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A formalism for electronic-structure calculations is presented that is based on the functional renormalization
group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with
an associated Fermi surface, which can provide the organization principle for the renormalization group (RG)
procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain
rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band
structure, such as disordered metals or molecules. The energy-domain FRG (εFRG) presented here accounts
for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of
the art GW -BSE, because in εFRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner.
An efficient implementation of the approach that has been tested against exact diagonalization calculations and
calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG,
also the εFRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow
of the corresponding interaction vertex. Embarking upon this fact, in an application of εFRG to the spinless
disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder
strength. Finally, an extension of the approach to finite temperatures and spin S = 1/2 is also given.
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I. INTRODUCTION

Correlation effects are the driving agent behind a great
many of the phenomena that are comprising the contemporary
physics of condensed matter systems. As long as interactions
are not too strong, such correlation phenomena can be
understood in terms of an effective single particle picture
as it is provided, e.g., by the Fermi-liquid theory. In this
weakly correlated limit, the density-functional theory (DFT)
can yield useful, often quantitative results for the electronic
structure of crystalline or molecular matter. Where DFT fails
to be quantitative, post-DFT correction schemes have been
introduced that can significantly improve the accuracy, in
particular with respect to (charged) excitation energies [1].
As a particularly successful example, we mention the GW

approximation motivated by conventional diagrammatic per-
turbation theory [2–4].

At low enough temperatures, most real materials undergo
a transition into a correlated low-temperature phase, such
as a magnet or a superconductor. Such phenomena are
usually at the verge of applicability of perturbative methods.
Still, perturbation theory can be very useful, because it
often signalizes the existence of such phase transitions via
divergent diagrams. In recent years a powerful method has
been devised to deal with stronger correlations, the functional
renormalization group (FRG), that has proven particularly
successful in this respect [5,6]. It can be (roughly) thought of as
a systematic extension of GW theory and its Bethe-Salpeter-
type generalizations.1 Because it monitors the RG flow of a
representative set of interaction vertices, FRG can predict in
an unbiased way the leading Fermi liquid instabilities together
with estimates for the corresponding phase boundaries.

*Corresponding author: ferdinand.evers@ur.de
1See, e.g., Refs. [57,58].

Beyond phase boundaries, the FRG is capable to predict
a variety of other physical observables including Luttinger-
liquid parameters [7], Fermi-liquid corrections [8,9], and
spin susceptibilities [10–12]. Correspondingly, the FRG has
been applied to a variety of systems, e.g., the Hubbard
model in various parameter regimes [13–19], single impurity
models [20,21], spin [10–12,22–24] and quantum critical
systems [25–27]. A generalized version of the method has been
devised [28,29] so that also broken symmetry phases could be
addressed such as superfluids and superconductors [29–31].
For an overview, we direct the reader to Refs. [5,32].

Several formulations of FRG have been devised to treat
various situations with broken translational invariance: single
impurity models have been investigated in the context of
Luttinger liquids [33,34] and the Kondo-effect [35]; for a
review, see Ref. [5]. The transport through a quantum point-
contact with spatial structure has been analyzed by Bauer
et al. [36,37]. The magnetization of graphene based nanodisks
has been studied in the presence of zero-energy states that are
supported by the system geometry [38]. Effective field theories
of disordered systems have also been addressed. Katanin has
worked out an FRG scheme for noninteracting electrons and
applied it to graphene [39]. Even earlier, Dusuel and Zanchi
used an FRG-type approach for analyzing the interplay of
disorder and superconductivity [40].

Explicit FRG treatments of individual inhomogeneous
systems as we have them in mind here, such as molecules
or disordered metals are still scarce. The work by Karrasch
and Moore probably comes closest who consider disordered
Luttinger liquids [41].

A. Motivation underlying this work

Good progress has been made in electronic structure calcu-
lations for real materials as well as for model Hamiltonians.
Still, we believe that there is room for improvement. With an
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eye on ab initio calculations, we observe that it is still very
challenging to accurately calculate, e.g., ionization energies
and electron affinities of small molecules or atom clusters.
Quantitative results from DFT can be obtained only via
procedures, such as �SCF, that rely on error cancellation.
The G0W0 method in this respect seems more reliable;
benchmarks for different implementations have recently be-
come available [4,42,43]. The G0W0 approximation is not
self-consistent, however, and partly for this reason it comes in
many flavors. The development and testing of self-consistent
and computationally affordable GW schemes is currently
under way [43–46]. Even more challenging it is to calculate
the dynamical response, e.g., the optical gap or the absorp-
tion spectrum. The traditional time-dependent DFT, such as
TDLDA, tends to underestimate optical gaps in solids by ∼eV .
Interestingly, it can quantitatively reproduce excitation gaps of
small molecules when combined with long-range functionals,
especially if they are optimally tuned [47,48].

In combination with GW theory, one solves the Bethe-
Salpeter equation to find the optical properties. Due to the
computational complexity, one usually keeps only the sim-
plest nontrivial vertex corrections (GW+BSE). The approach
yields results often with a typical accuracy of a few hundred
meV, see Ref. [49] for a recent overview and Ref. [50]
for benchmarks. In some cases much larger deviations have
been reported, however, calling for a further validation
of GW+BSE [51]. State of the art GW implementations
can be found in many standard band structure codes, e.g.,
Refs. [52–56].

(i) In this situation, it seems advisable to go a step
forward and explore more complete approximation schemes
that in principle could go significantly beyond the lowest
order BSE-technology by incorporating, e.g., a self-consistent
evaluation of screening in the presence of vertex corrections.
The extended scheme would thus provide a laboratory for
testing the current BSE-technology against a more accurate
higher order method. In accord with earlier work [57,58], also
our effort is underlying the idea that the FRG could be an
interesting candidate for a more advanced electronic structure
theory.

A certain limitation of the FRG in its most common
flavor is that it was formulated having homogeneous systems
in mind. It thus could form the basis for improved band
structure calculations for crystalline matter, but it will be
inefficient with more inhomogeneous systems that we are
mostly interested in, here. Having in mind the program
outlined before in (i), we consider it an interesting challenge
modifying the traditional k-space FRG (kFRG) into a new
tool—energy-domain FRG (εFRG)—that can also describe the
phases and the corresponding transitions in weakly correlated,
inhomogeneous matter.

(ii) To elaborate on the perspective for the εFRG, we
mention two research fields with prospective applications.
(1) Quantum chemistry calculations could benefit from εFRG
in a range of system sizes where high-precision calculations,
e.g., the couple-cluster approach, are computationally not
affordable any more. (2) The εFRG might prove a useful tool
for investigating the effect that disorder has on those quantum
phase transitions that have already been investigated in the
clean limit [5]. Conversely, there is the intriguing prospect

to study the effect that weak interactions have on disordered
systems with wave functions that are localized due to quantum
interference [59].

Motivated by (2), we here present an implementation of an
εFRG that can operate on disordered model Hamiltonians. Our
goal is to explore the potential of the approach as a higher-order
method for studies of weakly correlated fermions in generic
environments lacking translational symmetries.

B. FRG for systems without translational symmetries: εFRG

Consider a fermion system with a Hamiltonian that decom-
poses into a one-body and a two-body parts,

Ĥ = Ĥ0 + Û . (1)

The noninteracting part Ĥ0 includes a static potential. It is con-
sidered generic in the sense that it does not exhibit translational
symmetries; its single-particle eigenstates |α〉,α = 1, . . . ,N

are far from plane waves. They can be thought of as wave
functions of a strongly disordered metal or as molecular
orbitals, e.g., of a generic organic molecule. We will leave
the interacting part Û unspecified for the time being.

1. Excursion: Hedin’s equations and FRG

As was recognized by L. Hedin, in order to compute phys-
ical observables in the presence of two-body interactions, one
can solve a set of self-consistent nonlinear matrix equations
for the exact (causal) Green’s function, the corresponding
self-energies and vertex functions [60,61]. Unfortunately,
Hedin’s equations are impossible to solve exactly even with
today’s computational resources for realistic system sizes.
Difficulties arise because of (a) the complicated nature of
the matrix kernels and (b) the very large dimensions of the
matrices involved, especially of the interaction vertex �. The
ubiquitous approximation strategy therefore is truncating the
matrix equations so that the kernels simplify and reducing
the effective matrix size by grading the many-particle Hilbert
space. Eventually, also the FRG relies on such a truncation
scheme.

However, even the truncated set of equations is very difficult
to solve. Partially, this is because the requirement of the
solution being self-consistent. Here the idea of the renor-
malization group (RG) with the corresponding flow-equation
comes in. Speaking in a lose manner, what corresponds to
an iteration cycle in conventional solutions of self-consistency
problems is in the framework of FRG replaced by a consecutive
integration of a differential equation that establishes the RG
flow. The initializing guess of the iteration cycle corresponds to
the initialization of the flow equation; the flow stops once the
(self-consistent) fixed-point has been reached.2 Advantages
of the RG approach over self-consistency cycles are (a) that
uncertainties related to the proper choice of the starting guess

2Strictly speaking, the RG flow arrives at a self-consistent fixed-
point only for certain (conserving) truncation schemes of the RG
equations. A well known scheme satisfying this criterion has been
devised by Katanin [94]. Unfortunately, implementing the Katanin
scheme is computationally so expensive that we here have to refrain
from doing so.
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FIG. 1. Diagrammatic representation of the FRG flow equations for the self-energy �� and the vertex ��. A vertical bar denotes the
single-scale propagator S�, the other propagators are G�. As usual, external legs do not entail a propagator.

are removed and (b) there is a clear physical interpretation in
terms of “runaway flow” even when the numerical integration
breaks down, so the RG-flow cannot be followed all the way
to the fixed-point. In contrast, the lack of convergence of
a self-consistency cycle is much more difficult to interpret
consistently.

2. Mathematical challenges of FRG

For the specific set of flow equations used in this work,
we adopt the same truncation scheme for the RG equations,
Fig. 1, that also is underlying the traditional FRG for periodic
systems (kFRG). At this stage the only difference is that with
εFRG each line represents a (Matsubara) Green’s function
deriving from a resolvent G = (iω − H0)−1 that is not diagonal
in momentum (k−) space. Figure 1 gives a graphical repre-
sentation of a set of nonlinear (integro-)differential equations
that represent a typical initial-value problem; the flowing
energy cutoff � plays a role analogous to a time. Ideally,
after integrating the equations from � = ∞ to � = 0 an exact
solution of the (truncated) vertex equation has been found.

As we already mentioned, solving the truncated set of
flow equations, Fig. 1, still poses a problem of formidable
computational complexity. The difficulty arises from the
fact that the vertex function, �(	), is represented as very
large family of matrices with three continuous frequencies,
	 = (ω1,ω2,ω3), acting as family parameters. In addition,
each matrix has four indices, every one of which explores,
in principle, the basis set of the full single-particle Hilbert
space.

3. Established approximation strategies

Several simplification strategies can reduce the computa-
tional effort, making FRG feasible and competitive. We offer
a short overview.

a. Static (or adiabatic) approximation. The frequency de-
pendence of the vertex function is neglected, �(ω1,ω2; ω′

1) →

�(0). This is analogous to the static screening approximation
familiar from the traditional treatment of the BSE imposed
on top of G0W0 [62–64]. In FRG, one also ignores the
frequency dependency of the self-energy �. As a consequence,
�FRG turns into an energy-independent, Hermitian correction
to the reference Hamiltonian Ĥ0. The effective Hamiltonian
matrix Heff = H0 + �FRG defines the quasiparticle energies
and wave functions. With respect to the static self-energy, the
situation in FRG is completely analogous to the one in the
quasiparticle self-consistent GW theory (qpGW ) [46,65–68].
The advantage of FRG over this theory is, that vertex
corrections are accounted for in FRG in a self-consistent
manner.

In the static approximation, the scaling of FRG with
the dimension of the single-particle Hilbert space, N , is
formally N6 if one does not consider further symme-
tries such as translational invariance. It is thus roughly
comparable to the scaling of high-precision methods in
quantum chemistry, like the coupled cluster method (flavor
CCSD) [69].

b. Clean systems: Fermi-surface projection and channel
decomposition in kFRG. In the clean case, H0 exhibits a
translational symmetry, so the number of independent matrix
elements of �(0) reduces significantly. Moreover, a Fermi-
surface exists that helps to identify a hierarchical structure
within the matrix elements of �(0). In many cases, only
matrix elements with wave vectors close to the Fermi surface
dominate the physics of the system, so the vertex at momenta
away from this surface may be replaced by the vertex
with momenta projected onto it, drastically simplifying the
calculation. (“N -patching” scheme)

Similar to the standard procedure in fermionic field
theories [70], one can efficiently parametrize the vertex
function splitting it into three different interaction channels
by analyzing the phase-space of k-space scattering [71]. Each
channel traces three possible transitions triggered by charge,
spin or superconducting fluctuations.
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The channel decomposition is an attractive alternative
to the patching procedure: it is physically transparent and
therefore simplifies the analysis of runaway flow. Due to
its computational efficiency, an explicit dependency in each
channel on one frequency can be kept. Finally, in its extended
versions the flow can be followed all the way into the
symmetry-broken phases [28,29].

The conventional rationale motivating the channel decom-
position relies on phase-space arguments for scattering events
in k space near the Fermi-surface. This seems to suggest that
channel decomposition is well motivated for clean and weakly
inhomogeneous systems.

c. Localizing the vertex function in real space. Several au-
thors [36,37,41] have adopted an approximation that neglects
(all or a subset of) nonlocal terms in the flow equation for the
vertex function. Thus the vertex equations when formulated
in real-space simplify significantly. The method should be
applicable if long-range correlations in the interaction vertex
remain unimportant for the critical physics near the phase
boundary.

