formerly,
only the static aspect of this organization has been studied,
while recent evidence demonstrated the importance to also
consider the highly dynamic nature of functional activity
patterns. Functional neuroimaging techniques such as
functional magnetic resonance imaging (fMRI), electroen-
cephalography (EEG), magnetoencephalography (MEG), or
positron emission tomography (PET) operate on several
distinct spatiotemporal scales, and an overview of the re-
spective spatial and temporal resolutions is provided in
Table 1. (e relation of the scales which can be covered by
these different neuroimaging techniques is further illustrated
in Figure 1. Moreover, understanding processing of infor-
mation relies on the applied physical modeling and simu-
lation, statistical analysis, signal processing, and, more
recently, also machine learning techniques. (is non-
comprehensive survey explores the recent literature on these
issues and advocates for the idea of pursuing both modeling
and data-driven analysis in combination.

A better understanding in the relationship between the
brain structure and function can provide insights into the
integrated nature of the brain. Firstly, such an approach can
contribute to our understanding of how information is first
segregated and then integrated across different brain re-
gions, while it could explain how complex neural activity
patterns emerge, even in a resting brain [5, 6]. Moreover, as
brain connectivity can be revealed by various statistical
measures and different imaging modalities, all these follow
their individual concepts displayed on different spatial and
temporal scales. Understanding the interplay between the
structure and function can help to interpret what can ac-
tually be seen in data obtained by different brain imaging
modalities. Such an analysis can tell us how to relate these
different modalities to each other [3, 4] and further how to
integrate them in a meaningful manner [7, 8]. Finally, such
integrated models can be of clinical relevance, for example,
by explaining how structural lesions affect the brain not only
locally but also via functional connections across the whole
brain [9, 10].

2. Complex Brain Networks

(e brain is organized into spatially distributed but func-
tionally connected regions of dynamically correlated neu-
ronal activity. (ese dynamically changing network
structures can be characterized by three different but related
forms of connectivity [11]:

(i) Structural connectivity (SC) via excitatory and in-
hibitory synaptic contacts gives rise to the so-called
connectome [12, 13]. Modern neuroimaging tech-
nologies, especially diffusion tensor imaging (DTI),
provide the basis for the construction of structural
graphs representing the spatial layout of white
matter fiber tracks that serve to link cortical and
subcortical structures. (ese graphs are character-
ized by densely connected nodes forming network
hubs and fiber tracks (white matter) which connect
spatially distant neuronal pools.(e anatomy of this

neuronal network exhibits substantial plasticity on
long time scales, usually due to its natural devel-
opment, aging, or disease [14, 15], though it is quite
stable for short time scales. (erefore, it is con-
sidered as static in most of the experiments [16].

(ii) Functional connectivity (FC) expresses temporal
correlations between neuronal activity patterns
occurring simultaneously in spatially segregated
areas of the brain. Such temporal activity patterns
can be encoded in functional graphs and quantified
through statistical concepts. (ey fluctuate on
multiple time scales ranging from milliseconds to
seconds. FC patterns are robustly expressed by
resting-state networks (RSNs), where they emerge
from spontaneous neuronal activity. (ey exhibit
complex spatiotemporal dynamics, which have been
described within the realm of state-space models by
frequent transitions between discrete FC configu-
rations. Much effort has been spent to characterize
the latter. However, understanding the mechanisms
that drive these fluctuations is more elusive and has
recently been the subject of intense modeling efforts
[17]. Although these fluctuations have long been
considered stationary, recently, it became obvious
that the consideration of their nonstationary nature
is essential for a thorough understanding of

Table 1: Temporal and spatial scales of several neuroimaging
techniques.

Method
Resolution

Temporal Spatial
MEGs 1ms 5mm
EEG 1ms 10–15mm
fMRI 1 s 1–3mm
PET 45 s 4mm
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Figure 1: (e temporal and spatial resolutions on which different
functional neuroimaging techniques can operate. While fMRI al-
lows to study neural processes at higher spatial resolution, EEG and
MEG can better resolve neural activity dynamics in the temporal
domain.
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information processing in the brain [2]. Further-
more, it remains elusive to what extent such
functional graphs map onto structural graphs, i.e.,
how the network dynamics are constrained by the
underlying anatomy.

(iii) Effective connectivity (EC) or directed connectivity
describes causal interactions between activated
brain areas [18]. As correlation does not imply
causation, these concepts were established to deal
with the directional influences of segregated neuron
assemblies. If inferred from time series analysis,
Granger causality [19] does not need any infor-
mation about the structural organization of the
neuronal network. Additionally, dynamic causal
modeling (DCM) provides a deterministic model of
neural dynamics, describing causal mechanisms
within brain networks [20]. Recent investigations
showed that FC patterns can be modeled success-
fully if global dynamic brain models are constrained
by EC rather than by SC [21].

Modern imaging techniques map out structural and
functional connectivities with remarkable spatial and
temporal resolutions. A summary of how structural and
functional connectivity can be conceptually derived from
MRI is provided in Figure 2. While static structural con-
nectivity is straightforward, its functional counterpart is
more subtle. Current views consider two distant brain
regions as functionally connected if their activity fluctuates
synchronously and coherently, implying an instantaneous
and persistent constant phase relation between their
temporal activities. Given a pair of distinct brain areas
(regions of interest, neuron pools, and network nodes),
their SC is often derived from diffusion tensor imaging
(DTI), high angular resolution diffusion imaging (HARDI),
and diffusion spectrum imaging (DSI). Structural con-
nection strength is typically quantified experimentally by
the number of fibers, fractional anisotropy, etc., and these
values are converted into edge weights in graphical models
[22]. On the contrary, FC is derived from fMRI, EEG, or
MEG and quantified by static measures such as instanta-
neous cross-correlations or partial correlations, while dy-
namic measures consider coherence and Granger causality
[23].

(e analysis of these types of network connectivity leads
to the notion of complex brain networks [24]. Intense efforts
have been exerted over the last decade to unravel the
mechanisms and principles of neuronal information pro-
cessing and to bridge the gap between the different types of
connectivity analysis. (e timely review by Friston [25]
detailed biophysical concepts used to model such connec-
tivities. Again, the push came from neuroimaging tech-
niques such as DTI [26], which allow us to track fibers,
though at relatively low spatial resolution only. In the
postmortem human brain, 3D polarized light imaging (3D-
PLI) [27] allows us to trace the 3-dimensional course of
fibers with a spatial resolution even of the micrometer range.

While these connectivity concepts were being developed,
doubts began to be raised concerning the usefulness of the

concept of functional or effective connectivity as long as its
relation to structural connectivity is not sufficiently un-
derstood [28]. (e concerns mainly focused on different
spatial and temporal scales, with which functional/effective
versus structural connectivity was determined using dif-
ferent neuroimaging modalities.

3. Graphical Models of Brain Networks

Graphical models represent physical variables as a set of
possibly connected nodes, also called vertices, and related
edges, which signal marginal or conditional interactions
between the connected nodes. Such models are commonly
used to describe complex interrelationships between the set
of variables. (e central idea is that each variable, for ex-
ample, the neuronal activity of a localized neuron pool, is
represented by a node in a graph. Such nodes may be joined
by edges of variable strength. Hence, the topology of
complex brain networks can be characterized by static (GM)
or dynamic graphical models (DGM), either on a structural
or on a functional basis [29–34]. (ey represent a versatile
mathematical framework for a generic study of pairwise
relations between interacting brain regions. Small-world
networks (SWNs) [35] provide an adequate description of
the static topology of brain networks. Such SWNs exhibit the
two principles of segregation and integration of information
processing in the brain.

Given that the functional organization of the brain
changes along various intrinsic time scales, graphical models
also need to be dynamic descriptors of these spatiotempo-
rally fluctuating neuronal populations. As DGMs are ap-
plicable across various spatiotemporal scales, they most
adequately represent the temporal complexity of the activity
of interacting neuronal populations. Recent studies of
DGMs elaborate on inferring FC from SC and vice versa.
(ey describe metrics suitable for quantifying the SC-FC
interrelationship by elucidating the eigenspectrum of
structural Laplacian (Given a graph, its Laplacian measures
the difference of the diagonal matrix of its vertex degrees and
its adjacency matrix (see Appendix A). A few common
eigenmodes are indeed sufficient to reconstruct FC matrices.
Closely related techniques employ independent component
analysis (ICA) of FC time courses [36]. Many of these studies
also emphasize the decisive role of indirect structural
connections, for example, based on spectral mapping
methods. Most of these studies are based on linear DGMs
because of their computational stability and ease to infer
reverse correlations. Studies aimed to predict SC from FC
are considered as well because DTI data sometimes fail to
model certain anatomical connections [37]. Other inter-
esting issues that have been addressed concern the subject
specificity of SC-FC relationships and their dependence on
the employed imaging modalities.

DGMs can promote our understanding of emotional and
cognitive states, task switching, adaptation and develop-
ment, or aging and disease progression. Graph theory thus
provides a comprehensive description of topological and
dynamical properties of complex brain networks. Most
studies seem to corroborate that network topology, to a large
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extent, determines time-averaged functional connectivity in
large-scale brain networks. However, not many tools yet
exist to describe dynamic graphs, and only very few consider
the relationship between static and dynamic graphical
models.

Tools for such analysis are made available for re-
searchers, such as GraphVar (https://www.nitrc.org/
projects/graphvar/) [38, 39], a GUI-based toolbox for
comprehensive graph theoretical analyses of brain con-
nectivity, as well as the construction, validation, and ex-
ploration of machine learning models. Dynamic graphical
models have also been developed and are available in R
(https://github.com/schw4b/DGM) [34]. Such DGMs can
deal with spatiotemporal activity patterns, allow for loops in
networks, and can describe directions of instantaneous
couplings between nodes. Furthermore, temporal lags of the
hemodynamic response between coupled nodes have been
shown to influence quantitative directionality estimates but
are known for avoiding false positive estimates [34].

Very recently, Meunier et al. [40] presented NeuroPycon
(https://github.com/neuropycon), an open-source toolbox
for advanced connectivity and graph theoretical analysis of
MEG, EEG, and MRI data. Often, one problem is the re-
producibility of processing pipelines in neuroimaging
studies. To tackle this problem, the NeuroPycon toolbox
wraps commonly used neuroimaging software for pro-
cessing and graph analysis into a common Python envi-
ronment and provides shareable parameter files. Currently,
NeuroPycon offers two packages named ephypype and

graphpype. While the former focuses on EEG andMEG data
analysis, the latter is designed to study functional connec-
tivity employing graph theoretic metrics. Accordingly, this
open-source software package can help to facilitate sharing
and reproducing scientific results for the neuroscience
community.

3.1. Graph Topology of Brain Networks. With respect to
complex network architectures, an especially attractive
network topology is characterized by the so-called small-
world organization of complex systems [35, 41]. Such small-
world networks (SWN) are characterized by densely con-
nected nodes of information processing which are distant in
the anatomical space and only sparsely connected via long-
range connections between different functionally interacting
brain regions. (eir main characteristic is reflected in high
clustering (similar to that found for a regular lattice) and low
path length (similar to a random network). Such topology
allows efficient information processing at different spatial
and temporal scales with a very low energy cost [42]. Note
that such networks are sometimes liberally classified as
SWNs, implying their unique properties, but they are lacking
essential characteristics of SWNs [43]. Specifically, cluster-
ing in networks needs to be compared to clustering on the
lattice and not random networks. Telesford et al. [43]
proposed a proper metric for such comparison. If brain
networks show a small-world network topology, it is mir-
rored by two principles of information processing:

A B

D E

F

C

Figure 2: In fMRI, spatial-temporal activity maps of the human brain can be observed (A). On the contrary, DTI can be used to model white
matter connections between different spatial brain regions (C). Next, a set of brain regions can be defined to act as nodes in a brain network
(B). By quantifying the temporal coherence of activity fluctuations in a group of brain regions (B), the strength of functional connectivity
(FC) is derived and can be arranged in a FC matrix (D). Analogous thereto, structural connectivity (SC) can be described by measuring the
anatomical connection strength between those regions (B) and can be combined to a SC matrix (E). (ese two connection profiles can
complement each other to give us a more comprehensive picture of brain connectivity (F).
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functional segregation on small, quasi-mesoscopic spatio-
temporal scales but functional integration on larger, mac-
roscopic spatial and temporal scales.

Recently, Sizemore and Bassett [31] reviewed existing
methods and employed a publicly available MATLAB
toolbox (https://github.com/asizemore/Dynamic-Graph-
Metrics) to visualize and characterize such dynamic
graphs with proper metrics. In [44], Sizemore et al. already
showed that the algebraic topology is well suited to char-
acterize mesoscale structures of brain connectivity formed
by cliques (a set of adjacent vertices) in an otherwise sparsely
connected network. Aside from cliques, topological network
cavities of varying sizes were observed to link regions of early
and late evolutionary origin in long loops, presumably
playing an important role in controlling the brain function.
Differences in the topological organizations of functional
and structural graphs were the focus in the study by Lim
et al. [45], who adopted a multilayer framework with SC and
FC.(eir analysis showed that SC tends to be organized such
that brain regions are mainly connected to other brain re-
gions with similar node strengths, while FC shows smaller
values of assortativity [46], which can be associated with
robustness of brain functions in the context of network
theory [45].

