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Abstract 
 

Imidazole glycerol phosphate synthase (ImGPS) is a bienzyme complex from histidine 

biosynthesis, which consists of the cyclase subunit HisF and the glutaminase subunit HisH. In 

HisH, glutamine is hydrolysed to glutamate and ammonia, which is channelled through an 

intramolecular tunnel to the HisF active site, where it reacts with N’-[(5’-phosphoribulosyl)-

formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PrFAR) to form imidazole 

glycerol phosphate (ImGP), a precursor of histidine, and 5-aminoimidazole-4-carboxamide-

ribotide (AICAR), which is salvaged in purine biosynthesis. The two reactions are tightly 

coupled: HisH is strongly activated by the binding of PrFAR to HisF by a V-type allosteric 

mechanism to limit unproductive glutamine hydrolysis. 

HisF adopts a ()8-barrel fold, the most common and versatile single domain fold in nature. 

Proteins with this fold are of particular interest to study fundamental principles of enzyme 

catalysis. One of these aspects is the connection between conformational dynamics and catalytic 

function. In the last few decades, this connection has become a major field of research and many 

examples have been found in which motions have a central role in the catalytic cycle of the 

respective enzyme. 

The first part of this thesis is dedicated to the connection between catalysis and conformational 

dynamics, in particular of the 11-loop (loop1) in HisF, which is in close proximity to the active 

site. This loop has previously been shown to be important for HisF activity and has been observed 

to adopt two distinct conformations in X-ray crystal structures called the open and closed 

conformations. Mutational analysis in this work identified several key amino acid residues within 

loop1 that are essential for catalysis. Specifically, the mutations G20P, G30P and F23A resulted 

in a complete loss or a drastic reduction of HisF activity. The two glycine residues appear to serve 

as hinges on which the loop can move to adopt different conformations. F23 probably serves as 

a hydrophobic anchor, which fixes the loop in the open conformation. NMR paramagnetic 

enhancement measurements confirmed that the open conformation is the main conformation in 

solution, for wild type HisF as well as HisF F23A and HisF G20P. Changes in loop dynamics for 

these two variants were confirmed with limited proteolysis and electron paramagnetic resonance 

spectroscopy. 

To gain a deeper insight into HisF catalysis, transient ligand binding kinetics were recorded. Since 

the fluorescence of W156 of HisF proved unsuitable as a binding signal, the unnatural amino acid 

L-(7-hydroxycoumarin-4-yl) ethylglycine (CouA) was incorporated at position 132. The resulting 

variant HisF K132CouA showed wild-type like activity and a strong spectroscopic signal upon 

binding of all used HisF ligands. Stopped-flow measurements allowed for the determination of 

binding and dissociation rate for all ligands and a kinetic model for the entire ammonia dependent 

HisF reaction was formulated. The kinetic analysis also revealed an induced-fit type 

conformational motion upon PrFAR binding. This motions could not be observed for labelled 

variants carrying the mutations F23A or G20P, indicating that loop1 plays an integral role in this 

conformational change. 

 

The second part of this thesis is concerned with the allosteric communication within ImGPS, 

specifically the stimulation of glutaminase activity in the HisH subunit. It was already previously 

recognized that conformational dynamics are of central importance for the transmission of the 

allosteric signal in ImGPS. Here, it could be shown that the flexible HisF loop1 has a strong 

influence on the activation of HisH. Mutations in loop1 that reduced HisF activity also decreased 

capability of HisF to stimulate HisH activity. Both effects appear to be coupled to the induced-fit 

type motion of loop1 after PrFAR binding. Moreover, also other residues outside loop1 were 

identified that play an important role in ImGPS allostery. Specifically, the crystal structure of the 
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mutant V48A, which was observed to reduce HisH stimulation in a previous study, led to the 

discovery of conformational changes of I7 and L169, two residues within the ammonia channel 

of HisF. Mutation of either residue led to a reduction in HisH stimulation. 

Previously, two hypotheses have been proposed to explain the strong allosteric activation of HisH 

catalysis on a molecular level: The formation of the oxyanion hole and increased release of 

ammonia. A factor that has hitherto not been studied is whether the protonation states of catalytic 

H178 and C84 in HisH change during allosteric activation. Measurement of the pH-dependency 

of the HisH reaction allowed for the determination of two pKa values which most likely 

correspond to these two residues. This conclusion was supported by measurements of the 

inactivation kinetics of HisH with the suicide inhibitor acivicin. NMR measurements with 
13C labelled H178 at physiological pH demonstrated that the catalytic histidine is protonated 

upon allosteric activation, which in turn stabilizes the deprotonated state of the catalytic cysteine. 

This change only manifested in the presence of glutamine and the PrFAR analogue ProFAR, 

indicating that both ImGPS substrates are needed for HisH to adopt the active conformation. It 

was hypothesized that the HisF residue D98, which is located within the interface with HisH, 

contributes the change of the protonation state of H178. Indeed, the mutation D98E, which 

mimics the approximation of the D98 carboxyl group to the active site of HisH led to a significant 

increase in both basal and ProFAR activated HisH activity. The closer proximity of the carboxyl 

group in the mutant D98E could be confirmed by X-ray crystallography. In a structure with bound 

glutamine and ProFAR, E98 shows an alternative conformation, which is an indication that it 

undergoes a conformational change during allosteric activation. While these results show that the 

tuning of the protonation of the catalytic residues in HisH is part of the activation mechanism, 

mutational analysis of V51 and the Ω-loop of HisH support the hypothesis that the correct 

formation of the oxyanion hole also makes a significant contribution to the stimulation of HisH. 

Thus, it appears that several factors contribute to HisH stimulation, highlighting the complex 

nature of allostery in this bienzyme complex. 

Finally, measurements of the steady-state concentration of thioester intermediate carrying 

enzyme showed that both half-reactions, the formation and the hydrolysis of the thioester, are 

strongly accelerated during allosteric activation of HisH. This further supports the notion that 

allosteric activation influences a chemical factors that are important for both half-reactions. 

In conclusion, the results presented in this thesis have revealed important information on the inner 

workings of the bienzyme complex ImGPS. Conformational dynamics are clearly of paramount 

importance both for the reaction catalyzed by HisF as well as for the allosteric activation of HisH. 

Further study of this intriguing system will undoubtedly increase our understanding of enzyme 

catalysis and enzyme complexes. 
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Zusammenfassung 
 

Die Imidazolglycerinphosphatsynthase (ImGPS) ist ein Bienzymkomplex aus der 

Histidinbiosynthese, welcher aus der Cyclaseuntereinheit HisF und der Glutaminaseuntereinheit 

HisH besteht. In HisH wird Glutamin zu Glutamat und Ammoniak hydrolysiert, der dann durch 

einen intramolekularen Kanal zum aktiven Zentrum von HisF gelangt und dort mit N’-[(5’-

phosphoribulosyl)-formimino]-5-aminoimidazol-4-carboxamid-Ribonukleotid (PrFAR) reagiert 

um Imidazolglycerinphosphat, ein Vorläufermolekül von Histidin, und 5-aminoimidazol-4-

carboxamid-Ribotid (AICAR) zu bilden. AICAR wird in der Purin-Biosynthese wiederverwertet. 

Die beiden Teilreaktionen sind strikt gekoppelt: HisH wird durch die Binding von PrFAR in 

einem V-Typ allosterischen Mechanismus stark aktiviert um unproduktive Hydrolyse von 

Glutamin zu vermeiden. 

HisF nimmt eine ()8-barrel Faltung an, die am verbreitetsten und vielseitigste einzelne 

Domänen-Faltung. Proteine mit dieser Faltung sind vom besonderem Interesse in 

Untersuchungen zu den grundlegenden Prinzipien von Enzymkatalyse. Einer dieser Aspekte ist 

die Verbindung zwischen konformationellen Bewegungen und der Katalysefunktion von 

Enzymen. In den letzten Jahrzehnten ist dies ein großes Forschungsgebiert geworden und viele 

Beispiele wurden gefunden in denen Bewegungen eine zentrale Rolle im katalytischen Zyklus 

der entsprechenden Enzyme einnehmen. 

Der erste Teil dieser Arbeit ist dem Zusammenhang zwischen Katalyse und konformationellen 

Bewegungen, im Speziellen denen des 11-loop (loop1) in HisF, welcher sich in unmittelbarer 

Nähe des aktiven Zentrums befindet, gewidmet. Es wurde bereits gezeigt, dass dieser loop von 

großer Bedeutung für die Aktivität von HisF ist. In Rötgenstrukturen wurde er in zwei 

verschiedenen Konformationen beobachtet, die die offene und die geschlossen Konformation 

genannt werden. In dieser Arbeit konnten mehrere Schlüssel-Aminosäuren durch 

Mutationsanalyse identifiziert werden. Besonders drastisch waren die Mutationen G20P, G30P 

und F23A, die zu einem kompletten Verlust oder einer drastischen Reduktion der HisF-Aktivität 

führten. Die zwei Glycin-Reste scheinen eine Art Scharnier zu bilden, das es dem loop erlaubt, 

unterschiedliche Konformationen einzunehmen. F23 dient vermutlich als hydrophober Anker, 

der den loop in der offenen Konformation fixiert. Durch paramagnetische Relaxationsverstärkung 

in NMR-Experimenten konnte gezeigt werden, dass die offene Konformation die häufigste 

Konformation in Lösung ist, sowohl für Wildtyp-HisF, als auch HisF F23A und HisF G20P. 

Änderungen in konformationeller Dynamik wurden für die zwei Varianten in limitierter 

Proteolyse und Elektronenspinresonanzspektroskopie nachgewiesen werden. 

Um tiefere Einblicke in die Katalyse von HisF zu gewinnen wurden transiente Bindungskinetiken 

verschiedener Liganden aufgenommen. Da sich die intrinsische Tryptophanfluoreszenz als 

ungeeignete Sonde für Ligandenbindung erwies, wurde die unnatürliche Aminosäure L-(7-

hydroxycoumarin-4-yl) ethylglycin (CouA) in Position 132 eingebracht. Die resultierende 

Variante HisF K132CouA zeigte wildtypische Aktivität und ein starkes spektroskopisches Signal 

bei Bindung aller HisF-Liganden. Stopped-flow Messungen erlaubten die Bestimmung von 

Bindungs- und Dissoziationsraten für alle Liganden und ein kinetisches Modell für die gesamte 

Ammoniak-abhängige HisF-Rekation wurde aufgestellt. 

Die kinetische Bindungsanalyse konnte auch eine konformationelle Änderung in Form eines 

induced fit aufdecken. Da diese Bewegung in markierten Varianten mit den Mutationen F23A 

oder G20P nicht beobachtet werden konnte, liegt es nahe, dass loop1 eine wichtige Rolle in dieser 

konformationellen Veränderung einnimmt. 

Der zweite Teil dieser Arbeit behandelt die allosterische Kommunikation innerhalb der ImGPS, 

genauer gesagt die Stimulierung der Glutaminase-Aktivität der HisH-Untereinheit. Es wurde 

schon in früheren Arbeiten gezeigt, dass konformationelle Dynamik von zentraler Bedeutung für 
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die Weiterleitung des allosterischen Signals in der ImGPS ist. Hier konnte gezeigt werden, dass 

der flexible loop1 in HisF einen starken Einfluss auf die Aktivierung von HisH hat. Mutationen, 

die HisF-Aktivität reduzieren, verringern auch die Fähigkeit von HisF, HisH-Aktivität zu 

stimulieren. Beide Effekte scheinen mit dem induced fit von loop1 nach PrFAR-Bindung 

verbunden zu sein. Darüber hinaus konnten auch andere Reste identifiziert werden, die an der 

Allosterie in der ImGPS beteiligt sind. Konkret führte die Analyse der Kristallstruktur der 

Mutante V48A, für die eine geringere HisH-Aktivierung in einer früheren Studie beobachtet 

wurde, zur Entdeckung von konformationellen Veränderungen in den Resten I7 und L169, zwei 

Resten im Ammonikkanal von HisF. Die Mutation beider Reste führt zu verringerter HisH-

Aktivierung. 

Zuvor wurden bereits zwei Hypothesen aufgestellt, die die starke Aktivierung von HisH auf der 

molekularen Ebene erklären: Die Ausbildung des Oxianionenlochs und eine gesteigerte 

Freisetzung von Ammoniak. Ein Faktor, der bis jetzt noch nicht betrachtet wurde, ist ob die 

Protonierungszustände der katalytischen Aminosäurereste H178 und C84 sich während der 

allosterischen Aktivierung ändern. Die Messung der pH-Abhängigkeit der HisH-Reaktion 

erlaubte die Bestimmung von zwei pKS-Werten, die aller Wahrscheinlichkeit nach diesen zwei 

Resten zugeordnet werden können. Diese Schlussfolgerung konnte durch Messung der 

Inaktivierungskinetik mit dem irreversiblen Inhibitor Acivicin gestützt werden. NMR-

Messungen mit 13C-markiertem H178 bei physiologischem pH zeigten, dass allosterische 

Aktivierung zur Erhöhung der Protonierung des katalytischen Histidins führt, was wiederum den 

deprotonierten Zustand des katalytischen Cysteins stabilisiert. Diese Änderung manifestiert sich 

nur in der Anwesenheit von sowohl Glutamin als auch dem PrFAR-Analog ProFAR, was ein 

starker Hinweise darauf ist, dass beide ImGPS Substrate benötigt werden, damit HisH die aktive 

Konformation ausbilden kann. Es wurde die Hypothese aufgestellt, dass der HisF-Rest D98, 

welcher sich in der Kontaktfläche mit HisH befindet, zur Änderung der Protonierung von H178 

beiträgt. In der Tat konnte für die Mutante D98E, welche eine Annäherung der Carboxylgruppe 

von D98 an das aktive Zentrum von HisH nachahmt, eine signifikante Erhöhung der basalen als 

auch der durch ProFAR aktivierten HisH-Aktivität nachgewiesen werden. Die Annäherung der 

Carboxylgruppe konnte durch Röntgenkristallographie nachgewiesen werden. In einer Struktur 

mit gebundenem Glutamin und ProFAR zeigt E98 eine alternative Konformation, was zeigt, dass 

dieser Rest seine Konformation während der allosterischen Aktivierung verändert. Während 

diese Ergebnisse zeigen, dass die Protonierung der katalytischen Reste in HisH eine wichtige 

Rolle des Aktivierungsmechanismus sind, stützen Mutationsanalysen des Restes V51 sowie des 

Ω-loops die Hypothese, dass die korrekte Bildung des Oxianionenlochs einen signifikanten 

Beitrag zur Stimulierung von HisH leistet. Es scheint daher, dass mehrere Faktoren an der HisH-

Stimulierung beteiligt sind, was die komplexe Natur der Allosterie in diesem Bienzymkomplex 

noch einmal unterstreicht. 

Abschließend konnten Messungen der Konzentration an Enzym, welches das Thioester-

Intermediat während des steady-state trägt, zeigen, dass beide Halb-Reaktionen von HisH, die 

Bildung des Thioesters und seine Hydrolyse, während der allosterischen Aktivierung stark 

beschleunigt werden. Dies unterstützt weiter die Annahme, allosterische Aktivierung Einfluss auf 

einen chemischen Faktor nimmt, der beide Halb-Reaktionen beeinflusst. 

Zusammenfassend kann gesagt werden, dass in dieser Arbeit wichtige Informationen zur inneren 

Funktionsweise des Bienzymkomplexes ImGPS aufgedeckt wurden. Konformationelle 

Bewegungen sind offensichtlich von außerordentlicher Bedeutung, sowohl für die von HisF 

katalysierte Reaktion als auch für die allosterische Aktivierung von HisH. Weitere Studien dieses 

faszinierenden Systems werden mit Sicherheit unser Verständnis von Enzymkatalyse und 

Enzymkomplexen weiter verbessern. 

 



1 
 

1 Introduction 
 

1.1 Enzyme catalysis 
The catalysis of chemical reactions is one of the key functions of proteins in all living organisms.[1] 

Chemical reactions progress from the educt(s) (or substrate(s) in enzymatically catalysed 

reactions) via a transition state (TS) to the product(s). As indicated by the energy difference 

between substrates and products (Fig. 1), enzyme catalysed reactions are thermodynamically 

favourable, but are kinetically impaired by the high activation energy G‡, the difference between 

the substrate ground state and the TS of the reaction. According to transition state theory, the rate 

enhancement in enzymes (and all other catalysts) is achieved by the stabilization of the TS.[2] 

Enzymes catalyse the synthesis and degradation the vast plethora of molecules occurring in 

nature, some of which are chemically extremely challenging, in a region- and enantioselective 

manner. The most remarkable observation is that they achieve this relying on a minimum of 

different chemical principles. Most enzymes use general acid-base catalysis[3] or nucleophilic 

attacks. The use of cofactors allows for hydride[4] or electron transfers[5] and in rare cases, radical 

reactions.[6] Also, electrostatical factors play an important role, most importantly in enzymes 

using metal ions as cofactors.[7,8] The catalytic activity of an enzyme is usually measured via its 

steady state kinetics as it was introduced by Michaelis and Menten.[9] From such measurements 

the turnover number (kcat), which is the maximum catalytic rate divided by the enzyme 

concentration, and the Michaelis constant (KM), which is a first approximation of a measure for 

substrate affinity, of an enzyme can be determined. The catalytic efficiency is defined as kcat (unit: 

s-1) divided by KM (unit: M) and thus has the unit M-1s-1. 

 

 

Fig. 1: Energy diagram of a chemical reaction. The substrates have a higher energy than the products, yielding a 

negative reaction free energy G. The difference from the substrates to the transition state (TS) is called the activation 

energy G‡. This energy leads to a kinetic barrier. Enzymes (and all other catalysts) enhance the kinetic rate by lowering 

the activation energy from G‡
uncat to G‡

cat. 

 

 

 



2 
 

Enzymes can accelerate chemical reactions by many orders of magnitude.[1] Comparatively 

simple reactions that also occur spontaneously in solution, such as isomerizations, can reach the 

diffusion limit, i.e. the diffusion and “meeting” of enzyme and substrate become rate limiting.[10] 

These enzymes are also known as “perfect enzymes”. A prime example of this is triose phosphate 

isomerase (TIM), which reaches a catalytic efficiency of up to 109 M-1s-1.[11] Other reactions that 

are more demanding do not occur spontaneously. For instance, in the biosynthesis of cholesterol, 

all four cycles of the final product are formed in a single step catalysed by lanosterol synthase.[12] 

The substrate oxidosqualene is a linear molecule that is “folded” into the right conformation by 

the enzyme and by general acid/base catalysis a cascade of intramolecular nucleophilic attacks is 

set in motion, forming four new carbon-carbon bonds and four new steric centres in a highly 

specific manner.[13] As this is one of the most complex enzymatic reactions known to date, no rate 

can be determined for the uncatalysed reaction, as it is most unlikely that such a reaction would 

happen “by accident”. 

The efficiency of enzymes and their versatility in the synthesis of a vast number of molecules 

make them a highly interesting target for industrial applications.[14] Most enzymes work at 

ambient temperature in aqueous solutions at neutral pH and are therefore energy and cost efficient 

as well as environmentally friendly. While there are already examples of applications of enzymes 

as commercial catalysts[15,16], the field is still dominated by classical organic chemistry. The main 

reason for this is that it is still not well understood what exactly makes enzymes such outstanding 

catalysts and thus the tuning of enzymes for desired reactions is often very difficult. Many 

reaction mechanisms have been elucidated and factors that enable enzyme catalysis have been 

identified by structural analysis. However, this has yet to translate into an understanding that is 

sufficient to rationally design enzymes that are efficient catalysts. De novo designs have yielded 

active enzymes, but their catalytic efficiency is several orders of magnitude lower when compared 

to natural enzymes.[17–19] Acceptable activity, at least up to date, is only achieved by the 

randomized approach of directed evolution[20,21], which adds a large experimental effort to the 

already considerable computational workload. Directed evolution experiments use random 

mutagenesis either of the entire gene or of specific positions and have produced several enzyme 

catalysts with activities that rival and sometimes even surpass natural enzymes.[22] Using this 

process, it could be shown that some proteins can catalyse unnatural reactions and can be 

optimised to perform them.[23] However, the applicability of these efforts is strongly limited by 

pre-existing, promiscuous activities and the needed screening effort. 

The ultimate goal that has to be achieved in order to effectively apply enzymes as catalysts is the 

understanding of rate acceleration in such detail that enzymes can be designed for any reaction at 

will. This goal however is still far off. The lack of understanding of enzyme catalysis stems from 

the enormous complexity of the systems. In order to better understand the amazing molecular 

machines that enzymes are we still need to gather more information on the elusive processes 

within enzymes that are not yet understood. 

 

1.2 Enzymes as dynamical entities 
One of the factors in enzyme catalysis that is still subject of considerable research efforts is protein 

dynamics. If and to which extent dynamics are of relevance to the catalysis of enzymes is still 

under considerable and highly controversial debate. However, some of these issues appear to root 

in misunderstandings in terminology and definitions as well as different perspectives and the 

study of several enzymes showing distinct dynamical behaviour.[24] It should be noted at this point 

that in the context of this work, all conformational protein motions are referred to as dynamics. 

Their influence on catalysis is not necessarily meant in the sense of actual chemical catalysis, i.e. 

the lowering of the activation energy, but also in structural rearrangements that are essential for 

efficient enzyme function and can thus become rate limiting to the reaction by factors other than 

lowering the kinetic barrier of the reaction. 
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Over the last decades, a large amount of structural data on proteins has been gathered.[25] Although 

this information is indispensable to gain insight into the molecular details of enzyme catalysis and 

other protein functions, most of this data has been collected in X-ray crystallography experiments 

that only capture a single snapshot in the “life” of a protein.[26] Also, crystallization is hardly a 

natural process for most proteins and can lead to structural distortions which in turn may lead to 

flawed interpretations.[27,28] The static nature of structural information and difficulties in studying 

dynamic effects on the molecular level have led to protein dynamics being neglected for a long 

time.[29] It is quite intuitive that proteins, being chains of amino acids that are more or less loosely 

folded into a 3D structure by non-covalent interactions, are inherently flexible and that this 

flexibility has implications for protein function. Several theories have been proposed to account 

for protein dynamics in protein function and, more specifically, enzyme catalysis. 

The simplest way to think of enzyme catalysis is in a “lock-and-key” model (Fig. 2), which does 

not account for protein dynamics.[30–32] This model suggests that the binding site is always 

perfectly formed for ligand binding. For enzymes, this model is sometimes also called 

“preorganization”.[33] The assumption of this concept is that the active site reduces the activation 

energy of the reaction by providing a pre-arranged environment ideally suited for catalysis.[34,35] 

Since this implies that the active site is already ideally formed to perform catalysis, the substrate 

can transition into the TS quite rapidly after binding, since no further rearrangement is needed. 

This model is related to the theory of near attack conformations[36], which states that there are 

reactive conformations of the substrates that are stabilized by the enzyme, thus facilitating the 

reaction. While this second model accepts a dynamical nature of the substrate, it does not 

necessarily account for movements of the enzyme. 

 

 

 

Fig. 2: Schematic representation of ligand binding modes. In the lock-and-key-model, the correct protein 

conformation is permanently present and can bind the ligand. Induced-fit implies that the protein conformation changes 

after ligand binding, whereas in conformational sampling, the protein is in a conformational pre-equilibrium with only 

on ligand binding competent conformation. 
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The theories mentioned above certainly explain what happens in the moment of actual catalysis 

and describe some enzyme systems very well. However, in other cases protein motions have to 

take place in order to enable two or more protein conformations relevant to catalysis. For instance, 

quite obviously, substrate binding needs the active site to be accessible to solvent in order for the 

substrate to enter. One requirement for some reactions is however the shielding of the reactive 

state from solvent. Therefore, closing of the active site after substrate binding can be highly 

beneficial to the reaction. Different protein conformations relevant for ligand binding can be 

adopted in one of or a mixture of two mechanisms: Conformational sampling and induced fit (Fig. 