4. “Active-space” approximation for εFRG

In the case of generic systems, there is no intrinsic
symmetry guidance as towards how to simplify the matrix
structure of �(0). In particular, Fermi-surface projection is not
feasible. The most important new conceptual step in εFRG as
compared to kFRG will be to find an alternative to the common
Fermi-surface projection. It should reduce the number of
degrees of freedom that are kept explicit in the RG calculation
without invoking a momentum-space concept. In this work,
we propose and test an “active-space” approximation (ASA)
that can achieve this goal.

The ASA could be a potential alternative working well in
strongly inhomogeneous situations where due to the complete
absence of a Fermi-sphere concept a channel decomposition
might no longer be meaningful. We will develop it here in a
version that keeps the full spatial dependency of the interaction
vertex avoiding to localize the vertex equations. To be able
to do this, the static approximation had to be adopted. This
is a certain drawback against the method devised by Bauer
et al. that employs a channel decomposition with (residual)
frequency dependency in the (localized) vertex equation [37].

a. How to choose the active space. Similar to the FRG-
treatment of clean systems, we also work in the eigenstate
basis |α〉 of the noninteracting Hamiltonian Ĥ0. Then the
vertex function takes a matrix representation �α1,α2,α3,α4 (0). To
simplify the flow equations, we will approximate this matrix
by the bare interaction vertex, Uα1,α2,α3,α4 , whenever one of the
states |αi〉,i = 1, . . . ,4 is outside a certain active space HM of
the full single-particle Hilbert space, H. A natural choice of
HM corresponds to states with energy εα in the vicinity of the
chemical potential μchem. The index M indicates the size of the
volume, which could be characterized by an energy scale or
simply by the number of states that it contains. We will adopt
the simplest choice associating M with the number of states
kept in HM .

b. Computational scaling. The important computational
aspect of the active-space concept is that it brings the nominal
scaling of εFRG down to M4N2 + M2N3. The optimal

choice of M balances the computational effort against the
required numerical accuracy of the calculational results. In our
applications, we found that typically M = N/3 is a reliable
choice. It is implying a speedup of a factor 102 for the
applications that we have investigated. For the limit of large N ,
we argue that M ∼ N1/2 in two-dimensional systems, so that
the net scaling of εFRG would be N4. It thus formally scales
comparable to current implementations of the GW method.

C. Application of εFRG: disordered Hubbard model

As a first application of the new formalism and in order to
demonstrate what can be achieved with it, we have studied the
2D spinless, repulsive Hubbard model with on-site disorder
at half filling. At zero disorder, W = 0, the model exhibits
a charge-density wave, while at zero interaction, U = 0, the
ground state corresponds to an Anderson insulator. Our interest
is in determining the phase boundary that separates the two
phases in the situation where disorder and interaction compete.
We have calculated it in the U/W plane. Specifically, we
can establish that at W > 0, the Anderson insulator survives
as long as the interaction does not exceed a critical value,
U > U ∗(W ) > 0.

D. Conclusion and outlook

As it is typical with higher-order methods, the computa-
tional bottleneck restricts the feasible system sizes. In our
applications, we found it practical to work with a single particle
Hilbert space containing N∼50–100 states. Our preliminary
tests indicate that substantially bigger system sizes of a
few hundred states are realistically accessible, N∼200–400,
after additional improvements in the code performance have
been implemented. It is only the limit of very large values
of N , though, where the superior scaling of εFRG will
become effective, so that the method becomes favorable as
compared to other well established techniques, such as CCSD
or quantum Monte Carlo. Whether these system sizes actually
can be reached, future research will tell. At present, εFRG is
readily applicable to models of interacting fermions in low
dimensions, which includes Hubbard models with spin and
(attractive) interactions at different filling fractions, but also,
e.g., small molecules.

E. Organization of this paper

The paper is organized in the following way. In Sec. II,
we give the main formalism including the formulæ needed
to reconstruct physical observables, in particular densities
and occupation numbers. Also the formulæ for the finite-
temperature formalism are given there, so that also, e.g.,
the effect of heat could be studied. Section III provides
the computational details of our specific implementation
of the main formulæ. In the consecutive section, Sec. IV,
we test this implementation on 1D- and 2D-model systems
of disordered fermions against numerically exact results from
exact diagonalization and the density matrix renormalization
group (DMRG) for small system sizes.

To illustrate the potential of εFRG, we present in Sec. V
an application to the disordered, spinless 2D-Hubbard model.
We will calculate and discuss the phase boundary between the
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Anderson insulator and the Mott phase in the plane spanned
by the disorder and interaction strength.

II. GENERAL METHODOLOGY OF εFRG

In this section, we will develop our εFRG scheme. We will
assume that it is practical to diagonalize the noninteracting
Hamiltonian exactly,

Ĥ0|α〉 = εα|α〉, (2)

yielding eigenstates {|α〉} with corresponding eigenenergies
{εα}. This allows us to rewrite the full Hamiltonian in terms of
the noninteracting eigenbasis,

Ĥ =
∑

α

εα ĉ†α ĉα + 1

4

∑
αβγ δ

Uαβγ δ ĉ†α ĉ†β ĉδ ĉγ . (3)

Here, Uαβγ δ are the antisymmetrized bare interaction matrix
elements in the noninteracting eigenbasis.

As discussed in Ref. [5], the FRG is a means to solve
this interacting problem by introducing a cutoff into the bare
propagator of the system. As the systems we want to study
are inhomogeneous in nature, and hence the single-particle
states are not easily classified systematically, we introduce a
cutoff in frequency space (as opposed to momentum space),

see Eq. (57) in Ref. [5],

G0,�(iω) = 
�(ω)

iω − H0 + μchem
, (4)

where 
�(ω) vanishes at � → ∞ and approaches 1 at � → 0;
see below for a discussion of our choice for 
�(ω).

As a consequence of introducing the infrared cutoff, �,
all other quantities of the system depend on �. If we take the
limit of � → ∞, it can be shown (see Eq. (31) in Ref. [5]) that
the self-energy vanishes and the effective interaction vertex �

is given by the matrix elements of the bare interaction, U···.
On the other hand, taking the limit of � → 0, we recover the
original system without the introduced cutoff. There is now
a continuous variable that connects the real system (� → 0),
where the physical quantities are not known a priori, with a
trivial system (� → ∞), where all quantities are known.

A. Flow equations

As is discussed in the literature [5,6], the derivatives of the
vertex functions (self-energy, effective interaction, etc.) yield
a set of flow equations; a full derivation of their most generic
form may be found in Chap. 4 of Ref. [6]. Following Ref. [5]
[Eq. (50)], we will adopt the generic formulation of the flow
equations,

d

d�
��(x ′,x) =

∑
y,y ′

S�(y,y ′)��(x ′,y ′; x,y), (5)

and for the vertex, Ref. [5] [Eq. (52)],

d

d�
��(x ′

1,x
′
2; x1,x2) =

∑
y1,y

′
1

∑
y2,y

′
2

G�(y1,y
′
1)S�(y2,y

′
2){��(x ′

1,x
′
2; y1,y2)��(y ′

1,y
′
2; x1,x2) − [��(x ′

1,y
′
2; x1,y1)��(y ′

1,x
′
2; y2,x2)

+ (y1 ↔ y2,y
′
1 ↔ y ′

2)] + [��(x ′
2,y

′
2; x1,y1)��(y ′

1,x
′
1; y2,x2) + (y1 ↔ y2,y

′
1 ↔ y ′

2)]}
−
∑
y,y ′

S�(y,y ′)�(6),�(x ′
1,x

′
2,y

′; x1,x2,y). (6)

Here, x and y are combined indices for space and time
coordinates. A diagrammatic representation of these equations
is given in in Fig. 1. Furthermore, we copy the definition of
Ref. [5] [Eq. (47)] for the single-scale propagator,

S� = −G�

[
d

d�
(G0,�)−1

]
G�. (7)

We next rewrite these quantities into our own nomenclature,
where we work in Matsubara space. Furthermore, we separate
the generic indices into Matsubara frequencies and Hilbert
space indices, x → (μ,ωn). We also drop the term with
�(6),� in accordance with the standard truncation scheme
for these equations [5], where in the case of short-range
interactions, power counting arguments establish the scheme’s
validity.

Since energy is conserved, the self-energy, the single-
particle Green’s functions, the single-scale propagator and the

vertex include the corresponding δ function,

��
αβ(ωn; ωn′ ) → T −1δn,n′��

αβ(ωn), (8)

G0,�
αβ (ωn; ωn′ ) → T −1δn,n′G0,�

αβ (ωn), (9)

G�
αβ(ωn; ωn′ ) → T −1δn,n′G�

αβ(ωn), (10)

S�
αβ(ωn; ωn′ ) → T −1δn,n′S�

αβ(ωn), (11)

��
αβγ δ(ωn,ωñ; ωn′ ,ωñ′ ) → T −1δn+ñ,n′+ñ′��

αβγ δ(ωn,ωñ; ωn′ ).

(12)

Inserting this into Eq. (5) yields

d

d�
T −1δn,n′��

αβ(ωn)

= T 2
∑

ωmωm′

∑
μν

S�
μν(ωm)��

ανβμ(ωn,ωm′ ; ωn′)

× T −1δm,m′T −1δn+m′,n′+m, (13)
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and after evaluating the sum over the Matsubara frequency ωm′ , one arrives at

d

d�
��

αβ(ωn) = T
∑
ωm

∑
μν

S�
μν(ωm)��

ανβμ(ωn,ωm; ωn). (14)

Here, we have used that a δn,n′ appears on both sides and have multiplied the equation by T .
Proceeding in a similar way for the equation of the flow of the vertex, Eq. (6), we arrive at

d

d�
��

αβγ δ(ωn,ωñ; ωn′ ) = T
∑
ωmωm̃

∑
μνρσ

G�
ρμ(ωm)S�

σν(ωm̃)
{
��

αβρσ (ωn,ωñ; ωm)��
μνγ δ(ωm,ωm̃; ωn′ )δ(c)

m̃

+ [��
βνγρ(ωñ,ωm̃; ωn′ )��

μασδ(ωm,ωn; ωm̃)δ(ph,1)
m̃ + ��

βμγσ (ωñ,ωm; ωn′ )��
ναρδ(ωm̃,ωn; ωm)δ(ph,2)

m̃

]
− [��

ανγρ(ωn,ωm̃; ωn′ )��
μβσδ(ωm,ωñ; ωm̃)δ(ph,3)

m̃ + ��
αμγσ (ωn,ωm; ωn′)��

νβρδ(ωm̃,ωñ; ωm)δ(ph,4)
m̃

]}
, (15)

where δ
(c)
m̃ and δ

(ph,·)
m̃ reflect the energy conservation of the vertex, e.g., δc

m̃ = δn+ñ,m+m̃.

B. Formalism at zero temperature

For the most part, we will discuss the formalism at T = 0. In that case, sums over Matsubara frequencies are replaced by
integrals,

T
∑
ωn

→ (2π )−1
∫

dω, (16)

and the Kronecker symbols will be replaced by δ functions,

T −1δn,n′ → 2πδ(ω − ω′). (17)

Equations (14) and (15) now read

d

d�
��

αβ(ω) = 1

2π

∫
dω̄
∑
μν

S�
μν(ω̄)��

ανβμ(ω,ω̄; ω), (18)

d

d�
��

αβγ δ(ω,ω̃; ω′) = 1

2π

∫
dω̄dω̄′ ∑

μνρσ

G�
ρμ(ω̄)S�

σν(ω̄′) × {
��

αβρσ (ω,ω̃; ω̄)��
μνγ δ(ω̄,ω̄′; ω′)δ(c)(ω̄′)

+ [��
βνγρ(ω̃,ω̄′; ω′)��

μασδ(ω̄,ω; ω̄′)δ(ph,1)(ω̄′) + ��
βμγσ (ω̃,ω̄; ω′)��

ναρδ(ω̄′,ω; ω̄)δ(ph,2)(ω̄′)
]

− [��
ανγρ(ω,ω̄′; ω′)��

μβσδ(ω̄,ω̃; ω̄′)δ(ph,3)(ω̄′) + ��
αμγσ (ω,ω̄; ω′)��

νβρδ(ω̄′,ω̃; ω̄)δ(ph,4)(ω̄′)
]}

, (19)

where again, δ(c)(ω̄′) and δ(ph,·)(ω̄′) reflect the energy conser-
vation of the vertex, e.g., δ(ph,1)(ω̄′) = δ(ω̃ + ω̄′ − ω′ − ω̄).

We now proceed to take the static limit, i.e., by replacing
the frequency dependence of the vertex and the self-energy
by their static limit, e.g., �(ω,ω′; ω̄) → �(0). For short-
range interactions, power counting of the flow equations
demonstrates that the dominant contribution for small � comes
from zero frequencies and states close to the Fermi energy. This
approximation has been discussed extensively in Ref. [5].

We arrive at

d

d�
��

αβ = 1

2π

∫
dω̄
∑
μν

S�
μν(ω̄)��

ανβμ, (20)

d

d�
��

αβ = 1

2π

∫
dω̄

∑
μνρσ

{
G�

ρμ(ω̄)S�
σν(−ω̄)��

αβρσ��
μνγ δ

+G�
ρμ(ω̄)S�

σν(ω̄)
[
��

βνγρ�
�
μασδ + ��

βμγσ��
ναρδ

]
−G�

ρμ(ω̄)S�
σν(ω̄)

[
��

ανγρ�
�
μβσδ + ��

αμγσ��
νβρδ

]}
.