3.2. Graph 8eoretical Aspects of SC-FC Relations.
Independence tests have shown strong correlations between
structural and functional connectivities [47]. As shown by
Hermundstad et al. [3], the length, number, and spatial
location of anatomical connections (SCs) can be inferred
from the strength of the resting state and task-based
functional correlations (FCs) between brain regions. With
resting-state networks (RSNs), FC is constrained by the
large-scale SC of the brain in terms of strength, persistency,
and spatial statistics. Often, functionally connected brain
areas do not show any direct anatomical connections,
pointing to the importance of indirect connections as well,
for example, via the thalamus. (is discrepancy between
structural and functional connectivity also motivates us to
combine these measures in order to overcome shortcomings
of individual measures and to get a more comprehensive
picture of brain connectivity [7, 8]. In an early study, Honey
et al. [4] concluded from computational modeling that the
inference of structural connectivity from functional con-
nectivity deems impractical. Still, several recent graph the-
oretical studies elaborate on inferring FC from SC and vice
versa. (ey provide different metrics for quantifying the SC-
FC interrelationship and discuss the decisive role of indirect
connections.

Abdelnour et al. [48] added a new twist to inferring FC
from SC by considering linear computational GMs rather
than the commonly employed nonlinear simulations. (ey
captured the long-range second-order correlation structure
of RSNs, which governs the relationship between its ana-
tomic and functional connectivities. (e model applied
random walks on a graph (see Appendix A) to structural
networks, as deduced by DTI, and predicted the FC structure
obtained from the fMRI data of the same subjects. Because of

its linearity, the model also allows inverse predictions of SC
from FC. (e study thus corroborates the linearity of en-
semble-averaged brain signals and suggests a percolation
model (Percolation theory describes the behavior of con-
nected clusters in a random graph.) [49], where purely
mechanistic processes of the structural backbone confine the
emergence of large-scale FCs. Yet, another linear model of
correlations across long-duration BOLD fMRI time series
has been devised by Luisa Saggio et al. [50] tomeasure FC for
the comparison of real and simulated data. (e analytically
solvable model considers the diffusion of physiological noise
along anatomical connections and provides FC patterns
from related SC patterns. (e model allows for the inves-
tigation of nonstationary temporal dynamics in RSNs and,
because of its linearity, can be inverted easily to deduce SC
from known FC. Later, Abdelnour et al. [51] further in-
vestigated the interplay of SC versus FC on graphs by
elucidating the eigenspectrum of structural Laplacian (see
Appendix A). (e authors showed that both SC and FC
share common eigenvectors, their eigenvalues are expo-
nentially related, and a small number of eigenmodes are
sufficient to reconstruct FC matrices. (e method is inti-
mately related to a data-driven independent component
analysis (ICA) of FC time courses and outperforms time-
consuming generative simulations of dynamic brain net-
work models. (e importance of FC time courses was also
emphasized in the study of Sarkar et al. [52]. As anatomical
connections are often missing from the DTI data, the au-
thors considered the inverse problem of inferring SC from
FC and formulated it as a convex optimization problem
regularized with sparsity constraints based on physiological
observations. (e study could not only reproduce quanti-
tative measures of SC on a fine-grained cortical dataset,
consisting of 998 nodes, but also robustly predict long-range
transhemispheric couplings, which are not resolved by DTI.

Concerning computational GMs, Huang and Ding [56]
also considered the question of proper quantification of SC-
FC interrelationships. (ey showed that conditional
Granger causality (cGC) was significantly correlated across
subjects with edge weights [22] in RSNs, but not with mean
fractional anisotropy. (e authors concluded that edge
weight represents the proper SC measure, while cGC ade-
quately measures FC. Following the question of proper
quantification of FC, Meier et al. [57] compared the
structure-function relationship, when using different im-
aging modalities to assess FC, measured not only with fMRI
but also with MEG. (e study mainly considered local
connectivities between immediate neighbors, with some
connections in homologous regions of the opposite hemi-
sphere. (e results of their SC-FC mapping indicated that,
although sharing many properties, the SC-FC relationship
also seems to be imaging modality dependent. Following this
hypothesis, the idea of employing imaging modalities with
higher temporal resolution for observing brain functions,
also with state-of-the-art tractography methods for recon-
structing the brain structure, is an interesting direction for
future research on this field [16].

Topological aspects of the SC-FC relationship were
further discussed by Liang and Wang [55] at the level of
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connectivity matrices. (ey developed a similarity measure
to assess the quality of various network models based on
persistent homology and regularized the solution to cope
with large matrices. (e measure could distinguish between
direct and indirect SCs for predicting FC. (e results cor-
roborated a nonlinear structure-function relationship and
suggested that the FC in RSNs is characterized not only by
direct structural connections but also by sparse indirect
connections. Figure 3 illustrates such higher-order con-
nections between two nodes in a network. Also, Becker et al.
[53] investigated how brain activity propagates along in-
direct structural walks by using a spectral mapping method
(Spectral graph theory is the study of properties of the
Laplacian matrix or adjacency matrix associated with a
graph.) [58], which systematically reveals how the length of
indirect structural walks in a network influences the FC
between two nodes. Results of their mapping suggested that
walks on the structural graph up to a length of three con-
tribute most to the functional correlation structure. Such
indirect connections were also the focus of the work of Røge
et al. [59]. Simulations on high-resolution whole-brain
networks show that functional connectivity is not well
predicted by direct structural connections alone. However,
predictions improved considerably if indirect structural
connections were integrated. (e authors also showed that
shortest structural pathways connecting distant brain re-
gions represent good predictors of FC in sparse networks.
(is focus on the shortest structural paths between con-
nected brain regions was also taken up by Chen and Wang
[60], who designed an efficient propagation network built
with only the shortest paths between brain regions. Con-
cerning subject specificity of SC-FC relations, Zimmermann
et al. [61] furthermore showed that because of the marginal
variability between subjects in SCs compared to a rather
pronounced variability in FCs, little subject specificity re-
sults, indicating that FC is only weakly linked to SC across
subjects.

Bettinardi et al. [54] considered the postulate that
coactivated brain areas should have similar input patterns
and elaborated on this idea to explain how anatomical
connectivity can determine the spontaneous correlation
structure of brain activity. (ey explored the idea that in-
formation, once generated, spreads rather isotropically along
all possible pathways while decaying in strength with in-
creasing distance from its origin. (e authors analytically
quantified the similarity of whole-network stimulus patterns
based solely on the underlying network topology, thus
generalizing the well-known matching index [62]. Finally,
the authors could corroborate that the network topology, to
a large extent, determines time-averaged functional con-
nectivity in large-scale brain networks.

In an effort to explain brain dynamics, Gilson et al. [63]
considered a multivariate Ornstein–Uhlenbeck model (An
Ornstein–Uhlenbeck process is a stochastic stationary
Gauss–Markov process, which solves the Langevin equa-
tion.) [64] on a DGM to estimate statistics characterizing
effective connectivities (ECs) in RSNs. Linear response
theory (LRT) (Let x(t) be a stimulus and y(t) a related
system response; then, both are related by

y(t) ≈ 􏽒
t

−∞ χ(t − t′)x(t′)dt′, where the susceptibility χ(t −

t′) represents the linear response function. (e latter is
related to Green’s function in case of a Dirac delta impulse
stimulus.) was then employed to estimate network-related
Green’s function, which specifies the dynamic coupling
between network nodes. (e model provided graph-like
descriptors (community and flow) to describe the role of
either nodes or edges to propagate activity within the net-
work. (e graphical model thus stresses temporal aspects,
which merge segregated functional communities to integrate
into a global network activity. (e approach is not limited to
resting-state dynamics but can also deal with task-evoked
activity.

(e interrelation between connectivity, as derived from
different imaging modalities, was studied in a systematic
approach by Garcés et al. [65]. (ey investigated similarities
between SC derived from DTI, FC observed in fMRI, and FC
measured in MEG on different spatial scales: global network,
node, and hub level. (ey verified the strong relation be-
tween SC and FC observed in MRI, but also found strong
similarities between SC and FC in MEG at theta, alpha, beta,
and gamma bands. In their analysis, they could find the
highest node similarity across modalities in regions of the
default mode network and the primary motor cortex. (e
relation between structural and functional graphs was fur-
ther exploited by Glomb et al. [66] to overcome problems in
FC-EEG analysis. In whole-cortex EEG studies, volume
conduction can induce spurious FC patterns, which are hard
to disentangle from genuine FC. Glomb et al. [66] proposed
a technique to smooth EEG signals in the space defined by
white matter connections, in order to strengthen the FC
between structurally connected regions, which could im-
prove the resemblance of FC observed with EEG and FC
measured with fMRI.

4. Computational Connectomics

Functional neuroimaging techniques initiated connectome-
based computational modeling of brain networks, called
computational connectomics (CC). (e latter reproduces
experimental findings related to such large-scale activity
distributions. Furthermore, such modeling also encom-
passes spatiotemporal multiscale concepts of information
processing in such complex networks. To ease such mod-
eling endeavors, simulation platforms such as the Brain
Dynamics Toolbox (https://bdtoolbox.org/) [24, 67] or
DynamicBC (http://www.restfmri.net/forum/DynamicBC)
[68] have been developed which support the major classes of
differential equations of interest in computational neuro-
science and/or implement both dynamic functional and
effective connectivities for tracking brain dynamics from
functional MRI. On a more phenomenological level, (e
Virtual Brain (https://www.thevirtualbrain.org/tvb/zwei)
neuroinformatics platform [69, 70] provides a brain simu-
lator as an integrated framework which encompasses several
neuronal models and their dynamics. It offers multiscale
model-based simulations and allows inference of neuro-
physiological processes underlying functional neuroimaging
datasets. Hence, such modeling frameworks generate
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features, which allow for an understanding of underlying
mechanisms beyond computational reproduction.

One typical interpretation derived from computational
modeling is that the brain at rest resembles a dynamically
metastable (A metastable state of a dynamical system is stable
against small perturbations but not against large perturbations.
It corresponds to a minimum of the free-energy landscape
other than the global minimum. In neuroscience, it is some-
times more loosely used to denote a transient state of the
system that persists for a finite lifetime only.) system with
frequent switches between several metastable states, potentially
driven by multiplicative noise [2]. By constraining computa-
tional models by the anatomical connections derived from
DTI, they can serve as a link between the brain structure and
correlation patterns, empirically observed in functional MRI.
Usually, in such a framework, the strength of white matter
connections characterizes the coupling strength of nodes in
such large-scale computational models. Furthermore, with
such simulations, it can be studied how different topological
properties of the anatomical substrate contribute to the sys-
tems’ dynamics, explaining how functional connectivity pat-
terns depend on the underlying structural backbone [71, 72].

Recently, machine learning methods were also applied to
extract characteristic features of the underlying networks from
functional neuroimaging. (ese features opened the field for
deducing functional connectivity from structural connectivity
and vice versa in a purely data-driven approach [47, 73–76].

4.1. 8e Resting State as a Dynamically Metastable System.
(ough neuronal activity fluctuates continuously even
without being driven by external stimuli, a thorough

understanding of the spatiotemporal dynamics of complex
brain networks is yet to be achieved. With the seminal paper
of Raichle et al. [77], the notion of a default mode network
(DMN) of a resting brain was born. (is concept triggered a
wealth of studies related to the resting state of the brain
[2, 78, 79], whereby the resting brain is in general under-
stood as the state in which the brain does not receive any
explicit input. Such computational connectomics studies
revealed that the resting human brain represents a quasi-
metastable dynamical system [2] with frequent fluctuations
around a dynamic equilibrium network state, which occa-
sionally resembles the default mode network (DMN) of the
resting state [77, 80]. Note that this equilibrium network
state is not defined as a global minimum of an energy
landscape like that used to model protein folding. Rather, it
is understood as a steady-state balancing deployment of fast
and slow systems which process neuronal activations. Such
brain networkmodeling has the potential to reveal nontrivial
network mechanisms and goes beyond canonical correlation
analysis of functional neuroimaging. Indeed, the main
driving force behind these computational brain network
modeling efforts results from the observation that the
spiking of single neurons is understood in biophysical detail,
but how large-scale, whole-brain spatiotemporal activity
dynamics emerge from spontaneously spiking neuron as-
semblies is still a matter of much debate, and their under-
lying mechanisms are only partly understood [78]. (is is
especially intriguing as even a resting brain without external
stimuli shows highly structured spatiotemporal activity
patterns far from being random.