2).[37–39] Conformational sampling on the one hand refers to the case that the enzyme always exists 

in an equilibrium of two states. The substrate can bind to only one conformation, which would 

constitute the active conformation in enzymes. Induced fit on the other hand, was already 

proposed by Koshland[37], at a time when it was not even certain that proteins are flexible at all. 

Put to the extreme, this model suggests that the enzyme is permanently in an open conformation 

when no substrate is bound and the closed conformation is induced by substrate binding. In both 

cases, the conformational transition is often rate-limiting for the overall reaction, conformational 

changes being slow compared to the chemical reaction rates of most enzyme-catalysed reactions. 

Examples can be found that behave as an ideal for either model, but naturally there are also 

proteins that behave in a mixture, i.e. there is already a conformational equilibrium and the closed 

state is stabilized by ligand binding. In the light of the ongoing debate on the relevance of protein 

dynamics it is important to understand that some researchers consider these motions non-

dynamical since they are in equilibrium and as such do not contribute to catalysis in an energetic 

sense, i.e. that they provide the energy to lower the activation barrier. Still, these effects can 

undisputedly have a profound impact on the rate of an enzymatic reaction and on the binding 

affinity of the substrate, due to kinetic restrictions of the rate of movement. 

These three theories explain some aspects of enzyme catalysis very well, albeit macroscopically. 

It has however been observed that the molecular motions of proteins occur on a multitude of size 

scales and thus over a timescale of several orders of magnitude.[40,41] In some select cases, their 

functional relevance has been unveiled, which often extends to far more complicated scenarios 

that the opening or closing of an active site. However, in many proteins, the exact influence of 

many of these motions is still not well understood and may vary greatly from enzyme to enzyme. 

The molecular motions occurring in proteins can be categorized according to the timescale on 

which they take place (Fig. 3). Motions in the fs–ps range are generally very small motions, such 

as bond vibrations or vibrations of bond angles (indicated as small energy barriers in Fig. 3A). 

Motions in the ns–ms range include side chain rotations, movements of small loops or other small 

conformational rearrangements (intermediate energy barriers in Fig. 3A). Larger movements such 

as the movement of large loops or even entire domains occur on the scale of µs–ms and even 

seconds (e.g. interconversion of conformation A and B in Fig. 3A). For each case, these particular 

motions can be of significant importance for the function of the respective proteins. Bond 

vibrations for instance limit the rate of chemical reactions in general since the maximal rate for 

the breaking and reforming of a covalent bond is the rate of the bond vibration. In some enzymes, 

such as dihydrofolate reductase[42] and cyclophilin A[43] it has been suggested that small vibrations 

of amino acid residues actually accelerate the rate limiting step of the reaction. This however is a 

topic under intense debate and is not conclusively resolved to date.[44,45] On the other end of the 

size scale, larger domain movements can also be beneficial for catalysis. One example is 

anthranilate phosphoribosyl transferase (TrpD).[46] This enzyme is a prime example of stabilizing 

near attack conformations, since it does not actually possess any catalytically active amino acid 

residues, but rather accomplishes catalysis by binding the two substrates, anthranilate and 

phosphoribosyl pyrophosphate, upon which its two domains close and bring the substrate 

molecules into close proximity in the correct orientation for the reaction to occur.[47,48] 
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The experimental study of molecular motions in proteins is often challenging. Fig. 3B gives a 

rough overview of available methods and the motions they can study. NMR spectroscopy can 

access many different timescales with the added advantage of a more physiological setting since 

samples are measured in solution.[49] X-ray crystallography is a very powerful tool and time 

resolved experiments are in principle not limited in the time scale, however experiments are 

dependent on protein crystallization, which is in many cases not trivial and provides a less 

physiological setting.[50] Spectroscopic methods using light absorption or emission are the least 

complex experiments, but give more limited information, especially in the sense of atomic details 

and are thus sometimes not straightforward in their interpretation.[51] The highest detail is certainly 

provided by computational methods like molecular dynamics (MD) simulations. These methods 

are however strongly limited by available computation power and are thus restricted in both 

timescale (computational effort) and atomic detail (simplification to enable longer simulation 

times).[52,53] 

 

 

Fig. 3: Schematic representation of the relevant timescales of protein dynamics. (A) One dimensional cross-section 
of the multi-dimension energy landscape of a protein, categorizing motions into tiers according to their energetic level, 
which determines their respective rates.[41] The major conformations A and B on tier 0 are minima in the energy 
landscape. The population of these states (pA, pB) follow a Boltzmann distribution and are defined by the energy 

difference GAB. The kinetic rate of interconversion is determined by the activation energy G‡. Conformational 
changes on tiers 1 and 2 are smaller fluctuations on the ns-ps timescale. Influences such as the binding of a small 
molecule or protein interaction partner can shift the conformational equilibrium as indicated by the differences 

between the blue and red curves by stabilizing one and/or destabilizing another conformation. (B) Scheme of 
physiologically relevant timescales (cyan boxes) of protein motions. Movements that take place on these 
timescales are indicated by arrows above and relevant methods which can probe dynamics on respective timescales 
are indicated with arrows below. The figure was adapted from Henzler-Wild and Kern[40] and Boehr et al.[49] 
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1.3 Loop dynamics in enzyme catalysis 
Somewhere in the middle of the timescale of molecular movements in proteins are the rotations 

of amino acid side chains and movement of small loops. Quite obviously, the rotamers of 

catalytically active amino acid side chains are of central importance for enzyme catalysis, since 

their orientation towards the substrate molecule(s) determines if reactions, such as protonations, 

can take place and if important interactions can be formed. 

The role of loop conformations is not always so readily apparent. Still, in a number of enzymes it 

has been observed that loops proximal to the active site play an important role in catalysis and 

their role is reasonably well understood for some cases. Especially enzymes with the ()8-barrel 

(or TIM-barrel after its first member with known three dimensional structure triose phosphate 

isomerase) fold have provided intriguing case studies linking loop dynamics and enzyme 

catalysis. The ()8-barrel fold is probably the most common fold of proteins in general and 

enzymes in particular. About 10 % of all proteins with known structure contain at least one 

domain of this fold and reactions from 5 of the 6 EC classes have been found to be catalyzed by 

()8barrel enzymes.[54–58] One of the reasons for the versatility of this fold is probably that it 

shows a structural separation of the so-called activity pole and stability pole. The ()8-barrel 

fold consists of alternating -strands and -helices (Fig. 4A), which are arranged in a central -

barrel surrounded by the -helices (Fig. 4B). The stability pole is found at the C-terminal end of 

the -strands and the activity pole on the opposite side, the N-terminal end of the -strands. The 

eight-fold repetition of -strand and -helix leads to the presence of eight connecting loops, the 

-loops, which form the active site in most ()8-barrels and are highly variable in 

sequence.[59,55] For these reasons, the ()8-barrel fold is believed to be the most versatile fold for 

enzyme catalysis and has thus been used as a scaffold for several de novo enzyme design 

studies.[60,17,18] Also, enzymes of this fold have provided valuable insights into the connection 

between catalysis and loop motions.[60–63] Since protein stability is mainly provided by the stability 

pole, the active site containing the -loops has a relatively large mutational freedom which is 

advantageous for the evolution of new functions. 
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Fig. 4: The ()8-barrel fold. (A) Outline of secondary structure elements. The fold is made up of eight repetitions of 

one -strand and one -helix each, which are connected by -loops of different lengths and short -loops. (B) 

Outline of tertiary structure. The C-terminal activity pole contains the -loops, which form the catalytic centre. The 

N-terminal stability pole is formed by the usually short -loops. 

 

The significance of active site loop movements for catalysis has been demonstrated for three 

different ()8-barrel enzymes, one from glycolysis (TIM) and two from amino acid biosynthesis 

(TrpC, HisA): 

The -loop connecting -strand 6 and -helix 6 (active site loop 6) in TIM has long been thought 

to be a simple “lid” for the active site, which shields the bound substrate from bulk solvent and 

thus lowers the dielectric constant, enabling general base catalysis of a glutamate residue.[64] A 

recent study found, however, that the loop can adopt several conformations and that already slight 

displacement in the completely closed conformation leads to disruption of catalysis. This example 

highlights that loops can play an important role in catalysis without carrying residues actually 

being involved in the chemical transformation step.[65] 

Indole glycerol phosphate synthase (TrpC) is an enzyme involved in tryptophan biosynthesis.  

TrpC from Saccharolobus solfataricus (until recently Sulfolobus solfataricus), a thermophilic 

archaeon growing optimally at 80 °C, shows significantly reduced catalytic activity at ambient 

temperatures when compared with homologues from mesophilic organisms. This has been shown 

to be the result of a relatively rigid active site loop 6, which only gains the proper mobility at 

higher temperatures and leads to product release becoming rate limiting at low temperatures. The 

catalytic rate can also be enhanced by mutagenesis which renders the loop more flexible.[66] 

HisA from Salmonella enterica, an enzyme from histidine biosynthesis, catalyses the 

isomerisation of N’-[(5’-phosphoribosyl)-formimino]-5-aminoimidazole-4-carboxamide 

ribonucleotide (ProFAR) to N’-[(5’-phosphoribulosyl)-formimino]-5-aminoimidazole-4-

carboxamide ribonucleotide (PRFAR). It has been observed in several crystal structures with 

bound ProFAR that the active site loops 1, 2, 5 and 6 can adopt two distinct conformations. In the 
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open conformation, no interactions with the substrate molecule are present indicating that initial 

binding of ProFAR is independent of the loops. However, in the closed conformation, the loops 

move the substrate into a more product-like conformation and therefore into the optimal substrate 

orientation for catalysis.[67] 

An example of an enzyme with a different fold is lactate dehydrogenase (LDH), which catalyses 

the reversible interconversion of lactate and pyruvate with the help of the NAD(H) cofactor. In 

this enzyme, catalysis is strongly regulated by opening and closing of an active site loop (residues 

98 to 110).[68] The loop is essential for the chemical conversion, since it excludes water from the 

active site and optimises its conformation for catalysis. This is facilitated by the essential residue 

R109 within the loop, which directly coordinates the substrate molecule and is critical for catalysis 

of LDH due to its electrostatic interactions with the catalytic residue H195.[69] 

 

1.4 Allostery 
The activity of enzymes within a cell can be tuned on several distinct levels. First of all, the 

amount of active enzyme can be controlled by regulation of transcription of its gene, translation 

and degradation of the respective mRNA and protein degradation.[70] However, these processes 

consume a lot of energy and are comparatively slow. It is for this reason that enzymes are often 

also regulated on the activity level, for instance by product inhibition to prevent overproduction 

or by the availability of the substrate.[71]  

In many cases, enzymes are regulated by a process called allostery. This term was introduced by 

Monod and colleagues and describes an effect on the functional site of a protein that is exerted by 

binding of an effector to the so-called allosteric site, which distant to the functional site.[72] These 

allosteric effects can be transmitted over distances from a few Å to 30 Å or even more. A typical 

example for allosteric regulation is the inhibition in a so-called feedback mechanism.[73,74] This 

regulatory tool is used to ensure that if the final product of a biosynthetic pathway is available in 

sufficient amount, the pathway is effectively shut down to allow the usage of the educts in other 

syntheses. While allosteric effectors are usually small molecules, ions or protein interaction 

partners, other effects such as external factor like light, post-translational modifications and 

mutations can exert their influence allosterically, as well.[75] The structural paths within a protein 

along which the allosterically coupled sites are connected are known as allosteric pathways.[76] 

Since the term allostery is rather general, several types are distinguished. The first examples of 

allosteric behaviour were discovered in oligomeric binding proteins, which often show so-called 

positive cooperativity (Fig. 5A). For instance, the binding of an O2 molecule to one subunit of 

tetrameric hemoglobin induces a high affinity state, which is transmitted to the other three 

subunits of the complex via an allosteric mechanism.[77] The counterpart to positive cooperativity 

is negative cooperativity (Fig 4A), in which the binding of one ligand reduces affinity for further 

ligand binding. Cooperativity in binding leads to characteristic alterations of the macroscopic 

binding behaviour (Fig. 5B), which can be beneficial for the specific requirements of an organism. 

Cooperativity has been described mathematically by several researchers, the most popular and 

widely known equation is however the Hill-equation.[78] The binding affinity of proteins can of 

course also be influenced by other allosteric effectors, such as 2,3-bisphosphoglycerate and 

bicarbonate in hemoglobin. 

Enzymatic activity can also be allosterically activated or inhibited. Since both substrate binding 

and chemical turnover contribute to the efficiency of an enzyme, K-type and V-type allostery are 

distinguished. K-type allostery refers to an effect on the KM value of the enzyme, i.e. substrate 

binding (Fig. 5C), while V-type allostery refers to an influence the velocity of catalysis.[79] Fig. 

5D demonstrates how the steady-state kinetics of an enzymatic reaction are changed by the 

different types of allostery. 
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Fig. 5: Simplified allosteric models. (A) Schematic representation of a binding protein complex showing positive 

(blue) and negative (red) cooperativity in ligand binding. In positive cooperativity, binding of the ligand (orange) to a 

low affinity binding site induces a high affinity state in all subunits, whereas in negative cooperativity the high affinity 

for the ligand is reduced in all binding sites upon binding to the first site. (B) Binding curves resulting for a binding 

with positive (blue), negative (red) or no (black) cooperativity. (C) Schematic representation of an enzyme (blue) 

showing K-type (left) or V-type (right) allosteric activation. Binding of the effector (orange square) induces a higher 

affinity for the substrate (orange circle) for K-type activation. In V-type activation, the substrate binding is unaffected, 

and increase in activity is achieved by an increase in catalytic rate. Both kinds of activation lead to a higher net activity 

(indicated by a bold reaction arrow). (D) Michaelis-Menten kinetics for different kinds of allosteric behaviour. 

Activation (blue lines) is achieved by increasing the turnover number kcat to kcat
a(V-type, solid line) or lowering the KM 

value to KM
a (K-type, dashed line). Similarly, an enzyme can be inhibited (red lines) by lowering kcat to kcat

i (V-type, 

solid line) or increasing KM to KM
i (K-type, dashed line). 

 

The view on the mechanistic basis of allostery has changed drastically over the years since the 

discovery of this effect and many aspects are still under considerable debate.[80,81] The atomistic 

details of allostery are based on different principles, depending of the protein in question. Some 

studies found a series of conformational rearrangements responsible for the observed allosteric 

effect with a defined allosteric pathway. A good example of allostery that is explained well by 

these observations is the afore mentioned cooperative oxygen binding in haemoglobin. This 

conformational change is transmitted via the F-helix, which is pulled towards the O2 binding site 

and thus mediates the change to the neighbouring subunit.[82] Other studies suggest that in some 

systems the transmittance of the allosteric signal is based on the change in protein dynamics. For 

example, the negative cooperativity of the catabolite activator protein is driven by protein motions 

between the binding sites for cyclic AMP in the two subunits.[83] 
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1.5 Glutamine amidotransferases 
A good example of allosteric communication between two subunits of an enzyme complex is the 

family of glutamine amido transferases (GATases). These bienzyme complexes are of central 

importance for the incorporation of nitrogen atoms into biomolecules.[84–86] After becoming bio-

available by nitrate reduction or dinitrogen fixation, nitrogen is generally used in the form of 

ammonia to synthesize alanine, aspartate, glutamate or glutamine. From these molecules it can be 

transferred to other molecules, e.g by transaminases.  

In every reaction catalysed by a GATase, a nitrogen atom is incorporated into a substrate molecule 

by transfer of ammonia from glutamine.[87] To this end, glutamine is hydrolysed in the 

glutaminase subunit (or domain), producing glutamate and ammonia. The ammonia is then 

channelled through an intermolecular tunnel to the active site of the synthase subunit (or domain) 

where it reacts with a substrate molecule specific for each GATase. This channelling effectively 

avoids unproductive diffusion of ammonia into the cytoplasm and protonation by solvent. 

GATasas are allosterically regulated in that substrate binding in the synthase subunit stimulates 

the hydrolysis of glutamine in the glutaminase subunit to avoid unproductive glutamine 

turnover.[88,89] 

GATases are grouped into two unrelated classes according to the catalytic residues used in the 

glutaminase subunit. Class I GATases possess a glutaminase with the / hydrolase fold and a 

catalytic Glu-His-Cys triad. In contrast, class II GATases belong to the family of N-terminal 

nucleophile hydrolases and accomplish catalysis via a conserved N-terminal Cys residue.[86,90] 

Class I GATases are involved in various biosynthetic processes and in accordance with the 

diversity of the substrates, the synthase subunits adopt a wide variety of folds and possess very 

different catalytic mechanisms.[91–95] The glutaminase mechanism (Fig. 6), however, is common 

to all class I glutamine amidotransferases. It relies on the nucleophilic attack of the catalytic 

cysteine residue in its thiolate form on the carboxamide carbon of glutamine. The reactive thiolate 

form is stabilized by the neighbouring histidine, whose positive charge is in turn stabilized by a 

glutamate residue. The reaction progresses via an oxyanion to a thioester intermediate, which is 

hydrolysed in a similar reaction, which shows a second oxyanion intermediate. Both oxyanion 

states are stabilized by amides from protein backbone known as the oxyanion hole. The initial 

establishing of the charged state of the catalytic cysteine and histidine is possibly a result of direct 

deprotonation of the cysteine by the histidine, but might also be pre-established previous to 

glutamine binding. 
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Fig. 6: Common glutaminase mechanism of class I glutamine amido transferases. Starting from the top left corner, 

the reaction starts with the deprotonation of the catalytic cysteine by the catalytic histidine residue (it is also possible 

that the protonation states are pre-established by solvent). The thiolate anion can then attack at the glutamine 

carboxamide carbon (top middle) leading to the first tetrahedral oxyanion intermediate (TI1, top right corner), which 

is stabilized by at least one protein backbone amide termed the oxyanion hole. Protonation of the leaving ammonia 

leads to the formation of a thioester intermediate (bottom right corner). This thioester is removed in a hydrolysis 

reaction similar to the first half-reaction. The attack of a water molecule results in the formation of a second tetrahedral 

oxyanion intermediate (TI2, bottom middle), the resolution of which leads to the final formation of glutamate. The 

figure was adapted from Thoden et al.[95]. 

 

 

1.6 Imidazole glycerol phosphate synthase 
Imidazole glycerol phosphate synthase (ImGPS) is a part of the enzymatic pathway of de novo 

histidine biosynthesis.[96] It belongs to class I GATases and catalyses the fifth step of the pathway, 

the formation of the histidine imidazole ring, by turning over the substrate PrFAR to imidazole 

glycerol phosphate (ImGP) and 5-aminoimidazole-4-carboxamide-ribotide (AICAR).[97] ImGP is 

further processed to histidine and AICAR is salvaged in purine biosynthesis. Crystal structures of 

ImGPS enzymes from different organisms show that the synthase subunit HisF adopts a ()8-

barrel fold and the glutaminase subunit HisH the  hydrolase fold typical for class I GATases 

(Fig. 7).[98] These two subunits are found to form a bi-enzyme complex in bacteria, while in 

eucaryotes, they are fused into a single polypeptide chain called His7.[96,97,99] 

 



12 
 

 

Fig. 7: The imidazole glycerol phosphate synthase form T. maritima. The synthase (or cyclase) subunit HisF (red) 

turns over the substrate PrFAR to ImGP and AICAR. ImGP is further processed into histidine and AICAR is salvaged 

in purine biosynthesis. The ammonia necessary for the reaction is generated by the glutaminase subunit HisH (blue). 

To avoid unproductive glutamine hydrolysis, HisH glutaminase activity is strongly activated upon PrFAR binding in 

HisF. The ammonia is shielded from solvent to prevent loss or protonation by means of channelling through a 

hydrophobic channel. The position of HisF loop1 is shown for the open (from PDB-ID 1VH7, orange) and closed (from 

PDB-ID 1GPW, beige) conformations. 

 

The reaction catalyzed by the cyclase subunit HisF is quite complex, showing steps typical for a 

C-N ligase, C-N lyase and C-N cycloligase. The catalytic amino acids have been identified to be 

two aspartate residues in the enzyme from Thermotoga maritima and a plausible reaction 

mechanism based on general acid-base catalysis has been proposed (Fig. 8).[100] The reaction of 

the glutaminase has been confirmed to rely on the conserved triad Glu-His-Cys.[101] While the 

glutaminase reaction in HisH is strictly dependent on the presence of the HisF subunit, it was 

shown that the HisF subunit is also fully functional in isolated form when supplied with an 

external ammonia source such as ammonium salts at high pH.[100] 
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Fig. 8: Catalytic cylce of HisF. The reaction is initiated by the nucleophilic attack of ammonia at the carbonyl carbon 

of PrFAR under the formation of an imine. Subsequently, AICAR is cleaved of by spontaneous hydrolysis. The 

resulting aldehyde is subject to a nucleophilic attack by the imine and the ensuing cyclisation reaction is facilitated by 

two aspartate residues. After elimination of a water molecule, the imidazole ring is formed to yield the product ImGP. 

For clarity, the AICAR and glycerol phosphate portions of PrFAR are abbreviated as R1 and R2, respectively. The 

atoms at which R1 and R2 are attached to the rest of the molecule are marked with red circles. The figure was adapted 

from Beismann-Driemeyer and Sterner.[100] 

 

A striking characteristic of ImGPS is that its glutaminase subunit HisH is strongly activated in a 

V-type manner by the cyclase subunit HisF upon PrFAR binding and is almost inactive without 

this allosteric activation.[97,100] Although all GATases show allosteric behaviour to minimize 

unproductive glutamine hydrolysis, the 4000-fold activation observed in ImGPS is the largest 

effect that has been observed in any GATase to date. Several hypotheses have been proposed to 

explain this phenomenon at the atomic level. For instance, studies on the nature of the allosteric 

signal revealed that there is a correlation between molecular motions on the ms timescale in the 

HisF subunit and the activity of the HisH subunit, suggesting that the allosteric signal is 

transmitted via these motions.[102] The authors concluded that the transmittance of this flexibility 

leads to the breaking of a hydrogen bond to allow the amide of V51 to turn into the HisH active 

site to form the oxyanion hole.[103,102,104] In another study it was found that the mutation of two 

large HisH residues in proximity to the HisH active site (Y138 and K181) to alanine leads to a 

high basal HisH activity. It was suggested that the unblocking of the active site allows ammonia 

to exit the active site more easily, which leads to the observed rate enhancement.[105] As of yet, 

the exact conformational nature of the active state of HisH is not known, structural data only 

being available in absence of allosteric activators. While there is a structure of the yeast enzyme 

with the HisF substrate PrFAR, this complex was formed by soaking and the authors state that 

the observed conformation is not likely to be the final and active conformation.[106] It is thus still 

not clear which exact molecular changes take place in the HisH active site to achieve allosteric 

activation. Recent NMR studies showed that ImGPS adopts two distinct conformations, one of 

which is assumed to be the active conformation.[107] The conversion between the two states is in 

the same range of seconds, which is similar to that of kcat of the reaction, suggesting that this 

conformational change might be rate limiting overall. Interestingly, the active conformation is 

only adopted in the presence of both a HisF substrate analogue and the HisH substrate glutamine. 
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1.7 11loop in HisF from T. maritima 

The ()8-barrel enzyme HisF protein from T. maritima possesses a relatively long and flexible 

active site -loop (loop1), which is located between -strand 1 and -helix 1. It has been 

observed in previous research that this loop has a profound effect on ImGPS function.[108] Deletion 

of the loop leads to a drastic reduction in HisF activity.[108] Also, a highly conserved lysine residue 

(K258, corresponding to K19 in ImGPS from T. maritima) located in this loop has been shown to 

be of relevance for activity in the yeast enzyme.[106] It was suggested that loop 1 exists in two 

conformations, the so-called open and closed conformations as observed in several crystal 

structures of the T. maritima enzyme.[109,58] Recently, fluorescence resonance transfer (smFRET) 

single molecule measurements showed that loop1 indeed exists in an equilibrium of at least two 

conformations also in solution. The distances measured via smFRET match the open and closed 

conformations observed in crystal structures very well.[110] However, while binding of the 

substrate PrFAR appeared to populate the closed conformation, the analysis of several HisF 

mutants did not yield a clear correlation between the amount of a certain conformation and 

catalytic activity. 