(21)

Note that the vertex �� is antisymmetric under exchange of
the first or the last pair of indices,

��
αβγ δ = −��

βαγ δ = −��
αβδγ = ��

βαδγ . (22)

Furthermore, one can easily show that in the static limit for
finite system sizes the self-energy � is Hermitian. To further
simplify these equations, we choose our cutoff 
�(ω) to be a
simple step function,


�(ω) = 
(|ω| − �), (23)

such that its derivative is

d

d�

�(ω) = −δ(|ω| − �). (24)

Since by construction the self-energy is not frequency depen-
dent, the frequency integrals may now be solved analytically.
For Eq. (20), we have to integrate∫

dω̄S�
μν(ω̄).
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Inserting Dyson’s equation into Eq. (7), we have

S = −G
(

d

d�
[G0]−1

)
G = −G

(
d

d�
[G−1 + �]

)
G

= Ġ − G�̇G, (25)

in matrix notation. We note that G = (Q − 
�)−1
, where
we use the shorthand 
 = 
(|ω| − �) and Q = iω − H0 +
μchem. Using d

d�
A−1(�) = −A−1(�)Ȧ(�)A−1(�), simple

algebra yields

S = −δ

(
1 + 


Q − 
�
�

)
1

Q − 
�
. (26)

Since the δ and 
 functions are to be taken at the same
argument, we employ Morris’s Lemma3 to resolve this,

S = −δ

∫ 1

0
dt

(
1 + t

1

Q − t�
�

)
1

Q − t�
. (27)

Using the fact that

d

dt

1

Q − t�
= 1

Q − t�
�

1

Q − t�

and partial integration, the second summand of the integral
yields

−
[

t

Q − t�

]1

0

+
∫ 1

0
dt

1

Q − t�
,

where it can be seen that the remaining integral cancels the
first summand of the integral in Eq. (27), so we arrive at

S�(ω) = − δ(|ω| − �)

iω − H0 + μchem − ��
. (28)

The frequency integral is now trivial, yielding∫
dω̄S�(ω̄) = −

∑
ω̄=±�

1

iω̄ − H0 + μchem − ��
. (29)

As the following quantity will appear also in the flow equation
for the vertex, we will define

P �
μν(ω̄) := 1

iω̄ − H0 + μchem − ��

∣∣∣∣
μν

. (30)

Inserting Eqs. (29) and (30) into Eq. (20), the flow equation
for the self-energy now reads

d

d�
��

αβ = − 1

2π

∑
μν

(
P �

μν(�) + P �
μν(−�)

)︸ ︷︷ ︸
=:��,�

μν

��
ανβμ. (31)

When evaluating the flow equation for the vertex, Eq. (21), one
must take care that the arguments for the δ and 
 functions
coincide, so one may not simply take the result derived for the
single-scale propagator in the self-energy flow and apply it,
but one rather uses the same kind of treatment of the δ and 


functions for the entire expression, on a term by term basis.

3δ(x)f (
(x)) → δ(x)
∫ 1

0 f (t)dt , see Ref. [95].

In the end, the flow equation for the vertex in the static limit
reads,

d

d�
��

αβγ δ = − 1

2π

∑
μνρσ

∑
ω̄=±�

{
1

2
P �

ρμ(−ω̄)P �
σν(ω̄)��

αβρσ ��
μνγ δ

+P �
ρμ(ω̄)P �

σν(ω̄)
[
��

βνγρ�
�
αμδσ − ��

ανγρ�
�
βμδσ

]}

= − 1

2π

∑
μνρσ

{
�c,�

μνσρ�
�
νργ δ�

�
αβσμ

+�ph,�
μνρσ

[
��

βνγρ�
�
ασδμ − ��

ανγρ�
�
βσδμ

]}
, (32)

where we have used the symmetries of � to simplify the
equations and abbreviated

�c,�
μνσρ := P �

μν(�)P �
σρ(−�), (33)

�ph,�
μνσρ := P �

μν(�)P �
ρσ (�) + P �

μν(−�)P �
ρσ (−�). (34)

The full derivation may be found in Appendix A.

1. Initial conditions

The initial conditions at � → ∞ are given by

��→∞
αβ = 0 and ��→∞

αβγ δ = Uαβγ δ. (35)

In order to solve the equations numerically, we need to choose
an initial value �0 that is still finite but larger than all other
energy scales in the system. For � > �0, one may assume a
form of (iω)−11 for the propagator, allowing us to analytically
integrate the flow equations from ∞ to �0. In case of the
flow equation for the vertex, power counting in U and �0

immediately yields

��0 − U ∼ −
∫ �0

∞
UU

1

�2
d� = 1

�0
UU, (36)

and hence

|��0 − U |/|U | ∼ |U |/�0. (37)

We therefore may simply use that ��0 does not differ from
��→∞ for large enough �0 and arrive at

��
αβγ δ = Uαβγ δ, � > �0. (38)

The same does not hold true for the flow equation for the self-
energy, where the analytical integral gives a non-negligible
contribution,

�
�0
αβ = − 1

2π

∑
μ

Uαμβμ lim
η→0+

∫ �0

∞

(
ei�η

i�
− e−i�η

i�

)
d�

= − 1

π

∑
μ

Uαμβμ lim
η→0+

η

∫ �0

∞
sinc(η�)d�

= 1

π

∑
μ

Uαμβμ lim
η→0+

[∫ ∞

0
sinc(x)dx − O(η)

]

= 1

2

∑
μ

Uαμβμ. (39)

Here we have explicitly included the required convergence
factor eiω0+

that appears in the Green’s function in imaginary
frequency space.
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C. Systems with spin

In Eqs. (31) and (32), the indices represent generic states
in the Hilbert space. We will now discuss the case where
the system is fully SU(2) symmetric. Here, it is convenient to
separate the orbital degrees of freedom from the spin degrees of
freedom, α → (α,σ1). Our derivation will follow Ref. [72], but
we will discuss the generic case without the additional particle-
hole symmetry. Single-particle quantities (self-energy, propa-
gators) do not depend on the spin degree of freedom,

��
(α,σ1)(β,σ2) = �

s,�
αβ δσ1σ2 , (40)

G�
(α,σ1)(β,σ2) = Gs,�

αβ δσ1σ2 , (41)

S�
(α,σ1)(β,σ2) = Ss,�

αβ δσ1σ2 , (42)

P �
(α,σ1)(β,σ2) = P

s,�
αβ δσ1σ2 . (43)

The spin structure of the vertex is determined by the fact that
two particles may either keep their spin or exchange it, and
may thus be decomposed into

��
(α,σ1),(β,σ2),(γ,σ3),(δ,σ4) = c

I,�
αβγ δδσ1σ3δσ2σ4 + c

II,�
αβγ δδσ1σ4δσ2σ3 ,

where cI and cII are the coefficients for each of these processes.
Using the antisymmetry of �, Eq. (22), we may exchange

(γ,σ3) with (δ,σ4),

��
(α,σ1),(β,σ2),(γ,σ3),(δ,σ4) = −��

(α,σ1),(β,σ2),(δ,σ4),(γ,σ3)

= −c
I,�
αβδγ δσ1σ4δσ2σ3 − c

II,�
αβδγ δσ1σ3δσ2σ4 .

By comparing the coefficients of the Kronecker δs, we may
identify

c
I,�
αβγ δ = −c

II,�
αβδγ := −�

s,�
αβδγ ,

and hence write the vertex as

��
(α,σ1),(β,σ2),(γ,σ3),(δ,σ4) = �

s,�
αβγ δδσ1σ4δσ2σ3 − �

s,�
αβδγ δσ1σ3δσ2σ4 .

(44)

Using the symmetry of ��, one can see that �s,� is still
symmetric under exchange of both pairs of indices,

�
s,�
αβγ δ = �

s,�
βαδγ , (45)

but in general it is not antisymmetric with respect to the
exchange of a single pair of indices. Instead, one may identify
the part of �s,� that is antisymmetric under exchange of α

and β with the triplet channel of the vertex, whereas the part
that is symmetric under the exchange of α and β represents
the singlet channel.

Inserting Eqs. (40), (43), and (44) into Eq. (31), we have

d

d�
�

s,�
αβ δσ1σ2 = − 1

2π

∑
μν

∑
σ3

��,s,�
μν

(
�

s,�
ανβμδσ1σ3δσ3σ2

−�
s,�
ανμβδσ1σ2δσ3σ3

)
= − 1

2π

∑
μν

��,s,�
μν

(
�

s,�
ανβμ − 2�

s,�
ανμβ

)
δσ1σ2 ,

and hence
d

d�
�

s,�
αβ = − 1

2π

∑
μν

��,s,�
μν

(
�

s,�
ανβμ − 2�

s,�
ανμβ

)
. (46)

Here, we have defined

��,s,�
μν := P s,�

μν (�) + P s,�
μν (−�) (47)

in analogy to the definition in Eq. (31), as we will do with
�

ph,s,�
μν and �c,s,�

μν in the following. To obtain the flow equation
for ��,s , we must insert Eqs. (40), (43), and (44) into Eq. (32).
To simplify our notation, we will use δ34

12 = δσ1σ2δσ3σ4 . For the
first term with �c,s,�, we have

− 1

2π

∑
μνρσ

∑
σ5σ6

�c,s,�
μνσρ

(
�

s,�
νργ δδ

63
54 − �

s,�
νρδγ δ64

53

)
× (�s,�

αβσμδ26
15 − �

s,�
αβμσ δ25

16

)
. (48)

Multiplying out the main product, there are four terms of
combinations of �s,� that appear:∑

σ5σ6

�
s,�
νργ δ�

s,�
αβσμδ63

54δ
26
15 = �

s,�
νργ δ�

s,�
αβσμδ23

14,

∑
σ5σ6

−�
s,�
νρδγ �

s,�
αβσμδ64

53δ
26
15 = −�

s,�
νρδγ �

s,�
αβσμδ24

13,

∑
σ5σ6

−�
s,�
νργ δ�

s,�
αβμσ δ63

54δ
25
16 = −�

s,�
νργ δ�

s,�
αβμσ δ24

13,

∑
σ5σ6

�
s,�
νρδγ �

s,�
αβμσ δ64

53δ
25
16 = �

s,�
νρδγ �

s,�
αβμσ δ23

14 .

On the other hand, the left-hand side of the flow equation reads

d

d�

(
�

s,�
αβγ δδ

23
14 − �

s,�
αβδγ δ24

13

)
. (49)

We may thus look at the products that contain δ23
14 to obtain the

first term of the flow equation for �s,�,

− 1

2π

∑
μνρσ

�c,�
μνσρ

(
�

s,�
νργ δ�

s,�
αβσμ + �

s,�
νρδγ �

s,�
αβμσ

)
δ23

14 . (50)

We may now proceed in doing the same for the particle-hole
channel,

− 1

2π

∑
μνρσ

∑
σ5σ6

�ph,s,�
μνρσ

× {(�s,�
ανγρδ

16
53 − �s,�

ανργ δ13
56

)(
�

s,�
βσδμδ25

64 − �
s,�
βσμδδ

24
65

)
+(�s,�

βνγρδ
26
53 − �

s,�
βνργ δ23

56

)(
�

s,�
ασδμδ15

64 − �
s,�
ασμδδ

14
65

)}
. (51)

Of the eight products that appear, we again pick out those that
appear with a δ23

14 , where we use that∑
σ5σ6

δ16
53δ

25
64 = δ23

14,
∑
σ5σ6

δ23
56δ

14
65 = 2δ23

14,

∑
σ5σ6

δ26
53δ

14
65 = δ23

14,
∑
σ5σ6

δ23
56δ

15
64 = δ23

14,

so that we arrive at

− 1

2π

∑
μνρσ

�ph,s,�
μνρσ

(
2�

s,�
βνργ �

s,�
ασμδ + �s,�

ανγρ�
s,�
βσδμ

−�
s,�
βνργ �

s,�
ασδμ − �

s,�
βνγρ�

s,�
ασμδ

)
δ23

14 . (52)
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Adding Eqs. (50) and (52), the flow equation for �s,� now
reads

d

d�
�

s,�
αβδγ = − 1

2π

∑
μνρσ

{
�c,s,�

μνσρ

(
�

s,�
νργ δ�

s,�
αβσμ + �

s,�
νρδγ �

s,�
αβμσ

)
+�ph,s,�

μνρσ

(
2�

s,�
βνργ �

s,�
ασμδ + �s,�

ανγρ�
s,�
βσδμ

−�
s,�
βνργ �

s,�
ασδμ − �

s,�
βνγρ�

s,�
ασμδ

)}
. (53)

D. Finite temperature

For completeness, we also derive the form of the flow
equations at finite temperature. Thereby, the effect of Fermi-
surface smearing will be accounted for. Since the vertex func-
tion and the self-energy continue to be energy-independent,
dynamical effects that describe fluctuations of thermal energies
and entropy are not accounted for in this approach. Hence
dephasing related phenomena like the many-body localization
are expected to escape this treatment.