4.2. 8e Statistical Mechanics Perspective of Brain Dynamics.
Models adapted from statistical physics provide one pos-
sibility to describe brain dynamics empirically observed in
different neuroimaging modalities such as fMRI. Con-
cerning the resting state, in an early work, Fraiman et al. [81]
focused on the question whether such a state can be com-
parable to any known dynamical state. For that purpose,
correlation networks deduced from human brain fMRI
investigations were contrasted with correlation networks
extracted from numerical simulations of an Ising model (An
Ising model describes an interacting lattice spin system with
two degrees of freedom for every spin variable. Each spin
interacts with its immediate neighbors and an external field.
In 2D, an Ising model exhibits a phase transition from an
unordered to an ordered phase. It represents one of the few
exactly solvable models in statistical physics.) [82] in 2D, at
different temperatures. Near the critical temperature Tc,
strikingly similar statistical properties rendered the two
networks indistinguishable from each other. (ese results
were considered to support the conjecture that the dynamics
of the functioning brain is near a critical point.

Fortunately, all modeling efforts profit from having
available constraints from functional, effective, and struc-
tural connectivity measures as provided by empirical neu-
roimaging data [83]. An early attempt to include such
constraints was undertaken by Deco et al. [84], who derived
a mean-field model (In the limit of a large number of

kij = 2
kij = 1

kij = 3

i

j

Figure 3: In the most simple case, structural connections between
two brain areas i and j could be direct (order kij � 1), but also,
higher-order connections (kij � 2, 3, . . .) between two regions play
a significant role for the propagation of neural signals [53–55].
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interacting entities in a network, a Markov chain model of
network dynamics is often replaced by a mean-field model,
which assumes that each unit homogeneously interacts with
the network in an average way only. An especially illusive
example is mean-field approximations of the Ising model
[85].) [86] (MFM) of the stationary dynamics of a con-
ductance-based synaptic large-scale network of a spiking
neuron population. (e connectivity in this network was
constrained by DTI data from human subjects, such as that
illustrated in Figure 4. (e temporal evolution of the neu-
ronal ensemble was approximated by the longest time scale
of the dynamic mean-field model.(e latter has been further
simplified into a set of equations of motion (An equation of
motion describes the dynamic behavior of a physical system
in terms of generalized coordinates as a function of time.) for
statistical moments.(ese differential equations provided an
analytical link between anatomical structure, stationary
neural network dynamics, and FC. In a subsequent seminal
paper of Deco at al. [2], nonstationary network dynamics
have been considered as well. (ere, the resting brain has
been modeled by a network of noisy Stuart–Landau oscil-
lators (Stuart–Landau oscillators represent coupled limit-
cycle oscillator, which exhibit collective behavior such as
synchronization.), each operating near a critical Hopf bi-
furcation (An Andronov-Hopf bifurcation consists in the
birth of a limit cycle out of an equilibrium point of a dynamic
system such as coupled oscillators.) point in the phase space
[87]. Each oscillator is running at its intrinsic frequency as
given by the mean peak frequency of the narrowband BOLD
signals of each brain region which the oscillator represents.
Note that this ensemble of locally coupled oscillators is
different from ensembles of nonlocally coupled, identical
oscillators which show chimera states (Chimera states
represent a unique collective behavior of a dynamic system,
where coherent and incoherent states coexist.) which have
attracted much attention recently [88–90]. Rather, in a
Kuramoto-type (A Kuramoto model consists of a set of
phase oscillators, which rotate at disordered intrinsic fre-
quencies and with nonlinear couplings. (eir time-depen-
dent amplitudes are neglected.) [91, 92] approach, each
oscillator is characterized through its phase variable only,
while the time-dependent amplitude of the analytical signal
is neglected. (e resulting global network dynamics reveals
spatial correlation patterns constrained by the underlying
anatomical structure. By investigating cortical heterogeneity
across the entire brain, the authors explained how fluctu-
ations around a dynamic equilibrium state of a core brain,
represented by eight identified brain areas, could drive
functional network state transitions [2, 93, 94]. Hence, in the
work of Naskar et al. [95], the resting brain is considered to
represent a dynamically metastable system with frequent
switches between several metastable states driven by mul-
tiplicative noise. Metastability can be quantified in such
coupled oscillator systems by the standard deviation of one
of the two time-dependent Kuramoto order parameters,
which measures the phase coherence of a set of oscillators in
the weak coupling limit [2]. In this respect, the brain can be
considered as operating at maximal metastability suggesting
some kind of spinodal-like ((e spinodal curve in a phase

diagram connects states where the second derivative of the
Gibbs free energy is zero. At these points, even the faintest
perturbation induces a phase transition to the related
equilibrium state.) instability [96] in the phase space, where
a transition towards a related stable, possibly task-related
network state occurs as a consequence of a small external
disturbance. It is interesting to see recently that research into
coupled Stuart–Landau oscillator networks has also focused
on the amplitude dynamics of the analytic signal [89, 90, 97].
It has been shown that an explosive death of oscillations can
be observed which might be related to the suppression of
neuronal activity in RSNs evoked by stimulus-driven in-
formation processing [98].

(e idea of viewing human brain dynamics from a
statistical mechanics perspective was also proposed by
Ashourvan et al. [99]. However, rather than studying the
evolution of regional activity between local attractors (In a
dynamical system, an attractor represents a set of numerical
values towards which the system evolves from a wide range
of initial conditions. An attractor can be a point, a finite set
of points, a curve, a manifold, or even a complicated set with
a fractal structure known as a strange attractor.) representing
mental states, time-varying states composed of locally co-
herent activity (functional modules) were put forward. A
maximum entropymodel was adapted to pairwise functional
relationships between ROIs, based on an information-theoretic

Empirical functional
connectivity

Model
functional

connectivity

Structural
connectivity

Neurodynamical
model

Cortical area

Fitting

Cortic
al area

Figure 4: Structural connectivity (SC), like that derived from DTI,
can be included to describe the couplings of nodes (anatomical
areas) in a neurodynamical model, constraining the neural dy-
namics. (e emerging functional connectivity (FC) patterns of the
model can then be compared to the empirical FC obtained by fMRI
(adapted from Deco et al. [84]).
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energy landscape model, whose local minima represent
attractor states with specific patterns of the modular
structure. Clustering such attractors revealed three types of
functional communities. Transitions between community
states were simulated using random walk processes. (us,
the brain is understood as a dynamical system with tran-
sitions between basins of attraction characterized through
coherent activity in localized brain regions.

4.3. Spatiotemporal Brain Dynamics and Statistical State-
Space Models. Although large-scale activity distributions in
RSNs have long been considered stationary, recent inves-
tigations provided ample evidence of their nonstationary
nature. Consequently, it is insufficient to only consider the
grand average functional connectivity (FC); rather, its
nonstationary dynamical nature has to be considered as well
[2]. Several recent studies showed how functional connec-
tivity states can emerge from a single stationary structural
connectivity net through fluctuations around this metastable
state. (e latter can be described with mean-field models,
while the fluctuations can be generated with an ensemble of
coupled Stuart–Landau oscillators with simple attractor
dynamics and reproduce the spatiotemporal connectivity
dynamics if constrained by EC rather than SC as deduced
from DTI measurements.

While the functional connectivity can be estimated via a
linear Pearson correlation (Pearson’s correlation coefficient
is a measure of the linear bivariate correlation between two
variables x and y. It is computed as the covariance of the two
variables divided by the product of their standard devia-
tions.) between corresponding elements of the empirical
(and the simulated) covariance matrix, the statistics of the
dynamic functional connectivity (DFC) can instead be
evaluated through the Kolmogorov–Smirnov distance
(Nonparametric Kolmogorov–Smirnov statistics provide a
distance either between an empirical and a reference cu-
mulative density function or between two probability dis-
tributions.) of the related empirical (and simulated)
distributions of covariance matrix elements on a sliding time
window basis. Note that, lately, this sliding window tech-
nique has been challenged by a hidden Markov model (A
hidden Markov model represents the simplest dynamic
Bayesian network. It is a statistical model of a system with
Markovian state transitions between unobservable (hidden)
states.) approach which overcomes some of the drawbacks of
the former method [100–102]. Concerning the interrelation
of the structural and functional connectivity, the work of the
Deco group, as discussed above, demonstrated that, by
carefully constraining global mean-field brain models with
structural connectivity data and fitting themodel parameters
employing corresponding dynamic functional connectivity
data, phenomenological models of causal brain dynamics
(Dynamic causal models adapt nonlinear state-space models
to data and test their evidence employing Bayesian infer-
ence.) [20] can be constructed. Such models yield insight
into mechanisms by which the brain generates structured,
large-scale activity patterns from spontaneous activities in
RSNs while respecting empirical knowledge about structural

and functional connectivities between distant brain areas as
provided by functional neuroimaging.

Using a whole-brain computational network model,
Glomb et al. [103] applied a sliding window approach,
though employing a rather long time window, to relate
temporal dynamics of RSNs to global modulations in BOLD
variance. (e authors demonstrated that spatiotemporal
fluctuations in FC and BOLD can be described as fluctua-
tions around an average stationary FC structure. In a related
study, Glomb et al. [17] further elaborated this idea by
combining dimensionality reduction via tensor decompo-
sition with a mean-field model (MFM) [104] generating
stationary network dynamics. (e model has been shown to
explain grand average resting-state FCs. However, such
average FCs summarize correlated spatial activity distri-
butions but do not reveal their temporal dynamics. In a two-
step approach, first, spatiotemporal data arrays have been
decomposed, employing tensor decomposition methods,
into sets of brain regions, called communities, with similar
temporal dynamics. (eir related time courses are assessed
by an overlapping sliding window technique and could be
grouped into four distinct communities resembling well-
known RSNs. Second, data were simulated with this sta-
tionary MFM constrained by results from diffusion tensor
imaging (DTI) and fiber tracking. (e spatiotemporal
structure of the network then results solely from fluctuations
around a mean FC pattern. More importantly, the four
distinct RSNs emerged from this stationary MFM if the
network nodes were coupled according to the model-based
EC. (e method is rather generative as it only needs weak
assumptions about the underlying data, thus is generally
applicable to resting-state data and task-based data from
arbitrary subject populations. In a related study, Glomb et al.
[21] compared the DTI-based SC with the model-based
effective connectivity (EC) using whole-brain computational
modeling of the spatiotemporal dynamics of FC evaluated
on a sliding window basis. (e authors discussed the way
node connectivity affects the fitting of simulated to empirical
patterns. (e resulting tensors are decomposed into a
weighted set of communities, whose nodes share similar
time courses. Some of these communities resemble known
RSNs such as the DMN, whose fluctuations have been linked
to cognitive function. Similarity between simulated and
empirical spatiotemporal dynamics of ROIs was especially
pronounced whenever model nodes were connected by EC
rather than SC. (us, networks of Stuart–Landau oscillators
with simple attractor dynamics can reproduce empirical
spatiotemporal connectivity dynamics if constrained by EC
rather than SC. A recent review of Cabral et al. [16] discussed
different computational resting-state models, which almost
all try to explain how a rich repertoire of functional con-
nectivity states can emerge from a single static structural
connectome. In the future, it will be of interest to extend
these computational models to task-based settings and to
also consider faster neural processes like those measured by
EEG or MEG.

(e potential of computational connectomics for general
inference and integration of neurophysiological knowledge,
complementing empirical functional neuroimaging studies,
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has been further demonstrated by the work of Schirner et al.
[105].(e authors integrated individual SC and FC data with
neuronal population dynamics to infer neurophysiological
properties onmultiple scales. In their study, EEGwas used to
record electrical potentials at the scalp surface of individuals.
(ese source activities were integrated into an individual-
specific model, which simulated brain activity distributions
and predicted person-specific fMRI time series and spatial
topologies of RSN activities. In addition, neurophysiological
mechanisms underlying several experimental observations
from various functional imaging modalities could be suc-
cessfully predicted. Whole-brain computational modeling
can also answer questions concerning the reproducibility
and consistency of resting-state fMRI. Donnelly-Kehoe et al.
[106] demonstrated that the estimation of parameters, which
describe the dynamical regime of the Hopf model (It denotes
a model of a dynamic system which exhibits a critical point
in the phase space where its stability switches and a periodic
solution arises.) [2], becomes consistent after a scanning
time of around 20 minutes. (is suggests that such a
scanning duration is sufficient to capture subject-specific
brain dynamics. Also, such nonlinear computational models
are capable of quantifying EC on a whole-brain level [107].
By gradually modifying the strength of structural connec-
tions, the authors could improve the correspondence be-
tween FC predicted by their model and empirical FC
observed in fMRI. (is measure should therefore better
characterize the activation flow between brain regions and
can extend the structure-based connectivity measure, de-
rived from DTI.

4.4. Impact of the Structure on Function in Computational
Connectomics Models. An as yet unresolved issue concerns
the dependence of the SC-FC relationship on either specific
topological features of the network or the computational
models used to describe the network dynamics. Over the last
decade, a couple of studies, designing stationary and non-
stationary dynamical network models, focused on these
important issues.

By employing a simple epidemiological model, Chen and
Wang [60] built a dynamic susceptible-infected-susceptible
(SIS) network [108, 109], focusing on the shortest path to
predict resting-state FC from SC. (e model could predict
FC between directly and indirectly connected structural
network nodes and outperformed DMF models in pre-
dicting FC from SC. Considering a more complex approach,
Robinson [110] introduced propagator theory (A propagator
represents a special Green’s function, which characterizes
the probability of propagation of a particle or wave from
location x to location y. (e exact form of the propagator
depends on the equation of motion with its related initial or
boundary conditions.) to relate anatomical connections to
functional interactions, where neural interactions allegori-
cally resembled properties of photon scattering on atoms, as
observed in standard quantum mechanics. (is Green’s
function-based model also accounts for excitatory and in-
hibitory connections, multiple structures and populations,
asymmetries, time delays, and measurement effects.