Also, loop1 from HisF has been ascribed a role in allosteric communication with HisH. It has 

been observed that the loop shows higher flexibility in the full ImGPS complex when compared 

with the isolated HisF protein.[100] However, the role of loop1 in allostery has not yet been studied 

in further detail. 
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2 Scope of this thesis 
ImGPS is an essential bi-enzyme complex from histidine biosynthesis. Despite extensive studies, 

the complex reaction the ImGPS catalyses is still not well understood. Also, the mechanism of 

allosteric communication remains enigmatic. Since it has been observed in other enzymes that 

active site loops can play a crucial role in their function and this has also been demonstrated for 

ImGPS by the deletion of HisF loop1, this thesis aims to promote the understanding of the ImGPS 

catalysis by more detailed analysis of the relationship of the conformational dynamics of HisF 

loop1 and ImGPS function. For this purpose, one target is to gain detailed kinetic information on 

the individual steps of catalysis, as well as on the conformations that loop1 adopts in solution and 

its dynamical behaviour. A more detailed knowledge of ImGPS catalysis will help to better 

understand the complex relationship of protein dynamics, allostery and enzyme catalysis. 

To deepen the understanding of the influence of loop1 on ImGPS function, an extensive 

mutational analysis was performed to identify essential amino acid residues. Furthermore, the 

conformation and flexibility of loop1 was analysed by a combination of several methods, 

including NMR and electron paramagnetic resonance (EPR). 

In order to put the functional implications of loop1 mutations into a relationship with the reaction 

mechanism, HisF catalysis was analysed by means of rapid mixing fluorescence spectroscopy. 

For this purpose, a spectroscopic signal of ligand binding was established by the incorporation of 

an unnatural fluorescent amino acid and the influence of the label on catalysis was tested. On the 

basis of this data insights into the microscopic rate constants of the wild-type HisF reaction were 

gained, as well as the influence of loop1 by analysis of two HisF variants with altered loop 

dynamics. 

Finally experiments were performed to gain insight on the allosteric activation of HisH. This 

included the characterisation of allosterically impaired variants and a spectroscopic approach to 

measure conformational changes. Also, experiments on the molecular mechanism of HisH 

activation were performed and are discussed in the context of existing hypotheses as well as a 

novel proposal. 
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3 Materials and Methods 
 

3.1 Materials 

3.1.1 Appliances and multi-use materials 
Item Model Manufacturer 

Autoclave  Series EC Stream Sterilizer Webeco, Selmsdorf 

Cell density meter Ultrospec 10 GE Healthcare, München 

Centrifuges 5810R 
5414R 

5415D 

Avanti J-26 XP 

Eppendorf, Hamburg 
Eppendorf, Hamburg 

Eppendorf, Hamburg 

Beckmann Coulter, Krefeld 

Chromatography system Äkta prime 
Äkta start 

Äkta purifier 10 

GE Healthcare, München 

Chromatography column HisTrap FF crude 5 ml 
Mono Q 5/50 GL 

Supderdex 75 HiLoad 

26/600 

GE Healthcare, München 

Fluorescence spectrometer FP-6500 Jasco GmbH, Groß-Umstadt 

Glass pipettes and other 

glassware 

 Fisher Scientific, Schwerte 

Novoglas, Bern, Switzerland 

Schott, Mainz 
Gel electrophoresis system 

(agarose) 

 Hoefer Pharmacia Biotetch, 

USA 

Gel electrophoresis system 
(PAGE) 

Mighty small II 
Multi Gel Caster 

Hoefer Pharmacia Biotetch, 
USA 

Heat-block thermostat HBT-2 131 HLC, Bovenden 

Incubator  Binder GmbH, Tuttlingen 

Microliter pipettes Research Eppendorf, Hamburg 
Nanopore water system Ultrafree-20 Milipore, Eschborn 

Imaging System Multi-Doc-It digital UVP Inc., USA 

NMR spectrometer Advance-800 Bruker, USA 
PCR cyclers Mastercycler personal 

Mastercycler EP gradient 

Eppendorf, Hamburg 

pH meter Level1 Inolab, Weilheim 
Pipetting robot for 

crystallisation screens 

Mosquito LCP TTP Labtech, Melbourn, UK 

Quartz cuvettes  Hellma GmbH & Co KG, 

Müllheim 
Scales MC1 

PL3000 

SI-114 

Satorius, Göttinger 

Mettler Toledo, Gießen 

Denver Instrument, Göttingen 
Shaking incubators Ceromat H 

Multitron 

Braun Biotech, Melsungen 

Infors HT, Bottmingen, 

Switzerland 
Ultrasonic system Branson Sonifier 250 D Heinemann, Schwäbisch 

Gmünd 

UV-vis spectral photometer V650 

V750 
Nanodrop One 

Jasco GmbH, Groß-Umstadt 

 
Thermo Fisher Scientific Inc., 

USA 

UV-Vis Biospectrometer  Eppendorf, Hamburg 
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3.1.2 Single use items 
Item Manufacturer 

Easy Xtal plates Qiagen, Hilden 

Centrifugal filter devices (Amicon Ultra) Miliproe, USA 

Dialysis tubing Visking, 27/32, 14 kDa Roth GmbH & Co, Kralsruhe 

Disposable Syringes Omnifix ®, 50, 10, 5, 2.5 and 1 ml B. Braun Biotech, Melsungen 

Dialysis tubing Visking, 27/32, 14 kDa Roth GmbH & Co, Karlsruhe 

Laboratory film Parafilm M Pechiney, USA 

NAP5 and NAP10 columns GE Healthcare, München 

Nitrile gloves Roth GmbH & Co, Karlsruhe 

Nitrocellulose filters (Ø 13 mm) Milipore, Eschborn 

Pasteur pipettes Hirschmann, Ebermannstadt 

PCR tubes 0.2 ml Peqlab, Erlangen 

Pertri dishes 94/16 Greiner bio-one, Nürtingen 

Pipette tips Sarstedt, Nümbrecht 

Plastic cuvettes 1ml Sarstedt, Nümbrecht 

Plastic tubes, 15 ml and 50 ml Sarstedt, Nümbrecht 

Reaction vessels 1.5 ml and 2 ml Sarstedt; Nümbrecht 

Syringe filters, pore sizes 0.2 µm and 0.45 µm Renner GmbH, Daunstadt 

 

 

 

3.1.3 Chemicals 
All chemicals used had the highest available purity and were purchased form the following 

vendors: 

Amersham Pharmacia Biotech Freiburg 

Applichem GmbH Darmstadt 

Bio 101 Inc. Carlsbad, USA 

Biorad Laboratories München 

Biozym Hess. Oldendorf 

Bode Chemie Hamburg 

Boehringer Mannheim Mannheim 

Carl Roth GmbH  Co. KG Karlsruhe 

Cayman Chemicals Ann Arbor, USA 

Difco Dreieich 

Fluka Neu-Ulm 

GE Healthcare Mümchen 

Gerbu Biotechnik GmbH Gailberg 

Gibco/BRL Eggestein 

Iris Biotech GmbH Marktredwitz 

Merck Darmstadt 

MP Biochemicals Illkirch, France 

National Diagnostics Simerville, USA 

Oxoid Wesel 

Roche Diagnostics Mannheim 

Serva Heidelberg 

Sigma Aldrich Deisenhofen 
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3.1.4 Kits 
Kit Manufacturer 

Bradford reagent Biorad Laboratories, München 

GeneJET Plamid Minprep Kit MBI Fermentas, St-Leon-Rot 

GeneJET Gel Extraction Kit MBI Fermentas, St-Leon-Rot 

Morpheus II crystallisation screen Molecular dimensions, UK 

ProPlex crystallisation screen Molecular dimensions, UK 

  

 

3.1.5 Enzymes 
Enzyme Manufacturer 

BsaI restriction endonuclease NEB, Frankfurt am Main 

Glutamate dehydrogenase Merck, Darmstadt 

Glutamate oxydase Merck, Darmstadt 

Horseradish peroxidase (HRP) Merck, Darmstadt 

NdeI restriction endonuclease NEB, Frankfurt am Main 

Phusion DNA polymerase NEB, Frankfurt am Main 

Q5 DNA polymerase NEB, Frankfurt am Main 

TEV protease In huose production 

HisA (from T. maritima) In house production 

T4 DNA ligase MBI Fermentas, St-Leon-Rot 

XhoI restriction endonuclease NEB, Frankfurt am Main 

 

 

3.1.6 Bacterial strains 
E. coli Turbo (NEW ENGLAND BIOLABS, Frankfurt a. M.) 

F' proA+B+ lacIq Δ(lacZ)M15/fhuA2 Δ(lac-proAB) glnV gal R(zgb-210::Tn10) Tets endA1 

thi-1 Δ(hsdS-mcrB) 

E. coli Turbo cells are T1-phage resistant. As the recA function of the strain is intact, E. coli 

Turbo cells grow fast and form visible colonies after 8 h incubation at 37° C. 

 

E. coli BL21-Gold (DE3) (Agilent Technologies) 

hsdS gal [λcl ts857 cnd1 hsdR17 racA1 endA1 gyrA96 thi1 relA1] E. coli BL21(DE3)  

E. coli BL21-Gold (DE3) cells carry a gene for T7 RNA polymerase on their chromosome, which 

is used for gene expression in pET systems. E. coli BL21-Gold (DE3) are improved versions of 

BL21 cells. Derived from E. coli B, these expression strains naturally lack the Lon protease, which 

can degrade recombinant proteins. In addition, these strains are engineered to be deficient for a 

second protease, the OmpT protein. 
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E. coli BL21-CodonPlus(DE3)-RIPL (Stratgene) 

F– ompT hsdS(rB
– mB

– ) dcm+ Tetr gal λ(DE3) endA Hte [argU proL Camr] [argU ileY leuW 

Strep/Specr] 

E. coli BL21-CodonPlus(DE3)-RIPL cells carry a gene for T7 RNA polymerase on their 

chromosome, which is used for gene expression in pET systems. E. coli BL21-Gold (DE3) are 

improved versions of BL21 cells. Derived from E. coli B, these expression strains naturally lack 

the Lon protease, which can degrade recombinant proteins. In addition, these strains are 

engineered to be deficient for a second protease, the OmpT protein. This strain carries a plasmid 

encoding for the tRNA synthethases of rare tRNAs with rare condons to improve translation of 

genes that have a suboptimal codon usage for expression in E. coli. 

 

3.1.7 Plasmids 
Genes inserted into the multiple cloning site (MCS) of pET vectors (plasmids for expression by 

T7 RNA Polymerase) are transcribed by the RNA-polymerase of the phage28 T7.[111] The 

expression of genes takes place in special E. coli strains, which carry a chromosomal copy of the 

T7 RNA polymerase. The expression of the T7 RNA polymerase gene proceeds under the control 

of the lacUV5 promotor operator and is induced by the addition of IPTG. The gene for the lac-

repressor (lacI), which is required for suppression of gene expression in the absence of induction, 

is located on the plasmid and is constitutively expressed. 

The plasmid pET28_BsaI was modified for cloning with the restriction enzyme BsaI in a golden 

gate cloning procedure.[112,113] It carries an N-terminal (His)6-tag and was further modified by the 

insertion of a TEV cleavage site, which allows for the proteolytic removal of the (His)6-tag.[114] 

The final vector is named pET28_BsaI_TEV in this work. The plasmid confers a kanamycin 

resistance. The vector pET21a encodes a C-terminal (His)6-tag and also confers a kanamycin 

resistance. 

The pEVOL plasmid is used for the production of proteins labelled with a non-canonical amino 

acid incorporated via the amber stop codon suppression method.[115,116] It carries two copies of the 

gene for the aminoacyl-tRNA synthetase for the specific amino acid, one under the control of the 

constitutive glnS promoter and one under the araBAD promoter, which can be induced by 

arabinose. Additionally, the plasmid encodes the tRNA with the anti-codon recognizing the amber 

stop codon and confers a chloramphenicol resistance. 

 

Plasmid gene 

pET28_BsaI_TEV  wild-type and all mutants of hisF 

and hisH wild-type and all mutants 

pET21a hisA from T. maritima 

pEVOL mjTyrRS-CouA[117] 
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3.1.8 Oligodeoxynucleotides 

Vector specific amplification and sequencing primers 

Oligonucleotide Sequence (5’ → 3’) use 

T7 promoter TAATACGACTCACTATAGGG sequencing, colony PCR 

T7 terminator GCTAGTTATTGCTCAGCGG sequencing, colony PCR 

pEVOL ORF1-fwd CGGATCCTACCTGACGC sequencing 

pEVOL ORF1-rev TGATGACCGGGAGCTCAC sequencing 

pEVOL ORF2-fwd GTTAGATTATCAATTTTA 

AAAAACTAACAG 

sequencing 

pEVOL ORF1-rev CCTACAAAAGCACGCAAACTC sequencing 

 

 

Construction of pEVOL-CouA 

Oligonucleotide Sequence (5’ → 3’) use 

pEVOL ORF1 ex fwd AAAAAAGGTCTCCTAAGCG 

AGAGTAGGGAACTGC 

Cloning of CouA-RS 

into pEVOL 

pEVOL ORF1 ex rev AAAAAAGGTCTCACATGAG 

ATCTAATTCCTCCTGTTAGCC 

Cloning of CouA-RS 

into pEVOL 

pEVOL ORF2 ex fwd AAAAAAGGTCTCCTAAGTG 

CAGTTTCAAACGCTAAATTGCC 

Cloning of CouA-RS 

into pEVOL 

pEVOL ORF2 ex rev AAAAAAGGTCTCACATGTGG 

GATTCCTCAAAGCGTAAAC 

Cloning of CouA-RS 

into pEVOL 

 

 

Amplification and mutagenesis primers of hisF 

Oligonucleotide Sequence (5’ → 3’) use 

tmHisF fwd AAAAAAGGTCTCCCATGC 

TCGCTAAAAGAATAATC 

Cloning of hisF into 

pET28_BsaI_TEV 

tmHisF rev AAAAAAGGTCTCACTTAC 

AACCCCTCCAGTCTC 

Cloning of hisF into 

pET28_BsaI_TEV 

tmHisF I7A fwd GCGGCGTGTCTCGATGTG 

AAA 

Introducing of mutation I7A 

tmHisF I7A rev TATTCTTTTAGCGAGCATA 

TGG 

Introducing of mutation I7A 

tmHisF C9S fwd AGCCTCGATGTGAAAGAC 

GG 

Introducing of mutation C9S 

tmHisF C9S rev CGCGATTATTCTTTTAGCG 

A 

Introducing of mutation C9S 

tmHisF R16A 

fwd 

GCGGTGGTGAAGGGAACG 

AACTTCGAA 

Introducing of mutation R16A 

tmHisF R16A 

rev 

ACCGTCTTTCACATCGAGA 

CACG 

Introducing of mutation R16A 

tmHisF V18A 

fwd 

GCGAAGGGAACGAACTTC 

GAAAAC 

Introducing of mutation V18A 

tmHisF V18A 

rev 

CACACGACCGTCTTTCAC Introducing of mutation V18A 

tmHisF K19A 

fwd 

GCGGGAACGAACTTCGAA 

AACCTCAGG 

Introducing of mutation K19A 
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tmHisF K19A 

rev 

CACCACACGACCGTCTTTC 

AC 

Introducing of mutation K19A 

tmHisF G20A 

fwd 

GCGACGAACTTCGAAAAC 

CTCAGGGAC 

Introducing of mutation G20A 

tmHisF G20A 

rev 

CTTCACCACACGACCGTCT 

TTCA 

Introducing of mutation G20A 

tmHisF G20P 

fwd 

CCGACGAACTTCGAAAACC 

TCAGGGAC 

Introducing of mutation G20P 

tmHisF T21G 

fwd 

GGCAACTTCGAAAACCTCA 

GGGACAGCG 

Introducing of mutation T21G 

tmHisF T21G 

rev 

TCCCTTCACCACACGACCG 

TCTTT 

Introducing of mutation T21G 

tmHisF T21P 

fwd 

CCGAACTTCGAAAACCTCA 

GGGACAGCG 

Introducing of mutation T21P 

tmHisF N22A 

fwd 

GCGTTCGAAAACCTCAGGG 

ACAGCGGT 

Introducing of mutation N22A 

tmHisF N22A 

rev 

CGTTCCCTTCACCACACGA 

CC 

Introducing of mutation N22A 

tmHisF F23A 

fwd 

GCGGAAAACCTCAGGGAC 

AGCGGTG 

Introducing of mutation F23A 

tmHisF F23A 

rev 

GTTCGTTCCCTTCACCACA 

CGAC 

Introducing of mutation F23A 

tmHisF F23V 

fwd 

GTGGAAAACCTCAGGGAC 

AGCGGTG 

Introducing of mutation F23V 

tmHisF F23I 

fwd 

ATTGAAAACCTCAGGGAC 

AGCGGTG 

Introducing of mutation F23I 

tmHisF F23M 

fwd 

ATGGAAAACCTCAGGGACA 

GCGGTG 

Introducing of mutation F23M 

tmHisF F23L 

fwd 

CTGGAAAACCTCAGGGACA 

GCGGTG 

Introducing of mutation F23L 

tmHisF E24P 

fwd 

CCGAACCTCAGGGACAGCG 

GTGATC 

Introducing of mutation E24P 

tmHisF E24P 

rev 

GAAGTTCGTTCCCTTCACCA 

CACG 

Introducing of mutation E24P 

tmHisF E24C 

fwd 

TGCAACCTCAGGGACAGC Introducing of mutation E24C 

tmHisF F23A 

E24C fwd 

GCGTGCAACCTCAGGGACA Introducing of mutations F23A and 

E24C 

tmHisF G20P 

E24C 

CCGACGAACTTCTGCAACC 

TCAGGGAC 

Introducing of mutation G20P and 

E24C 

tmHisF D28A 

fwd 

GCGAGCGGTGATCCTGTCG 

AACTGG 

Introducing of mutation D28A 

tmHisF D28A 

rev 

CCTGAGGTTTTCGAAGTTC 

GTTCC 

Introducing of mutation D28A 

tmHisF G30A 

fwd 

GCGGATCCTGTCGAACTG 

GGAAAGTTCTATT 

Introducing of mutation G30A 

tmHisF G30A 

rev 

GCTGTCCCTGAGGTTTTCG 

AAGTTC 

Introducing of mutation G30A 

tmHisF G30P 

fwd 

GCGGATCCTGTCGAACTG 

GGAAAGTTCTATT 

Introducing of mutation G30P 

tmHisF Y39F 

fwd 

TTTTCCGAAATTGGAATA 

GACGAACTCGTT 

Introducing of mutation Y39F 

tmHisF Y39F 

rev 

GAACTTTCCCAGTTCGAC 

AGGATC 

Introducing of mutation Y39F 
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tmHisF V48A 

fwd 

GCGTTTCTGGATATCACC 

GCGTCC 

Introducing of mutation V48A 

tmHisF V48A 

rev 

GAGTTCGTCTATTCCAAT 

TTCGGA 

Introducing of mutation V48A 

tmHisF I52A 

fwd 

GCGACCGCGTCCGTTGA 

GA 

Introducing of mutation I52A 

tmHisF I52A rev ATCCAGAAAAACGAGTT 

CGTC 

Introducing of mutation I52A 

tmHisF D98E 

fwd 

GAAAAGGTGAGCATAAA 

CACGG 

Introducing of mutation D98E 

tmHisF D98E 

rev 

CGCACCACGGAGAAT Introducing of mutation D98E 

tmHisF 

K132amber fwd 

TAGAGAGTGGATGGAGA 

GTTC 

Introducing of amber codon 

tmHisF 

K132amber rev 

GGTGAAGACCATGAACT 

CT 

Introducing of amber codon 

tmHisF S144G 

fwd 

GGCGGAAAGAAGAACA 

CGGGCATA 

Introducing of mutation S144G 

tmHisF S144G 

rev 

GTAGGTGAAGACCATGA 

ACTC 

Introducing of mutation S144G 

tmHisF K146A 

fwd 

GCGAAGAACACGGGCAT 

ACTTCT 

Introducing of mutation K146A 

tmHisF K146A 

rev 

TCCGGAGTAGGTGAA 

GACCA 

Introducing of mutation K146A 

tmHisF 146 

fwd 

TGCATCTATCGCCACG Deletion of K146 

tmHisF loop5 

fwd 

GGAAACACGGGCATA 

CTTCTGAG 

Deletion of Y143 and K146 

tmHisF loop5 

rev 

GGAGGTGAAGACCAT 

GAACTCTC 

Deletion of Y143 and K146 

tmHisF L169A 

fwd 

GCGACCAGTATCGAC 

AGAGAC 

Introducing of mutation L169A 

tmHisF L169A 

rev 

CAGGATCTCTCCTGC 

TC  

Introducing of mutation L169A 

tmHisF H228A 

fwd 

GCGTTCAGAGAGATC 

GACGTGAGAGAAC 

Introducing of mutation H228A 

tmHisF H228A 

rev 

AAAGACAGAAGCCG 

CAAGGGC  

Introducing of mutation H228A 

tmHisF F229A 

fwd 

GCGAGAGAGATCGA 

CGTGAGAGAACTGA 

Introducing of mutation F229A 

tmHisF F229A 

rev 

GTGAAAGACAGAAG 

CCGCAAGG 

Introducing of mutation F229A 
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Amplification and mutagenesis primers for hisH 

Oligonucleotide Sequence (5’ → 3’) use 

tmHisH fwd AAAAAAGGTCTCAGATG 

CTCGCTAAAAGAATAATC 

Cloning of hisH into 

pET28_BsaI_TEV 

tmHisH rev AAAAAAGGTCTCACGAG 

CTATCGCCGGGACAAC 

Cloning of hisH into 

pET28_BsaI_TEV 

tmHisH TEV-

linker fwd 

ATGCGCATTGGTATTATT 

AGC 

Introduction of a two amino acid 

linker between HisH and TEV 

cleavage site 

tmHisH TEV-

linker rev 

GCCCATCGCGCCCTGAA 

AATAAAGATTCTCG 

Introduction of a two amino acid 

linker between HisH and TEV 

cleavage site 

tmHisH delta 

loop1 fwd 

GGCGGCAACATGAATC 

TGTATCGCGGAGTG 

Deletion of residues 10 and 13 of 

HisH 

tmHisH delta 

loop1 rev 

AACAGAGATTATTCCG 

ATCCTCAT 

Deletion of residues 10 and 13 of 

HisH 

tmHisH V51P 

fwd 

GTCCGGGTCATTTTGG 

TGAAGGTATG 

Introduction of the mutation 

V51P 

tmHisH V51P 

rev 

CAGGAATAAACAGCA 

GATCATAC 

Introduction of the mutation 

V51P 

tmHisH H53A 

fwd 

GTGCGTTTGGTGAAG 

GTATGCG 

Introduction of the mutation 

H53A 

tmHisH H53A 

rev 

CAACACCAGGAATA 

AACAG 

Introduction of the mutation 

H53A 

tmHisH C84S 

fwd 

AGCCTGGGTATGCAGC 

TGC 

Introduction of the mutation 

C84S 

tmHisH C84S 

rev 

AACACCAACAACATAA 

CGTTC 

Introduction of the mutation 

C84S 

tmHisH C84A 

fwd 

GCGCTGGGTATGCAGC 

TGC 

Introduction of the mutation 

C84A 

tmHisH 

Y136amber fwd 

TAGTATTACTTTGTTCA 

TACCTATCGTG 

Introduction of an amber stop-

codon at position 136 

tmHisH 

Y136amber rev 

GCCGTTCGGAAAGG Introduction of an amber stop-

codon at position 136 

tmHisH Y138A 

fwd 

GCGTTTGTTCATACCTA 

TCGTGCC 

Introduction of the mutation 

Y138A 

tmHisH Y138A 

rev 

ATAATAGCCGTTCGGA 

AAGG 

Introduction of the mutation 

Y138A 

tmHisH H178A 

fwd 

GCGCCGGAAAAAAGC 

AGCAAA 

Introduction of the mutation 

H178A 

tmHisH H178A 

rev 

AAACTGAAAACCCAG 

AATACG 

Introduction of the mutation 

H178A 

tmHisH K181A 

fwd 

GCGAGCAGCAAAATT 

GGTCGTAAAC 

Introduction of the mutation 

K181A 

tmHisH K181A 

rev 

TTCCGGATGAAACTG 

AAAACC 

Introduction of the mutation 

K181A 

tmHisF H178A 

K181A fwd 

GCGCCGGAAGCGAG 

CAGCAAA 

Introduction of the mutations 

H178A and K181A 
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3.1.9 Size and weight markers 
The size of DNA fragments in agarose gels was estimated with the help of the GeneRuler 1bk 

DNA Ladder Plus (MBI Fermentas, St. Leon-Rot). The size of proteins in SDS PAGE gels was 

approximated with the Unstained Protein Molecular Weight marker Plus (MBI Fermentas, St. 