For the finite-temperature extension, we utilize the cutoff
suggested in Ref. [73], hence we replace 
(|ω| − �) by
χ�(ωn), which is given by

χ�(ωn) =

⎧⎪⎨
⎪⎩

0, |ωn| � � − πT,

1
2 + |ωn|−�

2πT
� − πT � |ωn| � � + πT,

1, � + πT � |ωn|,
(54)

and its derivative with respect to � is then given by

− (∂�χ�(ωn)) =
{

1
2πT

� − πT � |ωn| � � + πT,

0 otherwise.

(55)

We note that χ�(ωn) → 
(|ω| − �) as T → 0. The full
Green’s function is now given by

G�(ωn) = χ�(ωn)

iωn − H0 + μchem − χ�(ωn)��(ωn)
, (56)

whereas the single-scale propagator, Eq. (7), reads

S�(ωn) = ∂�χ�(ωn)

iωn − H0 + μchem − χ�(ωn)��(ωn)

× (iωn − H0 + μchem)

× 1

iωn − H0 + μchem − χ�(ωn)��(ωn)
.

With this form of a cutoff function, the Matsubara sums may
be evaluated analytically. Since Matsubara frequencies have
a distance of 2πT from each other, the derivative of the
cutoff is only nonzero for a two Matsubara frequencies, whose
magnitude are that closest to the parameter �. Any sum with
a single derivative of χ� may hence be evaluated as

T
∑

n

−(∂�χ�(ωn))f (ωn) = 1

2π

∑
|ωn|≈�

f (ωn). (57)

This structure is very similar to the situation at T = 0, where
we have

1

2π

∫
dωδ(|ω| − �)f (ω) = 1

2π

∑
|ω|=�

f (ω). (58)

Again we adopt the static limit and define P T,�(ωn) as

P T,�(ωn) := 1

iωn − H0 + μchem − χ�(ωn)��
, (59)

and P
′T ,�,P

′′T ,� as

P
′T ,�(ωn) := P T,�(ωn)(iωn − H0 + μchem)P T,�(ωn),

(60)

P
′′T ,�(ωn) := P T,�(ωn)χ�(ωn), (61)

the flow equation for the self-energy now reads

d

d�
��

αβ = − 1

2π

∑
|ωn|≈�

P
′T ,�
μν (ωn)��

ανβμ. (62)

Setting all external frequencies to zero and dropping the
frequency dependence of the vertex, its flow equation is now
given by

d

d�
��

αβγ δ = − 1

2π

∑
|ωn|≈�

∑
μνρσ

{
P

′′T ,�
μν (ωn)P

′T ,�
ρσ (−ωn)

×��
αβσμ��

νργ δ + P
′′T ,�
μν (ωn)P

′T ,�
ρσ (ωn)

× [��
βνγρ�

�
αμδσ − ��

αμγσ��
βνδρ

+��
βμγσ��

ανδρ − ��
ανγρ�

�
βμδσ

]}
. (63)

We note that χ�(ωn) → 1
2 for ωn → �, so if taking the

limit T → 0 (and applying the symmetries of the vertex) one
recovers Eq. (32).

E. Observables and correlators

1. Single-particle observables

Single-particle observables may be expressed by the
Green’s function, which is given by

G(iω) = 1

iω − H0 + μ − �
eiω0+

. (64)

The convergence factor eiω0+
is explicitly required here. In the

following, we will summarize (trivial) statements that follow
from employing the static limit. For example, the density
matrix for the occupancy of single-particle states, ρij , is given
by

ρij =
∑
αβ

V rn
iα

[
1

2π

∫ ∞

−∞
dω Gαβ (iω)eiω0+

]
V

rn,−1
βj , (65)

where

V rn
iα = 〈α|i〉 (66)

and |i〉 is one out of N basis-vectors spanning the single-
particle Hilbert space H.

The frequency integral may be calculated analytically by
going into the basis where G is diagonal, i.e., the eigenbasis
of H0 + �. We will denote indices in that basis by a tilde, e.g.
μ̃ and the eigenvalues of H0 + � with ε̃μ̃. (As � is Hermitian
in the static limit, ε̃μ̃ are real.) The basis transform from that
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basis into the basis chosen for observables will be denoted by
V ri

iμ̃. The integral may now be performed analytically, closing
the integration loop around the left half-plane,

ρij =
∑

μ̃

V ri
iμ̃

[
1

2π

∫ ∞

−∞
dω

eiω0+

iω − ε̃μ̃ + μchem

]
V

ri,−1
μ̃j

=
occ.∑
μ̃

V ri
iμ̃V

ri,−1
μ̃j , (67)

where the summation is now only performed over states below
the chemical potential (occupied states).

In order to obtain the result at finite temperature, T > 0, we
must replace the integral by a Matsubara sum, performing the
inverse of Eq. (16). The sum may be performed analytically,
using the well-known relation

T
∑
ωn

1

iωn − ξ
= nF(ξ ), (68)

where nF is the Fermi function. We now obtain

ρij =
∑

μ̃

V ri
iμ̃

[
T
∑
ωn

1

iωn − ε̃μ̃ + μchem

]
V

ri,−1
μ̃j

=
∑

μ̃

V ri
iμ̃nF(ε̃μ̃ − μchem)V ri,−1

μ̃j , (69)

which reproduces Eq. (67) for T → 0.
Another single-particle quantity of interest is the (normal-

ized) density of states (DOS), which may be calculated from
the imaginary part of the retarded Green’s function after Wick
rotation. As we work in the static limit for the self-energy, the
Wick rotation is trivial and yields the following expression for
the density of states at T = 0,

ρ(ε) = − 1

2πN
�
∑

μ̃

1

ε − ε̃μ̃ + μchem + i0
. (70)

Finally, in systems with spin rotational invariance the
single-particle Green’s function is diagonal in spin space and
the previously discussed quantities simply acquire a factor
of 2.

2. Correlator of occupancy numbers (T = 0)

Two-particle observables may be rewritten in terms of
single- and two-particle Green’s functions. In the case of
spinless fermions, the correlator of occupancy numbers, Cdd

ij ,
may be rewritten as

Cdd
ij = 〈n̂i n̂j 〉 = 〈ĉ†i ĉi ĉ

†
j ĉj 〉 = 〈ĉ†j ĉ†i ĉi ĉj 〉 + 〈ĉ†i ĉi〉δij

= Cdd,(2)
ij + 〈n̂i〉〈n̂j 〉 − 〈ĉ†i ĉj 〉〈ĉ†j ĉi〉 + 〈n̂i〉δij , (71)

where Cdd,(2)
ij is the part of the correlation function arising

from the connected two-particle Green’s function and thus the
vertex. In the case of spinful fermions, the correlator includes
a sum over the spin degrees of freedom,

Cdd
ij =

∑
σσ ′

〈n̂iσ n̂jσ ′ 〉. (72)

For systems that obey the full SU(2) symmetry, it reads

Cdd
ij = Cdd,(2)

ij + 4〈n̂iσ 〉〈n̂jσ 〉− 2〈ĉ†iσ ĉjσ 〉〈ĉ†jσ ĉiσ 〉+ 2〈n̂iσ 〉δij ,

(73)

where σ is an arbitrary spin index that is not summed over, as
the single-particle quantities are proportional to δσσ ′ .

We will first derive the expression for Cdd,(2)
ij for the spinless

case at T = 0. Since we are looking at static quantities, but our
formalism is derived in Matsubara frequency space, we must
perform a Fourier transform,

Cdd,(2)
ij =

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π

×G(2,c)
ij ij (iω1,iω2,iω3,iω4), (74)

where G(2,c) is the two-particle connected Green’s function.
Using the well-known relation between the two-particle
connected Green’s function and the vertex,

G(2,c)

α

β γ

δ

= − Γ

α

β γ

δ

, (75)

we arrive at

G(2,c)
ij ij (iω1,iω2,iω3,iω4)

= −2π
∑
αβγ δ

∑
α′β ′γ ′δ′

V rn
iα′V

rn
jβ ′Gα′α(iω1)Gβ ′β(iω2)

×�αβγ δδ(iω1 + iω2 − iω3 − iω4)

×Gγ γ ′ (iω3)Gδδ′ (iω4)V rn,−1
γ ′i V

rn,−1
δ′j . (76)

In order to solve the frequency integral analytically, we again
transform into the eigenbasis of H0 + �. Equation (76) now
reads

G(2,c)
ij ij (iω1,iω2,iω3,iω4)

= −2π
∑
αβγ δ

∑
μ̃ν̃ρ̃σ̃

V ri
iμ̃V ri

j ν̃Gμ̃μ̃(iω1)Gν̃ν̃(iω2)V in
μ̃αV in

ν̃β

×�αβγ δδ(iω1 + iω2 − iω3 − iω4)

×V
in,−1
γ ρ̃ V

in,−1
δσ̃ Gρ̃ρ̃(iω3)Gσ̃ σ̃ (iω4)V ri,−1

ρ̃i V
ri,−1
σ̃ j . (77)

For any given μ̃,ν̃,ρ̃,σ̃ , we have for the frequency-dependent
part

2π

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π
Gμ̃μ̃(iω1)Gν̃ν̃(iω2)

×Gρ̃ρ̃(iω3)Gσ̃ σ̃ (iω4)δ(iω1 + iω2 − iω3 − iω4)

=
∫

dω1

2π

∫
dω2

2π

∫
dω3

2π
Gμ̃μ̃(iω1)Gν̃ν̃(iω2)

×Gρ̃ρ̃(iω3)Gσ̃ σ̃ (i(ω1 + ω2 − ω3)). (78)

Using the convention that ε̃μ̃ is the μ̃th eigenvalue of H0 + �,
we may now write

Gμ̃μ̃(iω1) = 1

iω1 − ε̃μ̃ + μchem
=:

1

iω1 − ξ̃μ̃

. (79)
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All occurring integrals are of similar form and may be solved
by simply closing the integration loop around the left complex
half-plane, ∫

dω

2π

1

iω − z

1

iω − ξ
= g(z,ξ )

z − ξ
. (80)

The exact result of the integral will depend on the position
of each of the poles {z, ξ} relative to the integration loop. If
they are either both inside or both outside, the integral gives
zero (either the residues cancel or there are no poles inside the
loop), there is only a contribution if there is just a single pole
inside the loop. The residue is always ±(z − ξ )−1. Therefore
we define g(z,ξ ) to keep track of the correct sign. It may
be represented as

g(z,ξ ) = −g(ξ,z)

= 
�(−z)
�(ξ ) − 
�(z)
�(−ξ ), (81)

where 
�(z) is the Heaviside step function of the real part
of z.

Performing the first integral over ω1, we have∫
dω1

2π

1

iω1 − ξ̃μ̃

1

iω1 − (ξ̃σ̃ − iω2 + iω3)

= g(ξ̃μ̃,ξ̃σ̃ + i(ω3 − ω2))

ξ̃μ̃ − ξ̃σ̃ + iω2 − iω3
. (82)

The expression g(ξ̃μ̃,ξ̃σ̃ + i(ω3 − ω2)) may be simplified
further, since for real ω2,3, it is equal to g(ξ̃μ̃,ξ̃σ̃ ).4 Applying
this result sequentially, the integral in Eq. (78) has the result

g(ξ̃μ̃,ξ̃σ̃ )g(ξ̃σ̃ − ξ̃μ̃,ξ̃ν̃)g(ξ̃μ̃ + ξ̃ν̃ − ξ̃σ̃ ,ξ̃ρ̃)

ξ̃μ̃ + ξ̃ν̃ − ξ̃ρ̃ − ξ̃σ̃

. (83)

Further simplification is possible: if �ξ̃μ̃ > 0, then �ξ̃σ̃ must
be less than zero, or the contribution vanishes. In that case,
it follows that �(ξ̃σ̃ − ξ̃μ̃) < 0, and we may deduce in the
same way that �ξ̃ν̃ should be greater than zero. Finally,
�(ξ̃μ̃ + ξ̃ν̃ − ξ̃σ̃ ) > 0 leads to the conclusion that �ξ̃ρ̃ < 0.
On the other hand, if �ξ̃μ̃ < 0, the analogous argument can be
made with flipped inequalities. The only nonzero contributions
arise from combinations where the real parts of ξ̃μ̃ and ξ̃ν̃ have
the same sign, but have the opposite sign to both ξ̃ρ̃ and ξ̃σ̃ .
Using this result, Eq. (74) now reads

Cdd,(2)
ij =

∑
αβγ δ

⎡
⎢⎢⎢⎣
∑

μ̃,ν̃ ∈ He

ρ̃,σ̃ ∈ Hh

−
∑

μ̃,ν̃ ∈ Hh

ρ̃,σ̃ ∈ He

⎤
⎥⎥⎥⎦

×V ri
iμ̃V ri

j ν̃

1

ε̃μ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃

V
ri,−1
ρ̃i V

ri,−1
σ̃ j

×V in
μ̃αV in

ν̃β�αβγ δV
in,−1
γ ρ̃ V

in,−1
δσ̃ , (84)

where He is the subspace where ε̃ − μchem < 0 (“electrons”)
and Hh the subspace where ε̃ + μchem > 0 (“holes”).

4Note that while closing the integrals over ω2,3, those frequencies
may obtain an imaginary part, but since semicircle contour parts have
a vanishing contribution to the integral itself, this may be ignored.