In another early study to elucidate the structure-function
relationship in more detail, Deco et al. [111] devised a brain
model of Ising spin dynamics constrained by a neuroana-
tomical connectivity as obtained from DTI/DSI data. (e
model, which describes stationary dynamics, exhibited
multiple attractors, whose underlying attractor landscape
could be explored analytically. (ey showed that the entropy
of the attractors directly measures the computational ca-
pabilities of the modeled brain network, thus pointing to a
scale-free (A scale-free network exhibits a degree distribu-
tion that, at least asymptotically, follows a power law.) ar-
chitecture. Note that entropy measures the number of
possible network configurations; hence, a scale-free network
maximizes the system’s entropy. However, recently, strictly
scale-free networks have been shown to be rare putting in
jeopardy statistical interpretations of such networks [112]. It
has been shown that log-normal distributions fit degree
distributions often better than power laws, thus demanding
alternative theoretical explanations. A similar spirit, pre-
dicting SC from FC, has also been considered in the study of
Deco et al. [104]. (e authors used diffusion spectrum
imaging (DSI) to map structural measures of connectivity,
but note that interhemispheric connections are usually in-
hibitory and are hard to map.(e study proposed a dynamic
MFM operating near a critical point in the phase space
where state transitions occur spontaneously. (ey iteratively
optimized the matrix of SCs based on a matrix of FCs and
observed that the addition of a small number of anatomical
couplings, primarily transhemispheric connections, im-
proved the predicted SCs dramatically, even though DTI has
its limitations in modeling long-range connections [37].

While these modeling studies rely on stationary dy-
namics, Messè et al. [113] considered the relative contri-
butions of stationary and nonstationary dynamics (A time
series is stationary if all its statistical moments are time
independent. Wide-sense stationarity only asks for time
independence of the first two statistical moments, and
nonstationarity means just the contrary [114].) to the
structure-function relationship. (e authors compared FCs
of RSNs with computational models of increasing com-
plexity while manipulating the models’ anatomical con-
nectivity. (eir results suggest three contributions to FC in
RSNs based on a scaffold of anatomical connections, a
stationary dynamical regime constrained by the underlying
SC, and additional stationary and nonstationary dynamics
not directly related to anatomy. Most importantly, the last
component was estimated to contribute 65% to the observed
variance of FC pointing to the need for nonstationary dy-
namic computational brain models. (e study corroborated
the preference for simple models of stationary dynamics and
emphasized the decisive role of transhemispheric couplings,
which are often difficult to reconstruct in white matter
tractography [37]. Messé et al. [72] also further considered
the issue of how topological features influence dynamic
models and designed a dynamic susceptible-excited-re-
fractory (SER) model with excitable units and analyzed the
influence of network modularity on FC. (eir results were
compared to a FitzHugh–Nagumo model ((e Fitz-
Hugh–Nagumo model, sometimes also called
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Bonhoeffer–van der Pol oscillator, represents a relaxation
oscillator and describes a prototype of an excitable system,
which shows spike generation above a certain threshold.)
[115] as an alternative model of excitable systems. Differ-
ences between the models arose from different time limits
for integrating coactivations to deduce “instantaneous” FCs,
thus providing a clear distinction between coactivation and
sequential activation and thereby corroborating the im-
portance of the modular structure of the network. In a
subsequent paper, Messé et al. [71] elaborated further on the
topological network features which shape FC in their dy-
namic SER model. (e authors presented an analytical
framework, based on discrete excitable units, to estimate the
contribution of topological elements to the coactivation of
the nodes in their model network. (ey compared their
analytic predictions with numerical simulations of several
artificial networks and concluded that their framework
provides a first step towards a mechanistic understanding of
the contributions of the network topology to brain
dynamics.

5. Machine Learning Approaches

Machine learning approaches were first applied to fMRI
datasets to deduce signal components in a purely data-
driven fashion. Such explorative techniques allow to detect
spatially segregated regions in the brain, associated with
individual functions [116, 117]. (ese blindly identified
source components can then help to define nodes in
graphical models of brain networks and set the spatial layout
for brain connectivity. Also, such blind source separation
techniques were applied to EEG recordings in order to
identify relevant source signals and to separate them from
artifacts in the data [118–120]. Like in fMRI, such intrinsic
components can be used to define nodes in functional
networks and provide a data-driven perspective on brain
connectivity in EEG studies [121].

Exploratory matrix factorization (EMF) techniques were
employed mostly, whereby any data matrix X ∈ RN×M

contains spatial fMRI maps in its M columns at N subse-
quent time points tn. (is data matrix is decomposed into
two factor matrices according to X ≈WH, whereby
W ∈ RN×K and H ∈ RK×M. Here, K denotes a generally
unknown inner dimension, which can be estimated with
model order selection techniques [122]. Such decomposition
needs additional constraints to yield unique answers.
Depending on the form of the constraints, various de-
composition techniques (see Appendix B) result as follows:

(i) Factors should form orthogonal matrices, yielding
principal component analysis (PCA)

(ii) Factor matrix H should contain statistically inde-
pendent spatial or temporal components (sICA and
tICA)

(iii) Factor matrix W should yield a sparse encoding
(SCA)

(iv) Both factor matrices should have only nonnegative
entries, given the entries of the data matrix are

nonnegative exclusively, yielding nonnegative ma-
trix factorization (NMF)

(v) Matrix H should contain intrinsic modes, which
represent pure oscillations yet with time-varying
amplitude and local frequency, yielding empirical
mode decomposition (EMD)

Such studies were employed to deduce functionally
connected brain networks in a purely data-driven way, most
commonly by a combination of PCA and ICA [123]. Al-
though the number of independent spatial or temporal
components is generally unknown, investigations showed a
high consistency of the extracted functional networks across
subjects and conditions. Since structural constraints are yet
to be included, structure-function relationships have not yet
been considered so far with such techniques. Considering
regularized ICA, comprehensive studies of the choice of
hyperparameters and their impact on the results are still not
completely explored. Some attempts have been undertaken
to combine cICA with optimization techniques.

Over the last decade, exploratory analysis techniques
have placed a new focus on trying to better understand brain
dynamics. Dynamic functional connectivity patterns (also
denoted as the chronnectome [124]) have been studied with
EMF techniques by employing a sliding window approach,
whereby a considerable overlap of the individual time
segments was allowed. (e length of the chosen time
window determines the time scale of the slowest fluctuations
that can be studied. Most commonly, time courses were then
linearly correlated to generate temporal sequences of related
connectivity matrices. Such sequences demonstrate the
temporal variability of functional connections between
identified brain networks, notably those investigated under
resting-state conditions. (e main purpose of such studies
was to quantify the impact of spontaneous BOLD fluctua-
tions on the temporal dynamics of FCs. (e investigations
demonstrated that transiently synchronized subnetworks
with coherent spatial patterns drive the dynamics of large-
scale functional networks in the resting brain. (ese results
gave rise to the application of state-space models, whereby
network states were represented by their covariance matrices
[125, 126]. Predominantly, hidden Markov models (HMMs)
have been employed to describe the underlying network
dynamics. As an alternative to HMMs, Bayesian probabi-
listic models can also learn latent states and represent dFC
networks and their temporal evolution as well as transition
probabilities between these states.

State-space models assume stationary dynamics, an
assumption that has been placed in question by several
studies. (ese studies assigned part of the temporal var-
iability of dFCs not to noise contributions but rather to
their nonstationary nature [127, 128]. (e latter can be
characterized through EMF approaches combined with
sliding window techniques and Pearson correlation of
voxel time series. Clustering such dFC states results in a
small number of prototypical FC patterns, which, in turn,
lead to discrete brain states [127, 129]. Alterations of such
brain states with various diseases were naturally of interest
as well.
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5.1. Static Functional Connectivity. Over the last two de-
cades, aside from large-scale computational modeling of
functional brain connectivity and dynamics, data-driven
machine learning approaches have also been employed to
analyze functional neuroimaging data and to track the
dynamics of FCs. In various cases, methods from machine
learning, such as exploratory matrix factorization (EMF)
techniques, can be applied, where voxel-wise univariate
evaluations are not appropriate [116, 130]. Blind source
separation (BSS) techniques [131–133] refer to data-driven,
unsupervised machine learning techniques for feature ex-
traction based on EMF, which are applied in biomedicine
and neuroinformatics. (e underlying idea of these tech-
niques is to search for a linear mixture of base components,
which characterize the observed data. Especially in the
absence of stimulus-driven tasks, like in resting-state fMRI
[116] or in resting-state EEG [121], such exploratory tech-
niques have proven to be a promising alternative to atlas-
based definitions of brain networks. Most notably, principal
component analysis (PCA) and independent component
analysis (ICA) (While PCA extracts components with
maximal variance from the data, ICA applies a stronger
condition and maximizes for statistical independent com-
ponents [133]) [134] are frequently employed to analyze
biomedical and neuroimaging datasets, especially EEG and
fMRI data [117, 118]. While most studies on brain con-
nectivity still rely on atlas-based definitions of graph nodes
in brain networks, simulations have shown that data-driven
derivations of such nodes with ICA can be beneficial for
graphical analysis [36].

ICA is intrinsically a multivariate approach, and hence,
each independent component (IC) groups brain activity into
similar response patterns thereby providing a natural
measure of functional connectivity (FC). ICA comes in two
flavors extracting either spatially (sICA) or temporally
(tICA) independent component maps.(e basic principle of
spatial and temporal ICA is illustrated in Figure 5, but these
studies predominantly rely on sICA due to the abundance of
requisite data samples. Spatial ICA has been applied first to
fMRI datasets by McKeown et al. [117], while tICA followed
shortly afterwards [135]. Also, few studies dealing with
spatiotemporal ICA have been performed [136–141]. (ese
various modes of ICA all share the limitation that the user
has to identify the underlying sources. To resolve this issue,
constrained ICA [142, 143] or ICA with reference [144, 145]
has been proposed to extract one or more ICs, which are as
similar as possible to given reference signals. (us, a priori
information of the desired sources is used to form con-
straints in either the spatial or temporal domain. (is ap-
proach has also been extended to the spatiotemporal
domain. (e constrained stICA algorithm searches for
maximally independent sources that correspond to con-
straints in both spatial and temporal domains [137]. (is
also exhibits improved performance for the analysis of fMRI
datasets.

Early work studied cortical functional connectivity (FC)
in a seed-based approach, where the time course of any
chosen seed voxel was correlated with the time courses of all
other voxels to reveal two-point correlations of cortical

activity in response to external stimuli and task require-
ments. Such seed-based correlation analysis (sCA) studies
are generally biased by the choice of the seed region. Several
studies elaborated on the difference between sCA- and ICA-
derived measures of FC. Already a decade ago, Joel et al.
[146] concluded that seed-based FC measures are the sum of
ICA-based measures both within and between network
connectivities. Very recently, Wu et al. [147] proved a
mathematical equivalence between sCA and a connectivity-
matrix enhanced ICA (cmICA). However, they also noted
conceptual differences, which lead to different information
captured by both techniques and which they exemplified in
examining whole-brain rsFC at the voxel resolution in
schizophrenic patients and healthy controls. FC is reduced
over the entire brain, whereby the connectivity not only
between networks but also within network hubs is affected.
In the resting state, decreasing FC was in both groups which
also strongly related to aging in both groups.

An overview of exploratory ICA, applied to deduce the
functional connectivity from the fMRI data, was given by
Calhoun et al. [148].(e authors discussed ICA in the spatial
or temporal domain related to task and transiently task-
related paradigms as well as physiology-related signals, the
analysis of multisubject fMRI data, the incorporation of a
priori information, and the analysis of complex-valued fMRI
data. While most studies only take the magnitude of the
fMRI signal into account, it was shown that the phase in-
formation of complex-valued fMRI has the potential to
increase the sensitivity of ICA [149]. More recently, it was
demonstrated that spatial resting-state networks observed in
fMRI could also be found in high-temporal-resolution EEG
data using ICA [150]. In their study, Sockeel et al. [150] could
observe several overlapping EEG and fMRI networks in
motor, premotor, sensory, frontal, and parietal areas.

Studies of FC in the resting state started only later when
the work ofMcKeown et al. [151] suggested that this could be
possible. As Calhoun and Adali noted in a focused survey
[153], ICA offered, and still offers, essential methodological
tools to study the functional connectivity of brain networks
not only in single subjects but also across whole groups. (e
focus then shifted from task-related paradigms to the study
of resting-state networks (RSN) and, most importantly, their
differences in the diseased brain. It has been shown that even
in the absence of a stimulus-driven task, a number of brain
networks, such as the default mode network (DMN), could
be observed at rest [5, 123] and successfully reconstructed
with ICA [130]. (e major use of the DMN is made in fMRI
studies of brain disorders. In an early investigation, Esposito
et al. [154] considered the cognitive load modulation of
group-level ICA-based fMRI responses. (ey suggested that
the high variability of the default mode pattern may link the
DMN as a whole to cognition andmaymore directly support
the use of the ICA model for evaluating cognitive decline in
brain disorders.