Leon-Rot). 

 

 

3.1.10 Buffers and solutions 
If not explicitly states otherwise, all buffers and solutions and solutions were prepared with 

MILIPORE water. Buffers were filtered through a 0.22 µM filter and stored at room temperature 

unless stated otherwise. 

 

 

3.1.10.1 Work with E. coli 

Antibiotics 

Antibiotics were stored at -20°C long term and at 4°C short term. 

 Ampicilin (1000 x):  150 mg/ml ampicillin (sodium salt) in H2O 

 Kanamycin (1000 x):  75 mg/ml kanamycin in H2O  

 Chlorampphenicol (1000 x): 30 mg/ml chloramphenicol in 100% EtOH 

 

IPTG stock   1M IPTG in H2O, storage at -20°C 

5 x M9- Salts 64 g Na2HPO4∙7 H2O, 15 g KH2PO4, 2,5 g NaCl, 5,0 g NH4Cl, 

in H2O, autoclaved 

TFB I buffer: 100 mM KCl, 50 mM MnCl2, 30 mM KOAc, 10 mM CaCl2, 15% 

Glycerol. All stocks of the respective components were 

stored at room temperature and the buffer was freshly prepared 

before each use. 

TFB II buffer: 100 mM Tris/HCl pH 7,0, 10 mM KCl, 75 mM CaCl2. All 

stocks of the respective components were stored at room 

temperature and the buffer was freshly prepared before each use. 
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Cultivation media 

For sterilization, media were autoclaved for 20 min at 121°C and 2 bar. For selective media 

the antibiotics were added after autoclaving and cooling of the media. 

 

Lysogeny broth (LB-medium) 0.5 % (w/v) yeast extract, 1% (w/v) NaCl, 1% (w/v) 

tryptone 

LB agar    LB medium with 1.5% (w/v) bacto-agar 

Terrific broth (TB) medium 2.4 % (w/v) yeast extract, 0.5% (w/v) glycerol 1.2% 

(w/v) tryptone 

TB phosphate buffer   0.17 M KH2PO4, 0.72 M K2HPO4 

SOB medium 0.5% (w/v) yeast extract, 0.05% (w/v) NaCl, 2.0% (w/v) 

tryptone after autoclaving 10 mM MgSO4, 10 mM 

MgCl2 und 2,5 mM KCl (passed through a 0.2 µm filter) 

were added. 

SOC medium SOB medium with addition of 10 mM glucose after 

autoclaving 

M9- medium 750 ml H2O, 200 ml 5 x M9- salts, 2 ml MgSO4 (1 M), 

0.1 ml CaCl2 (1 M), 20 ml glucose (20% w/v) 

15N-M9- medium M9- medium with M9- salts containing 15NH3 instead of 
14NH3 

 

 

3.1.10.2 Work with DNA 

PCR dNTP stock (10 mM) dNTP, 2mM each (N = A, T, C and G), dissolved in 

H2O, stored at -20°C 

 

 

3.1.10.3 Agarose gel electrophoresis 

Agarose (1%) 5 g agarose were suspended in 500 ml 0.5 X TBE 

buffer, boiled until the agarose was dissolved and stored 

at 60°C 

Ethidium bromide stock  10 mg/ml ethidium bromide in H2O 

Sucrose staining solution 60% (w/v) sucrose, 0.1% (w/v) bromphenol blue, 

0.1% (w/v) xylencyanole FF dissolved in 0.5 x TBE 

TBE buffer (5 x) 445 mM boric acid, 12.5 mM EDTA, 445 mM Tris 

(resulting pH: 8.15) 
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3.1.10.4 Work with proteins 

HisF storage buffer   50 mM Tris/HCl pH 7.5, 100 mM NaCl 

HisH storage buffer   50 mM KP pH 7.5, 100 mM NaCl 

IMAC buffer A  50 mM Tris/HCl pH 7.5, 300 mM NaCl, 

10 mM imidazole 

IMAC buffer B 50 mM Tris/HCl pH 7.5, 300 mM NaCl, 

500 mM imidazole 

Reverse IMAC buffer   50 mM Tris/HCl pH 7.5, 300 mM NaCl 

 

3.1.10.5 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Ammonia persulfate (APS) stock 10% (w/v) APS in H2O. storage at -20°C 

Coomassie staining solution  0.2 % (w/v) Coomassie brilliant blue G250 and R250, 

     50% (v/v) EtOH, 10% (v/v) acetic acid. Storage  

     protected from light. 

SDS-PAGE separating gel buffer 0.4% (w/v) SDS, 1.5 M Tris/HCl pH 8.8 

SDS-PAGE collecting gel buffer 0.4 % (w/v) SDS, 0.5 M Tris/HCl pH 6.8 

SDS-PAGE running buffer  0.1 % (w/v) SDS, 0.025 M Tris, 0.2 M glycine (resulting 

      pH: 8.5) 

SDS-PAGE sample buffer 2% (w/v) SDS, 10% (w/v) glycerol, 5% (v/v) - 

mercaptoethanol, 0.01% (w/v) bromophenol blue, 1.25 

M Tris/HCl pH 6.8 

 

 

3.1.11 Software and web-based tools 
 

Äkta Unicorn Version 5.01 GE Healthcare 

Microsoft Office 2016 Microsoft  

Citavi 6.3.0.0 Swiss Academic Software GmbH 

Corel Draw 19.1.0.419 Corel 

ChemDraw professional 16.0 CambridgeSoft 

PyMOL 2.1 Schrödinger 

SigmaPlot 12 SYSTAT Software 

CLC main workbench 8.0 Qiagen 

Spectra manager Jasco 

ProtParam Expasy.org 

NEB TM calculator NEB.com 
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3.2 Methods 
 

Preparation of lab ware, buffers and solutions 

All glassware was baked for 4 h at 200 °C. All heat stable solutions as well as single use items 

such as pipet tips were autoclaved at 121 °C and 2 bar for 20 min. Heat labile solutions were 

prepared in stock solutions and passed through a syringe filter with a pore size of 0.22 µm or 

through filter membrane with a pore size of a 0.2 µm by the application of a vacuum. Buffers 

used for gel filtration or stopped-flow experiments were degassed for at least 30 min in an 

exsiccator. Buffers containing volatile components such as ammonia were degassed by sonication 

in a water bath for at least 30 min. 

 

3.2.1 Microbiological methods 

3.2.1.1 Cultivation of E. coli strains 

All E. coli strains were cultivated at 37 °C while being shaken at 140 rpm (1 l and 0.6 l cultures) 

or 220 rpm (5, 50, 100 and 250 ml cultures), respectively. Unless stated otherwise, LB medium 

was used for cultivation. To select strains harbouring plasmids, the medium was supplemented 

with the adequate antibiotic (150 µg/ml ampicillin, 30 µg/ml chloramphenicol, 75 µg/ml 

kanamycin) by addition of a filter-sterilized, 1000-fold concentrated stock solution. For selection 

of single clones, cultures were plated on LB agar plates containing the respective antibiotic and 

incubated at 37 °C over night to obtain single colonies. For short term storage, plates and 

suspensions were sealed and stored at 4 °C. 

 

3.2.1.2 Preparation of chemically competent E. coli cells[118] 

To prepare E. coli cells for transformation of plasmids, 500 ml SOB medium was inoculated with 

an over night culture of the respective strain to an OD600 of 0.1. The culture was incubated at 

37 °C and 220 rpm until an OD600 of 0.6 was reached. The culture was subsequently kept on ice 

for 15 min and harvested in 15 ml tubes by centrifugation (EPPENDORF Centrifuge 5810R, 400 

rpm, 10 min, 4 °C). The supernatant was discarded and the bacterial pellet resuspended in ice-

cold TFB I buffer. The cells were pelleted again under the same conditions as above. The 

supernatant was discarded and the resulting bacterial pellet suspended in 10 ml ice-cold TFB II 

buffer. Immediately afterwards, the cell suspension was transferred into 1.5 ml reaction vessels 

in aliquots of 100 µl each on ice and frozen at -80 °C. 

 

3.2.1.3 Transformation of chemically competent E. coli cells 

An aliquot of chemically competent cells was thawed on ice and a total of about 100 ng of plasmid 

DNA were added to the suspension. After a 20 min incubation on ice, the cells were subjected to 

a heat shock at 42 °C for 60 s and subsequently cooled on ice for another 5 min. For development 

of the antibiotic resistance, 900 µl of LB medium were added to the cell suspension and the cells 

were incubated for 1 h at 37 °C in an incubation shaker at 220 rpm. Finally, an appropriate dilution 

was plated on LB agar plate containing the appropriate antibiotic(s) or the transformation culture 

was used to inoculate a larger culture. 
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3.2.2 Molecular biology methods 

3.2.2.1 Isolation and purification of plasmid DNA from E. coli 

Plasmid amplification was performed using the strain E. coli turbo. Plasmid DNA was isolated 

by the use of a mini preparation kit from FERMENTAS (GeneJET Plasmid Miniprep Kit). For 

this purpose, cells 5 ml of and over night culture were harvested by centrifugation (EPPENDORF 

Centrifuge 5810R, 400 rpm, 10 min, 4 °C). The plasmid isolation was carried out following the 

instructions provided by the manufacturer. The DNA was eluted from the silica columns with 

50 µl of sterile deionized water and stored at -20 °C. 

 

3.2.2.2 Determination of DNA concentration 

The concentration of DNA solutions was determined using a NanoDrop One photometer by 

measuring the absorbance at 260 nm. According to Lambert-Beer’s law, assuming a 0.1%A260 of 

20 cm2mg-1 and a path length of 1 cm, a solution of 50 ng/µl double-stranded (ds) DNA shows an 

absorbance of 1. Therefore, the DNA concentration can be calculated by the following 

equation (1): 

 𝒄𝒅𝒔𝑫𝑵𝑨 =
𝑨𝟐𝟔𝟎∙𝟓𝟎

𝟏𝟎𝟎𝟎
   (1) 

 

The following measures were taken as quality control of the DNA preparation: There should not 

be a measurable absorbance above 300 nm and the ratio A260/A280 should be at least 1.8. 

 

3.2.2.3 Agarose gel electrophoresis 

Linear dsDNA fragments were separated by agarose gel electrophoresis according to their length. 

Bands of DNA can be made visible under UV light by the addition of ethidium bromide, a 

fluorescent dye that intercalates with DNA bases.[119] For preparation of agarose gels, about 25 ml 

of a 1% agarose solution, previously stored at 60 °C, was supplemented with 0.2 µl ethidium 

bromide solution per ml agarose solution, was cast into a gel chamber and a comb was inserted 

to create loading pockets. After cooling to room temperature, the gel was covered with 0.5 x TBE 

buffer and the comb removed. The DNA samples were mixed with DNA loading dye and pipetted 

into the loading pockets. The electrophoresis was carried out at a voltage of 200 V for 20 min. 

The negatively charged DNA molecules migrate towards the anode and this migration is impeded 

to different extents according to the size of the DNA fragments. The DNA fragments were 

detected under UV light ( = 302 nm) and documented using the Multi-Doc-It Digital imaging 

system. To estimate the size of the fragments, 5 µl of GeneRuler 1 kb Plus DNA ladder 

(FERMENTAS) was applied a pocket of the gel to compare migration lengths. 

 

 

3.2.2.4 Isolation of linear DNA fragments from agarose gels 

The desired DNA fragment was excised from the agarose gel using a clean scalpel under UV light 

( = 302 nm) and transferred into a clean 1.5 ml reaction vessel. The extraction was done using 

the GeneJET Gel Extraction Kit (FERMENTAS) according to the instructions provided by the 

manufacturer. The DNA was eluted using 20 – 40 µl of sterile, deionized water and stored at  

–20 °C. 

 

 



29 
 

3.2.2.5 Enzymatic manipulation of DNA 

 

Cleavage of dsDNA with restriction endonucleases 

For specific cleavage of dsDNA Type II endonucleases were applied, which recognize a specific 

palindromic sequence (Sambrook, 1989; Wilson and Murray, 1991). The cleavage results in 

single stranded overhangs (sticky ends) which carry 3’ hydroxyl and 5’ phosphate ends. For 

preparative cleavage for subsequent ligation, 2 µg of DNA or the entire purified PCR product and 

2 µg of target vector DNA were treated with 20 U of each restriction enzyme in a total volume of 

50 µl at 37 °C for 2 h. The fragments were purified by agarose gel electrophoresis (chapter 

3.2.2.3) for before ligation (see below). 

 

Ligation of DNA fragments 

For ligation DNA fragments of the target vector and the gene insert, digested with the appropriate 

restriction enzymes, were mixed in an approximate 1:3 (vector:insert) ratio and supplemented 

with 1 U T4 Ligase (FERMENTAS) in a total volume of 20 µl in the buffer provided by the 

manufacturer. The mixture was incubated at RT overnight and subsequently, chemically 

competent E. coli cells were transformed (chapter 3.2.1.3) with the ligation mixture. 

 

Golden Gate cloning 

The synthetic hisH gene optimized for E. coli codon usage was cloned into a derivative of pET28 

containing a TEV cleavage site for the removal of the hexa-histidine tag that was modified with 

BsaI restriction sites to allow for golden gate cloning.[112] The synthetic gene also carried BsaI 

restriction sites. 100 ng plasmid DNA were mixed in a 1:3 ratio (vector : insert) and supplemented 

with 20 U BsaIHF (NEB) and 400 U T4 Ligase (NEB) in ligase buffer (provided by the 

manufacturer) in a total volume of 50 µl. To account for the different temperature optima of the 

restriction enzyme and the ligase, the reaction was performed in a thermal cycler as follows 

 step temperature (°C) duration 

1. Initial restriction 37 10 min 

2. Ligation  18 5 min 
3. Restriction  37 5 min 

4. Final restriction 37 10 min 

5. Heat inactivation 65 10 min 
6. Hold (cooling) 4 ∞ 

 

Steps 2-4 were repeated 50 times 

 

 

 

 

 

 

 

 



30 
 

Amplification of DNA fragments by polymerase chain reaction (PCR) 

PCR is used to amplify specific DNA fragments in vitro.[120,121] For this purpose, the DNA is 

subjected to cycles of denaturation, hybridization (annealing) of synthetic DNA oligonucleotides 

that flank the DNA sequence of interest (primers) and enzymatic DNA polymerization 

(elongation of the primers). This leads to an exponential increase in the amount of target DNA 

with each cycle. PCR was performed in a total volume of 50 µl in a thermal cycler (lid temperature 

110 °C). A standard PCR mixture contained 1-100 ng template DNA, 2.5 U DNA polymerase, 

0.2 mM dNTP mix and 1 µM of each primer in the appropriate reaction buffer provided by the 

manufacturer for the respective DNA polymerase used. A standard PCR protocol was as follows: 

 step temperature (°C) duration 

1. Initial denaturation 95 3 min 

2. Denaturation 95 30 s 

3. Annealing TA 30 s 
4. Elongation 72 30 s/kb 

5. Final elongation 72 10 min 

6. Hold (cooling) 4 ∞ 

  Steps 2 to 4 were repeated 30-35 times. 

The melting temperature (TM) was calculated using the web tool NEB TM calculator. The 

annealing temperature (TA) was set to be 1 °C higher than the lower TM of the two primers. If the 

standard conditions did not yield a suitable PCR product, the optimal TA was determined using a 

temperature gradient in a gradient cycler (EPPENDORF Mastercycler gradient), using several 

separate reaction set-ups at temperatures ranging from 50 °C to 70 °C. 

 

Colony PCR 

For verification of the ligation process, colonies resulting from a transformation after ligation 

were screened for the correct length of insert. To this end, single colonies were picked with a 

pipette tip and a small quantity of cells was transferred to a 20 µl PCR reaction mixture for GoTaq 

polymerase as described in above. 

 

Site directed mutagenesis 

In order to exchange or delete amino acids in HisF or HisH enzymes, their respective genes were 

modified on the nucleotide level. The method used here is a modified protocol after the Phusion 

Site-directed mutagenesis kits by Finnzymes (Thermo Fisher Scientific). For the exchange of 

nucleotides, the primers were designed such that the 5’ ends anneal back-to-back, leading to an 

amplification of the entire plasmid. The nucleotide changes were incorporated in one of the 

primers. These primers were used in a standard PCR reaction using Phusion polymerase. The 

resulting PCR product was purified via an agarose gel. The purified, linearized plasmid was 

cyclized in a standard ligation reaction, with the addition of polynucleotide kinase. E. coli turbo 

cells were transformed in a standard transformation procedure (chapter 3.2.1.3) with the resulting 

mutated plasmid. 
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DNA sequencing 

The correct sequence of all cloned genes and all introduced mutations was verified by Sanger 

sequencing. The sequencing was performed by the company Seqlab (Göttingen). Samples for 

sequencing contained approximately 600 ng Plasmid DNA and 2 µM of sequencing primer in a 

total volume of 15 µl. The sequencing results were analysed with the program CLC main 

workbench (Qiagen). 

 

Gene synthesis 

The hisH gene was optimized for E. coli codon usage using the web service of the company 

GeneArt (Thermo Fisher Scientific, Regensburg). The gene was designed to carry a BsaI 

restriction site on both ends to allow for golden gate cloning (chapter 3.2.2.5) and was delivered 

as a linear fragment (GeneArt Gene String). Also, the gene encoding for the aminoacyl-tRNA 

synthethase for the incorporation of the unnatural amino acid CouA (chapter 3.2.4.3) was 

designed in a similar fashion for cloning into the plasmid pEVOL. 

 

Construction of pEVOL-pCouA 

For the incorporation of the unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine 

(CouA) the plasmid pEVOL-pAzF (Chin et al. 2002) was modified to carry the gene for 

aminoacyl-tRNA synthethase that was optimized to attach CouA to a tRNA recognising the amber 

STOP codon (Wang et al. 2006). Since both systems use the orthogonal tyrosyl system of 

M. janaschii, an exchange of the region encoding for the tRNA was not necessary. For the 

exchange of the first copy of the gene, the plasmid was amplified with primers flanking the gene, 

carrying BsaI restriction sites for golden gate cloning. The synthetic gene also carried these 

restriction sites, creating matching sticky ends for ligation. The insertion of the gene was done by 

golden gate cloning. The second copy of the gene was exchanged in a similar fashion, with 

primers matching the flanking regions. Both exchanges were verified by sequencing. 

 

 

3.2.3 Protein biochemistry methods 

3.2.4 Gene expression and heterologous protein production 

3.2.4.1 Production of unlabelled protein 

For purification of unlabelled proteins, 4 l LB medium, supplemented with the appropriate 

antibiotics, were inoculated to an OD600 of 0.1 with an overnight culture of E. coli BL21Gold 

(DE3) carrying the respective plasmid. The cultures were incubated at 37 °C and 140 rpm until 

they reached an OD600 of 0.6 to 0.8, at which point gene expression was induced by the addition 

of 1 mM IPTG. Cells were grown at 20°C overnight. Cells were harvested by centrifugation 

(Beckmann Coulter Avanti J-26SXP, JLA-8.1000, 20 min, 4000 rpm, 4 °C). The cells were 

resuspended in IMAC buffer A (chapter 3.1.10) and lysed by sonication (Heinemann Branson 

sonifier W-250D, 3 min in 2 s intervals, 65% pulse intensity, 0 °C). The solution was cleared of 

cell debris by centrifugation (Beckmann Coulter Avanti J-26SXP, JA-25.50. 30 min, 14000 rpm, 

4 °C) and the supernatant used for further processing. 
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3.2.4.2 Production of labelled proteins for NMR spectroscopy 

Isotopically labelled HisH (with 13C in the -position of Histidine) and HisF (15N labelling) were 

expressed in D2O-based M9 minimal medium at 20-25 °C over night in E. coli BL21-

CodonPlus(DE3)-RIPL cells (Stratagene). Expression was induced by addition of 1 mM IPTG at 

an OD600 of 0.6-0.8. For 15N labelling of HisF 0.5 g/l 15NH4Cl was used. Specific. For histidine 

labelling 100 mg/l Ring-2-13C labelled histidine (Cambridge Isotope Laboratories) was used. 

Labelled histidine was added 1 h prior to induction. 

 

3.2.4.3 Production of proteins carrying the unnatural amino acid CouA 

For purification of CouA containing proteins, 6 l LB medium were supplemented with the 

appropriate antibiotics and inoculated with an overnight culture of E. Coli BL21Gold (DE3) 

harbouring the appropriate plasmid encoding the gene of interest and pEVOL-pCouA to an OD600 

of 0.1. Cultures were incubated at 37 °C and 140 rpm until they reached an OD600 of 0.6 to 0.8. 

Cells were harvested by centrifugation (Beckmann Coulter Avanti J-26SXP, JLA-8.1000, 20 min, 

4000 rpm, 4 °C) and resuspended on 600 ml TB medium. This culture was incubated at 37 °C and 

140 rpm until it reached an OD600 of 10. Subsequently, the expression of the aminoacyl-tRNA 

synthethase gene was induced by addition of 0.2% arabinose and CouA was added to a final 

concentration of 0.45 mM. For variants of HisH, IPTG was added for induction of hisH 

expression, for variants of HisF, no IPTG was added and expression was accomplished solely by 

“leaky” expression of the pET system. The cells were harvested, lysed and further treated as 

described in chapter 3.2.4.1. 

 

3.2.4.4 Protein purification 

As purification steps, heat incubation, nickel affinity chromatography, reverse nickel affinity 

chromatography and preparative size exclusion chromatography were used. If size exclusion 

chromatography was not the final purification step, the buffer was exchanged by dialysis. 

Solutions of purified proteins were concentrated by ultrafiltration (Amicon 10 kDa cut-off, 

Millipore), flash frozen in liquid nitrogen and stored at -80 °C. 