3. Correlator of occupancy numbers (T > 0)

At finite temperatures T > 0, the result is very similar.
To derive it, we need to replace the integrals in Eq. (78)
by Matsubara sums according to the inverse of Eqs. (16)
and (17),

T
∑
ωn

T
∑
ωm

T
∑
ωn′

Gμ̃μ̃(iωn)Gν̃ν̃(iωm)

×Gρ̃ρ̃(iωn′)Gσ̃ σ̃ (i(ωn + ωm − ωn′ )). (85)

Inserting Eq. (79) into this expression, we may now perform
the Matsubara sums analytically, which are of the form

T
∑
ωn

1

iωn − z

1

iωn − ξ
= nF(z) − nF(ξ )

z − ξ
, (86)

where nF is the Fermi function. We note that due to
its periodicity we have nF(ξ̃ ± iωn′ ) = nF(ξ̃ ) if ωn′ is a
Matsubara frequency, so we may simplify the numerator again.
Equation (85) is thus equal to

[nF(ξ̃μ̃) − nF(ξ̃σ̃ )][nF(ξ̃σ̃ − ξ̃μ̃) − nF(ξ̃ν̃)]

× [nF(ξ̃μ̃ + ξ̃ν̃ − ξ̃σ̃ ) − nF(ξ̃ρ̃)]

ξ̃μ̃ + ξ̃ν̃ − ξ̃ρ̃ − ξ̃σ̃

. (87)

Therefore, we have

Cdd,(2)
ij =

∑
αβγ δ

∑
μ̃ν̃ρ̃σ̃

V ri
iμ̃V ri

j ν̃

1

ε̃μ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃

× [nF(ξ̃σ̃ ) − nF(ξ̃μ̃)][nF(ξ̃σ̃ − ξ̃μ̃) − nF(ξ̃ν̃)]

× [nF(ξ̃μ̃ + ξ̃ν̃ − ξ̃σ̃ ) − nF(ξ̃ρ̃)]V ri,−1
ρ̃i V

ri,−1
σ̃ j

×V in
μ̃αV in

ν̃β�αβγ δV
in,−1
γ ρ̃ V

in,−1
δσ̃ . (88)

For orbitals far away from the Fermi energy, |ξ̃ | � T , this
expression goes over into the expression for T = 0 and we
arrive at Eq. (84) again.

4. Correlator of occupancy numbers (systems with spin)

In systems with spin we must also sum over two spin
indices when calculating Cdd,(2)

ij . We replace all orbital indices
in Eq. (88) by pairs of orbital and spin indices, α → (α,σ ). For
systems with SU(2) symmetry all single-particle quantities are
diagonal in spin space, so after performing sums over all the
relevant Kronecker δs, we have

Cdd,(2)
ij =

∑
σσ ′

∑
αβγ δ

∑
μ̃ν̃ρ̃σ̃

V ri
iμ̃V ri

j ν̃

1

ε̃μ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃

× [nF(ξ̃σ̃ ) − nF(ξ̃μ̃)][nF(ξ̃σ̃ − ξ̃μ̃) − nF(ξ̃ν̃)]

× [nF(ξ̃μ̃ + ξ̃ν̃ − ξ̃σ̃ ) − nF(ξ̃ρ̃)]V ri,−1
ρ̃i V

ri,−1
σ̃ j

×V in
μ̃αV in

ν̃β�(α,σ )(β,σ ′)(γ,σ )(δ,σ ′)V
in,−1
γ ρ̃ V

in,−1
δσ̃ . (89)

Inserting Eq. (44), we may perform the summation over the
remaining spin indices and arrive at

Cdd,(2)
ij =

∑
αβγ δ

∑
μ̃ν̃ρ̃σ̃

V ri
iμ̃V ri

j ν̃

1

ε̃μ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃

× [nF(ξ̃σ̃ ) − nF(ξ̃μ̃)][nF(ξ̃σ̃ − ξ̃μ̃) − nF(ξ̃ν̃)]
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× [nF(ξ̃μ̃ + ξ̃ν̃ − ξ̃σ̃ ) − nF(ξ̃ρ̃)]V ri,−1
ρ̃i V

ri,−1
σ̃ j

×V in
μ̃αV in

ν̃β

[
2�s

αβγ δ − 4�s
αβδγ

]
V

in,−1
γ ρ̃ V

in,−1
δσ̃ . (90)

At T = 0, the result is analogously given by

Cdd,(2)
ij =

∑
αβγ δ

⎡
⎢⎢⎢⎣
∑

μ̃,ν̃ ∈ He

ρ̃,σ̃ ∈ Hh

−
∑

μ̃,ν̃ ∈ Hh

ρ̃,σ̃ ∈ He

⎤
⎥⎥⎥⎦

×V ri
iμ̃V ri

j ν̃

1

ε̃μ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃

V
ri,−1
ρ̃i V

ri,−1
σ̃ j

×V in
μ̃αV in

ν̃β

[
2�s

αβγ δ − 4�s
αβδγ

]
V

in,−1
γ ρ̃ V

in,−1
δσ̃ . (91)

5. Spin-spin correlator

In contrast to the expectation value of Si , the expectation
value of Si · Sj does not automatically vanish in systems with
SU(2) symmetry. Using

Ŝi =
∑
σσ ′

ĉ†iσ �τσσ ′ ĉiσ ′ , (92)

where �τ are the Pauli matrices and the identity

3∑
k=0

τ k
σσ ′τ

k
σ̄ σ̄ ′ = 2δσ σ̄ ′δσ ′σ̄ , (93)

we may write

Css
ij := 〈Si · Sj 〉

=
∑

k

∑
σσ ′

∑
σ̄ σ̄ ′

τ k
σσ ′τ

k
σ̄ σ̄ ′ 〈ĉ†iσ ĉiσ ′ ĉ

†
j σ̄ ĉj σ̄ ′ 〉

= 2
∑
σσ ′

〈ĉ†iσ ĉiσ ′ ĉ
†
jσ ′ ĉjσ 〉 − 〈n̂i n̂j 〉

= 2
∑
σσ ′

〈ĉ†iσ ĉ†jσ ′ ĉjσ ĉiσ ′ 〉 − 〈n̂i n̂j 〉 − 4δij 〈n̂i〉

= Css,(2)
ij − 〈n̂i n̂j 〉 − 4δij 〈n̂i〉

+ 2
∑
σσ ′

[〈ĉ†jσ ′ ĉjσ 〉〈ĉ†iσ ĉiσ ′ 〉 − 〈ĉ†iσ ĉjσ 〉〈ĉ†jσ ′ ĉiσ ′ 〉]

= Css,(2)
ij + 4〈n̂iσ 〉〈n̂jσ 〉 − 8〈ĉ†iσ ĉjσ 〉〈ĉ†jσ ĉiσ 〉

−〈n̂i n̂j 〉 − 4δij 〈n̂i〉. (94)

Inserting Eq. (73), several terms cancel and we arrive at

Css
ij = Css,(2)

ij − Cdd,(2)
ij − 6(〈ĉ†iσ ĉjσ 〉〈ĉ†jσ ĉiσ 〉 + δij 〈n̂i〉). (95)

The expression for Css,(2)
ij may be derived in the same manner

as the expression for Cdd,(2)
ij . At finite temperatures, it reads

Css,(2)
ij = 2

∑
αβγ δ

∑
μ̃ν̃ρ̃σ̃

V ri
iμ̃V ri

j ν̃

1

ε̃μ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃

× [nF(ξ̃σ̃ ) − nF(ξ̃μ̃)][nF(ξ̃σ̃ − ξ̃μ̃) − nF(ξ̃ν̃)]

× [nF(ξ̃μ̃ + ξ̃ν̃ − ξ̃σ̃ ) − nF(ξ̃ρ̃)]V ri,−1
ρ̃i V

ri,−1
σ̃ j

×V in
μ̃αV in

ν̃β

[
4�s

αβγ δ − 2�s
αβδγ

]
V

in,−1
γ ρ̃ V

in,−1
δσ̃ . (96)

As one is often interested in both the occupation number and
spin correlators, we note that the expression for the difference
between Css,(2)

ij and Cdd,(2)
ij simplifies slightly,

C
′ss,(2)
ij = Css,(2)

ij − Cdd,(2)
ij

= 6
∑
αβγ δ

∑
μ̃ν̃ρ̃σ̃

V ri
iμ̃V ri

j ν̃

1

ε̃μ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃

× [nF(ξ̃σ̃ ) − nF(ξ̃μ̃)][nF(ξ̃σ̃ − ξ̃μ̃) − nF(ξ̃ν̃)]

× [nF(ξ̃μ̃ + ξ̃ν̃ − ξ̃σ̃ ) − nF(ξ̃ρ̃)]V ri,−1
ρ̃i V

ri,−1
σ̃ j

×V in
μ̃αV in

ν̃β�s
αβγ δV

in,−1
γ ρ̃ V

in,−1
δσ̃ . (97)

At T = 0, the expression reads

C
′ss,(2)
ij = 6

∑
αβγ δ

⎡
⎢⎢⎢⎣
∑

μ̃,ν̃ ∈ He

ρ̃,σ̃ ∈ Hh

−
∑

μ̃,ν̃ ∈ Hh

ρ̃,σ̃ ∈ He

⎤
⎥⎥⎥⎦

×V ri
iμ̃V ri

j ν̃

1

ε̃μ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃

V
ri,−1
ρ̃i V

ri,−1
σ̃ j

×V in
μ̃αV in

ν̃β�s
αβγ δV

in,−1
γ ρ̃ V

in,−1
δσ̃ . (98)

F. Reducting the Hilbert space size: active-space
approximation (ASA)

The flow equations for the self-energy and the vertex, even
in their simplest form Eqs. (31) and (32), are still compu-
tationally challenging. In translationally invariant systems,
simplifications arise, because the vertex only depends on
three momenta, the fourth given by momentum conservation.
Moreover, one only tracks momenta near the Fermi surface.
The Brillouin zone is divided into patches each containing
a single tracked momentum and the interaction vertex � is
only calculated at these momenta. Whenever it needs to be
evaluated for other momenta, the other momentum is replaced
by the tracked one located within the same patch (coarse
graining) [13]. In the absence of periodicity, this kind of
patching is not possible, since there is no well-defined concept
of a Fermi surface.

For systems without translational symmetries, we here
propose an approach alternative to Fermi-surface patching for
reducing the number of explicit degrees of freedom. Similar
to the patching scheme, we define an “active space” HM of
(effective) single-particle states near the chemical potential
that are kept. In our case HM simply contains the M orbitals
closest to the chemical potential, μchem, (e.g. half above and
half below); see Fig. 2 for details. We will refer to this approach
in a loose manner of speaking as “active-space approximation”
(ASA).

Within ASA external indices of the flow equation for the
vertex, Eq. (32), only refer to a reduced number of states.
In summations over the full single-particle Hilbert space, we
adopt the approximation scheme

��
αβγ δ →

{
��

αβγ δ {α,β,γ,δ} ⊆ HM

Uαβγ δ otherwise
. (99)
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FIG. 2. Active space: selection of M orbitals (green) around the
chemical potential, μchem, for which the vertex will be renormalized
in the active space approximation (ASA). The self-energy will still
be renormalized for all N orbitals, including the remaining (purple)
ones.

To simplify the notation, in the following, we label states from
the active spaceHM with barred indices, e.g., ᾱ, whereas states
from the full set of orbitals are denoted without bars, e.g., α.

We comment on the choice for M at a given system size.
As long as mostly the states close to the Fermi energy are
important for screening (as is also assumed in applications
of the FRG for translationally invariant systems), we can
argue that the number of states necessarily kept in HM , M ,
should grow sublinearly with the total number of orbitals,
N . We remind ourselves that in a translationally invariant
system, the Fermi surface has dimensionality (d − 1) within
the d-dimensional Brillouin zone. Since the number of states
in the Brillouin zone grows as Ld , but the number of states
on a surface within that space grows as Ld−1, we suggest
the number of states required should be proportional to Ld−1,
which can be rewritten as Ld−1 = (Ld )(d−1)/d = N1−1/d . To
the extent that M scales, the same also for generic systems,
we have M ∼ N1−1/d , implying M ∼ N1/2 in 2D. In Sec. IV,
we will establish the efficacy of the ASA and also revisit the
system size scaling.

G. Runaway flow

At present, one of the main applications of kFRG is
the study of phase diagrams, because an unbiased view of
competing instabilities of the system is provided. In parameter
regimes where the system shows a phase transition, the
instabilities pertaining to the new phase lead to “runaway
flow”: at a critical scale, �c, the integration of the RG equations
exhibits matrix elements of the interaction vertex that diverge.
The physical nature of the instability reveals itself in what
matrix element actually shows the strongest divergence. This
property of the FRG has been used very successfully to study
the phase diagram of a multitude of systems, for an overview
see Ref. [5]. With εFRG one needs to keep in mind that
the eigenstate representation is not based on plane waves.
Therefore the physics of individual vertex elements may not
be as transparent as it is in the clean case. Hence it can be
helpful to calculate two-particle correlators at �c to support
interpretations of the precise nature of the instability.

We mention that cases exist in which competing order
parameters influence each other (such as antiferromagnetism
and d-wave superconductivity). Strategies how to deal with
this situation have been developed within kFRG. Ideally, one
should continue the flow to � → 0 to obtain information
about the true phase diagram of the system. This may

be done in principle, e.g., by introducing an infinitesimal
symmetry-breaking term that grows under the RG flow, as
has been done for superconductivity [74]. Alternatively, one
may calculate the flow for the combined Bose-Fermi system,
where fermions were decoupled via a Hubbard-Stratonovich
transformation [75].

III. IMPLEMENTATION

We implement the FRG procedure in C++, using the
Eigen linear algebra library [76] for matrix products and the
HDF5 file format [77] for storage. We employ the OPENMP 3.1
standard [78] for parallelization.