An early study on rsFC with sICA was published in 2004
[155]. (e authors identified many of the known RSNs, and
their ICs showed an extremely high degree of consistency in
spatial, temporal, and frequency parameters within and
between subjects. (ese results were discussed in relation to
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the functional relevance of fluctuations of neural activity in
the resting state. Such high spatial consistency of cortical
functional networks across subjects was also found by
Beckmann et al. [130], who applied probabilistic ICA and
discussed the role of this exploratory technique can take in
scientific investigations into the spatiotemporal structure of
RSNs. (e exploratory nature of ICA was also stressed by
Rajapakse et al. [156] in contrast to covariance-based
methods such as principal component analysis (PCA) and
structural equation modeling (SEM), where SEM is
employed to automatically find the connectivity structure
among elements in independent components. However,
their hybrid ICA/SEM approach was restricted to task-re-
lated fMRI paradigms. Meanwhile, numerous studies have
been published based on exploratory, data-driven fMRI
analyses, which established ICA in its many flavors as a
standard technique to analyze fMRI datasets with respect to
FC, most notably of RSNs and the DMN. Also, a recent claim
by Daubechies et al. [157] that the ICA algorithms Infomax
and FastICA ((e Infomax algorithm is based on the
minimization of mutual information between estimated
components, while FastICA follows the idea of maximiza-
tion of non-Gaussianity of components [133]. Both algo-
rithms have shown to be reliable for the estimation of
independent brain networks [152].), which are widely used
for fMRI analysis and which are based on different principles
like those of entropy or cumulant expansion, select for
sparsity rather than independence has been refuted by
Calhoun et al. [158]. (e latter authors claimed that the ICA
algorithms are indeed doing what they are designed to do,
which is to identify maximally statistically independent
sources.

Because of scaling and permutation indeterminacies of
ICA, group inferences from multisubject studies turned out
to be challenging. Several attempts have been considered to
resolve this issue [159–163]. (e most widely used approach
is based on the gICA algorithm provided in the GIFTtoolbox
(http://mialab.mrn.org/software/gift/). A large-scale study
[164], encompassing 603 healthy adolescents and adults,
employed gICA to establish a multivariate analytic approach
and applied it to the study of RSNs.(e latter were identified
and evaluated in terms of three primary outcome measures:
time-course spectral power, spatial map intensity, and
functional network connectivity. (e study considered the

impact of age and gender on resting-state connectivity
patterns. (e results revealed robust effects and suggested
that the established analysis pipeline could form a useful
baseline for investigations of human brain networks. Re-
cently, we proposed a hybrid cICA-EMD approach, where a
bidimensional ensemble empirical mode decomposition
technique based on Green’s functions in tension (GiT-
BEEMD) was used to create reference signals for a con-
strained ICA [165, 166]. (e idea of this technique is to
decompose a signal into its underlying intrinsic frequency
compartments [56], reflecting frequency-specific aspects of
the latter. (e natural ordering of the intrinsic modes (IMs)
extracted with GiT-BEEMD provides an immediate as-
signment of ICs, extracted with cICA, across a group of
subjects. Results of both methods are in good agreement.
However, the consistency of identified functional networks
across a group of subjects is higher for the hybrid cICA-
EMD approach. Still, one of the problems of cICA algo-
rithms is the choice of hyperparameters such as the
threshold for similarity measures or the accuracy of a priori
information. Shi et al. [167] recently tackled such problems
by combining cICA with multiobjective optimization, where
the inequality constraint of traditional cICA is transformed
into the objective optimization function of constrained
stICA, and both temporal and spatial prior information are
included simultaneously. (e algorithm apparently avoids
the threshold parameter selection problem, shows an im-
proved source recovery ability, and reduces the require-
ments on the accuracy of prior information.

5.2. Temporal Dynamics of Functional Connectivity. (e
explorative techniques discussed so far all concern inves-
tigations of static functional connectivity. However, as we
have seen from investigations into computational brain
dynamics, the brain is operating in a metastable state close to
a critical point, where spontaneous fluctuations play a de-
cisive role in determining the inherent dynamics of brain
networks. Such fluctuations emerge on time scales ranging
from milliseconds to minutes but have largely been ignored
in most recent investigations involving data-driven tech-
niques. Still, over the last decade, a paradigm shift has oc-
curred in functional connectivity studies towards the focus
on the temporal variations in FC patterns [168]. Most studies
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Figure 5: (e principle of ICA is illustrated. As the input, a voxel time series is considered and indicated as an orange stripe in the related
data matrices. (e decomposition is either done to obtain independent spatial maps in component matrix S or to obtain independent
component time series contained in the rows of component matrix T.
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on dFC employ a sliding window technique, such as illus-
trated in Figure 6. Instead of computing FC across the whole
time span of a session, dFC accounts for the variability of
connectivity within a session by assessing FC on (possibly
overlapping) segments in the time domain, but it also has
been shown that this technique is not without problems in
itself [169–171]. Also, a sound statistical analysis of such
studies is mostly lacking, thus casting doubts on the in-
terpretations given to the results [172].

A number of studies considered the dFC of BOLD
signals and their related spatial patterns based on sliding
window correlations (SWCs). With this new focus, Chang
and Glover [173] investigated the dynamics of resting-state
connectivity patterns during a single fMRI scan. (ey
performed a time-frequency coherence analysis based on the
wavelet transform and employed a sliding window corre-
lation procedure to demonstrate time-varying connectivity
patterns between several brain regions. (e authors noted
that such coherence and phase variability might be the result
of residual noise rather than resulting from modulations of
the cognitive state. In a similar study, Kang et al. [174]
thoroughly investigated the temporal FC of spontaneous
BOLD signals derived from RSNs with fMRI. RSNs were
identified using a seed-based voxel-wise correlation analysis
by calculating correlations between representative time
courses of certain predefined regions and all other voxels of
interest. A subsequent variable parameter regression model,
combined with a Kalman filter for optimal model parameter
estimation, was applied to identify dynamic interactions
between the identified RSNs. (e results revealed that
functional interactions within and between RSNs showed
indeed time-varying properties. Furthermore, the spatial
pattern of dynamic connectivity maps obtained from ad-
jacent time points exhibited a remarkable similarity.
Employing ultrahigh field fMRI, Allan et al. [175] further
investigated the contribution of spontaneous BOLD events
to the temporal dynamics of FC and suggested that spon-
taneous fluctuations of BOLD signals drive the dynamics of
large-scale functional networks commonly detected by seed-
based correlation and ICA. (ese suggestions were based on
observations that spontaneous BOLD signal fluctuations
contribute significantly to network connectivity estimates
but do not always encompass whole networks or nodes.
Rather, clusters of coherently active voxels forming tran-
siently synchronized subnetworks resulted. Furthermore,
tasks can significantly alter the number of localized spon-
taneous BOLD signals. From these observations, the picture
emerged that large-scale networks are manifestations of
smaller, transiently synchronizing subnetworks of voxels
whose coherent activity dynamics give rise to spontaneous
BOLD signals. Recent fMRI studies demonstrated that the
dynamics of spontaneous brain activities and the dynamics
of their functional interconnections show similar spatial
patterns suggesting they are associated to each other. (us,
Fu et al. [176] characterized local BOLD dynamics and dFC
in the resting state and studied their interregional associa-
tions. Again, dFCs were estimated employing the afore-
mentioned sliding window correlation technique, and
BOLD dynamics were quantified via the temporal variability

of the BOLD signal. BOLD dynamics and dFC indeed
exhibited similar spatial patterns, and they were significantly
associated across brain regions. Interestingly, intra- and
internetwork connectivities were either positively or nega-
tively correlated with the BOLD signal and exhibited spa-
tially heterogeneous patterns. (ese associations either
conveyed related or distinct information pointing towards
underlying mechanisms involved in the coordination and
coevolution of brain activity.

(ough, in the first decade of the new millennium, an
increasing number of dynamic FC studies have appeared,
(ompson et al. [177] noted that only few investigations
used small enough time scales to infer single subjects’ be-
haviors. While studying the interaction between the DMN
and task-positive networks within a psychomotor vigilance
task, they evaluated correlations between the two networks’
signals within a time window of 12.3s, centered at each
peristimulus time interval. In addition, correlations were
also computed within entire resting-state fMRI runs from
the same subjects. (ese correlation measures were com-
pared to time lags of response signals, both intra- and
interindividually. Generally, significant anticorrelation was
related to shorter response time lags interindividually, while
single subjects showed this behavior only 4⟶ 8s before the
detected target. Hence, studies of the relation between
functional networks and behavior are valid only on short
time scales and need to take into consideration the inter-as
well as intraindividual variability. (ese early findings of
studies devoted to dynamic FC were summarized and
evaluated by Hutchison et al. [178].

Considering that variability of neural activity is a hall-
mark of intrinsic connectivity networks identified by rs-
fMRI, Jones at al. [128] hypothesized that the variability,
rather than representing noise, is also related to the non-
stationary nature of those networks, switching between
various connectivity states over time. (e authors noted that
this variability has hampered efforts to define a robust metric
of connectivity that could be used as a biomarker for
neurologic illness. Employing gICA and a large cohort of 892
older subjects, 68 functional ROIs were defined, and, for
each subject, a dynamic graphical representation of brain
connectivity was constructed within a sliding window ap-
proach to demonstrate the nonstationary nature of the
brain’s modular organization. When comparing dwell time
in strong subnetworks of the DMN of a group of subjects
suffering from Alzheimer’s dementia with a healthy control
group, it was concluded that connectivity differences be-
tween these groups are due to dwell time differences in DMN
subnetwork configurations rather than steady-state
connectivity.

Afterwards, in a seminal paper, Allen et al. [127] studied
resting-state FC dynamics of the entire brain based on
spatial ICA, Pearson correlation within sliding time win-
dows, and k-means clustering of correlation matrices (k-
means clustering aggregates a number observations into
groups based on predefined similarity measures. Groups can
then be represented by prototypical observations like the
mean inside a group.) within such windows. (e study
encompassed a large sample of 405 young adults and was
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based on employing gICA for extracting spatially inde-
pendent connectivity patterns across the subject cohort.(is
study identified particularly flexible connections between
specific brain regions which, therefore, cannot be considered
separate and antagonistic entities. More importantly,
however, the study introduced and identified dynamic FC
states which differed from stationary connectivity patterns,
thus challenging the common descriptions of static inter-
actions between large-scale networks. (eir findings also
suggested the need to track functional connectivity dy-
namics and to exploit the role of these dynamical processes
for a better understanding of behavioral shifts and adaptive
processes. Recently, Goldhacker et al. [129] added another
twist to such sliding window investigations of dynamic
functional connectivity (dFC) of the resting state. (e au-
thors introduced frequency-resolved dFC by means of
multivariate empirical mode decomposition (MEMD)
[179–181] followed up by filter-bank investigations. Entire
voxel time courses were decomposed with MEMD into
intrinsic modes (IMs). Next, sliding window connectivity
matrices were established for every IM separately, thus
reflecting the temporal development of connectivity patterns
established on various intrinsic time scales. As IMs are
naturally ordered according to their characteristic fre-
quencies, the resulting connectivity matrices followed this
ordering. When k-means clustering was applied to this vast
amount of frequency-resolved connectivity matrices, each
cluster centroid represented a connectivity state at a specific
time scale determined by the period of the intrinsic oscil-
lation of the related IM. It was observed that the structure of
such connectivity states was persistent across several time
scales and even becamemore pronounced with an increasing
period of the intrinsic oscillation. To quantify the similarity
across frequency scales, a Pearson correlation similarity
measure for dFC states is introduced. However, scale sta-
bility changed with the number of extracted clusters and
dropped off between k� 4 and k� 5 extracted connectivity
states. (is finding was corroborated by null models, sim-
ulations, theoretical considerations, filter-banks, and scale-
adjusted windows. (ese filter-bank studies showed that

filter design is more delicate in the rs-fMRI than in the
simulated case. (e study presented the first evidence in-
dicating that connectivity states are both a multivariate and a
multiscale phenomenon. Besides offering a baseline for
further frequency-resolved dFC research, the authors
demonstrated the use of scale stability as a possible quality
criterion for connectivity states and the related model se-
lection problem.