 

Heat incubation 

For HisF variants, the crude extract was subjected to 70 °C for 15 min in a water bath. Aggregates 

of host proteins were removed by centrifugation (Beckmann Coulter Avanti J-26SXP, JA-25.50. 

30 min, 14000 rpm, 4 °C). The supernatant was used in further purification steps. 
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Immobilized metal chelate chromatography (IMAC) 

IMAC takes advantage of the specific and reversible interactions between histidine residues in 

proteins and immobilized metal ions. The column consists of a sepharose matrix, which is 

modified covalently with an iminodiacetic acid (IDA)-type chelator. IDA coordinates divalent 

metal ions such as Ni2+, Cu2+ or Co2+. The coordination site not occupied by the chelator can bind 

to nitrogen or sulphur atoms. In this work, HisF and HisH proteins were genetically fused to an 

N-terminal His6-tag containing a tobacco etch virus (TEV) protease cleavage site for specifically 

removing the His6-tag. The raw extract was filtered through a 0.45 µm syringe filter and 

afterwards directly passed through a HisTrap FF crude column (GE Healthcare, CV = 5 ml, 

pressure limit: 0.5 MPa) with an Äkta chromatography system (GE Healtcare). Bound protein 

was eluted from the column with free imidazole, which competes with the histidine residues for 

the coordination site of the nickel ions. IMAC purifications were performed according to the 

following protocol: 

 

Flow rate 5 ml/min 

Equilibration  5 CV IMAC buffer A  

Sample application  25 – 80 ml expression cells homogenized in IMAC buffer A  

Washing  10 CV IMAC buffer A  

Elution  15 CV, gradient 0 – 75 % IMAC buffer B  

Purging  10 CV IMAC buffer B 

Flushing  10 CV H2O  

Storage of the column  in 20 % EtOH  

 

The entire chromatographic process was monitored by following the absorbance at 260 nm and 

280 nm. The fractions were analysed by SDS-PAGE (chapter 3.2.5.2) and the fractions containing 

target protein in acceptable purity were pooled and used in further purification steps. 

 

Proteolytic cleavage of N-terminal His6-tags and reverse IMAC 

After IMAC purification (chapter 3.2.4.4), the N-terminal His6-tag was removed by proteolytic 

cleavage with TEV protease. This highly specific cleavage leaves two amino acids (GH) for HisF 

protein and four amino acids (GAMG) for HisH proteins N-terminal of the starting methionine. 

To this end, TEV protease was added to the pool of elution fractions as produced from IMAC and 

the imidazole removed by dialysis against 5 l of reverse IMAC buffer A overnight. The resulting 

protein solution was again passed through a HisTrap FF crude column (GE Healthcare). All 

protein molecules that have been cleaved, e.g. the target protein, does not bind to the column 

again and is to be found the flow-through. All non-cleaved target protein, the cleaved His6-tag 

peptides as well as the TEV protease, which also carries a His6-tag, bind to the column and are 

thus removed. Reverse IMAC purification steps were conducted according the following 

protocol: 

 

 

 

 

 

 



34 
 

Flow rate 5 ml/min 

Equilibration  5 CV reverse IMAC buffer A  

Sample application  Protein solution 

Washing  10 CV reverse IMAC buffer A 

Elution  15 CV, gradient 0 – 75 % IMAC buffer B 

Purging  10 CV reverse IMAC buffer A 

Flushing  10 CV H2O  

Storage of the column  in 20 % EtOH  

 

The fractions were analysed by SDS-PAGE (chapter 3.2.5.2) and all flow-through fractions 

containing target protein in acceptable purity were pooled. 

 

Preparative size exclusion chromatography (SEC) 

The principle of SEC can be understood as a reverse molecular sieve. The mobile phase passes 

through a porous material at a constant flow rate. Small molecule in the mobile phase can diffuse 

into the pores while larger molecules are excluded from them. As a result, the larger molecules 

effectively travel through a smaller volume than the small molecules and elute from the column 

earlier. This allows for both complete buffer exchange of protein solutions as well as the 

separation of proteins by their size. In this work, proteins were separated on Superdex 75 columns 

(HiLoad 26/600, 320 ml, GE Healthcare) using an Äkta prime chromatography system (GE 

Healthcare). For HisF proteins, 50 mM Tris/HCl pH 7.5 was used and for HisH protein 50 mM 

KP pH 7.5. Proteins were loaded via a 10 ml super loop and eluted with 1.2 CV of the respective 

buffer at a flow rate of 1.5 ml/min (back pressure: max. 0.38 MPa). Fractionation was started at 

the beginning of the elution and the progress of the elution was monitored by observation of the 

absorbance at 280 nm. Fractions were analysed by SDS-PAGE (chapter 3.2.5.2) and fractions 

containing target protein in acceptable purify were pooled. 

 

Buffer exchange by dialysis 

For buffer exchange or to remove salt or imidazole from a protein solution, dialysis was 

performed for at least 4h against an at least 1000-fold excess of the desired buffer. For HisH 

proteins still carrying a His6-tag, this was performed at RT. The used dialysis tubing (Visking) 

had a molecular cut-off of 14 kDa to retain proteins, while substances with low molecular weight 

can pass through the membrane freely. 

 

Concentrating of protein solutions 

Protein solutions were concentrated by ultrafiltration using Amicon Ultra centrifugal filter 

devices (Millipore, cut-off: 10 kDa for HisF and HisH monomers, 30 kDa for ImGPS complexes). 

The filtration was achieved by centrifugation (Eppendorf Centrifuge 5810R, 4000 rpm, 4 °C) 

according to the instructions provided by the manufacturer 
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Synthesis of ProFAR and PrFAR 

Because PrFAR is labile and can hydrolyse spontaneously,[97] it was synthesized from ProFAR in 

situ with HisA from T. maritima.[100] ProFAR is more stable that PrFAR and can be stored at  

–80 °C.[54] ProFAR was synthesized from ATP and PRPP,[122] the starting compounds of histidine 

biosynthesis, using ATP-phosphoribosyltransferase (HisG) and phosphoribosyl-ATP 

phosphoribosyl-ATP pyrophosphohydrolase:phosphoribosyl-AMP cyclohydrolase (HisIE) from 

E. coli in an enzymatic reaction. The reaction mixture consisted to 6 mg ATP, 12 mg PRPP and 

15.2 mgMgCl2 in a total volume of 10 ml of 50 mM Tris/Ac pH 7.8. The reaction was initiated 

by addition of ca. 2 mg HisG-IE (in 50 mM KP pH 7.5, 2.5 mM EDTA and 1 mM DTT) under 

vigorous stirring. Spectra (200 to 400 nm) were recorded at regular intervals to observe the 

reaction progress by the characteristic increase in absorbance at 290 nm due to the production of 

ProFAR. When no further increase in absorbance at 290 nm could be observed ProFAR was 

isolated from the reaction mixture via anion exchange chromatography on a Poros HQ-20 column 

(CV: 7.9 ml). The column was previously equilibrated with 50 mM ammonium acetate pH 8.0. 

ProFAR was eluted with a linear gradient of ammonium acetate (0-1 M over 12 CV, fractionation 

in 4 ml fractions). ProFAR concentration was determined by its absorbance at 300 nm (300 = 

6069 M-1cm-1, ).[97] Purity was estimated by the ratio A290/A260, with values between 1.1 and 1.2 

being assumed as optimal.[123] Fractions with pure ProFAR were flash frozen in liquid nitrogen 

and lyophilized. All steps were carried out under exclusion of light. 

For applications that needed excluded in situ synthesis of PrFAR, such as stopped-flow kinetic 

measurements, PrFAR was synthesized from ProFAR. To this end, ProFAR was dissolved in 

50 mM Tris/HCl, pH 7.8 and after the addition of 4 µM HisA from T. maritima incubated for 

45 min at room temperature. PrFAR was isolated from the reaction mixture by anion exchange 

chromatography on a Poros HQ-20 column (CV: 7.9 ml). PrFAR was eluted with a linear gradient 

of 1 M Tris/HCl pH 7.8 over 12 CV. Since PrFAR shows the same spectroscopic properties as 

ProFAR, concentration and purity were estimated as described for ProFAR. PrFAR was not stable 

during lyophilisation and was therefore stored in solution. The fractions from purification 

containing PrFAR were pooled and flash frozen in liquid nitrogen and stored at –80°C. 
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3.2.5 Analytical methods 
 

3.2.5.1 Determination of protein concentrations via absorption spectroscopy 

Aromatic amino acids (Trp, Tyr and Phe) and also disulphide bonds absorb UV-light of 

wavelengths between 250 and 300 nm. The molar extinction coefficient at 280 nm (280) can be 

calculated form the amino acid composition (equation (2)).[124] 

  𝜺𝟐𝟖𝟎 = ∑ 𝑻𝒓𝒑 ∙ 𝟓𝟓𝟎𝟎 + ∑ 𝑻𝒚𝒓 ∙ 𝟏𝟒𝟗𝟎 + ∑ 𝑪𝒚𝒔 ∙ 𝟏𝟐𝟓    (2) 

 

 

Using Lambert-Beer’s law, the protein concentration can be determined by the absorbance at 

280 nm (equation (3)) 

𝑨𝟐𝟖𝟎 = 𝜺 ∙ 𝒄 ∙ 𝒅      (3) 

 

𝒄 =
𝑨𝟐𝟖𝟎

𝜺 ∙ 𝒅
 

    A280 absorbance at 280 nm 

    c concentration [M] 

    d pathlength [cm] 

    280 molar extinction coefficient at 280 nm 

 

Absorbance spectra were recorded between 220 and 700 nm. The maximum absorbance of protein 

solutions should be a 278 nm and for pure protein the ration A280/A260 should be at least 1.8. 

Above 300 nm there should not be any absorbance, as this is an indication of protein aggregation. 

 

3.2.5.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

When subjected to the detergent sodium dodecyl sulphate (SDS), proteins are denatured and 

negatively charged proportionally to their mass due to SDS binding to hydrophobic parts of the 

polypeptide chain in a ratio of one molecule of SDS per 1.4 amino acid residues. Since the net 

charge of the proteins can be neglected, this results in an approximately uniform mass to charge 

ratio. Consequently, the electrophoretic mobility is determined only by the sieve effect of the 

polyacrylamide gel. As described by Laemmli, the migration speed of a protein is inversely 

proportional to the logarithm of its molecular mass.[125] SDS gels were prepared according to the 

composition shown in Table 1. 

 

Table 1: Composition of gels for SDS-PAGE 

 Separation gel (12.5%) Stacking gel (6%) 

Separation/stacking gel buffer 19.5 ml 7.38 ml 

Acrylamide-SL 26.2 ml 5.9 ml 

Water 31.58 ml 15.95 ml 

TEMED 0.089 ml 0.029 ml 

APS (10%) 0.195 ml 0.089 ml 
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Samples were mixed 1:4 with 5 x SDS-PAGE sample buffer or 1:1 with 2 x SDS-PAGE sample 

buffer and incubated at 95°C for 5 min. 5-20 µl of sample were loaded into the gel pockets and 

electrophoresis of proteins performed at 50 mA (constant) and 300 V (maximum) for 35 min. 

Gels were stained by swaying them for 10 min in SDS-PAGE staining solution, the detection limit 

for protein bands being 200-500 ng protein per mm2. Excess dye was removed by repeated 

washing with deionized water and heating in a microwave oven. 

 

3.2.5.3 Fluorescence Titration 

The  CouA residues incorporated into proteins change their fluorescence properties in different 

microenvironment.[117,126] Therefore, changes in fluorescence can be used as a binding signal for 

ligands. For the determination of binding affinity of CouA-labelled HisH (HisH Y136CouA), the 

protein was titrated with wild-type HisF. The corrected fluorescence signal was plotted against 

the HisF concentration and the resulting curves were fitted to a quadratic function describing the 

dissociation constant (equation (4)): 

𝑭 =  𝑭𝟎 +
𝟏

𝟐
(𝑭𝒎𝒂𝒙 − 𝑭𝟎) ∙ (𝟏 +

𝑳𝟎+𝑲𝑫

𝑬𝟎
− √(𝟏 +

𝑳𝟎+𝑲𝑫

𝑬𝟎
)

𝟐

− 𝟒 ∙
𝑳𝟎

𝑬𝟎
)   (4) 

   F   measured fluorescence intensity 
   F0   initial fluorescence intensity 

   Fmax   fluorescence intensity at saturation 
   L0   concentration of HisF 
   E0   concentration of HisH 
 

HisF K132CouA was used to study ligand binding to HisF. It was titrated with the HisF substrate 

PrFAR as well as the reaction products ImGP and AICAR. For these titrations, 1 µM labelled 

HisF was titrated in 50 mM Tris/HCl pH 7.5 with the respective ligand. Since the addition of 

ligands did not show any significant change in signal when titrated against free CouA and show 

no fluorescence on their own, the data were only corrected for dilution of HisF. The change in 

fluorescence was plotted against the concentration of the titrated ligand and fitted with a simple 

hyperbolic fit to determine the dissociation constant (equation (5)). 

∆𝑭 =∙
𝑭𝒎𝒂𝒙∙𝑳𝟎

𝑲𝑫+𝑳𝟎
       (5) 

   F   measured difference in fluorescence intensity 

   Fmax   fluorescence intensity at saturation 
   L0   concentration of ligand 
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3.2.5.4 Steady-state enzyme kinetics 

For functional characterization of generated protein variants, state-state enzyme kinetics was 

performed. The measured reactions were cyclase activity (both ammonia-dependent and 

glutamine-dependent) and glutaminase activity. If both subunits were present, the subunit whose 

reaction was not observed was added in access to ensure correct concentration of the observed 

subunit and full complex formation. All kinetic measurements were carried out at 25 °C. 

 

Ammonia dependent HisF (cyclase) activity 

Although physiologically, ImGPS is a bienzyme complex in which the ammonia necessary for 

the reaction is generated by the hydrolysis of glutamine, HisF is also fully functional as a stand-

alone enzyme, when supplied with free ammonia. The reaction progress was followed by the 

decrease of absorbance at 300 nm (300 PrFAR-AICAR = 5637 M-1cm-1).[97] As PrFAR is quite 

labile, the more stable precursor ProFAR was added to the reaction mixture and was turned over 

in situ to PrFAR by addition of HisA from T. maritima. As source of ammonia, 100 mM NH4Ac 

were added. According to the Herdeson-Hasselbach equation, at pH 8.5 this results in a 

concentration of free ammonia of roughly 17 mM, which constitutes saturation.[100] Typical 

reactions conditions were: 

   50 mM   Tris/Ac pH 8.5 

   100 mM  NH4Ac 

   1-30 µM ProFAR 

   0.5 µM   HisA 

The reaction was observed in the absence of HisH. Reactions were started by the addition of 0.05 

to 10 µM HisF. From the initial slopes, reaction rates were calculated, normalized to HisF 

concentration and plotted against the PrFAR concentration. The values for kcat and KM
PrFAR values 

were determined by fitting the data points to the Michaelis-Menten equation. 

 

Glutamine dependent cyclase activity 

The glutamine dependent turnover of PrFAR is the physiological reaction of ImGPS. In this case, 

the glutaminase HisH hydrolyses glutamine to glutamate. The resulting ammonia is channelled 

through an intra-molecular channel to the active site of HisF, where it reacts with PrFAR. The 

reaction progress was followed as described above for ammonia-dependent cyclase activity. 

Generally, glutamine was added to saturation (10 mM) and kinetics measured in dependence of 

PrFAR concentration. Typical reaction conditions were: 

   50 mM   Tris/HCl pH 7.5 

   10 mM   glutamine 

   1-30 µM ProFAR 

   0.5 µM   HisA 

   2-11 µM HisH 

 

The reaction was initiated by addition of 1-10 µM HisF. Catalytic parameters were determined as 

described above. 
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Glutaminase activity 

The glutaminase subunit of ImGPS, HisH, catalyses the hydrolysis of glutamine to glutamate and 

ammonia. Since the hydrolysis of glutamine does not yield a spectroscopic signal, coupled 

enzymatic reaction assays were used. Both used detection systems are based on the turnover of 

generated glutamate. Since there is a small quantity of glutamate as an impurity in commercially 

available glutamine, all reactions were incubated 1 h at 25 °C before the start by the addition of 

HisH. 

 

Glutamate dehydrogenase assay 

Glutamate dehydrogenase oxidises glutamate to -ketoglutarate and ammonia. The cofactor 

needed for this reaction is NAD+, which is reduced to NADH. This leads to a spectroscopic signal 

and the reaction progress can be observed by the absorbance increase at 340 nm (340 = 6220 M-

1cm-1). Since NAD+ binds to HisF with a low affinity and also induces a low allosteric activation, 

basal activity cannot be measured in this assay and activity was only measured with the addition 

of the allosteric activator ProFAR. 

 

Glutamate oxidase assay 

To reliably measure the basal glutaminase activity as well as the fully activated activity, a 

glutaminase assay for ImGPS has to be free of NAD+. Therefore, in this work a assay base on 

glutaminase oxidase (GOX) was used. This assay is a modified protocol of one developed for 

high-throughput screenings.[127] In this assay the oxidation of glutamate to oxoglutarate and 

ammonia is carried out without a NAD+ cofactor. As a by-product of this reaction, H2O2 is 

generated. This in turn is reduced by horseradish peroxidase (HRP) which can then use 

chromogenic substrates as final electron acceptor. The main difference to the high-throughput 

assay is the HRP substrate. Instead of the fluorophore AmplexRed, Phenol and 4-amino antipyrine 

(AAP) were used to make the assay feasible for larger assay volumes. 

After the initial incubation, the reaction was started by the addition of 0.05-35 µM HisH. Reaction 

progress was monitored by observing the increase in absorbance at 505 nm (505 = 6400 M-1cm-1) 

in a 96-well plate format using a Tecan infinite M200 Pro plate reader. The progress curves 

showed a characteristic lag phase and the slope for determining the reaction rate was fitted to 

points in the following linear phase. Reaction rates were normalized with the HisH concentration 

and plotted against the concentration of glutamine if full kinetics were measured. Typical reaction 

conditions were: 

   20 mM   Tris/HCl pH 7.0 

   0.1 - 10 mM  glutamine 

   0 or 70 µM ProFAR 

   20 mU/ml GOX 
   1 U/ml  HRP 

   1 mM  phenol 

   1 mM  AAP 
   1 – 36 µM HisF 

   0.05 – 35 µM HisH (start) 
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This assay was also used for the determination of the pH dependency of the HisH reaction. For 

these experiments, the buffer system was changed to Bis-Tris/HCl (20 mM) in order to ensure 
comparability between different pH values. Linearity of this coupled enzymatic assay under the 

used conditions was tested for standard conditions (Fig. 9) as well as at different pH values (Fig. 

10). The latter demonstrated that this assay can be used between pH 5.6 and pH 9.2. 

 

 

Fig. 9: Test of linearity of the GOX assay. Different concentrations of wild-type ImGPS were assayed in 20 mM 

Tris/HCl pH 7.0, 10 mM glutamine, 70 µM ProFAR for glutaminase activity to demonstrate the suitability of the assay 
in this range of activity. The turnover was calculated from the maximal slope of raw data. The linear increase of activity 
with the HisH concentration shows that the activity of auxiliary enzymes is not limiting under these conditions. Error 
bars indicate the standard error of a technical triplicate measurement. 

 

 

 

Fig. 10: Test of linearity of the GOX assay at different pH values. The suitability of the GOX based assay was 

tested by measuring HisH activity at different pH values (100 mM CHC buffer). The useful pH range of the assay was 
determined to be 5.6 to 9.2. 
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3.2.5.5 Transient binding kinetics 

Transient binding kinetics of the HisF substrate PrFAR as well as the reaction products ImGP and 

AICAR was measured with an Applied Photophysics stopped-flow apparatus at 25 °C. For usual 

binding experiments, both the enzyme and ligand containing solutions were prepared in two-fold 

concentrated stocks, which were filled into the syringes of the device and incubated for 5 min to 

ensure temperature adjustment of the samples. CouA fluorescence was excited with a xenon lamp 

(367 nm) and the fluorescence measured with a 400 nm cut-off filter. All transients were 

measured at least 10 times and averaged. All measurements were performed with the pressure 

hold option, since pressure release led to a fluorescence artefact. Fitting of single transients was 

performed with the software supplied by the manufacturer of the machine. Global fitting analysis 

for determination of the kinetic mechanism of HisF was performed with the program DynaFit.[128] 

 

3.2.5.6 Protein crystallization and structure determination by X-ray diffraction 

Structure determination was performed in collaboration with Chitra Rajendran (group of Prof. 

Christine Ziegler, Institute of Biophysics and Physical Biochemistry, University of Regensburg). 

For crystallization of HisF protein variants, all proteins were concentrated to about 20 mg/ml 

using Amicon Ultra centrifugal devices (Millipore, 10 kDa cut-off). First, crystals of the wild-

type protein were grown in a previously determined condition using Qiagen EasyXtal 15 well 

plates.[58] These crystals were used to perform micro seeding. For this purpose, crystals were 

harvested from drops and placed in a reaction tube containing 50 µl of reservoir solution and a 

plastic bead. The suspension was mixed vigorously with a vortex mixer for 1 min and the resulting 

seeding solution was diluted in a serial dilution with reservoir solution. A drop containing 1 µl of 

the concentrated HisF variant (about 20 mg/ml) and 1 µl of a seeding solution was set up in a 

Qiagen EasyXtal 15 well plate. For the variant G20P this procedure was not successful and a new 

screen (Morpheus II Screen, Molecular dimensions) was carried out using 400 nl drops (200 nl 

reservoir plus 200 nl protein solution). This screen was pipetted with a mosquito pipetting robot 

(SPT Labtech) in Greiner Bio One 96-well plates. The crystals for structure determination were 

taken directly from this screen. 

For crystallization of ImGPS complexes, the respective HisH and HisF protein were mixed in a 

1:1 molar ratio and any excess monomeric protein was removed by SEC (S75 column ART, Äkta 

prime GE Healthcare) in 10 mM Tris/HCl pH 8.0 and concentrated to at least 25 mg/ml. using a 

Amicon Ultra centrifugal device (Millipore, 30 kDa cut-off). Afterwards, a screening of 

conditions was performed with the commercially available ProPlex Eco screen (Molecular 

Dimensions) using 400 nl drops (200 nl reservoir plus 200 nl protein solution). This screen was 

pipetted with a mosquito pipetting robot (SPT Labtech) in Greiner Bio One 96-well plates.  Initial 

hits were optimized by slightly varying precipitant solution, pH or additive concentrations 

depending on the particular condition in 15-well plates (EasyXtal tool, Qiagen). 

Data sets were collected using synchrotron radiation from the Swiss Light Source (SLS), 

Switzerland at beamline PXIII and PXI. Data collection was done at cryogenic temperature. Data 

were processed using XDS,[129] and the data quality was assessed using the program PHENIX.[130] 

Structures were solved by molecular replacement with MOLREP within the CCP4i[131] suite using 

PDB-ID 1THF[58] or PDB-ID 1gpw[109] as search model for isolated HisF proteins or ImGPS 

complexes, respectively. Initial refinement was performed using REFMAC.[132] The model was 

further improved in several refinement rounds using automated restrained refinement with 

PHENIX[130] and interactive modelling with Coot.[133] 

 

 



42 
 

3.2.5.7 Nuclear magnetic resonance spectroscopy 

To measure the effects of allosteric HisH activation by either the activating ligand ProFAR or 

constitutive activity inducing mutations, several different nuclear magnetic resonance (NMR) 

experiments were performed. All NMR experiments were done in cooperation with Dr. Jan-Philip 

Wurm (group of Prof. Dr. Remco Sprangers, Institute of Biophysics and Physical Biochemistry, 

University of Regensburg). 