A. Computational details

The computational complexity of the self-energy flow,
Eqs. (31), (46), and (62), is given by O(N4)—two loops for
each of the outer indices, two loops for the contraction with
the nondiagonal single-scale propagator. At first glance, the
flow of the vertex, e.g., Eq. (32) appears to have a complexity
of O(N8). However, one may define intermediate products,
I c,± and I ph,±,

I
c,+
μργ̄ δ̄

=
∑

ν

P �,s
μν (�)��

νργ̄ δ̄
, (100)

I
c,−
ᾱβ̄ρμ

=
∑

σ

P �,s
ρσ (−�)��

ᾱβ̄σμ
, (101)

I
ph,±
ᾱνγ̄ σ =

∑
ρ

��
ᾱνγ̄ ρP

�,s
ρσ (±�), (102)

where each of these partial diagrams has a complexity of
O(N5). The flow equation for the vertex now reads

d

d�
��

ᾱβ̄γ̄ δ̄
= − 1

2π

∑
μρ

{
I

c,+
μργ̄ δ̄

I
c,−
ᾱβ̄ρμ

+ I
ph,+
ᾱμγ̄ ρI

ph,+
β̄ρδ̄μ

+ I
ph,−
ᾱμγ̄ ρI

ph,−
β̄ρδ̄μ

− I
ph,+
β̄μγ̄ ρ

I
ph,+
ᾱρδ̄μ

− I
ph,−
β̄μγ̄ ρ

I
ph,−
ᾱρδ̄μ

}
,

(103)

with a computational complexity ofO(N6). In the case of M <

N , using the replacement in Eq. (99), this reduces to O(N3N3)
for the calculation of the intermediates and toO(N2M4) for the
trace. Repeating our argument from Sec. II F that M ∝ √

N ,
we expect a scaling of O(N4) for two-dimensional systems.

1. Efficient trace evaluation

In order to evaluate the temporary products for the flow of
the vertex, Eqs. (100)–(102), it is advantageous to rewrite the
expression in terms of a matrix product, e.g.,

I
c,+
μ,(ργ̄ δ̄) =

∑
ν

P �,s
μν (�)��

ν,(ργ̄ δ̄), (104)

where we interpret (ργ̄ δ̄) as a single index, because modern
generic matrix-matrix multiplication (GEMM) kernels are
highly optimized and perform far better than a simple sum.
For the cases where we calculate the renormalization of the
vertex for all states, this is trivial. Note that for some equations
one needs to retain a copy of the vertex with transposed indices
to be able to do this. Since our implementation is typically not
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FIG. 3. The subdivision of the GEMM kernel for the intermediate
product I c,+ in the ν and ρ indices. The regions one to five in the
diagram correspond to the terms of Eqs. (105)–(109), respectively.

constrained by the available memory but rather the available
processing power, this tradeoff is advantageous. It is trickier
to approximate the vertex according to Eq. (99). Instead of
rewriting the entire expression in terms of a GEMM kernel,
we need to perform the loop on the external indices explicitly.
We may then split the resulting matrix product into five parts.
Taking for example Eq. (100) and using that HM is the subset
of states for which the vertex is renormalized, we have

I
c,+
μργ̄ δ̄

=
∑

ν̄∈HM

P
�,s
μν̄ (�)��

ν̄ργ̄ δ̄
[ρ ∈ HM ] (105)

+
∑

ν̄∈HM

P
�,s
μν̄ (�)Uν̄ργ̄ δ̄[ρ < min(HM )] (106)

+
∑

ν̄∈HM

P
�,s
μν̄ (�)Uν̄ργ̄ δ̄[ρ > max(HM )] (107)

+
∑

ν<min(HM )

P �,s
μν (�)Uνργ̄ δ̄ (108)

+
∑

ν>max(HM )

P �,s
μν (�)Uνργ̄ δ̄ . (109)

We assume here that the noninteracting states are ordered in
energy. The five subexpressions may then be written in terms
of GEMM kernels with rectangular blocks of the matrices
P �,s and U··γ̄ δ̄ . Figure 3 shows the division into these terms
in the plane of ν and ρ indices. There are no standard kernels
for trace evaluation, e.g., Eq. (103), hence we implement that
directly in terms of a loop.

2. Parametrization of the flow equations

We use an exponential parametrization for the flow equa-
tions, Eqs. (31) and (103),

� = �0e−l�s, l ∈ N, (110)

where �0 is the initial � at which the flow starts and l is
our discretizing iteration number. This parametrization has the
advantage that it captures the physics close to the Fermi energy
well, as the integration mesh gets denser, while still being
relatively fast in reaching that point. Both flow equations are

of the form

d

d�
A(�) = − 1

2π
B(�), (111)

allowing for a trivial discretization,

A(�(l + 1)) = A(�(l)) + �(l)�s

2π
B(�(l)), (112)

assuming that �s is sufficiently small. In the following
calculations, we have chosen the parameters �s = 0.02 and
�0 = 40. Unless we encounter a divergence in the flow,
we stop as soon as � < 10−4 (giving a total of lmax = 645
iterations).

B. Chemical potential

We would like to keep the number of particles fixed to
study a finite system and its instabilities at a given filling
fraction rather than at a given chemical potential. Since
our � flow modifies the real part of the self-energy, we
need to constantly adjust the chemical potential during the
renormalization procedure.5

At T = 0, we diagonalize the matrix H0 + �� to obtain
the updated quasiparticle energies for a given � (including the
initial �0, since ��0 �= 0). We choose our chemical potential
to be

μ�
chem = 1

2

(
ε̃�
Ne+1 + ε̃�

Ne

)
, (113)

where ε̃�
Ne

is the energy of the highest-occupied quasiparticle
state and ε̃�

Ne
the energy of the lowest unoccupied quasiparticle

state.
At T > 0 the value of μ�

chem follows as usual from the
solution to the equation

Ne =
∑

ε̃�
α̃ <μ�

chem

nF
(
ε̃α̃ − μ�

chem

)
, (114)

where Ne is the number of electrons and ε̃�
α̃ are the quasipar-

ticle energies for a given �, i.e., the eigenvalues of H0 + ��.

C. Correlators

Starting from Eq. (84), we first transform the vertex into
the �-dependent quasiparticle basis,

�̃�
μ̃ν̃ρ̃σ̃ =

∑
αβγ δ

V in
μ̃αV in

ν̃β��
αβγ δV

in,−1
γ ρ̃ V

in,−1
δσ̃ . (115)

We exploit fast matrix multiplication routines to perform these
basis transforms. As these routines require us to group either
the three left- or rightmost indices together, we first transform
the vertex in α and δ, then transpose it to have β as the first

5The adjustment μ(�) gives rise to an additional derivative term in
the definition of the single-scale propagator, Eqs. (7) and (25). We
neglect the derivative term dμ/d� mainly for pragmatic reasons to
keep the computational effort feasible. For small system sizes, we
have checked the procedure against exact diagonalization. In future
work, additional tests could be performed restarting with the chemical
potential kept fixed at the value found in the first run.
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index and γ as the last index, and apply the final pair of
transformations, yielding the following sequence of steps:

�
�,(1)
μ̃βγ δ =

∑
α

V in
μ̃α��

αβγ δ, (116)

�
�,(2)
μ̃βγ σ̃ =

∑
δ

�
�,(1)
αβγ δV

in,−1
δσ̃ , (117)

�
�,(3)
βμ̃σ̃ γ = �

�,(2)
μ̃βγ σ̃ , (118)

�
�,(4)
ν̃μ̃σ̃ γ =

∑
ν̃

V in
ν̃β�

�,(3)
βμ̃σ̃ γ , (119)

�̃�
μ̃ν̃ρ̃σ̃ =

∑
ρ̃

�
�,(4)
ν̃μ̃σ̃ γ V

in,−1
γ ρ̃ . (120)

We do not need to transpose the final result because of the
symmetry of �. If our “active space” approximation (ASA) is
used, Eq. (99), we employ rectangular submatrices of the V in,
since � is only of size CM4

but �̃ needs to be of size CN4
.

Within ASA a decomposition similar to the one used in the
flow equations, Eqs. (105)–(109), is not useful here, as a single
matrix multiplication already decomposes into five products.
Instead, we transform the entire bare interaction U in the full
Hilbert space, and additionally transform � − U in the activate
space and add the results together in the end.

We then proceed to multiply the transformed vertex by the
energy denominator of Eq. (84),

�̃
�,div
μ̃ν̃ρ̃σ̃ = �̃�

μ̃ν̃ρ̃σ̃

1

ε̃μ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃

. (121)

Finally, we need to transform to the target basis and select
the proper orbitals. At T = 0, we have

Cdd−pre,(2)
iν̃σ̃ =

⎡
⎢⎢⎢⎣
∑

μ̃ ∈ He

ρ̃ ∈ Hh

−
∑

μ̃ ∈ Hh

ρ̃ ∈ He

⎤
⎥⎥⎥⎦V ri

iμ̃�̃
�,div
μ̃ν̃ρ̃σ̃ V

ri,−1
ρ̃i , (122)

Cdd,(2)
ij =

⎡
⎢⎢⎢⎣
∑

ν̃ ∈ He

σ̃ ∈ Hh

−
∑

ν̃ ∈ Hh

σ̃ ∈ He

⎤
⎥⎥⎥⎦V ri

j ν̃C
dd−pre,(2)
iν̃σ̃ V

ri,−1
σ̃ j . (123)

Because we transform into the basis of the quasiparticles for
a given �, the transformation matrices V in are �-dependent
and the contribution from the bare interaction, U , cannot
be calculated just once initially. This means that for each
� the density-density correlator incurs a cost of O(N5).
Equation (121) has a complexity of O(N4) and Eq. (122) a
complexity of O(N5). This cannot be simplified further with-
out additional approximations, making it the most expensive
object to calculate.

Fortunately, the density-density-correlator is not actually
required for the flow of the vertex or the self-energy. Therefore,
unless we see a divergence in our flow in �, we calculate it
only once at the very end of the flow. In case a divergence
is seen, we perform a backtracking procedure: while we do
not store the vertex for all iteration steps, we do keep it for
the last nbt iterations. Once we detect a divergence, we reset
the system to the current iteration minus nbt steps (typically

10) and calculate the density-density correlator at that iteration
step and proceed to the next iteration again. This is performed
for a total of ndv � nbt iterations (typically 1 or 2), where we
do not need to recalculate the flow but can just use the known
self-energy and the vertex.

IV. VERIFICATION: TESTS ON THE SPINLESS
HUBBARD MODEL

In this section, we test our implementation applying it to
disordered spinless Hubbard model. We compare results from
εFRG for the quasiparticle energies and the particle density to
the exact diagonalization (ED) in 2D and to the density matrix
renormalization group (DMRG) in 1D.

The corresponding Hamiltonian reads

Ĥ = −t
∑
〈ij〉

ĉ†i ĉj +
∑

i

δεi n̂i + U
∑
〈ij〉

n̂i n̂j , (124)

where t is the hopping parameter, U the interaction strength
and the δεi the on-site energies, which are chosen at random
from a box distribution with width W centered around
ε = 0.6 In all calculations we will be working at half-filling.
All energies will be measured in units of t .

A. εFRG versus ED for square lattices

In this section, we test our implementation of the εFRG
equations. To this end, we work with small systems, so ED is
feasible and there is no need to apply the ASA. Specifically, we
consider the model Hamiltonian of Eq. (124) on a 4×4 square
lattice with N = 16 sites and periodic boundary conditions at
half filling, ν = 1/2. The details of our ED-implementation
are given in Appendix C.

a. Density. Figure 4 (left) displays the interaction induced
shift of the particle density as it is obtained for a typical
disorder realization at very weak interactions and disorder
U = 0.01 and W = 0.1. To highlight the density response,
we have divided the relative displacement by U . We obtain
a checkerboard pattern that we interpret as a precursor to
the system ordering in a charge-density wave (CDW). In the
absence of disorder, there is a twofold degeneracy associated
with the placement of the wave. The pattern is visible in our
calculation due to the disorder which breaks this symmetry.
As seen from Fig. 4 (right) the density response to very small
values of U is reproduced by the εFRG reasonably well with
a typical error of about 30%.

A comparison at stronger interaction and disorder is given
in Fig. 5 where U = 0.1 and where the disorder potential of
the previous realization has been recycled, but multiplied with
a factor of fifty corresponding to W = 5.0.

b. Quasiparticle energies. We also compare the spectral
properties, i.e., the quasiparticle energies, for both systems, see
Fig. 6.7 The ordinate shows the energies of the corresponding

6In 2D, this model could be realized in terms of a strongly screened
two-dimensional electron gas with a strong in-plane magnetic field.
This would polarize all of the spins due to the Zeemann effect but
have no orbital contribution.

7. To obtain the quasiparticle energies in the ED case, we calculate
the spectral function utilizing the truncated Chebyshev expansion
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FIG. 4. Comparison of the particle density, n(r), calculated
from ED (nED) and εFRG (nεFRG) for a single disorder realization
at U = 0.01 and W = 0.1. (Left) Normalized relative deviation
(nED − n0)/n0U , where n0 denotes the density for the same disorder
realization at U = 0. (Right) (nED − nεFRG)/n0U .

noninteracting system, i.e., of Ĥ0. At low disorder, W = 0.1,
the degeneracies of the clean system are only slightly lifted,
hence the crosses in Fig. 6 appear in groups. The vertical
spreading of these groups is seen to be larger than for the case
with stronger disorder, W = 5. We attribute the larger error for
the near-degenerate situation to the fact that our formulation
of the εFRG assumes that Ĥ0 is nondegenerate and becomes
singular, otherwise.