Soon after the seminal work of Allen et al. [127], dFC
studies were applied to fMRI investigations of subjects
suffering from brain disorders. Damaraju et al. [182] studied
schizophrenia, which is a psychotic disorder characterized
by functional dysconnectivity or abnormal integration be-
tween distant brain regions. (ey evaluated static and dy-
namic functional connectivity networks of a large cohort of
schizophrenic patients and healthy controls. While static
correlations encompassed time series of 5.4min length, dFC
was determined using a sliding window technique with a
window length of 44s. k-means clustering then resulted in
five discrete functional connectivity states, so-called brain
states. Especially, dFC states showed characteristic differ-
ences in time-varying connectivity patterns between
schizophrenic patients and healthy controls that could not
be observed with a static correlation analysis alone. Con-
sidering these concerted attempts to clarify the dynamical
nature of FC, Calhoun et al. [124] went on to coin the term
chronnectome for these endeavors. (e term is intended to
denote metrics which provide a dynamic view on func-
tional couplings underlying temporally fluctuating and
spatially evolving brain connectivity patterns. (e authors
focused their review on their own work, developing EMF
techniques in an attempt to solve BSS problems and also
discussed a number of methodological directions. A recent
application to mild cognitive impairment detection was
reported by Yan et al. [183]. (e authors considered a deep
learning ansatz and devised a fully connected bidirectional
long short-term memory (LSTM) (Long short-term
memory neural networks (LSTMs) are a class of artificial
recurrent neural networks, which are able to effectively
detect long-term relations in sequential data structures

(a) (b)

Figure 6: Illustration of the concepts used to derive the static and dynamic functional connectivity (dFC). (a) An example of various activity
time courses and their related static connectivity matrix, which is deduced from the complete session. (b) (e same set of local activity time
courses and their related connectivity matrices of the respective segments of the activity time courses.
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[162].) network (Full-BiLSTM) to effectively learn periodic
brain status changes.

In a timely review on the subject, Preti et al. [184]
provided a comprehensive description of proposed dFC
approaches, pointed at future directions of dFC research
pointing out advantages and pitfalls. (e subject has also
been reviewed by Karahanoğlu and Ville [185]. Yet, another
review by Betzel and Bassett [186] focused on the multiscale
(ms) aspect of modern brain connectivity studies. (e
discussion was separated into ms-topological structures,
ranging from individual nodes to complete networks, ms-
temporal structures, spanning all available time scales of
measurements, and ms-spatial structure, referring to the
granularity at which its nodes and edges were defined. (e
authors reviewed empirical evidence for such structures and
discussed network-based methodological approaches to
reveal these structures on their respective scales.

Finally, a small number of studies critically discussed a
common methodology to study dFC concerning sliding
window techniques in the absence of any solid statistical
analysis. While a number of dFC studies were carried out in
the last decade, Hindriks et al. [172] pointed out that their
statistical analysis was either not always carried out properly
or was even omitted in some cases.(e authors described the
appropriate statistical tests for dFC, assessed the perfor-
mance of dFC measures, and illustrated the proposed
methodology with a study of spontaneous BOLD signal
fluctuations in rs-fMRI recordings. Sliding window corre-
lations were considered predominantly to cope with the
intrinsically nonstationary nature of such correlations.
Nonlinear correlation measures were also considered. (e
authors concluded from simulations that, with resting-state
sessions of 10min duration or less, dFC cannot be detected
using sliding window correlations. Applying session aver-
aging or subject averaging, most functional connections
could be shown to be dynamic. For the first time, this study
pointed out the necessity of a sound statistical analysis of
fMRI investigations of dFC and pointed out possible sta-
tistical pitfalls in such studies.

As most studies of dFC capture the dynamics via a
sliding window technique, Shakil et al. [171] noted that, in
the absence of any gold standard, sliding window correla-
tions can be problematic for the analysis of resting-state
data.(e authors devised simulated networks to examine the
impact of window length, window offset, window type,
noise, filtering, and sampling rate on the performance of
sliding window correlational analysis. Activity time courses
of all node pairs of each simulated network were correlated
and then grouped together using k-means clustering. It
could be shown that resulting brain states and state tran-
sitions strongly depended on window length and offset and,
to a lesser extent, on noise and filtering parameters. Also,
tapered windows were less sensitive to state transitions than
rectangular windows. Clustering only yielded reliable esti-
mates of state transitions if the window size matched the
length of the state duration. Similar concerns about the
reliability of a sliding window correlation technique were
addressed by Kudela et al. [170] who combined a multi-
variate linear process bootstrap [187] (MLPB) method and a

sliding window technique to assess the uncertainty in a
dynamic FC estimate by providing its confidence bands.(is
additional statistical evaluation should separate the true
signal from spurious fluctuations generated by noise. Yet,
another way around the sliding window dilemma was
proposed by Andersen et al. [169], who suggested a Bayesian
approach to dFC (A Bayesian approach allows to incor-
porate previous knowledge about a quantity in the form of a
prior into an estimation, deduced from a posterior proba-
bility distribution.), where covariances varied smoothly over
time and the related brain states were represented by spa-
tially sparse components. (is approach is based on the idea
that brain functions can be represented by a small number of
cognitive components [188]. Based on a simple classification
task, the authors claimed that their model better captures the
underlying structure.

Due to the low signal-to-noise ratio (SNR) of the BOLD
signal and the massive amount of data produced in any
resting-state fMRI investigation, Choe et al. [189] investi-
gated the reliability and robustness of summary measures
based on sliding window correlations (SWCs), tapered
sliding window techniques, and dynamic conditional cor-
relation (DCC) methods. Such DCC approaches extend the
classical correlation measures by additionally estimating
conditional correlations. (ey applied these methods to two
large public data repositories (Multimodal MRI Repro-
ducibility Resource and Human Connectome Project) and
assessed two categories of dFC summary measures, namely,
basic summary statistics, such as mean and variance of
dFC across time, and summary measures derived from
brain states, such as the dwell time. (ough DCC methods
outperformed SWCs with respect to summary statistics,
the reliability of brain state-derived measures was low.
Especially, DCC-derived dFC variances were significantly
more reliable than those following from nonparametric
estimation methods. (ese findings show that dFC vari-
ance should form an important ingredient to any dFC-
derived summary measure. With a similar interest,
(ompson et al. [190] studied time-varying connectivity
(TVC) and developed a Python package, called
tvc benchmarker (https://github.com/wiheto/
tvc_benchmarker), providing four simulations, and used
them to test five different methods to estimate their ability
to track the dynamics of activity covariances over time:
sliding window, tapered sliding window, multiplication of
temporal derivatives, spatial distance, and jackknife cor-
relation. All methods revealed positive correlations but
with strongly varying magnitudes. (is tool can help
scientists to evaluate their analysis methodologies in the
face of any missing ground truth concerning dFC in the
brain. Aside from fMRI investigations of dFC, recently,
functional techniques operating on much shorter time
scales have been considered. Granger causality (GC)
measures directional dependence between time series,
most importantly, activity time series from different brain
areas such as illustrated in Figure 7. Early work on con-
nectivity analysis based on EEG and MEG techniques is
mainly concerned with alternative ways to detect inter-
dependencies between activity time series.
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Sato et al. [191] proposed partial directed coherence
(PDC) [192] as a frequency-domain alternative to GC-based
connectivity analysis of multisubject fMRI data. (e authors
employed multisubject bootstrapping and decomposed
EEG-deduced connectivity data in the frequency domain,
thus separating out artifact signals such as scanner noise,
breathing mode, and heartbeat. If GC is estimated via vector
autoregressive models (VARs), numerous parameters need
to be estimated, which encompasses low accuracies with
small datasets. Siggiridou and Kugiumtzis [193] proposed a
restricted VAR model, which combined a modified back-
ward-in-time selection (BTS) of lagged variables with a
conditional Granger causality index (CGCI). (e new
method is applied to multichannel scalp EEG recordings of
epileptic patients. (e authors were able to track changes in
brain connectivity before, during, and after epileptiform
discharges with the proposed time-ordered VAR model.
Simulations of high-dimensional, nonlinear systems with
time series of varying lengths allowed them to favorably
compare CGCIs obtained with other restricted or LASSO-
constrained VAR models. Aside Granger causality (GC),
conditional mutual information, also called transfer entropy
(TE), offers an alternative way to study effective connectivity
in the brain. TE reduces to GC for VAR models but gen-
eralizes GC to nonlinear processes. TE has been applied by
Vicente et al. [194] to magnetoencephalography (MEG)
recordings in a simple motor task. (e authors demon-
strated the superior detectability of causal relations deduced
from MEG signals as TE is insensitive to signal cross-talk
due to volume conduction. Multivariate vector autore-
gressive (MVAR) models are often used to estimate brain
connectivity from EEG signal recordings. MVAR models
have first been implemented by Antonacci et al. [195] on
ANNs. (e authors showed that stochastic gradient descent
with L1-regularization, if applied during learning directly on
the estimated weights, can efficiently cope with small
datasets as well as regressor collinearity and provide accurate
brain connectivity estimates. Subsequently, Antonacci et al.
[196] extended their studies of network information pro-
cessing with small available datasets acquired to investigate
network physiology problems. (ey proposed a state-space
(SS) variant of a VAR model regularized by the LASSO
constraint and applied it to the analysis of the physiological
network of brain and peripheral interactions probed in

humans under different conditions of rest and mental stress.
(eir study corroborates the possibility to extract physio-
logically plausible patterns of interaction between the car-
diovascular, respiratory, and brain wave amplitudes. Last but
not least, Antonacci et al. [197] focused on the estimation of
Granger causality (GC) in adverse conditions of small
datasets or a very high number of time series. (e authors
showed that it is still possible to estimate GC in linear in-
teraction time series and to reconstruct the underlying
network structure if VAR models are combined with state-
space models and partial conditioning on a subset of most
informative variables [198].

(e study of Nobukawa et al. [199] dealt with related
electroencephalogram (EEG) data to analyze the continu-
ously captured time-varying instantaneous phase synchro-
nization between resting-state EEG potentials from different
brain regions. For the first time, the temporal dynamics of
phase synchronization was characterized using multiscale
entropy, which quantifies the complexity of brain signal
dynamics over multiple temporal scales. Comparing groups
of healthy younger and older subjects, a region-specific
enhanced complexity of temporal dynamics of phase syn-
chronization was observed in older subjects in the α-band
predominantly in frontal brain regions. Such altered com-
plexity was not identified by a comparative phase syn-
chronization approach such as phase lag index, which is
defined by the consistency in the distribution of instanta-
neous phase differences. Surrogate analyses confirmed the
deterministic origin of the temporal dynamics of phase
synchronization in the neural network system. Phase-
locking mechanisms were also the subject in the study
conducted by Lee et al. [200]. By employing EEG recordings,
they suggested that partial phase locking is the underlying
concept of optimal functional connectivity during rest. (e
measurement of phase lag diversity enables us to quantify
how far pharmacologically or pathologically perturbed
connectivity deviates from its critical state, which could be
used to identify various states of consciousness. In an effort
to bridge the gap across different time scales in connectivity
analysis, Wirsich et al. [201] proposed an integrative
framework which combines FC observed in EEG and fMRI
simultaneously. In their study, they employed a hybrid
connectivity independent component analysis (connICA)
[73] to search for spatially independent networks linked
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Figure 7: Correlation-based functional connectivity describes the temporal coherence of activity profiles in two brain regions i and j and
therefore yields undirected graphical representations of brain networks (a). On the contrary, directed connectivity measures such as Granger
causality provide a data-driven perspective on potentially causal dependencies among brain regions, i.e., if one region i drives region j, or
vice versa (b).
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between the two modalities. (eir study could reveal two
robust hybrid components, one which is uniformly dis-
tributed across EEG frequencies, while the second one
showed higher sensitivity to different EEG frequency bands.
(eir results suggest that some spatially independent FC
patterns are coexpressed simultaneously in EEG and fMRI.

5.3. Hidden State-Space Models. Given that spontaneous
fluctuations of BOLD signals in RSNs reflect the dynamic
organization of the resting brain, a number of studies
employed state-space models, based on neural activity
patterns or functional connectivity states, to characterize
underlying dynamic brain mechanisms. Leonardi et al. [202]
proposed a data-driven approach based on PCA to reveal
latent coherent FC dynamics in a multisubject fMRI study.
(e study compared principal components of whole-brain
dynamic FC patterns of multiple sclerosis patients with those
derived from a healthy control group. In multiple sclerosis
patients, they identified a network of altered connections
centered on the DMN. Instead of decomposing whole-brain
dynamics into eigenmodes, Eavani et al. [203] decomposed
such subject-specific functional connectivity patterns into a
temporal sequence of hidden states employing a hidden
Markov model (HMM). (e basic principle of a HMM is
illustrated in Figure 8, and the general principle is outlined
in Appendix C. In this study, states were represented by their
unique covariance matrices reflecting the underlying whole-
brain network. (ese covariance matrices were generated
from a set of sparse basis networks, each reflecting a specific
pattern of functional activity of selected regions of interest
(ROIs). Hidden network states arose in this model from
distinct variations in the strength with which different basis
networks contributed to any specific hidden state.(emodel
explained the functional activity as a dynamically changing
combination of overlapping task-positive and task-negative
basis networks.