All NMR measurements were performed on 600 MHz and 800 MHz Bruker Avance NEO 

spectrometers equipped with triple resonance cryoprobes. Size exclusion buffer was used for 

NMR measurements of the ImGPS complex, whereas for HisF the buffer consisted of 50 mM 

KCl, 10 mM MES, 1 mM EDTA, pH 6.8. 5 % D2O was added to both buffers. Protein 

concentrations of 50-150 uM and 250-350 uM were used. The backbone amide resonance 

assignment of HisF was published previously.[134] All spectra were processed with Topspin 4.0 

and analysed with Sparky.[135] 
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4 Results and Discussion 
 

4.1 Investigation of the influence of flexibility on HisF catalysis 
Already early in the investigation of the ImGPS from Thermotoga maritima it has been observed 

in limited tryptic proteolysis experiments that the 11loop (loop1) is the most flexible element 

of the cyclase subunit HisF.[100] Furthermore, the deletion of loop1 led to a reduction in kcat of 

1000-fold[108]. However, an understanding of the individual role of specific residues, motions or 

defined conformations of loop1 is still lacking. Therefore, in this thesis, the properties of loop1 

were studied in more detail. In addition to loop1, other parts of the HisF active site were studied 

in order to get a more complete picture. These are structural elements that potentially interact with 

loop1 (-helices 1 and 8’) as well as the only other elongated active site loop, the 55loop 

(loop5). 

 

4.1.1 Mutagenesis studies on HisF loop5 
Before studying loop1 in detail, it was first analysed if loop5 also plays an important role for HisF 

catalysis. This loop shows the same conformation in all available HisF and ImGPS structures. 

Strikingly, loop5 also adopts the same conformation in the homologous ImGPS enzyme His7 

from yeast (e.g. PDB codes 1OX4 or 1OX5). Therefore, it appears that in contrast to loop1, loop5 

adopts one stable conformation. Nevertheless, sequence analysis shows that the only residues that 

are conserved in this loop are the ones in positions 144, 145 and 146 (numbering according to 

HisF from T. maritima). While in most HisF proteins, positions 144 and 145 contain glycine 

residues (serine and glycine in HisF from T. maritima, respectively), position 146 is occupied by 

positively charged amino acids, usually arginine (lysine in HisF from T. maritima). The sequence 

conservation implies a functional role of these residues. Indeed, the sidechains of K146 and S144 

point towards the active site of HisF and might interact with PrFAR (Fig. 11). 

 

 

Fig. 11: Residues in loop5 analysed by mutagenesis. HisF is shown in red (PDB code 1VH7). The binding position 
of PrFAR was approximated by an overlay with the PrFAR-bound structure of yeast His7, which is depicted in blue 
(PDB code 1OX5). (A) Side view of the HisF active side. (B) Top view of the HisF active site. Loop5 is highlighted in 
orange. For orientation, the catalytic residues D11 and D130 are shown as blue sticks. PrFAR is bound mainly via its 

two phosphate groups, one binding between loop3 and -helix 4’, assisted by the side chain of T104, which is situated 

within -helix 4’ (shown as sticks), the other one between loop7 and -helix 8’. The mutated residues K146 and S144 
are also shown sticks. The figure illustrates how the catalytic residue D130 is covered by loop5 and how loop5 comes 
into close proximity to the PrFAR molecule which could result in interactions that assure its correct orientation for 

catalysis. 
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To test the impact of K146 and S144 on catalysis, the two residues were mutated. K146 was 

mutated to alanine and S144 to glycine, since this is the consensus for HisF proteins. The effect 

of both mutations S144G and K146A was tested for the ammonia dependent HisF activity. In this 

assay, the activity is observed via the difference in absorption at 300 nm of the substrate PrFAR 

and the products AICAR and ImGP. The reaction was carried out with isolated HisF proteins in 

the presence of ammonium chloride at pH 8.5 to provide free ammonia as a second substrate in 

saturation. It turned out that both mutations did not significantly affect KM
PrFAR or kcat (Table 2). 

It can therefore be assumed that neither side chain has an important functional role.  

 

Table 2: Steady-state kinetic parameters of HisF variants with mutations in loop5 at 25 °C 

HisF variant kcat (s
-1

) KM
PrFAR

 (µM) kcat/KM (M
-1

s
-1

) 

wild-type 2.4 ± 0.2 4.5 ± 0.5 5.3 x 105 

S144G 3.0 ± 0.1 3.9 ± 0.6 7.7 x 105 

K146A 1.6 ± 0.01 4.0 ± 0.7 4 x 105 

K146 0.24 ± 0.02 23 ± 4 0.1 x 105 

loop5 0.04 ± 0.001 38 ± 2 926 
Activity was monitored in the presence of 100 mM ammonium chloride at pH 8.5. All errors are 

standard errors from technical triplicates. 

 

The fact remains that this loop appears to be structurally highly conserved and its close proximity 

to the catalytic residue D130 makes it likely that loop5 plays an important role in HisF catalysis. 

The structural conservation of loop5 despite its low conservation on the sequence level indicates 

that the conformation, rather than specific amino acid side chains, is responsible for this role. The 

two glycine (or serine) residues are most likely necessary for the loop to be able to adopt the tight 

hairpin conformation. To assess the importance of the structural integrity of loop5, its structure 

was disrupted by deletion of specific residues. Two variants were constructed, K146, since the 

residue was observed not to be of functional relevance and loop5, in which residues Y143 and 

K147, which show no significant sequence conservation, were deleted in addition to K146. S144 

and G145 were not deleted to maintain the hairpin conformation. The deletion of residues in loop5 

led to an increase in KM
PrFAR as well as a reduction of kcat in the ammonia-dependent HisF activity 

(Table 2). 

These data suggest that loop5 is involved in both binding and chemical turnover of PrFAR. The 

role in binding could be based on direct interaction via hydrogen bonds of the backbone of loop5 

with PrFAR or a modulation of the phosphate binding site between loop3 and -helix 4’. The 

latter contains the highly conserved residue T104 (Fig. 11B), which has been shown to be of 

central importance for PrFAR binding.[104,136] 

The influence on the kcat might be the result of the proximity of loop5 to D130. Loop5 covers 

D130 (Fig. 11), creating a hydrophobic environment. This might be beneficial for the acid/base 

catalysis of HisF, which requires the catalytic aspartate residues D11 and D130 to undergo 

protonation as well as deprotonation.[100] For the reaction to occur at physiological pH, this 

generally requires a higher pKa value than observed for an aspartate residue that is exposed to 

solvent, which can be facilitated by creation of a hydrophobic environment.[137] To fully interpret 

the role of loop5 for D130, a more detailed knowledge of the catalytic mechanism of HisF is 

needed, including the determination of which aspartate residue is involved in which step of 

catalysis and the confirmation whether either of these steps is rate-limiting for the overall reaction 

rate. In the context of this thesis, which focuses on the influence of loop dynamics on catalysis, 

loop5 appears to be of little relevance, since it seems not to be flexible. Rather, it supports HisF 

catalysis by maintaining one stable conformation. The mechanistic implications will be discussed 

in greater detail in chapter 4.1.10. 
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4.1.2 Identification of key residues within loop1 
In contrast to loop5, conformational flexibility has been observed for loop1.[100] The first step in 

the detailed analysis of loop1 was to identify functionally important residues within the loop by 

mutagenesis. To narrow the search for important residues in loop1, a multiple sequence alignment 

of 1307 ImGPS sequences (compiled by Dr. Kristina Straub, group of Prof. Rainer Merkl, 

University of Regensburg, Institute of Biophysics and Physical Biochemistry) was used to 

identify conserved residues. The sequence of loop1 was defined as residues 19 to 30, as suggested 

in previous studies.[108] Thus the sequence starts with the highly conserved K19, which was 

already found to be of functional relevance in His7 from yeast.[106] Loop1 contains several other 

highly conserved positions, most notably G20, F23 and G30, which show almost 100 % 

conservation. 

Residues in loop1 with a conservation of >50% were mutated (Fig. 12A). Most positions were 

mutated to alanine in the classical sense of an alanine scanning (positions 19, 20, 22, 23 26, 27, 

28 and 30). Since one of the key objects of study is the flexibility of loop1, additional mutations 

were introduced. The branching of side chains at the beta-position is known to restrict 

conformational freedom.[138] Since position 21 exclusively contains beta-branched amino acids 

(V, I and T) in all HisF sequences, T21 was mutated to glycine to introduce a maximum of 

flexibility. Moreover, to reduce loop1 flexibility, proline was introduced at different positions. 

For one, the highly conserved glycine residues at positions 20 and 30 were replaced since 

sequence conservation indicates that high conformational freedom at these positions might be of 

functional relevance. Finally, two arbitrarily chosen positions (T21 and E24) were mutated to 

proline to test for the implications of rigidifying loop1 at other positions. The only residue that 

was excluded from this study although it shows a high sequence conservation was S29, since the 

consensus amino acid is alanine followed by valine and isoleucine. This makes the functional 

relevance of the serine, present in the studied enzyme from T. maritima, unlikely.   

 

 

Fig. 12: Mutational analysis of single residues in loop1 of HisF. (A) Residues were selected for mutagenesis based 
on their conservation as represented by the sequence logo, which is based on 1307 HisF sequences. Numbering is 
according to the sequence of HisF from T. maritima. The size of the letters indicates the respective bitscore value, 

which reflects the relative abundance of the residue in the used alignment, but also takes into account the general 
frequency of the respective amino acid in all proteins (infrequently used amino acids getting higher bitscores). Residues 
with conservation greater than 50 % were chosen for mutagenesis (empty arrows). Residues with a significant influence 
on HisF catalysis are marked with orange arrows. (B) The functionally relevant residues are shown as orange sticks in 
the top view onto the HisF active site (loop1 in the open conformation, PDB-code 1VH7). The positions of G20 and 

G30 are indicated by spheres at the position of their respective C atoms. For orientation, the catalytic residues D11 
and D130 of HisF are shown as blues sticks. 
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The influence of the individual mutations was assessed by measuring the ammonia dependent 

HisF reaction. The results showed that the mutations G20A, T21G, N22A, F23A and G30A had 

a significant effect on catalysis, underscoring the functional importance of loop1 (Table 3). The 

corresponding wild-type residues are highlighted in Fig. 12B. Most striking is that for all variants, 

the influence on the KM
PrFAR value is negligible whereas kcat-values tend to be decreased 

significantly 

 

 
Table 3: Steady-state kinetic parameters of HisF variants with mutations in loop1 at 25 °C 

 

variant 

kcat 

(s-1) 

KM
PrFAR 

(µM) 

kcat/KM 

(M-1s-1) 

kcat 

wt/mut 

KM 

wt/mut 

kcat/KM 

wt/mut 

wild-type 2.4 ± 0.2 4.5 ± 0.5 5.3 x 105 1 1 1 

K19A 1.1 ± 0.1 6.1 ± 1.8 1.8 x 105 2.2 0.7 1.5 

G20A 2.2 ± 0.1 x 10-2 2.1  ± 0.2 1.0 x 104 109 2.1 53 

G20P n.d. n.d. n.d. n.d. n.d. n.d. 

T21G 1.8 ± 0.1 x 10-2 5.0  ± 0.8 3.6 x 103 133 0.9 148 

T21P n.d. n.d. n.d. n.d. n.d. n.d. 

N22A 2.9 ± 0.2 x 10-1 8.4 ± 1.7 3.5 x 104 8.3 0.5 15 

F23A 5.5 ± 0.4 x 10-3 6.8 ± 1.3 8.1 x 102 436 0.7 658 

E24P n.d. n.d. n.d. n.d. n.d. n.d. 

L26A 1.1  ± 0.03 2.0 ± 0.3 5.5 x 105 2.2 2.3 1 

D28A 2.4  ± 0.1 4.5 ± 0.9 5.3 x 105 1 1.9 1 

G30A 1.0  ± 0.1 x 10-1 3.7 ± 1.3 2.7 x 104 24 1.2 20 

G30P n.d. n.d. n.d. n.d. n.d. n.d. 
Activity was monitored in the presence of 100 mM ammonium chloride at pH 8.5. All errors are standard errors from 
a technical triplicate measurement; n.d.: activity not detectable 

 

Mutations D28A and L26A showed little to no effect. Surprisingly, although its relevance was 

observed in His7,[106] also the mutation K19A had only a low impact on HisF activity. The 

conservation of these residues might thus have another functional reason, such as an involvement 

in allosteric communication with the glutaminase subunit HisH, which will be further discussed 

in chapter 4.2.2. 

With an 8-fold decrease of kcat, the mutation N22A showed a moderate influence. However, the 

role of N22 is not obvious. Both in structures showing an open and a closed loop conformation, 

N22 does not interact with any other protein residues. At this point, it can therefore only be 

speculated that it might be involved in a transient interaction with either protein or the substrate 

during the catalytic cycle. 

Mutations that can be assumed to influence the flexibility of loop1 have a significantly higher 

impact on the catalytic rate of HisF. The mutations G20A, T21G and G30A reduced the kcat 24 to 

133-fold. The comparison of structures showing an open and a closed loop conformation 

demonstrates that the two glycine residues are situated at the sites at which loop1 bends between 

the two conformations, suggesting that G20 and G30 facilitate the exchange between the two 

states (Fig. 13A). The 133-fold reduction in kcat caused by the mutation T21G indicates that while 

flexibility is needed, it has to be restricted, at least in certain structural elements, as well. Since 

most HisF proteins have a valine or isoleucine at this position, it appears unlikely that the 

hydrogen bonds formed by the threonine hydroxyl group with the backbone of S29 and F23 (Fig. 

13B) are of particular importance. The effect on catalysis is even more drastic for mutations in 

which proline was introduced into the loop (G20P, T21P, E24P and G30P). For all of these 

variants the activity was reduced below the detection limit (no significant turnover within 10 min 

with 10 µM HisF and 100 µM PrFAR). This indicates that flexibility is indeed essential for loop1 

to carry out its function. 
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Fig. 13: Structural and mutational analysis of key residues in HisF loop1. (A) G20 and G30 (C atoms as orange 
spheres) are positioned at the hinge points of loop1 when comparing the open (red, PDB code 1VH7) and the closed 
conformation (grey, PDB code 1GPW, chain A). (B) T21 forms two hydrogen bonds with the backbone of S29 and 
F23, which might stabilize the open conformation. (C) The crucial residue F23 binds to a hydrophobic pocket in the 
open conformation. This pocket is formed by L35, F38 and I42. Residues that possibly also contribute to the pocket 

are T21 and L26 within loop1 as well as R230 in -helix 8’. (D) The hydrophobic pocket around F23 in the open 
conformation in surface representation. (E) A potential second interaction site of F23 in the closed conformation is the 
hydrophobic patch formed by V18 and I52, which directly flank the catalytic residue D11. (F) The natural logarithm 
of the kcat values of HisF variants with differently sized hydrophobic residues in position 23 shows a linear correlation 
with the accessible surface area (ASA) of the respective amino acid side chain. 

 

The most pronounced effect of the alanine variants demonstrated the mutation of F23 with a 436-

fold reduction of kcat. An analysis of available crystal structures shows that in the open 

conformation, the side chain of F23 is buried in a hydrophobic pocket between -helices 1, 8 and 

8’ (Fig. 13 C and D). In the closed conformation, it points toward the active site and is exposed 

to solvent. In this conformation, the residues V18 and I52 are in proximity and could possibly 

form a hydrophobic interaction surface for F23 (Fig. 13E). Thus, F23 appears to be a hydrophobic 

plug, which anchors certain conformations of loop1. To further analyse the role of this 

hydrophobic plug, several hydrophobic amino acids with increasing ASA (V, L, I, M) were 

inserted into position 23 by mutagenesis. The HisF activity of these variants was measured in the 

ammonia-dependent assay. While the KM
PrFAR was not influenced by the mutations, the natural 

logarithm of the resulting kcat showed a linear dependency on the accessible surface area of the 

side chain in position 23 (Fig. 13F). This observation has implications for the formulation of a 

kinetic model including the conformational transition of loop1 (see chapter 4.1.9). 
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4.1.3 Identification of key residues in the vicinity of loop1 
The results presented in chapter 4.1.2 demonstrate the significance of loop1 for catalysis, with 

F23 being of particular importance. The experiments presented in this chapter are aimed at 

identifying and functionally characterizing residues that can interact with F23 or are in proximity 

of the interaction sites of F23 and are thus connected to its function. 

Candidate residues for interaction with F23 need to be hydrophobic and located close to loop1 in 

order to be able from relevant contacts with F23. Residues that fit these criteria are V18, I52 and 

F229 (Fig. 13E), which are located in -strand 1’, the 22-loop (loop2) and -helix 8’, 

respectively. Interestingly, V18 and I52 directly flank the catalytic residue D11. There is a gap in 

between the two residues into which F23 could bind, which would put it in direct vicinity of D11. 

To test the role of these three residues, they were mutated to alanine and the resulting variants 

were tested for ammonia-dependent HisF activity (Table 4). Measurements on the variants V18A 

and I52A were carried out by Leon Babel.[139] 

 

Table 4: Steady-state kinetic parameters of HisF variants with mutations in the vicinity of loop1 at 25 °C 

HisF variant kcat (s
−1

) KM
PrFAR

 (µM) kcat/KM (M
−1

s
−1

) 

wild-type 2.4 ± 0.2 4.5 ± 0.5 5.3 x 105 

V18A 0.21 ± 0.02 5.8 ± 1.4 3.6 x 104 

Y39F 1.0 ± 0.03 1.9 ± 0.2 5.3 x 105 

I52A 0.06 ± 0.005 7.1 ± 1.7 8.5 x 103 

H228A 0.19 ± 0.01 4.2 ± 0.8 4.5 x 104 

F229A 1.9 ± 0.2 3.1 ± 1.2 6.1 x 105 
Activity was monitored in the presence of 100 mM ammonium chloride at pH 8.5. Errors are standard 
errors from a technical triplicate measurement 
 

The mutation F229A did not lead to a significant reduction of HisF activity. The variants V18A 

and I52A on the other hand showed a 12-fold and 40-fold decrease in kcat, respectively, which 

indicates a role in HisF function. This could be the result of the interaction with F23, but it is also 

conceivable that the two residues alone create a suitable, hydrophobic surrounding for D11 to 

facilitate catalysis. A hydrophobic environment leads to a preferential protonation of the carboxyl 

group, which is most likely necessary for D11 to carry out its catalytic function. This will be 

discussed in further detail in chapter 4.1.10. To conclusively determine whether V18 and I52 

interact with F23, more detailed structural data of the closed conformation is needed. 

In the following, the conserved residues Y39 and H228 in the vicinity of loop1 were also mutated. 

To avoid the creation of a large gap between -helices 1 and 8, Y39 was mutated to phenylalanine 

to remove the hydroxyl group, which could be involved in important interactions. H228 was 

mutated to alanine. While the variant Y39F only showed a 2.4-fold decrease in HisF activity, the 

kcat of HisF H228A was reduced 12-fold. Structural analysis of HisF showed that both Y39 and 

H228 are involved in a network of hydrogen bonds (Fig. 14A). In the structure of wild-type HisF 

(PDB code 1VH7), the imidazole ring of H228 forms a hydrogen bond with the carbonyl oxygen 

of the backbone of C9, a direct neighbour of D11. The other nitrogen atom of the side chain of 

H228 is hydrogen bonded to the hydroxyl group of Y39. A conformational change in -helix 8’ 

can induce the release of H228 from this hydrogen bond network (Fig. 14). This change can be 

observed in several crystal structures to be induced by phosphate binding between loop7 and -

helix 8’ (e.g. HisF K19A, see chapter 4.1.4). Phosphate binding results in a contraction of loop7 

and -helix 8’, which leads to movement of the functionally highly important residues T21 and 

F23. These observations may indicate that the hydrogen bond between H228 and C9 is 

functionally relevant and that Y39 stabilizes the relevant conformation of H228. This is in 

agreement with the fact that mutation of H228 has a greater effect on HisF activity than mutation 

of Y39. 
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Fig. 14: Residues in the proximity of loop1 involved in conformational changes. The figure shows a comparison of 

the structure of wild type HisF (PBD code 1VH7, red) and the structure of HisF K19A (blue), which has an additional 
phosphate ion bound. (A) In wild-type HisF, the residue H228 forms a hydrogen bond with Y39 and the backbone of 

C9 without a bound phosphate. The structure of HisF K19A demonstrates how loop7 and -helix 8’ contract with a 
phosphate bound and H228 is released from its hydrogen bonds. Loop1 was removed for a clear view. (B) The side 
view demonstrates how loop1 conformation changes with a bound phosphate ion. The side chain of F23 moves out of 
the hydrophobic pocket and the side chain of T21 flips out, most likely leading to a destabilized open loop conformation 
(motions indicated by orange arrows). 

 

 

4.1.4 Analysis of the impact of loop1 mutations on HisF structure 
For further insight on the nature of the structural changes and functional implications of the 

introduced mutations, three-dimensional structures of HisF variants were solved by X-ray 

crystallography in cooperation with Dr. Chitra Rajendran (University of Regensburg, Institute of 

Biophysics and Physical Biochemistry). Crystals could be obtained for the variants K19A, G20P, 

T21P, F23A, Y39F and H228A. For all of these variants, the structures were solved. The data 

collection and processing statistics are summarized in Table Appendix 1. Except for some subtle 

differences in loops 1 and 2, particularly at the site of each mutation, the solved structures show 

little difference to the available structures of wild-type HisF (Fig. 15A). In all variants, loop1 

adopts the open conformation. Since most variants were crystallized with high concentrations of 

phosphate as precipitant (1.2 M), in all structures except that of HisF G20P both phosphate 

binding sites are occupied. The slight shift in loop1 conformation already discussed in chapter 

4.1.3 could also be observed for these structures. Also, there are some slight variations in the 

conformation of loop2. In the HisF variants K19A, Y39F and H228A, no further changes of 

significance were detected. HisF G20P, T21P and F23A show the greatest conformational 

distortions in loop1 (Fig. 15B, C and D, respectively). The most notable difference is the missing 

electron density of residues 20-24 in HisF F23A, which indicates an increase in loop1 flexibility. 
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Fig. 15: Structural comparison of HisF loop1 variants. (A) Structural alignment of all solved loop1 variants 
(different shades of grey) with the “wild-type” structure of HisF T21S (red, PDB code 1THF). For orientation, the 
catalytic residues D11 and D130 are shown as blues sticks. The structures are overall very similar. In all variants, loop1 
adopts the open conformation. (B) The structure of HisF G20P (dark grey) was aligned with wild-type HisF (red, PDB 

code 1VH7), because both structures do not contain phosphate ions, which lead to changes in -helix 8’ and loop1. 
The proline introduced into loop1 does not allow for the conformation observed in wild-type HisF. (C) HisF T21P 
(grey) shows a similar effect as HisF G20P. The conformation of loop1 is slightly distorted when compared to “wild-
type” HisF (red). (D) HisF F23A (dark grey) is structurally very similar to “wild-type” HisF (red). The mutation 

apparently led to an increase in the flexibility of both loop1 and loop2, since in both loops electron density for respective 
residues is missing (stretches of missing residues indicated by dashed orange lines). 

 

Taken together, all mutations do not lead to a significant change of the HisF structure. Considering 

the current comprehension of HisF catalysis, the solved structures cannot explain the extreme 

effect of the mutations G20P, T21P and F23A on HisF activity. This implies that the mutations 

have an effect which differs from a permanent conformational change. Instead, some mutations 

suggest that the conformational flexibility of loop1 might be crucial for catalysis. 
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4.1.5 Analysis of loop1 flexibility 
In this chapter, the connection of loop1 flexibility and HisF catalysis will be addressed. For 

experiments assessing the relevance of loop1 flexibility, two mutations within loop1 which show 

a strong effect on HisF activity and are anticipated to have opposite effects on loop1 flexibility 

were chosen for a more detailed analysis: i) The mutant F23A was used as a model for increased 

loop flexibility since this mutations leads to part of the loop not being resolved in the crystal 

structure; ii) The mutation G20P was chosen, since the exchange of glycine to proline is assumed 

to have the greatest rigidifying effect on loop flexibility. 