We observe that the normalized deviations between εFRG
and ED are approximately independent of the interaction
strength U . For the occupied states below the chemical
potential, μchem ≈ 0, the error depends very weakly on energy
with a typical error smaller than 5%. In contrast, the deviations
keep growing for the unoccupied levels reaching values of 20%
near the band edge.

B. Active space approximation (ASA)

As has been discussed in Sec. II F, we will consider the
renormalized vertex within an active space of M < N states.
In this section, we test the sensitivity of n(r) and the spectral
function to variation of M . To this end, we will use a 6×6
square lattice with periodic boundary conditions, so N = 36.
Each system is calculated twice, with the full M = 36 and
with M = 16.

The real space density at U = 0.01 for a specific disorder
realization at W = 1 is shown in Fig. 7. We see that there is
a very good agreement between the density profiles of both
methods, validating our approach at least for small system
sizes and moderate interaction strengths.

We also compare the quasiparticle energies as obtained
from εFRG for both choices of M = 36 and 16. Figure 8
shows the normalized difference of both spectra. As can be
seen, the overall performance of ASA is acceptable with a

discussed in Appendix C, where we have kept 105 Chebyshev
moments. With an artificial broadening (2 × 10−3t) to ensure the
validity of the truncation of the expansion, the resulting density of
states has been fitted against Lorentzians (with a maximum relative
error of the position always below 10−6t for each peak).
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FIG. 5. Plot similar to Fig. 4 with U = 0.1 and W = 5.

relative error of about 0.5% for quasiparticle energies close
to the Fermi level. Remarkably, the error does not exceed 1%
even for states outside of the active space.

C. εFRG versus DMRG for chains

As a second, independent line of testing we also compare
the results from εFRG with DMRG calculations. To this end
we consider the same Hamiltonian (124) as before, but now
the geometry represents a short chain of L = 16 sites. In
the εFRG, we keep N = 16 = M . At a given, fixed disorder
configuration with W = 0.2, we compare the particle density
for two different interaction strengths, U = 0.2 and 1.5.

Figure 9 displays the response of the density when
switching on U as obtained with both methods. At smaller
interaction values, U = 0.2, the εFRG reproduces the DMRG
results quantitatively with errors in the percent-regime. When
the interaction reaches values of the order of the bandwidth,
2t , larger deviations occur reaching values of up to 50%.
The systematic overshooting that is observed in the data, we
tentatively attribute to a lack of screening related to the static
approximation.
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FIG. 6. Comparison of the quasiparticle energies obtained
with εFRG and ED, normalized by the interaction-induced shift,
(εED − εεFRG)/(εED − ε0), for the same systems as in Figs. 4 (crosses)
and 5 (circles), respectively.
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FIG. 7. Testing the ASA via density calculations at N = 36
with U = 0.1 for a given disorder realization at W = 1.0. (Left)
(nεFRG−n0)/Un0. (Right) (nεFRG−nASA)/Un0 where M = 16 has
been used in the ASA calculation.

D. Detecting the CDW state with εFRG and ASA

As we pointed out in Sec. II G, the FRG formalism
signalizes the presence of an instability of the Fermi liquid
via runaway flow of certain elements of the interaction vertex
�. Therefore a matrix norm, e.g.,

|��| = M−4
√∑

ᾱβ̄γ̄ δ̄

(
��

ᾱβ̄γ̄ δ̄

)2
, (125)

is a reliable indicator of a nearby instability. Figure 10 shows
how this norm flows under the action of the RG. It is seen to
diverge, e.g., at �c ≈ 0.04 for U = 0.1.

Ideally, to pinpoint the nature of the instability, one would
investigate which one of the matrix elements of � diverges
so as to predict the nature of the instability. Since we here
expect a CDW, we omit this step and just check that this
interpretation is indeed consistent with the εFRG results. At
first sight, one might suspect that it would be sufficient to
this end calculating the particle density n(r) and ensuring
that it indeed exhibits the checkerboard pattern. However, this
perspective is slightly misleading. In the presence of runaway
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FIG. 8. Difference of the quasiparticle energies obtained with
ASA (εASA, M = 16) and without (εεFRG, N = M = 36) normalized
by the interaction induced shift: (εεFRG − εASA)/(εεFRG−ε0). The same
sample was used as in the previous Fig. 7.
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FIG. 9. Normalized interaction induced density response,
(nX − n0)/U , of a 16-site chain obtained with DMRG (empty squares
an circles) and FRG (crosses) at U = 0.2 and 1.5; n0 denotes the
noninteracting density.

flow, we cannot evaluate the density at � = 0, but only at
� � �c where the ground-state does not yet fully exhibit the
broken symmetry. Therefore, instead of calculating n(r), one
rather evaluates the density correlator at � = �c,

D(k) = N−1
∑
xx′

eik(x−x′)Cdd,(2)
i=(x,y),j=(x ′,y ′), (126)

where Cdd,(2) may be calculated according to Eq. (84). The
result for D is displayed in Fig. 11 (left column) for two differ-
ent values of interactions and disorder. The peak at the correct
ordering wave number (Q = π,π ) of the density response is
already clearly visibly foreshadowing the upcoming ordered
phase.

To give further evidence of the correct prediction of charge
ordering, we also calculate the real space density. Since due
to runaway flow this cannot be done with εFRG, we again
employ the ED. As expected, the resulting densities—shown
in Fig. 11 (right column)—exhibit the checkerboard pattern.
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FIG. 10. RG flow of the norm of �� for U = W = 0.1 on a lattice
4 × 4 (left) and U = 0.01, W = 0.001, and N = 36 on a lattice 6×6
(right). The right panel shows in addition to full εFRG (M = 36) also
ASA data with M = 16 demonstrating that the critical value �c is a
very robust indicator of runaway flow.
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FIG. 11. (Left) The density-density correlator as defined in
Eq. (126) calculated at �c at U = W = 0.01 (upper row, system in
Fig. 10) and at U = W = 5 (lower row). The peak indicates the CDW
instability with wave vector (Q = π,π ). (Right) Respective densities
n(r) from exact diagonalization (ED) exhibiting the corresponding
pinned CDW.

We have already demonstrated that �c is properly repro-
duced within ASA. As a final step in this section we show that
this is also the case for the density response D. In Fig. 12, we
compare two calculations with full εFRG, N = M = 36 and
with ASA (M = 16) for a system with very weak disorder and
interaction. As is seen there, the ordering peak is quantitatively
reproduced by the active-space approximation to the εFRG.

V. APPLICATION: PHASE DIAGRAM OF SPINLESS
DISORDERED HUBBARD MODEL

As a relevant application of our method, we determine the
phase diagram of the spinless Hubbard model on a square
lattice with periodic boundary conditions. For two limiting
cases the phases of the model are well known. In the absence of
disorder, W = 0, the ground state exhibits the charge-density
wave (CDW) at any finite value of U > 0 [79]; it already made
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FIG. 12. The density-density correlator as obtained from εFRG
at �c with (left, M = 16) and without (right, N = M = 36) ASA for
W = 0.001 and U = 0.01 on a 6×6 lattice. The peak is well exposed
in both plots, so the CDW nature of the ordering phase is reliably
reproduced by ASA.

its appearance in the previous section. On the other hand, in
the absence of interaction, U = 0, the system becomes an
Anderson insulator (AI) for any finite disorder W > 0 [80].
The purpose of this investigation is to determine the phase-
boundary in the general case, U and W > 0, as is indicated in
the εFRG by runaway flow.

Our tests on small systems so far have indicated, that with
disorder, W > 0, a minimum value of the interaction, U ∗(W ),
is required for the system to form a CDW ground state. This
is in contrast to the clean case where for any U > 0 a charge
density order is established, at least for large enough systems.
We evaluate U ∗(W ) with the εFRG.

Note that U ∗ will somewhat vary between different disorder
realization and may, in addition, exhibit a dependency on the
system size L. To deal with this, we apply the following
strategy; for a fixed system size and disorder realization, we
scan over U and thus obtain U ∗ for this specific sample.
We repeat the run for more samples with different disorder
realizations keeping the same disorder strength W thus finding
the average U ∗(W,L). Finally, to account for finite size effects
we analyze the behavior of U ∗(L,W ) for varying system
sizes, L.

At this point it should be noted that the available system
sizes will allow to study the typical behavior within a range
of moderate system sizes. Physics that emerges only at larger
length scales will not be seen. This includes, e.g., the effect of
rare regions. Similarly, the number of samples constructed for
the ensemble average will reveal the typical but may be too
small for highlighting also the effect of untypical events.

A. Results: phase diagram

Figure 13 displays U ∗(W,L) after averaging over five
disorder configurations for L×L lattices with L = 4, 6, and 8.
For L = 6 and 8, we have used ASA with M = 16 states in
both cases. Our data indicates that except at very large disorder
values, W = 3, U ∗ appears to remain largely insensitive to
variations of the (lateral) system size by a factor of two. We
take this as an indication that U ∗ will indeed remain finite
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FIG. 13. Critical interaction U ∗ beyond which εFRG predicts
CDW-ordering plotted over the inverse system size 1/L2 for multiple
different values of the disorder strength W . The results have been
averaged over five disorder configurations and 1σ error bars are given.
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FIG. 14. The phase diagram for the spinless disordered Hubbard
model in 2D as calculated with εFRG.

even at large system sizes. Thus encouraged we take the data
at L = 8 as an estimate for the phase boundary U ∗(W ) at
L → ∞. Figure 14 shows the resulting phase diagram.

Computational details. We found it practical to work with
a single particle Hilbert space containing N∼50–100 states.
For example, with a single-particle Hilbert space consisting
of N = 64 states and the active space consisting of M = 32
states, a single calculation on eight CPU cores takes less than
24 hours.

B. Discussion

1. Stability arguments and quasistatic approximation

Due to the quasistatic approximation the εFRG-self-energy
is Hermitian and energy-independent. On this level of ap-
proximation, the interaction is dealt with by replacing the
noninteracting Hamiltonian H0 with an effective quasiparticle
(qp) Hamiltonian Hqp. The latter deviates from H0 by a
renormalized kinetic energy term, a renormalized effective
potential that can, in general, carry off-diagonal entries.

After these preliminaries, one expects that the Anderson-
localized phase (at U = 0) is seen to be stable within
quasistatic εFRG against introducing a small repulsive inter-
action.8 After all, the renormalized Hamiltonian Ĥqp is still a
generic representative of the orthogonal symmetry class and
hence should exhibit conventional behavior.

A similar stability argument also applies to the ordered
phase: the leading effect of weak disorder is pinning of the
charge-density wave (CDW). The wave is destroyed only
when strong fluctuations of the local potential allow for lattice
defects, where two neighboring lattice sites are occupied.
For box-distributed on-site potentials, isolated defects can
occur only when W ∼ U . As a consequence, one expects
U ∗(W ) ∼ W at weak disorder W , which is consistent with
the phase boundary seen in Fig. 14. Remarkably, at interaction
strengths comparable to the bandwidth, U � 1, the disorder

8We tacitly assume here that the short-range Hubbard term does not
introduce long-range correlations in the matrix elements of Hqp.

strength necessary to destroy the CDW appears to be consid-
erably smaller than U . We hypothesize that we here witness
the onset of a collective effect in which several particles can
optimize their energy with respect to the disorder potential at
the expense of very few particles that built up a defect line thus
producing a phase separation.

Physics beyond the quasistatic approximation. The qua-
sistatic approximation ignores the energy exchange between
the quasiparticles that of course also is included in the model
Hamiltonian, Eq. (124). Effects of dephasing and many-body
localization [81] are beyond its scope. Therefore we consider it
likely that the phase seen as (conventional) Anderson-insulator
by the (quasistatic) εFRG is missing aspects of dynamical
physics that dominate essential properties of the phase at
nonvanishing temperature. What implications this may have
on the (zero-temperature) phase-boundary between the CDW
and the Anderson insulator remains to be seen.

2. Relation to earlier work

The spin-1/2 Hubbard model enjoyed considerable atten-
tion in recent years, because physical realizations can be
found not only within condensed matter systems but also in
cold atomic gases, see Refs. [82,83] for very recent results.
In principle, also the spinless model, Eq. (124), that we
deal with in this work could find a cold-atom realization
which, however, would require the application of a strong
homogeneous in-plane magnetic field. This could be one
reason, why the spinless model, Eq. (124), has received
considerably less attention over the years.

Numerical investigations of the spinless model have been
concentrating on its quantum glass variant that deviates from
Eq. (124) replacing the short-range interaction by a long-range
Coulomb interaction [84–86]. An analytical treatment of
the model, Eq. (124), has been given by Vlaming et al.,
Refs. [87,88]. The authors employed the Bethe lattice where
an exact solution can be given in the limit of infinite branching
number. The physical picture developed there for the zero
temperature limit is in qualitative agreement with our own
findings. More recently, Foster and Ludwig studied the model,
Eq. (124), with (complex) off-diagonal disorder focussing on
the effect of interactions on the Gade fixed point [89]. In
that case the noninteracting reference state is not an insulator
but a (critical) metal that—according to perturbative RG—is
unstable against weak repulsive interactions.