In an effort to analyze dynamic transition patterns of
functional brain states, Ou et al. [125] also investigated an
HMM to characterize what they called functional con-
nectome states. (e study focused on a rs-fMRI dataset
which encompasses posttraumatic stress disorder patients
and normal controls. (e study revealed that the brain only
switches between a set of few brain states. Furthermore, two
HMMs, one for patients and one for healthy controls, were
constructed, and classification could be performed by ex-
amining which of the two HMMs can better describe the
observed connectome state sequence. Rather than relying on
HMMs alone, Taghia et al. [204] developed a Bayesian
generative model within the framework of HMMs resulting
in a dynamic variant of the static factor analysis model
[205, 206]. In their study, Bayesian switching factor analysis
(BSFA) learns latent states, representing dFC networks, and
their temporal evolution, as well as transition probabilities
between these states. Variational Bayes learning also allows
us to estimate the number of latent states via Bayesian model
selection, thereby preventing the development of overly
complex models. Finally, the BSFA model was thoroughly
tested on data extracted from the Human Connectome

Project [207].(ough the HMMhas been commonly used in
modeling brain states, Shappell et al. [126] recently pointed
out that HMMs assume the sojourn time (i.e., number of
time points in a brain state) to be distributed geometrically.
Otherwise, inaccurate estimates of the dwell time in any
brain state might result. (e authors proposed a hidden
semi-Markov model, which explicitly models the mean
waiting time distribution for each brain state. Application to
task-based as well as resting-state data revealed the potential
of mean waiting time, also called sojourn time, distributions
for an understanding of healthy and diseased brain mech-
anisms. An interesting variant of a HMM that has not yet
been applied to dFC data has been proposed by Kohlmorgen
[208]. (is approach considers the situation of a nonsta-
tionary dynamical system, which switches between a
number of dynamically changing states. (e model pro-
cesses the data incrementally and does not need to learn
internal parameters. It relies on an online variant of the
Viterbi algorithm (A Viterbi algorithm generates the
maximum likelihood estimate of the sequence of hidden
states within an HMM.) and provides an online exploratory
data segmentation and classification. (is is achieved by
tracking and segmenting changes of the underlying prob-
ability density in a sliding window approach.

(ough much effort has been devoted to characterize
resting-state dFC, its nature is still the subject of ongoing
discussions. As neuronal populations coordinate their ac-
tivities on specific time scales through phase coherence,
Vidaurre et al. [209] employed HMMs to analyze magne-
toencephalogram (MEG) data with respect to characterizing
the dynamics in large-scale phase-coupled networks, which
show coherent activity patterns. (ey could show that RSNs
can be represented on short time scales by transient brain
states, which are characterized by short-lived spatial patterns
of phase coherence and oscillator strengths that in part
resemble DMNs. (us, functional specialization in the brain
may transiently occur at various intrinsic time scales
through large-scale phase coupling mechanisms. In a sub-
sequent study, Vidaurre et al. [210] extended their HMM to
the big data scenario. (e amended HMM was able to infer
robust and interpretable dFC across a set of data encom-
passing task-based and resting-state paradigms, recorded via
either MEG or fMRI of thousands of subjects. Such tools are
essential to make progress while taking advantage of huge

ht ht+1 ht+2

xt xt+1 xt+2

Figure 8: Illustration of a simple hidden Markov model (HMM).
Such models are based on the idea that observable events xt are in a
causal relation with some underlying hidden events ht.
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data repositories provided by the Human Connectome
Project or the UK Biobank initiative.

Although time-varying connectivity studies explored the
nonstationary nature of the dynamical switching between
discrete brain states, recent investigations in the field cast
doubts on the nonstationarity assumption. Rather, these
studies suggested that dFC might be attributed to sampling
variability of static FC. (is controversy led Liégeois et al.
[211] to reanalyze the stationarity and statistical testing of
dFC. (ey pointed out the relation of stationarity to en-
semble statistics, while all FC measures in use are related to
sample statistics. (is fact broadens the space of stationary
signals to include the important class of HMMs often
employed to construct discrete brain states. (at is to say
that stationarity is not in contradiction to the concept of a
steady state with a finite number of states between which the
system switches dynamically. An in-depth discussion of
issues related to statistical testing in case of FC was pre-
sented. Commonly used concepts such as phase randomi-
zation (PR) and autoregressive randomization (ARR)
generate stationary, linear, and Gaussian distributed data,
and this null hypothesis cannot be rejected by most subjects
taken from the Human Connectome Project for testing. An
immediate consequence is that, by applying such tests,
statistical rejection can be caused by inherently nonlinear
and nonnormally distributed data. Hence, nonlinear and/or
non-Gaussian models may provide a better explanation of
the dataset under study.(e authors corroborate this in their
study where 1st-order autoregressive (AR) models explained
their data significantly better than static FC models. (ey
show that such models better replicate empirically observed
dynamic connectivity patterns in rs-fMRI data, which, in
their opinion, could indicate a lack of discrete brain states.
On the contrary, the HMM can capture aspects of the data
that the AR model cannot capture, for example, that the
transitions between networks organize hierarchically [212],
or how the visits to these networks relate to the sleep cycle
[213]. (erefore, AR and HMM models can reveal com-
plementary aspects of brain dynamics. Issues related to
statistical testing of dFC models have also been discussed by
Khambhati et al. [214] who reviewed efforts to model dFC
and related activity patterns and provided suggestions for a
careful and accurate interpretation of dynamic graph
architectures.

5.4. Machine Learning Approaches to the Structure-Function
Relationship. As discussed above, aside from large-scale
computational modeling of functional brain connectivity
and dynamics, so-called computational connectomics, ma-
chine learning approaches, often based on EMF, have been
used to explore, interpret, and classify functional connec-
tivity patterns [215, 216], but up until now, only relatively
few machine learning-based studies dealt explicitly with the
structure-function relationship.

An early attempt has beenmade by Deligianni et al. [217]
to quantify the prediction quality of FC based on known SC.
In their first study, they used a canonical correlation
analysis- (CCA-) based model to infer functional

connectivity from the structural connection strength. By
finding maximally correlated projections of two sets of
variables (e.g., SC and FC), CCA can reveal hidden inter-
relationships between them. (is mapping problem is
characterized by its high dimensionality: when using n re-
gions of interest (ROIs), defining the nodes of the structural/
functional graph, one would need to infer N � n(n − 1)/2
functional connections from an equal amount of structural
connections. To address this problem, the authors addi-
tionally used principal component analysis (PCA) for di-
mension reduction of the SC and FC data before applying
CCA.

Another way to deal with high-dimensional problems
offers the least absolute shrinkage and selective operator
(LASSO), which was used in further studies of Deligianni
et al. [74, 218–220]. (is sparse linear regression model
shrinks noisy and irrelevant connections to zero and also
performs feature selection by linking each output variable
with a subset of input variables [221]. At first, Deligianni
et al. [218] used this model to directly infer FC from SC.
Employing this model, they studied the impact of indirect
structural connections between regions (see Figure 3), and a
significant improvement of the prediction performance was
shown when indirect connections up to the second order
were added [218]. In subsequent investigations [219, 220],
instead of trying to directly predict functional connectivity
as the covariance matrix of mean time series in different
ROIs, they used a parametrization based on a multivariate
autoregressive model to describe the generative process of
fMRI time series. In addition to this probabilistic frame-
work, they relied on a randomized version of LASSO, which
randomly incorporates different weights for the regulari-
zation, what makes the regression problem less dependent
on the choice of parameters. Each structural connection can
then be assigned with a probability to be selected for pre-
dicting a functional connection, making it possible to obtain
a interpretable set of structural connections, which are
predictive for certain functional connections. An intrinsic,
model-independent error measure of FC predictions was
introduced to assure robust model selection. (is process
revealed interesting relationships between the underlying
structural connections involved in shaping certain func-
tional networks. In analogy to the randomized LASSO, a
sparse CCA can be modified by using bootstrap with
resampling to obtain a statistically interpretable mapping
between SC and FC [74] and obtain connections which are
consistently selected. Deligianni et al. [74] used this
framework to relate different microstructural indices derived
from DTI and neurite orientation dispersion and density
imaging (NODDI) [222] to functional connectivity derived
from a combination of EEG and fMRI. (is allowed the
authors to compare different types of microstructural indices
with each other in the context of functional connectivity. In a
subsequent study, Deligianni and Clayden [223] improved
the CCA-based prediction by employing the transportation
of FC matrices onto a Riemannian manifold. (is ensured
that the results of the linear prediction are restricted to be
symmetric positive definite FC matrices, satisfying the cri-
teria, when FC is estimated as a precision matrix, the inverse
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of the covariance matrix of time series. Similar to Deligianni
et al., Reddi [47] also relied on sparse linear regression
techniques to assess the SC-FC relationship. LASSO was
used to predict the functional data of one ROI based on the
data of all other ROIs. It was shown that the predictive
performance was not affected when constraining the support
to components with high structural connectivity, but
strongly decreased when using components without any
connections. When using regression to directly predict FC
from SC, and also SC from FC, Reddi [47] showed that the
structural connections could be better reconstructed from
functional interactions, which might be due to the fact that
tractography has difficulties to capture long-range inter-
hemispherical connections [37].

In natural language processing, algorithms such as
word2vec have been used to embed words into a vector space
such that their vector representations capture syntactic and
semantic word relationships [224, 225]. Rosenthal et al. [75]
used a generalization of this method for network analysis to
study the relationship between brain regions in the struc-
tural network. Instead of characterizing words in the context
of sentences, algorithms such as node2vec can find repre-
sentations of nodes in random walks within the network,
which preserves the neighborhood relationships within the
structural connectome [226]. (ese representations capture
meaningful topological properties of the brain network and
can be used for subsequent network analysis. In their study,
Rosenthal et al. [75] used the embedding of structural
network nodes to predict FC. At first, they incorporated a
simple linear regression model for their SC-FC mapping,
and in the next step, they showed that the mapping could be
improved by employing a mulitlayer perceptron (MLP).
Furthermore, they used this connectome embedding tech-
nique to predict the impact of lesions in the structural
network on functional connectivity.

Contreras et al. [227] combined rs-fMRI with brain con-
nectomics to characterize changes in whole-brain FC. Indi-
vidual FC matrices were concatenated into a group FC matrix.
(e latter was decomposed with FastICA into ICs. Each of the
resulting independent FC patterns was considered a response
in a multilinear regression model including extraneous vari-
ables. Various ICs resulting from this connectivity independent
component analysis (connICA), including RSN and DMN,
were then further analyzed with respect to Alzheimer’s disease.
Recently, Amico and Goñi [73] proposed an extension to the
connICA by decomposing hybridized structural and functional
connectivity patterns. (e independent, joint structural-func-
tional patterns, extracted across a cohort of 100 datasets from
the Human Connectome Project, represented two task-sen-
sitive features, each encompassing connections within and
betweenwell-defined cortical areas.(e integrated patterns can
be considered connectivity fingerprints of a subject, deduced in
a purely data-driven way.

Hence, despite considerable efforts to characterize dFC
configurations deduced from rs-fMRI, the dynamics gov-
erning state transitions and their relationship to sFC still
remains an open problem. Furthermore, the hypothesized
latent brain states are yet to be related to the underlying SC.
Surampudi et al. [76] recently proposed a graph-theoretic

model that parameterized the low-dimensional manifold,
which represents the temporal structure of functional
connectivity patterns, by a set of local density distributions
and learned the parameters from data via a temporal
multiple-kernel learning (tMKL) strategy. (e latter directly
links dynamics to the underlying structure via a state-
transition Markov model (see Figure 8). Finally, the model
predicts the grand average FC across a group of subjects but
retains sensitivity towards subject-specific anatomy. (e
model was tested using the rs-fMRI data of 46 healthy
participants, and its generalizability was proven through a
test on a cohort of 100 subjects from the Human Con-
nectome Project. (e authors claimed that their tMKL
model performs considerably better than a whole-brain
dynamic mean-field (DMF) model [84], a single diffusion
kernel (SDK) model [48], or a multiple-kernel learning
(MKL) model [228].

6. Conclusion

6.1. Current Methods. Bridging the gap between dynamic
brain functions and their relatively static structural back-
bone is one of the keys for understanding the underlying
mechanisms which drive information processing in the
human brain and are physically confined by the anatomical
substrate of neurons, nerve fibers, and synapses. Accord-
ingly, recent research has focusedmainly on the resting-state
paradigm, which excludes external stimuli to elicit func-
tional dynamics. Such a focus might bear the risk of in-
troducing a strong bias towards this paradigm. It is apparent
that even at rest, the structure-function relation is highly
complex and will remain a subject of intense research in the
near future, but for the long term, it could also be of interest
to study the impact of stimuli or task-based paradigms on
this relationship [16].

Currently, methods from graph theory are used to map
functional onto structural connectivity, highlighting the
importance of indirect structural connections for modeling
the spread of neural activity [53, 55, 59]. Such approaches
showed that it is possible to explain functional connectivity
patterns, to a relatively large extent, alone from its structural
backbone, given proper constraints [54], but computing only
temporal correlations of activities in different brain regions
was shown to result in a certain loss of information. For such
graph theory-inspired approaches, it might therefore be
necessary in the future to rather rely on dynamic FC instead
of static FC only [76] to successfully characterize the rela-
tionship between SC and FC.