As a qualitative test of loop flexibility, limited proteolysis with trypsin was performed. This 

method is based on the observation, that the rate of proteolytic cleavage is dependent on the 

conformational flexibility of the protein.[140] Flexible regions of proteins are more often in 

unordered states that are exposed to the solvent and are thus accessible for proteases. In 

experiments with wild-type HisF, it could be observed that the protein is generally very resistant 

against limited proteolysis by trypsin, but is cleaved in one position, R27 in loop1.[100] In a 

repetition of this experiment, it could be observed that it requires approximately 250 min to cleave 

about 50 % of wild-type HisF. HisF G20P is cleaved much slower, showing only slight 

proteolysis after 250 min. HisF F23A possesses a much more accessible loop1, since 50 % 

cleavage is observed already after 25 min and cleavage is completed after 250 min (Fig. 16A). 

This result confirms that loop1 flexibility is indeed decreased for the variant G20P and increased 

for the variant F23A. Remarkably, the addition of the substrate analogue ProFAR (70 µM) did 

not change susceptibility to proteolysis (data not shown). 

 

 

Fig. 16: Limited proteolysis and EPR spectra of HisF variants with different loop1 flexibility. (A) Limited 
proteolysis with trypsin shows that wild-type HisF was cleaved to ~50% over the course of 250 min. In the same 

timeframe, HisF G20P is cleaved only to a small extent, while HisF F23A is cleaved completely. (B) EPR spectra were 
recorded in 50 mM Tris/HCl pH 7.5 with 100 µM protein.  All proteins carry the mutations necessary for site specific 
labelling (C9S and E24C). Curves show the spectra of HisF with no further mutation (black), with F23A (red) and 
G20P (blue). All spectra are typical for a dynamic element as expected for a loop, however containing a more static 
component. Curves were fitted with application of the Redfield-theory to gain an indication as to the differences in ns 
motions. All experiments were carried out at 25 °C. 

 

 

For a quantitative analysis of loop1 flexibility, electron paramagnetic resonance (EPR) 

spectroscopy was performed in cooperation with Dr. Magdalena Schumacher (group of Prof. 

Heinz-Jürgen Steinhoff, University of Osnabrück). EPR observes the spin resonance of an 

unpaired electron in a magnetic field. This method is sensitive to the rotation of the molecule 

carrying the unpaired electron and a rotational correlation time (RCT) can be calculated for the 

recorded spectra, which is an indicator for the mobility of the monitored molecule. Since the 

rotational correlation times of proteins are approximately 10-100 ns, only movements faster than 

this can be observed because slower effects are masked by the protein rotation. Loop movements 
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span a relatively large range of timescales, depending on the size of the loop and the observed 

movement. Thus, it is possible, that loop motions are slower or faster than the protein rotation. 

However, the rotational freedom of amino acid side chains within a loop is strongly dependent on 

whether the loop is ordered or disordered, since ordered states strongly reduce their 

conformational freedom. Thus, EPR spectroscopy should give a good measure of the flexibility 

of loop1. 

For EPR measurements on loop1 the mutations C9S and E24C were introduced. These mutations 

were necessary to ensure the site specific labelling of loop1 via disulphide chemistry. While these 

mutations led to a decrease in activity, the kcat/KM of 6 x 104 M-1s-1 (5.36 x 104 M−1s−1 in wild-

type HisF) indicates that this variant is still a good model of an active HisF enzyme.[110] 

Analysed HisF variants were labelled with the spin label (1-Oxyl-2,2,5,5-tetramethylpyrroline-3-

methyl)methanethiosulfonate (MTSSL). Experiments were carried out with the C9S E24C double 

mutant as well as with HisF variants that additionally carry the mutations G20P or F23A, 

respectively. 

EPR measurements revealed that for all three variants loop1 is flexible, as indicated by the narrow 

peaks of the EPR spectra (Fig. 16B). Slight differences could be observed in the shape of the 

spectra. The peaks differ in amplitude and width, which is indicative of a change in molecular 

dynamics. Calculation of the RCT using the Redfield theory[141] revealed that loop1 dynamics 

indeed changed as previously hypothesised. For the wild-type HisF model, the RCT is 1.82 ns. 

The mutation G20P led to a decrease in loop dynamics, indicated by an increased RCT of 2.02 ns. 

The mutation F23A on the other hand led to a decrease in the rotational correlation time to 1.52 ns, 

indicating a more flexible loop. The addition of 200 µM PrFAR did not change the EPR spectra 

of any of the HisF proteins significantly (data not shown). This indicates no significant change in 

loop1 dynamics upon substrate binding, which is in agreement with the observation made in 

limited proteolysis experiments. 

The results from both proteolysis and EPR spectroscopy show that the introduction of the activity 

impairing mutations G20P and F23A leads to a disruption of the loop dynamics observable in 

wild-type HisF. There is no indication that substrate binding induces a change in the dynamics of 

loop1. 

 

4.1.6 Localization of loop1 in solution 
Recent smFRET measurements confirmed the existence of two conformations of loop1 in 

solution, which matches the observation of an open and a closed conformation made in crystal 

structures.[110] However, no clear correlation between the existence and population of either 

conformation with the catalytic performance of the respective HisF variant was observed. A 

reason for this might lie in the FRET methodology. Due to experimental requirements as well as 

optical properties, FRET labels are rather large molecules with a molecular weight of over 1 kDa. 

The modification of a flexible loop with such a molecule undoubtedly changes the loop dynamics 

and could also shift the conformational equilibrium via unintended interactions of the labels. 

These effects are reduced with smaller labels. Additionally, FRET measurements only give a 

distance measure and several separate measurements with labels at different positions are needed 

to gather structural information as to where the observed loop lies relative to the rest of the protein. 

To gather more detailed structural information on loop1 in solution an orthogonal method to 

smFRET was applied. The method used here was paramagnetic relaxation enhancement (PRE). 

Similar to EPR spectroscopy, PRE uses chemical labelling with a molecule that carries an 

unpaired electron (spin label). Since an unpaired electron possesses a paramagnetic moment, it 

has an influence on observed signals in an NMR spectrum. The influence of the unpaired electron 

on the magnetic field leads to an increase in the rate of relaxation of nuclear spins that are in 
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proximity. Thus, the time in which the signal can be recorded is decreased, leading effectively to 

a decrease in signal strength up to complete eradication. The strength of this effect is strongly 

dependent on the distance between the spin label and respective atom, allowing for distance 

approximations of NMR active atoms to the spin label. However, in a flexible element such as 

loop1, one has to consider that signal strength is also dependent on the amount of time the label 

is in proximity of the respective residue. Thus, the observed PRE effects are only an 

approximation of the loop position and do not give quantitative distance information. Protein 

samples for these measurements were prepared by Alisa Ruisinger[110] and measurements were 

performed by Dr. Jan-Philip Wurm (group of Prof. Remco Sprangers, University of Regensburg, 

Institute of Biophysics and Physical Biochemistry). 

For PRE measurements, a 4-Maleimido-2,2,6,6-tetramethyl-1-piperidinyloxy (M-TEMPO, Fig. 

17A) spin label was introduced into loop1 at position 24, using the same variant as for EPR 

experiments (HisF C9S E24C). The introduction of the mutations C9S and E24C lead to a 

perturbation in the chemical shift of several residues distributed over the entire protein when 

compared to a spectrum of wild-type HisF (Fig. Appendix 1), which highlights that loop1 exerts 

an influence on the entire protein. 15N-labelled HisF C9S E24C was chemically modified with M-

TEMPO and the PRE was recorded for 1H-15N signals in TROSY spectra. As a control, the spin 

label was reduced with ascorbate, eliminating the free radical and thus its paramagnetic properties. 

This leads to re-emergence of previously attenuated peaks and shows whether the observed 

attenuation is really the result of the spin label or is a result of mutagenesis or chemical 

modification. For all HisF variants used, the attenuated signals reappear after reduction, showing 

that the observed PRE is a reliable measure for the proximity of the label to the respective 

backbone amides (Fig. Appendix 2).  

The distribution of PRE effects in the wild-type HisF model shows that most amides affected by 

the spin label lie at the C-terminal ends of -helices 1, 8 and 8’ (Fig. 17B). Particularly strong 

PRE values are observed for -helix 8’ around F229 and the 12-loop around G43. This pattern 

shows unambiguously that in solution, most of the HisF molecules adopt an open loop 

conformation very similar to the one observed in crystal structures, which is in good agreement 

with smFRET data.[110] There are slight changes in peak intensity in residues S144, D176 and 

G202 in loops 5, 6 and 7, respectively. This could be an indication that the spin label is close to 

these positions when adopting a lesser populated conformation, which would be in agreement 

with the closed conformation previously identified in crystal structures in the presence of HisH 

(for instance PDB code 1PGW). Overall, these data, combined with the data from smFRET 

experiments, confirm the assumptions made on the basis of crystal structures: loop1 almost 

exclusively adopts the open conformation. 
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Fig. 17: PRE of HisF backbone amides induced by M-TEMPO labelling. (A) Chemical structure of M-TEMPO. 
(B) Cartoon representation of the wild-type HisF structure (PDB-code 1VH7) coloured according to the measured 
relative peak integrals observed in H1N15-TROSY spectra. The applied range is from 0 to 1.12 (maximum observed 
relative value) and is colour coded red (low values, high PRE) via yellow to blue (high values, low PRE). Grey 
colouring signifies a change in chemical shift of the respective residue relative to wild-type HisF caused by mutations 

made for labelling. These residues cannot be assigned to a specific signal without further experiments. The position of 

the M-TEMPO spin label is marked by a cyan sphere at the position of the C of C24. The distribution of signals 
affected by the M-TEMPO label clearly indicates that the main conformation of loop1 is the open conformation, as 
shown, or at least similar to, the conformation shown in this structure.  

 

To determine whether a significant shift from the closed towards the open conformation can be 

observed upon substrate binding, the measurements were repeated in the presence of 300 µM 

ProFAR. The addition of ProFAR led to further chemical shift perturbations, accompanied by a 

strong peak broadening over the entire spectrum. The peak broadening upon ProFAR binding is 

not observed in wild-type HisF and thus appears to be an artefact of the mutations C9S and E24C 

introduced for labelling. Thus, these data cannot reliably be taken for the determination of loop1 

conformations. However, the amide signal of G43 could still be identified and this particular 

signal was strongly attenuated, demonstrating that a large portion of the protein molecules still 

adopts the open conformation.  

For the detection of changes in conformation introduced by mutagenesis, the PRE experiments 

were repeated for two HisF variants carrying either of the two mutations G20P or F23A in 

addition to the mutations necessary for labelling (C9S E24C). Both mutations led to further 

alterations in the chemical shift of several residues and reduced the number of available signals 

for loop localization. In F23A, the signal of G43 and D233 (12-loop and -helix 8, respectively) 

showed significant PRE, indicating that loop1 in HisF F23A also mainly adopts an open 

conformation (Fig. Appendix 3A). Also, K179 showed a slight signal reduction, which indicates 

the existence of the open conformation of this mutant. The variant G20P showed a similar pattern, 

with a significant PRE for residues G43 (and its two direct neighbours), I232 and K238 (-helix 

8 and 8’, respectively), indicating that here, too, the main conformation is the open state (Fig. 

Appendix 3B). It should be kept in mind, that especially in HisF F23A and HisF G20P, this might 

be due to the lack of a proper assignment of signals. Just as in HisF C9S E24C, the addition of 

ProFAR led to further changes in the spectrum, although the peak broadening effect was much 

smaller. The signal of G43 could again be taken as an indicator that there is still a significant 

population of the open conformation for both variants. Hence, also the PRE experiments with 

HisF G20P and HisF F23A show that loop1 is almost exclusively in the open conformation. 

Unfortunately, both the introduction of cysteines for attachment of spin labels and the addition of 

the substrate analogue ProFAR results in limited data quality, restricting their information 
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content. In order to improve this, one could perform the backbone assignments of the mutants 

which would lead to better structural information for these proteins. The most useful change 

however would be to avoid the two mutations currently introduced for labelling altogether, since 

they have several disadvantages: They reduce the HisF activity, they lead to significant chemical 

shift perturbations and they induce an artefact that causes significant peak broadening upon 

ProFAR binding. It would be conceivable to use an unnatural amino acid (UAA), such as p-

ethynylphenylalanine or p-propargyloxyphenylalanine, which could then be coupled with an 

azide modified TEMPO spin label. This method would eliminate the necessity for the mutation 

of C9, which has a detrimental effect on HisF activity.[100,110] However, the incorporation of UAAs 

is usually accompanied by a significant loss in protein yield. This is problematic for NMR 

experiments, since not only are relatively high amount of protein needed, but expression also has 

to take place in minimal medium to allow for isotopic labelling, which in turn most likely reduces 

the efficiency of UAA incorporation. 

 

 

4.1.7 Analysis of loop1 mutations on induced fit 
To detect structural changes in HisF introduced by substrate binding, 1H-15N-TROSY spectra of 
15N-labelled HisF proteins were recorded in the presence and absence of the substrate analogue 

ProFAR. In wild-type HisF, ProFAR induces the emergence of a new set of peaks (Fig. 18A). 

These signals are quite weak and do not replace the signals of the apo state. This is a clear 

indication of the emergence of a second HisF conformation upon ProFAR binding (induced fit), 

which is in equilibrium with the conformation of the apo state. Since these spectra do not give 

additional structural information, at this point it cannot be determined whether these two 

conformations correspond to the open and closed conformation of loop1. 

Interestingly, the emergence of this second set of signals is not observed for the HisF variants 

F23A and G20P (Fig. 18B and C, respectively). This suggests that the induced fit is eliminated 

by these two mutations, which implies a functional relevance of loop1 for this conformational 

change. This will be discussed further in chapter 4.1.8.3. 
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Fig. 18: NMR spectra of HisF variants with different loop flexibility. The spectra show the chemical shift 
distribution of HisF proteins in the apo state (black) and in the presence of 300 µM ProFAR (red). (A) wild-type HisF. 

The binding of ProFAR induces the emergence of weak signals not present in the apo state (examples indicated by 
black arrows). These additional signals are not observed in HisF F23A (B) and HisF G20P (C). 

 

 

4.1.8 Studies on the microscopic rate constants of ligands binding to HisF 
A major target of this work is to determine the correlation between the enzymatic activity and the 

conformational dynamics of loop1. For this purpose, it is essential to have detailed kinetic 

knowledge of the HisF reaction beyond the commonly determined steady-state kinetics in order 

to correlate rates of specific steps of the reaction with conformational motions. Two very 

important steps are substrate binding and product release, which are often connected to active site 

loop dynamics.[61–64] Microscopic rate constants for binding and dissociation of substrate and 

product molecules can be determined by stopped-flow spectroscopy. This method, however, 

depends on a change in the spectroscopic properties of one interaction partner after binding. 

Previous work was based on the fluorescence of W156 for the determination of equilibrium 

dissociation constants for the substrate PrFAR.[142] In control experiments with free tryptophan, it 

became evident that the addition of PrFAR, its analogue ProFAR or the reaction product AICAR 

quenches the tryptophan fluorescence unspecifically (Fig. Appendix 4). Because this kind of 

effect is strongly dependent on the microenvironment of the tryptophan molecule or residue, 

subtraction of a control with free tryptophan is not sufficient for correction. Therefore, for 

stopped-flow experiments with HisF another spectroscopically active sensor was needed. In this 

work, the unnatural, fluorescent amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine (CouA) 

was used.[117] Its hydroxycoumaryl moiety shows spectroscopic properties that are very suitable 

for binding experiments. The main advantage of this UAA is that it absorbs and emits light at 

higher wavelengths than PrFAR, which makes it less susceptible to quenching (Fig. 19A). The 

high quantum yield of 0.63 should furthermore lead to a good spectroscopic signal and the strong 
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Stokes-shift ensures a good separation of the fluorescence signal and the scattering signal of 

excitation light.[117] Finally, CouA shows a high sensitivity to environmental factors such as 

dielectric constant, hydration and pH,[143,144] which is caused by the protonation equilibrium of 

the 7-hydroxy group of the coumaryl moiety. Deprotonation results in a shifted absorption 

maximum (370 nm, c, instead of 340 nm, p, Fig. 19A and B). This leads to a drastic change in 

fluorescence intensity depending on the wavelength used for excitation. Since in general, 

protonation reactions are considered to be very fast (>105 s-1)[145] and the maximum rates that can 

be observed in stopped-flow experiments are about two orders of magnitude slower than this,[146] 

it is very unlikely that this reaction leads to any limitations for rate measurements. In fact, if 

fluorescence is excited at either absorption maximum of the protonated or charged form of CouA, 

a shift in protonation will directly impact the fluorescence intensity because of the change in 

absorbance. This can generate a strong signal for binding experiments. 

 

 

Fig. 19: Spectroscopic properties of CouA. (A) Absorbance spectrum of PrFAR (dashed line), absorbance of free 
CouA (solid line) and fluorescence of free CouA (dotted line) recorded in 50 mM Tris/HCl pH 7.5. The spectra have 
been normalized to the respective maximum. Double arrows indicate the change in fluorescence upon a change in the 
environment of CouA: the horizontal arrow shows the shift of the maximum to higher or lower wavelength, the vertical 

arrow indicates that by altering the protonation, the fluorescence intensity is changed due to a change in magnitude of 
absorption, depending on the wavelength used for excitation. (B) Equilibrium of CouA between protonated (p) and 
charged (c), which influences the absorption spectrum of CouA as shown in (A). 

 

 

4.1.8.1 Evaluation of CouA as a probe for ligand binding to HisF 

For incorporation of CouA into HisF, the amber STOP-codon suppression method was used as 

published by the Schultz group.[117] For this purpose the gene of the corresponding aminoacyl-

tRNA synthethase, optimized by directed evolution for CouA incorporation, was cloned into the 

vector system pEVOL,[147] which carries two copies of the aminoacyl-tRNA synthethase gene and 

the gene for the tRNA carrying the TAG-anti-codon. The amber STOP-codon was introduced into 

the hisF gene by site directed mutagenesis (chapter 3.2.2.5), and modified HisF was produced by 

heterologous gene expression in E. coli in medium containing saturating concentrations of CouA 

(0.45 mM). The resulting protein was purified as described in chapter 3.2.4.4. 

For ligand binding experiments, K132 in HisF was chosen because it is positioned in the elongated 

-strand 5 (Fig. 20). This position is in the periphery of the active site and CouA incorporation 

should not interfere with ligand binding. However, the CouA residue should be close enough to 

sense the presence of the ligand and generate a spectroscopic signal. 
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Fig. 20: Labelling of HisF with CouA in position 132 for measurements of ligand binding.. CouA (cyan sticks) 
was incorporated in silico using YASARA into the structure of wild-type HisF (PDB-code 1VH7). Position 132 was 
chosen due to its proximity to the binding site of PrFAR (red sticks, super-positioned from the complex structure of 
yeast His7, PDB-code 1OX5). The position is opposite to the flexible loop1, which is shown in the open (orange ribbon) 
and closed (beige ribbon, super-positioned from the structure of the full ImGPS complex, PDB-code 1GPW) 
conformation. For orientation, the catalytic residues D11 and D130 are shown as blue sticks. 

 

 

Purified HisF K132CouA was analysed by SDS-PAGE and the resulting gel was imaged under 

UV-light observing CouA fluorescence and after Coomassie staining (Fig. 21A). The SDS-PAGE 

shows that the protein is > 90 % pure and has the same molecular weight as the wild-type protein. 

Some impurities could be detected, but these are most likely products of proteolytic cleavage of 

HisF K132CouA, since they also contain CouA and are detected via their fluorescence under UV 

light. The protein exhibits the absorption maximum of a regular protein at 280 nm and 

additionally shows the absorption of CouA (maxima at 340 and 370 nm) as well as the 

corresponding fluorescence properties with an emission maximum at 450 nm (Fig. 21B). 
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Fig. 21: Overview of the biochmical properties of HisF K132CouA. (A) SDS-PAGE under UV-light (left hand side, 
366 nm illumination) and after Coomassie staining (right hand side). Both the molecular weight standard (lane 1) and 
wild-type HisF (lane 2) do not show fluorescence, while HisF 132CouA (lane 3) clearly fluoresces. (B) Absorbance 
(solid line) and fluorescence (dashed line) spectra of HisF K132CouA, normalized to the respective maximum. (C) 
Steady state kinetics of the ammonia-dependent PrFAR turnover of HisF 132CouA. Activities were monitored in the 
presence of saturating ammonia concentrations (100 mM ammonium chloride at pH 8.5) at 25 °C. Data points were 

recorded as technical triplicates with standard deviation as error bars. The line represents a fit to the Michaelis-Menten 
equation which yielded a kcat value of 1.5 s−1 and a KM

PrFAR value of 4.1 µM, in good agreement with values for the 
wild-type protein. 

 

To verify that the incorporation of CouA at position 132 does not disturb the function of HisF, 

steady-state kinetics of PrFAR turnover in the ammonia-dependent cyclase assay were measured 

(Fig. 21C). The resulting kcat of 1.5 ± 0.1 s−1 and KM
PrFAR of 4.1 ± 0.9 µM are almost identical to 

those of wild-type HisF (2.4 s−1 and 4.5 µM for kcat and KM
PrFAR, respectively, see Table 3). Thus, 

HisF K132CouA is a suitable model for wild-type HisF and is referred to as “wild-type” in the 

following measurements. All other variants are only referred to by their respective mutation, the 

CouA moiety residing in position 132 if not explicitly stated otherwise. 

 

4.1.8.2 Determination of equilibrium dissociation constants of HisF ligands 

To test whether the incorporation of CouA gives a suitable signal for ligand binding and whether 

binding is impaired in HisF containing CouA, equilibrium titrations were performed in a 

fluorescence spectrometer for the substrate PrFAR and reaction products ImGP and AICAR. 

Control titrations against free CouA did not yield a signal beyond the dilution, demonstrating that 

the quenching effect observed for tryptophan is not present for CouA. 

The addition of the ligands to wild-type HisF led to a decrease in fluorescence intensity. The 

resulting difference in fluorescence was plotted against the ligand concentration and fitted with a 

hyperbola to determine the dissociation constants (Fig. 22). The resulting values are 1.1 µM, 

2.2 mM and 1.1 mM for PrFAR, AICAR and ImGP, respectively. These data are in good 

agreement with those resulting from ITC and/or NMR experiments (0.5 µM for PrFAR by ITC, 

1.5 mM for AICAR by NMR and 0.5 mM for ImGP by ITC).[148] Intriguingly, the apparent 

dissociation constant for ImGP is lowered to 40 µM (approximately 26-fold) in the presence of 

5 mM AICAR. Likewise, the apparent dissociation constant for AICAR is reduced to 274 µM 

(approximately 8-fold) in the presence of 1 mM ImGP. These findings indicate a significantly 

higher stability of the ternary complex (HisF:ImGP:AICAR) compared with the respective binary 

complexes (HisF:ImGP and HisF:AICAR). It should be kept in mind that due to the limited access 

to the two products they could not be supplied in saturating concentrations, the exact values for 

formation of the ternary complex should therefore be viewed with caution. It can be assumed that 

the KD values for formation of the ternary complex would further decrease with saturating 

concentrations of the respective second product. For the second HisF substrate, ammonia, no 

binding signal could be observed, indicating that either no binding occurs in the absence of PrFAR 

or that no significant signal change is caused by ammonia binding. 
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Fig. 22: Equilibrium fluorescence titration of HisF ligands to wild-type HisF at 25 °C. 1 µM HisF was titrated 
with the respective ligand in 1.5 ml 50 mM Tris/HCl pH 7.5 in a fluorescence spectrometer under constant strirring. 
The fluorescence signal was corrected for HisF dilution and normalized to the highest value measured. The data was 
fitted with a  simple hyperbolic equation to determine the dissociation constant. Titrations are shown for the ligands 
PrFAR (A), AICAR in the absence (B) and presence of 1 mM ImGP (C) and ImGP in the absence (D) and presence 
(E) of 5 mM AICAR. 