VI. CONCLUSION AND OUTLOOK

The main purpose of this work was a methodological one:
to develop, implement and test a variant of the traditional
functional renormalization group (FRG) method that is appli-
cable to generic systems, such as molecules or disordered
metal grains, which are lacking translational invariance.
Within the new approach (εFRG), the renormalization of the
interaction vertex occurs only for matrix elements with single-
particle states that are situated in an energy shell around the
Fermi-energy (active space). The method is computationally
efficient provided this shell can be taken smaller than the
(noninteracting) bandwidth. We argue that the scaling with the
size of the single-particle Hilbert space N should be N4 for
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2D-lattice systems, which compares favorably well with the
typical N6 scaling of competing methods, such as CCSD(T).
Specifically, calculations with N = 64 and an active space of
size M = 32 require less than 24 hours on eight CPU cores.

An explicit implementation of εFRG has been coded for
the spinless Hubbard model in 1D and 2D in the presence
of on-site disorder. A comparison to (numerically exact)
calculations employing the diagonalization of small systems
suggests that the accuracy of εFRG concerning quasiparticle
energies typically is below 20% in relative error to the
interaction-induced shift, as compared to the noninteracting
system. Similarly, the interaction induced shift in the ground-
state density is recovered quantitatively at small interaction
strength U with an error that increases to ∼50% if U reaches
the bandwidth.

At its current development stage, the εFRG is readily ap-
plicable to models of interacting fermions in low dimensions,
which includes Hubbard clusters with spin and (attractive)
interactions at different filling fractions, but also, e.g., small
molecules. Our preliminary tests suggests that with the current
formalism system sizes of, e.g., N = 256 are already within
reach. Significantly bigger system sizes might be attainable,
after additional improvements in the code performance have
been implemented. As an example we mention the numerical
integration of the flow equations that at present is done in
the simplest possible discretization scheme. Also, the flow
equations are well-suited for parallelization on distributed
memory systems, allowing for a significant increase in the
number of CPU cores used in a single calculation. To give
a perspective, we mention that the molecules in the GW100
test set have been described with a QZVP basis set requiring
approximately 800 basis function for the biggest species, the
amino-acids Guanin and Adenin [4].

We hope that this work helps paving the way for
electronic-structure calculations beyond the present paradigm
of GW -BSE. Admittedly before the envisioned applications
to real systems, an efficient εFRGimplementation should be
installed that is also prepared for dealing with long-range
interactions. Here, we see at present the biggest bottleneck to
be overcome in future research. Perhaps additional motivation
to overcome this obstacle could come from the fact that we
have also given formulae for the finite-temperature formalism
in this work, so that the effect of heat could be included.
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APPENDIX A: FLOW EQUATIONS FOR � IN
THE STATIC LIMIT

Here we will derive the flow equation for � in the static
limit, Eq. (32), analogous to the derivation for the self-energy.
Starting at Eq. (21), looking at the first term,∫

dω̄
∑
μνρσ

G�
ρμ(ω̄)S�

σν(−ω̄)��
αβρσ��

μνγ δ,

it can be seen that by exchanging all traced indices in both
vertices that appear, and then renaming the summation indices,
the formula may be rewritten as∫

dω̄
∑
μνρσ

S�
ρμ(−ω̄)G�

σν(ω̄)��
αβρσ��

μνγ δ,

which is just an exchange of both propagators. Utilizing this,
we may write it formulated in terms of matrix products,

1

2
tr
∫

dω̄
[
S ′�TGT� + G�TS ′T�

]
.

We note that the frequency of the single-scale propagator is
negative here, which we denote with prime for Q and �; the 


and δ functions only depend on the modulus. Inserting Eq. (26)
and using the same representation for G, we can separate four
terms,

− δ

2

1

Q′ − 
�′ �
T

(



Q − 
�

)T

�, (A1)

− δ

2




Q − 
�
�T

(
1

Q′ − 
�′

)T

�, (A2)

− δ

2

1

Q′ − 
�′ �
′ 


Q′ − 
�′ �
T

(



Q − 
�

)T

�, (A3)

− δ

2




Q − 
�
�T

(



Q′ − 
�′

)T

�′T
(

1

Q′ − 
�′

)T

�. (A4)

Since all of these terms occur underneath an integral over∫
dω̄δ(|ω| − �), we may switch primes within each term, and

we note for future use that the terms of Eqs. (A1) and (A2) are
equal to each other.

We now apply Morris’s Lemma again. In both other terms,
Eqs. (A3) and (A4), we can rewrite them in terms of derivatives
with respect to (w.r.t.) the integration variable t ,

− δ

2

∫ 1

0
t2

(
d

dt

1

Q′ − t�′

)
�T

(
1

Q − t�

)T

�dt, (A5)

− δ

2

∫ 1

0
t2 1

Q − t�
�T

(
d

dt

1

Q′ − t�′

)T

�dt. (A6)

Partial integration of Eq. (A5) yields

− δ

2

[
t2 1

Q′ − t�′ �
T

(
1

Q − t�

)T

�

]1

0

+ δ

2

∫ 1

0
2t

1

Q′ − t�′ �
T

(
1

Q − t�

)T

�dt

+ δ

2

∫ 1

0
t2 1

Q − t�
�T

(
d

dt

1

Q′ − t�′

)T

�dt. (A7)
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One sees that the second term cancels Eqs. (A1) and (A2) and
the third term cancels Eq. (A6), leaving the result

− δ

2

1

Q′ − �′ �
T

(
1

Q − �

)T

�, (A8)

which can be rewritten in terms of the index notation as

−1

2

∑
ω̄=±�

∑
μνρσ

P �
ρμ(−ω̄)P �

σν(ω̄)��
αβρσ ��

μνγ δ. (A9)

We note that if one were to keep the frequency dependence
of the vertex and the self-energy, two cases need to be
distinguished: for the case where all external frequencies are
zero, the same derivation applies, so our result holds there. For
the case where at least some external frequencies are nonzero,
the arguments for the δ and 
 functions differ, so one may
directly insert Eq. (29) into the flow equations for the vertex.

An analogous treatment is possible for the other four terms
in Eq. (21). The other terms may be written as

tr
∫

dω̄[S�α·δ·G�β·γ · + G�α·δ·S�β·γ · − [α ↔ β]].

Looking at the first two terms, they may be divided in the same
mannger as in Eqs. (A1)–(A4), without the factor 1/2, and
with the same frequency for the single-scale and the regular
propagator. This yields the result

−
∑

ω̄=±�

∑
μνρσ

P �
ρμ(ω̄)P �

σν(ω̄)��
βνγρ�

�
αμδσ + [α ↔ β]. (A10)

Putting this all together, one arrives at Eq. (32).

APPENDIX B: IMPLEMENTATION DETAILS

1. Chemical potential for T > 0

Our algorithm to solve this equation for μchem works in
three stages: obtain an initial guess for μchem, μ(0)

chem, (trivially)
obtain a second guess, μ

(1)
chem, with sgn(Ne(μ�,(1)

chem ) − Ne) =
−sgn(Ne(μ�,(0)

chem ) − Ne) and then use the secant algorithm [90]
to iteratively find the final μchem.

The initial guess is taken to be the same as for T = 0,
Eq. (113), since at low temperatures the value is a very good
approximation. We then calculate

μ
�,(0)
chem + sgn

(
Ne
(
μ

(0)
chem

)− Ne
)�

4
i, (B1)

where � is the mean level spacing of the system and i is an
integer that starts at 1 and is incremented until the condition
sgn(Ne(μ(1)

chem) − Ne) = −sgn(Ne(μ(0)
chem) − Ne) is satisfied. In

practice i = 1 or i = 2 will already be sufficient, which is why
�/4 is a good empirical choice here.9

Both initial guesses are then used as input for the secant
algorithm. Since Ne(ε) is monotonous and the value searched
for is encompassed with both guesses, convergence will be
quite fast (10 to 20 iterations in practice). We consider the

9We cut this scheme off at i = 10, since it is only used to accelerate
the convergence of the secant algorithm, which is likely to also work
if the second value does not satisfy the condition, albeit more slowly.

chemical potential to be converged if the relative error of the
number of electrons,∣∣∣∣∣Ne

(
μ

(i)
chem

)− Ne

Ne
(
μ

(i)
chem

)− Ne

∣∣∣∣∣, (B2)

is larger than the square root of the machine precision. While
the smallest possible error here would be of the order of ε̂N ,
with ε̂ being the machine precision and N the number of
orbitals in the system, the energies ε̃α̃ only have a precision of√

ε̂ due to the diagonalization procedure.

2. Parallelization

We will now discuss how we exploit parallelization in our
implementation. We use a scheme based on a shared memory
architecture, OPENMP [78]. It is in principle possible to utilize
distributed memory methods, such as MPI (Message Passing
Interface, [91]), which allow the usage of far more processor
cores for the same calculation.

The intermediate products offer a trivial way to parallelize:
it is possible to use a parallel version of the GEMM kernel
to calculate the matrix products. In the case we track the
renormalization of the entire vertex, this would likely be the
most efficient avenue. In our case, however, the effective
matrix size that is fed into the GEMM kernel is relatively
small (we want to calculate the vertex for as few states as
possible), so it is unlikely that using a parallel matrix product
kernel will scale well even for a low amount of processors.
Instead, we parallelize the loops over the two outer indices
in the intermediate products and perform serialized matrix
products on each processor. This is trivially possible, since the
calculations are independent of each other for any given pair
of external indices. Similarly, for the evaluation of the trace,
we parallelize the loops over all four external indices and have
each processor evaluate the trace for a given set of external
indices serially.

3. Restarting

Calculations for larger systems may take a relatively long
time. In case of technical difficulties, we implement a restarting
procedure that allows us to continue a calculation at the point
where it last stopped. We save the initial �, the step size, the
number of selected states M , the chosen target �. Furthermore,
we keep the last self-energy and vertex as well as the number
of the last iteration to complete. These quantities suffice to
reproduce the calculation at a later point in time.

APPENDIX C: ED IMPLEMENTATION

In Sec. IV A, we compare the FRG to exact diagonalization.
In the following, we provide edtails on how we implemented
ED as a reference method. In our implementation, we construct
the full Ne-particle Hilbert space. Its dimension is (N

Ne
) and

grows exponentially with the number of orbitals N . We
systematically construct the basis states of that space and
implement the action of the full many-body Hamiltonian on
that basis (we do not explicitly construct the matrix elements
of the Hamiltonian itself). An iterative eigensolver for sparse
problems is employed to calculate the full many-body ground
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state for a given system. We utilize the standard ARPACK

package [92] in direct mode.10

For simple observables, such as the density, we may then
simply calculate expectation values with respect to the many-
body ground state,

〈n̂i〉 = 〈0|ĉ†i ĉi |0〉. (C1)

We also want to calculate the single-particle density of states,
ρ(ε). This is given by the expectation value

ρ(ε) = − 1

π
� trij

〈
ĉi

1

ε − Ĥ + E0 + iη
ĉ†j

〉

+
〈
ĉ†j

1

ε + Ĥ − E0 + iη
ĉi

〉
, (C2)

which we arrive at by Fourier transforming the definition of
the retarded Green’s function. This expressions contains the
inverse of a very large matrix, which needs to be done for every
single energy at which the density of states is to be evaluated
at. Furthermore, directly inverting such a large matrix is only
possible using iterative algorithms, which would again have
to be applied for every single energy. We therefore follow an
alternative approach as outlined in the PhD thesis of Alexander
Braun [93]. One may expand the denominator in terms of
Chebyshev polynomials Tn(x), such that we get

c
(+)
ij,n = 〈0|ĉiTn

(
a(Ĥ − E0 − b)

)
ĉ†j |0〉, (C3)

c
(−)
ij,n = 〈0|ĉ†i Tn

(
a(Ĥ − E0 − b)

)
ĉj |0〉, (C4)

where E0 is the ground-state energy. The variables a and b are
scaling factors that arise due to the fact that the Chebyshev
polynomials are only well-defined in the interval [−1,1], so
the Hamiltonian needs to be scaled to fit into that range. We

10The shift-inverse mode is not required, since the eigenvalues we
are interested in are taken from the spectrum edges, not the center.

note that since we are calculating expectations in the Hilbert
spaces for Ne + 1 and Ne − 1 particles, we need to take into
account the extremal eigenvalues of the Hamiltonian in those
spaces. To make sure we don’t suffer from numerical artifacts,
we scale the argument of the Chebyshev polynomials into the
interval [−0.9,0.9].11 This gives us

δ = 0.1, (distance to interval boundaries),

a = 2(1 − δ)

(εmax − E0) − (εmin − E0)
, (C5)

b = (εmax − E0) + (εmin − E0)

2
− δ, (C6)

where εmin,max are the extremal many-body eigenvalues of the
system with Ne + 1 (Ne − 1) particles and E0 is the ground
state energy for Ne particles.

We may then rewrite the single-particle retarded Green’s
function in terms of these coefficients,

Gij (ω) = a

∞∑
n=0

[α+
n (a(ω + iη ∓ b))c(+)

ij,n

−α−
n (a(ω + iη ∓ b))c(−)

ji,n]. (C7)

The density of states is then given by the imaginary part of this
expression traced over the real space indices, which is why we
only need to calculate the diagonal part of this expression. If
we terminate the expansion at a finite n, the formula remains
only valid for finite η, with

η � 1

anmax
. (C8)

For further discussion on this topic, we would like to defer to
Alexander Braun’s thesis [93].

11Using exactly [−1,1] does not work, since the polynomials are
fixed at the boundaries of the interval. One needs to distance oneself
at least by relative error in the eigenvalues from the boundary.
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