So far, models related to computational connectomics
provided insights into different aspects of brain dynamics,
emerging on various time scales [16, 83]. Computational
approaches helped to further interpret these complex brain
dynamics by employing concepts found in statistical physics
[2, 60, 111, 229]. (ey showed that the resting brain can be
seen as a system operating at a point of maximum meta-
stability [2], where resting-state dynamics are driven by
fluctuations around this critical point. In terms of inter-
pretability, these models can be very informative because
they are based on meaningful and well-understood physical
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processes. On the contrary, it is still challenging to design
models, which meet the requirements of explaining the
complex empirically observed activation patterns in the
brain, thus bridging the gap between spiking neurons and
whole-brain dynamics [78]. Also, their explanatory value is
often confined to a priori-defined models and assumptions.
Machine learning methods could add valuable support for
research in this field by providing novel insights from a data-
driven perspective.

Another largely unexplored aspect of structure-function
relationships concerns the impact of different acquisition
and preprocessing schemes. As there are, nowadays, various
sequences established to acquire fMRI and DTI data, as well
as elaborate pipelines for further processing, the choice of
data acquisition and processing seems to have a considerable
impact on the strength on the SC and FC relationship
[56, 61, 230]. (erefore, it might be necessary to also
question the concepts, which even define structural and
functional connectivity, and which concept is most appro-
priate for the above-discussed questions. In many pre-
processing pipelines, the variance of SC across subjects is
relatively weak, as shown by Zimmermann et al. [61]. (is
observation immediately raises the question of how much
information the subject-specific SC contains about its related
FC when extracted with current methods. Several efforts
have already been made to infer such a mapping on the
individual subject level [53, 55, 228]. However, for such
applications, several studies have indicated that a more fine-
grained parcellation of the cortex might be necessary for the
emergence of subject-specific features [4, 47, 61]. Also, al-
ternatives in structural imaging techniques such as neurite
orientation dispersion and density imaging (NODDI) [222]
or diffusion kurtosis imaging (DKI) [231] could provide
additional insights into the white matter architecture. Fi-
nally, as fMRI is limited in the temporal resolution, usually
around 1 to 2 seconds, it is clear that we do not get the
complete information about brain dynamics from this im-
aging modality alone. In future, additional information from
faster modalities such as EEG and MEG will be crucial in
order to overcome these limitations of MRI and help to
further close the gap between the brain structure and its
function [16, 57]. For example, simultaneous EEG-fMRI
techniques gain already more and more attention in mul-
timodal studies and clinical assessments [232, 233]. Such
data fusion approaches could also contribute valuable in-
sights into the structure-function relation because they
would allow us to observe the propagation of neural signals
onto the anatomical substrate at considerably higher tem-
poral resolution than in fMRI alone. (erefore, incorpo-
rating multimodal imaging techniques will likely be a key
aspect in our efforts to obtain a more comprehensive picture
of neural connectivity in the human brain.

6.2. Potential Future Directions of ML Applications.
Machine learning has already proven to be useful for
identifying functionally independent networks [117], but it
also has emerged, more recently, as a tool for learning about
the structure-function relationship. While computational

simulations tell us much about the mechanisms of brain
dynamics, every model relies on specific assumptions
concerning the physical nature of these dynamics. On the
contrary, data-drivenmethods frommachine learningmight
not be able to replicate natural processes in the brain, but
nevertheless can adapt to complex statistical data structures
intrinsically. By studying features, learned by data-driven
models, interesting structure-function relations can be
revealed, such as which structural connections are involved
in shaping the functional connectivity strength between two
brain areas [74]. Also, hybrid models showed considerable
potential in revealing new statistical features buried in
functional imaging data [129]. By making relatively general
assumptions, such as statistical independence in ICA or
sparseness like in the LASSO, a lot of freedom is given to
explore the inherent relationships in empirical data. (is
approach can be used to generate a novel hypothesis, which
might have been largely unexplored while solely relying on
predefined models. (erefore, machine learning approaches
are not competing with computational or graph theoretical
inspired models, but rather they supplement current
methods.

Most of the above-discussed machine learning methods
rely mainly on classical data-driven approaches, but fol-
lowing a recent trend, also, deep learning (Deep learning
refers to neural network models, which extract features from
input stimulus patterns at various levels of spatial and/or
temporal resolution in subsequently deeper layers of the
network. In general, simple features are extracted at high
resolution but small scale, while complex features are
extracted at low resolution and larger scales.) [234] has
gained increasingly more attention in the neuroscience
community [235, 236]. If sufficient data are available, such
models are capable of finding highly nonlinear patterns in
various data types, without much prior knowledge being
required about the structures underlying the data. On the
downside, the high level of abstraction of the data repre-
sentation in various layers of such deep neural networks
renders it rather hard to understand which patterns in the
data are relevant for generating a specific hypothesis.
(erefore, the explanatory value of such models is quite
controversial, and they will not provide the same detailed
insights into neural processes such as computational models
based on mathematically well-defined mechanisms and
concepts. However, their exploratory capabilities make it
already an attractive tool for numerous scientific questions
[235] and could give novel insight into the complex rela-
tionship between the brain structure and function. Even
more recently, some efforts have beenmade in order tomake
these machine learning models more transparent.(e SHAP
(SHapleyAdditive exPlanations) framework, for example,
presents a unified method for quantifying feature impor-
tance in order to bridge the gap between model accuracy and
interpretability [237, 238].

In summary, decomposing, in a purely data-driven
manner, complex activity patterns into underlying features,
relevant on various spatial or temporal scales, will certainly
help to formulate proper assumptions and constraints, used
with computational models to further understand of the
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underlying physical mechanisms leading to the observed
complex nonstationary activity patterns.

Appendix

A. Graph Laplacian

A.1. Adjacency Matrix. An adjacency matrix A is a square
matrix, whose elements indicate whether pairs of vertices
(v(n), v(n′)) are adjacent or not in a graph, often denoted as
n ∼ n′. A simple graph is represented by an adjacency
matrix, whose entries are ann′ � 0, 1{ } and which has all zeros
along its diagonal. A weighted adjacency matrix Aw, instead,
contains weights ann′ � wnn′ for each edge excluding self-
couplings. In an undirected graph, the adjacency matrix is a
real symmetric semipositive matrix, i.e., ann′ � an′n ≥ 0. (e
relationship between a graph and the eigendecomposition of
its adjacency matrix is studied in spectral graph theory.

A.2. Degree Matrix. (e diagonal degree matrix
D � diag(Aw1) contains information about the number of
edges emanating from any vertex, i.e., given a graph G �

(V,E) with |V| � N, D ∈ RN×N and

dnn′ �
dnn if n � n′,

0, otherwise,

⎧⎨

⎩

dnn � 􏽘

n′

wnn′ ,

(A.1)

where dnn � deg(vn) and wnn′ denote elements of the
weighted adjacency matrix.

A.3. Graph Laplacian. (e Laplacian matrix is a matrix
representation of a graph. It is also called admittance matrix,
Kirchhoff matrix, and discrete Laplacian. Given a weighted
graph with N vertices or nodes, its Laplacian matrix is
defined as

L � D − A,

Lnn′ �

dnn � 􏽘

n′

wnn′ if n � n′,

−wnn′ if n≠ n′ and vn is adjacent to vn′ ,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(A.2)

In case of an undirected graph, Laplacian is a symmetric
semipositive matrix with its associated eigendecomposition:

UTLU � Λ⟺LU � UΛ⟺L � UΛUT
, (A.3)

whereU � (u1, . . . ., uN) denotes the eigenvector matrix and
Λ � diag(λ1, . . . , λN) is the related eigenvaluematrix. In case
of directed graphs, either the in-degree or out-degree might
be used.

(e symmetric normalized Laplacianmatrix is defined as

Ln � D− 1/2LD− 1/2
� I − D− 1/2AD− 1/2

,

Ln( 􏼁nn′ �

1 −
wnn

dnn

if n � n′ anddnn � 􏽘

n′

wnn′ ≠ 0,

−
wnn′�������

dnndn′n′
􏽰 if n≠ n′ and vn is adjacent to vn′ ,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.4)

(e eigendecomposition of the graph Laplacian L and its
normalized variant Ln is related by

Ln � D−1/2LD−1/2
� D−1/2UΛUTD−1/2

� 􏽢UΛ􏽢UT
, (A.5)

􏽢U � D−1/2U, (A.6)

Λ � diag λl􏼈 􏼉
N
l�1􏼐 􏼑, (A.7)

where 􏽢U � (􏽢u1, . . . , 􏽢uN) denotes the complete set of or-
thogonal eigenvectors. Note that the graph Laplacian and its
normalized variant possess the same eigenvalues.

A.4. Transition Matrix and Random Walk Graph Laplacian.
A random walk on a graph can be modeled as a Markov
process employing the transition matrix Lt, which describes
transitions between adjacent and connected nodes.

Lt � D−1Aw �

􏽢w11 · · · 􏽢w1N

⋮ 􏽢wnn ⋮

􏽢wN1 · · · 􏽢wNN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

􏽢wnn �
wnn

􏽐n′wnn′
.

(A.8)
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Note that wnn′ ≠ 0 only if vertices vn and vn′ are adjacent
and connected. (e related random walk graph Laplacian is
then defined as

Lrw � D−1L � D−1 D − Aw( 􏼁 � I − D−1Aw � I − Lt �

1 −
w11

d11
· · · −

w1N

d11

⋮ 1 −
wnn

dnn

⋮

−
wN1

dNN

· · · 1 −
wNN

dNN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.9)

Note the similarity of the random walk Laplacian to the
normalized graph Laplacian:

Lrw � D−1/2LnD
1/2

. (A.10)

Hence, we have that Lrw ∼ Ln because D1/2 is an in-
vertible matrix and thus induces a similarity transformation.
Consequently, the random walk graph Laplacian has the
following eigendecomposition:

Lrw � D−1/2LnD
1/2

� D−1/2 􏽢UΛ􏽢UTD1/2
� D−1UΛUT

.

(A.11)

B. Matrix Decomposition Techniques

B.1. Singular Value Decomposition and Principal Component
Decomposition. Given a centered data matrix
X ∈ RN×M, N≥M, with zero mean, and let N represent the
spatial dimension and M the temporal dimension. Its sin-
gular value decomposition (SVD) then reads

X � UΣVT
, (B.1)

whereby U represents the orthogonal eigenvector matrix of
the related outer product correlation matrix C � XXT.

C � UΛCU
T

� UΣC · UΣC􏼂 􏼃
T
. (B.2)

(is decomposition is called principal component
analysis (PCA). Furthermore, ΛC � Σ2 denotes the matrix of
related eigenvalues λi � σ2 with σi being the corresponding
singular values. Finally, V represents the orthogonal ei-
genvector matrix of the related inner product kernel matrix
K � XTX.

K � VΛKV
T

� VΣK · VΣK􏼂 􏼃
T
. (B.3)

Note that the first M eigenvalues of both ΛK and ΛC are
identical.

B.2. Independent Component Decomposition. Given a cen-
tered data matrix X ∈ RN×M, N≥M, with zero mean, its
independent component decomposition reads

X ≈ AS, (B.4)

whereby rows 􏽥sl of component matrix S shall be as statis-
tically independent as possible. Note that a perfect factor-
ization might not be possible always. With fMRI, ICA comes
in two flavors, spatial (sICA) and temporal (tICA) inde-
pendent component analysis. With sICA, sS represents
independent spatial maps, while with tICA, tS represents
independent voxel time series. A spatiotemporal blind signal
decomposition tries to decompose the data matrix into a
product of two independent factor matrices [139].

X ≈ tSsS. (B.5)

B.3. NonnegativeMatrix Factorization. Given a nonnegative
data matrix X ∈ RN×M, N≥M, nonnegative matrix factor-
ization amounts to finding two component matrices W,H
with strictly nonnegative entries only. We then have

X ≈WH. (B.6)

Here, the rows of the component matrix H ∈ RL×M

represent characteristic local time courses, and the corre-
sponding rows of the component matrix W reflect the
weights with which these component time courses con-
tribute to each observed time course in X.

B.4. Empirical Mode Decomposition. Given a centered data
matrix X ∈ RN×M, N≥M, with zero mean, its decomposi-
tion into intrinsic modes yields

X � 􏽘
R

r�1
S(r)

, (B.7)

whereby S(r) represents intrinsic component matrices with
characteristic spatial frequencies reflecting intrinsic textures
contained in the component matrices. Each intrinsic mode
represents pure 2D spatial oscillations occurring on char-
acteristic time scales except the last mode, which represents a
nonoscillation trend.

C. Hidden Markov Models

(e idea of a hidden Markov model is to make inferences on
a system, characterized by a set of hidden states
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H � [h1, h2, . . . , hN], by observing a sequence of emitted
states X � [x1, x2, . . . , xT], with X depending on H. (ese
models are described by the following two properties.

Hidden states H follow a Markov process:

P hi|h1, . . . , hi−1( 􏼁 � P hi|hi−1( 􏼁, (C.1)

and the emission probability of xi only depends on the
systems’ current state hi:

P xi|h1, . . . , hi . . . , hN, x1, . . . , xi, . . . , xT( 􏼁 � P xi|hi( 􏼁.

(C.2)
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