 

 

4.1.8.3 Binding rate of the substrate PrFAR 

With a suitable detection method in place, the PrFAR binding rate was determined by following 

the CouA fluorescence in a stopped-flow spectroscopy apparatus. The excitation wavelength was 

set to 367 nm, as the used xenon lamp exhibits a high intensity at this wavelength and the 

absorbance maximum of CouA (370 nm) is also close to this wavelength, ensuring a strong signal. 

The fluorescence was monitored with a cut-off filter of 400 nm, which allows for the detection of 

almost the complete fluorescence emission of CouA and should exclude all scattered excitation 

light. 

PrFAR binding led to a strong decrease in fluorescence intensity, as expected from the equilibrium 

titrations. The binding transients consisted of two phases, a fast phase with high negative 

amplitude and a slow phase with low and positive amplitude. Accounting for these two phases, 

the transients could be described well with double exponential fits (Fig. 23A). The second, slow 

phase shows a quite low rate constant (~0.05 s−1). Since this would be unusually slow for ligand 

binding, the fast phase was assumed to represent PrFAR binding. In the first instance, the substrate 

binding mechanism was evaluated by plotting observed rate constants (kobs) as a function of 

PrFAR concentration. However, the slow phase could not be fitted adequately with double 

exponential fits for low PrFAR concentrations due to its low signal amplitude. Thus, to assess the 

binding velocity, the first phase of the transients (up to the time of 1 s) was fitted with a single 

exponential decay function, which describes this phase reasonably well (Fig. 23B). The resulting 

observed rates (kobs) and amplitudes were plotted against the PrFAR concentration (Fig. 23C and 

D, respectively). The kobs value shows a hyperbolic dependence on the PrFAR concentration, 

which is typical for a binding equilibrium with a subsequent conformational equilibrium (induced 

fit). While quantification of the conformational change is not possible from this analysis, it can 

be taken as a qualitative indication which agrees with the observation of a second phase in the 

transients. The amplitude of the fast phase also follows a hyperbolic increase with the PrFAR 

concentration and was used to determine the equilibrium dissociation constant of PrFAR of 

1.5 µM, which is in good agreement with the equilibrium titration data (1.1 µM). 
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Fig. 23: PrFAR binding to wild-type HisF as observed in stopped-flow experiments at 25 °C. PrFAR binding was 

observed by the change in fluorescence of the CouA residue (ex = 367 nm, em > 400 nm). (A) Transient of PrFAR 
binding (40 µM) to HisF. After the initial fast binding phase, a second, slow phase can be observed. A single 
exponential fit (red line) only describes the binding phase, while a double exponential fit (blue line) describes both 
phases. (B) The fast phase of the transients (0 – 1 s) was fitted to single exponential function (black line). (C) Secondary 
plot of the observed pseudo first order binding rate kobs against the PrFAR concentration follows a hyperbolic trend 
indicative of an induced fit conformational change. (D) The amplitude of the pseudo-first order binding yields a 

hyperbolic binding curve, the derived KD value is 1.5 µM. 

 

 

To gain more detailed kinetic information, the data was fitted globally to a kinetic mechanism 

accounting for binding and a conformational using the program DynaFit.[128] Since fits to 

mechanisms assuming a simple binding or a conformational equilibrium before PrFAR binding 

(conformational selection) did not yield useful results, a conformational equilibrium after PrFAR 

binding was assumed (induced fit, Scheme 1).  

 

 

E = HisF 

S = PrFAR 

Scheme 1: Kinetic model of PrFAR binding to HisF 

 

 

 

 



62 
 

This is in accordance with the observation of the hyperbolic shape of the secondary plot of kobs 

against the PrFAR concentration. According to this fit, the binding rate of PrFAR to HisF k1 is 

4.3 µM−1s−1 and the dissociation rate k−1 is 3.9 s−1 (Table 5). The macroscopic dissociation 

constant KD calculated from these values is 0.91 µM, which is in agreement with the values from 

both equilibrium titration (1.1 µM, Fig. 22) and secondary plot analysis of the amplitudes of the 

binding transients (1.5 µM, Fig. 23C). However, due to the following conformational equilibrium, 

which influences the macroscopically observed KD, a comparison of these values has to be viewed 

carefully. 

 

Table 5: Kinetic parameters for PrFAR binding to HisF from global fit analysis 

parameter value ± standard error 

k1 4.32 ± 0.012 µM−1s−1 

k−1 3.89 ± 0.022 s−1 

k2 0.061 ± 0.002 s−1 

k−2 0.37 ± 0.015 s−1 
rEP −32.2 ± 0.06 a.u. 

rE*S −25.7 ± 0.14 a.u. 
Response coefficients rEP and rE*S are the measure for difference in 

fluorescence of the respective complex to free HisF. a.u.: arbitrary units 

 

 

The rate constants k2 and k−2 in the global fit analysis are the result of the second, slow phase 

observed in the binding transients. Due to the absence of ammonia, no PrFAR turnover takes 

place. Thus, the binding transients would be expected to follow a single exponential decay in the 

case of a simple bimolecular binding. The second phase detected in the PrFAR binding transients 

must thus represent a conformational change in HisF.  

The rate limiting step derived from global fit analysis (k2 = 0.061 s−1) is much slower than the rate 

observed in steady-state PrFAR turnover (kcat = 2.4 s−1). The reason for this discrepancy is not 

clear at the moment. This observation indicates that either the observed conformational change is 

not necessary for HisF catalysis or the mechanism is in fact more complicated than the assumed 

model. This will be discussed further in chapter 4.1.9. 

To test for the influence of loop1 mutations on the microscopic binding rate constants, the 

experiments were also conducted for HisF G20P and HisF F23A. For both variants, the secondary 

plots do not follow a hyperbolic form as the wild-type, but instead show a linear dependency of 

kobs on the PrFAR concentration (Fig. 24). This behaviour is indicative of a simple bimolecular 

binding reaction. Additionally, the second, slow phase in the binding transients could not be 

detected for the two variants. It can thus be surmised that the two variants do not undergo the 

induced fit motion observed for wild-type HisF, which agrees with observations made in NMR 

experiments (chapter 4.1.7). 
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Fig. 24: Comparison of rates of PrFAR binding to HisF proteins with different loop1 dynamics at 25 °C. Pseudo 
first order rates of PrFAR binding to wild-type HisF (dots) follow a hyperbolic trend (solid line). The rates of PrFAR 

binding to F23A (triangles) and G20P (squares) follow a linear trend (dashed lines). 

 

 

The two mutations F23A and G20P have been shown to alter loop1 dynamics as well as to 

decrease the catalytic rate. The results from PrFAR binding kinetics show that the change in loop1 

dynamics results in the disruption of the observed conformational changes induced by substrate 

binding. These data clearly indicate that the observed conformational motions for wild-type HisF 

are not only closely connected to loop1 but are of great importance for catalysis as well. 

It is reasonable to assume that there might be even more conformational changes that are not 

detected in these experiments (e.g. motions with k > 1000 s−1) and that some, but not all motions 

might have an impact on HisF catalysis. The elimination of the induced fit in catalytically 

impaired loop1 variants clearly shows that loop1 plays an important role in this induced fit motion 

and that the motion is beneficial for catalysis. This would be in agreement with the hypothesis 

according to which loop1 adopts the closed conformation in response to PrFAR binding. 

However, results from PRE and smFRET experiments suggest that the open loop1 conformation 

is the main conformation, regardless of ligand binding.[110] In conclusion, it can only be stated that 

PrFAR binding leads to profound conformational changes in HisF. Moreover, these motions are 

clearly connected to the catalytic cycle, but further experiments are needed to unravel the complex 

interplay of defined conformations and motions. 

 

4.1.8.4 Binding of the reaction products AICAR and ImGP 

An event that is often rate limiting in enzymatic reactions is the dissociation of the reaction 

product. Thus, binding reactions of the HisF products ImGP and AICAR were analysed in 

stopped-flow experiments as well. Although the equilibrium titrations indicated a fluorescence 

signal for the binding of the products ImGP and AICAR, no binding or dissociation transients 

could be observed for either substance (Fig. 25). This can be explained by the low binding affinity. 

Consequently, comparatively high concentrations of ligand had to be used in order to approach 

saturation, which, in the case of a pseudo first order binding reaction, leads to high values of the 

observed rate constant kobs. This causes the binding or dissociation to be completed during the 

dead time of the measurement (about 1-2 ms). 
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Fig. 25: Binding transients of wild-type HisF for AICAR and ImGP at 25 °C. (A) Binding of 2 mM AICAR to 
0.25 µM HisF in the absence (dots) and presence of 0.3 mM ImGP (circles). (B) Binding of 0.2 mM ImGP to 0.25 mM 
HisF in the absence (dots) and presence of 2 mM AICAR. Both HisF reaction products bind and dissociate too fast to 
be observed in a stopped flow experiment. Addition of the other product slows down the binding and dissociation rates 
so that reproducible binding transients were observed. Experiments were carried out by 1:1 mixture of HisF and the 
reaction products in 50 mM Tris/acetate pH 8.5.  

 

 

When both products were present, reproducible dissociation transients could be observed (Fig. 

25). This demonstrates that the binding and dissociation rates are decreased for both ImGP and 

AICAR when the second product is present. In the equilibrium titrations, it was observed that 

both products increase the binding affinity for the other ligand. Considering this in the context of 

the measurements of dissociation kinetics, this increase in affinity is probably mainly caused by 

a decreased rate of dissociation. 

For mathematical analysis with the global fitting program DynaFit,[128] four separate datasets were 

collected. In each of these data sets, the concentration of either ImGP or AICAR was kept constant 

and the concentration of the other was varied. Two data sets were collected for a 10-fold dilution 

of the pre-formed HisF:ImGP:AICAR complex with buffer to observe dissociation. The other two 

data sets were collected of a 1:1 mixture of HisF with a solution containing both ImGP and 

AICAR in order to observe binding. These data were fitted to different kinetic models of the 

product release mechanism of HisF. The two models giving the best fits are an ordered sequential 

model in which ImGP leaves the active site first and a random sequential model, i.e. either 

reaction product can leave the active site first (Scheme 2). Interestingly, an ordered sequential 

model with AICAR dissociating first does not give reasonable fitting results. Thus it was not 

further considered for the following analysis. 

 



65 
 

 

E = HisF 

A = AICAR 

I = ImGP 

Scheme 2: Kinetic models for the dissociation of ACIAR and ImGP from HisF 

 

For both kinetic mechanisms, the dissociation rates are fast compared to the kcat of the ammonia 

dependent HisF reaction (kcat = 2.4 s−1, Table 6). The slowest first order rate constant is that of 

ImGP dissociation from the ternary complex in the random sequential model (k1). Nevertheless, 

with a value of 25.3 s−1, this rate is over 10 times larger than kcat. From this, it can be deduced that 

product release is not rate-limiting for the HisF reaction. 

 

 

 

Table 6: Kinetic parameters from global fit analysis for dissociation of AICAR and ImGP from HisF 

parameter value ordered 

sequential model 

value random 

sequential model 

k1 41.9 ± 0.9 s−1 25.3 ± 1 s−1 

k-1 1.3 ± 0.04 µM−1s−1 2.13 ± 0.16 µM−1s−1 
k2 384 ± 11 s−1 90.4 ± 2.5 s−1 

k-2 0.22 ± 0.002 µM−1s-1 0.077 ± 0.003 µM−1s−1 

k3 n.a. 108 ± 10 s-1 

k-3 n.a. 0.044 ± 0.002 µM−1s−1 
k4 n.a. 30.4 ± 0.4 s−1 

k-4 n.a. 0.18 ± 0.003 µM−1s−1 

rEA n.a. -0.00003 ± 1.4 a.u. 
rEI n.a. -16.7 ± 0.2 a.u. 

rEIA -23.8 ± 0.06 a.u. -30.3 ± 0.2 a.u. 
Response coefficients rEA, rEI and rEIA are the measure for difference in fluorescence of the respective 

complex to free HisF. n.a.: not applicable, a.u.: arbitrary units; errors are standard errors form global 
fit analysis 

 

 

The dissociation of ImGP is slower than that of AICAR in both models. Binding of ImGP on the 

other hand appears to be faster than that of AICAR. These observations are in agreement with the 

lower dissociation constant measured for ImGP in equilibrium titrations (chapter 4.1.8.2).  



66 
 

According to the equilibrium titrations shown in Fig. 22, both the binding of AICAR and ImGP 

lead to a change in fluorescence irrespective of the presence of the other reaction product. The 

simplification of a single response coefficient was used in the fit of the ordered sequential model 

because the use of two separate coefficients led to one value approaching zero. The random 

sequential model demonstrated a similar behaviour. While generally, the data is described quite 

well, the response coefficient for the dissociation of AICAR becomes very small with a high error. 

In both cases, this is most likely the result of the significantly faster dissociation of the second 

product, which is not properly represented in the raw data and is thus not fitted reliably. 

Overall it is difficult to determine which of the kinetic models presented above actually applies 

here. However, both models offer the opportunity to gain information on the kinetics of the HisF 

reaction. In both models, the first dissociation event is slower than the second one but lies in the 

same order of magnitude. This agrees with the observations of very fast dissociation (no 

observable transients) and lower affinity to HisF for both products in the absence of the other. 

Since the second dissociation event is very fast, the kinetic model of product dissociation can be 

simplified as a pseudo-concerted dissociation of both reaction products (Scheme 2). In this 

simplified model, the net rates are assumed to correspond to the lowest rates measured. These are 

the formation or dissolution of the HisF:AICAR:ImGP complex for binding and dissociation, 

respectively. 

It should be noted that the binding rates for AICAR and ImGP appear deceptively small 

(≤ 0.2 µM−1s−1) due to the used concentration unit of µM. In the measurement conditions, mM 

concentrations were used. For instance, for the AICAR binding, this translates to theoretical kobs 

values of roughly 400 s−1. However, since PrFAR concentrations can be assumed to be low in a 

physiological setting and the products will be further processed and will not accumulate, product 

inhibition is not likely to play any role in HisF function. 

 

 

4.1.8.5 PrFAR binding observed in the presence of ammonia 

To observe the binding signal during catalysis, ammonia was added to the sample solutions in 

stopped-flow binding experiments. In agreement with the equilibrium titrations, the binding of 

ammonia on its own could not be observed. Hence, in the presence of both PrFAR and ammonia, 

only PrFAR binding can be detected. Binding transients were very similar to those of PrFAR 

binding observed without ammonia. The secondary plot of kobs against the PrFAR concentration 

shows the same hyperbolic trend with and without ammonia, with a maximum kobs of 

approximately 100 s−1 (Fig. 26).  
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Fig. 26: PrFAR binding rates in the presence and absence of ammonia at 25 °C. PrFAR binding rates are only 
slightly changed when binding experiments are carried out in the presence of ammonia (dots and circles represent 
measurements in the absence and presence of 17.5 mM ammonia, respectively). 

 

In order to determine whether ammonia binds previous to PrFAR and influences its binding, three 

experimental set-ups were tested. Ammonia was added once to the syringe containing PrFAR, 

once to the syringe containing HisF and once to both syringes. In the case that ammonia binds 

first and influences the binding of PrFAR, a change in the binding transients would be expected. 

However, the binding transients were almost identical in all three scenarios (data not shown). A 

sequential ordered binding mechanism with ammonia binding first is thus very unlikely. 

These findings show that ammonia binding is most likely very fast. The two scenarios of a defined 

ammonia binding site or the transient binding of ammonia with immediate reaction cannot be 

distinguished with these measurements. Since ammonia binding appears to be fast (not rate 

limiting) and cannot be further defined, its binding can be simplified as a transient binding during 

catalysis for the formulation of a kinetic model of the HisF reaction (Scheme 3).  

 

 

E = HisF 

S = PrFAR 

N = NH3 

A = AICAR 

I = ImGP 

Scheme 3: Simplified kinetic model of the HisF reaction assuming transient ammonia binding. 

 

Further implications for a kinetic model of the entire ammonia dependent HisF reaction will be 

discussed in chapter 4.1.9. 

 

 



68 
 

4.1.9 Kinetic model of the entire ammonia-dependent HisF reaction 
In order to formulate a complete kinetic model for the reaction catalysed by HisF, it is useful to 

first revisit the key conclusions that can be drawn from the results presented in the previous 

chapters, since the model has to agree with all available data. Concerning the binding of PrFAR 

and the dissociation of AICAR and ImGP, it could be observed that neither of these steps is rate 

limiting for the overall reaction (chapters 4.1.8.3 and 4.1.8.4, respectively). Ammonia binding 

could not be observed experimentally, neither spectroscopically nor indirectly in the kinetic 

analysis. Ammonia binding does not change PrFAR binding significantly and happens most likely 

very fast and transiently during the chemical reaction (chapter 4.1.8.5). Thus, the rate limiting 

step has to be either of chemical or conformational nature. Since there is no detailed kinetic 

information on different steps in the chemical catalysis, this step has to be simplified in the kinetic 

model as a single step. 

With the binding, dissociation and chemical events covered, the conformational change that has 

been detected in several experiments is the remaining element in the formulation of a kinetic 

model. There is no experimental indication that the conformational changes in HisF occur in more 

steps than one. Therefore, the simplest case should be assumed, which is that there is only one 

defined conformational step to be considered in the kinetic model. Considering all possible 

scenarios involving one conformational step, this change can occur in four different kinds of 

mechanisms (Scheme 4). 

 

E = HisF 

S = PrFAR 

A = AICAR 

I = IMGP 

Scheme 4: Possibilities of kinetic models for the conformational change in HisF during catalysis 
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First of all, there are the two classical models of conformational selection and induced fit. In the 

former, there is an equilibrium before substrate binding, thus the active conformation is sampled 

by the substrate. In the latter, the conformational change is induced by substrate binding. The 

experimental results indicate that the conformational change in HisF happens after PrFAR binding 

(chapter 4.1.8.3), excluding the possibility of conformational sampling. 

A simple induced fit can also happen in two varieties: The conformational change can either be 

the productive Michaelis complex, which is reaction competent (induced fit in Scheme 4), or be 

unproductive and thus “uncompetitively” reducing the reaction rate (uncompetitive model in 

Scheme 4). The first scenario however would suggest that the conformational change needs to be 

performed in order for the chemical step to become possible. The PrFAR binding analysis would 

then suggest that this step would have to be rate-limiting, since the determined rate constant is 

quite low (0.06 s−1). This can clearly not be the case since kcat is significantly higher (2.4 s−1). In 

the second case, the conformational change would counteract the chemical reaction, since the 

conformational change leads to an unproductive enzyme-substrate complex. Thus, the reaction 

rate could be increased by the elimination of the conformational change. However, the variants 

G20P and F23A for which the conformational change is not to be observed show a severely 

reduced steady state rate. Finally, when incorporating the conformational step into the Michealis 

Menten equation (equation (6)), in both cases of induced fit, the KM
PrFAR would be influenced 

along the kcat in case of a change in the conformational equilibrium (equations (7) and (8), 

respectively). In both equations (7) and (8), Kconf can be found both in the term describing the 

observed KM as well as the observed maximal rate vmaxi. However, steady-state measurements 

with HisF variants substantiate that this is not the case. HisF variants in general had reduced kcat 

values but KM values tended to remain unchanged (chapter 4.1.2). This shows that these two 

models clearly do not apply to the conformational change in HisF. 

 

𝑣
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    v = reaction velocity 

    vmaxi = maximal velocity 

    KMapp = macroscopic KM 

    Kconf = equilibrium constant of the conformational change 

    [S] = substrate concentration 

 

Assuming a single conformational change, it can only be surmised that neither of the simple 

models applies and the motion can occur both before and after PrFAR binding (Scheme 4). 

Reformulation of the Michaelis Menten equation for this integrative model leads to an unchanged 

KM
PrFAR, while kcat is dependent on Kconf, which would be in agreement with available data 

(equation (9)). Due to transient kinetics data, this model has to underlie the following restrictions: 

The equilibrium constants Kconf
1 and Kconf

2 must be (at least nearly) identical, since no significant 
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change in the conformational equilibrium could be observed in any experiment. Thus, due to the 

circularity of the relationship, the affinities KD
1 and KD

2 for the two different HisF conformers 

must also be identical. This relationship does however not necessarily require the microscopic 

rate constants kconf
1 and k−conf

1 to be identical to kconf
2 and k−conf

2, as long as the quotient of the two 

pairs remains equal. The microscopic rate constants for the conformational change measured in 

PrFAR binding experiments (chapter 4.1.8.3) correspond to kconf
2 and k−conf

2, due to the induced 

fit type kinetic model used in fitting. kconf
1 and k−conf

1 cannot be determined in a straightforward 

manner. 

 

       
𝑣

𝑣𝑚𝑎𝑥𝑖
(1+𝐾𝑐𝑜𝑛𝑓)

=
[𝑆]

𝐾𝑀𝑎𝑝𝑝 +[𝑆]
    (9) 

v = reaction velocity 

  vmaxi = maximal velocity 

  KMapp = macroscopic KM 

  Kconf = equilibrium constant of the conformational change 

  [S] = substrate concentration 

 

Taking together all available data, a complete kinetic model of the ammonia dependent HisF 

reaction can be formulated (Scheme 5). The chemical step, ammonia binding and the product 

dissociation are used in the simplified form as discussed in this chapter above, chapter 4.1.8.5 and 

chapter 4.1.8.4, respectively. 

 

 

Scheme 5: Kinetic model describing the entire ammonia dependent HisF reaction 

 

Finally, the question of the exact nature of the conformational changes during the catalytic cycle 

of HisF remains to be addressed. It could be observed that loop1 is of central importance both for 

catalytic function (chapter 4.1.2) and the observed induced-fit type conformational change 

observed upon PrFAR binding (chapters 4.1.5, 4.1.7 and 4.1.8.3). Whether the observed open and 

closed conformation of loop1 represent the active and inactive form of HisF is, at this point, 

however still a matter of speculation. It could be observed that loop1 exists in equilibrium between 

these two conformations in solution. The predominant conformation is the open conformation and 

the conformational equilibrium is most likely independent of the binding of PrFAR (chapter 4.1.6. 

and smFRET experiments of A. Ruisinger[110]). Analysis of different HisF crystal structures for 

example also point to a contraction of a phosphate binding site, which might increase loop1 

flexibility (Fig. 14). 

The correlation of the size of the accessible hydrophobic surface area of the residue in the critical 

loop1 position 23 (Fig. 13) is another indication of the importance of loop1 in the conformational 

equilibrium. Assuming a single active state of HisF which is defined by the hydrophobic 

interaction of F23 in loop1, the population of the active pa state would be defined by a Boltzmann  
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distribution.[149] Thus, pa would be proportional to 𝑒
∆𝐺

𝑘𝑏𝑇, G being the free energy upon formation 

of the active conformation. G of on the other hand is proportional to the interaction surface of 

the two interaction partners.[150–152] This would explain the linear relationship between ln(kcat) and 

the accessible surface area of the residue in position 23 (equations (10), (11) and (12)). 

 

𝑝𝑎 ∝ 𝑘𝑐𝑎𝑡 ∝ 𝑒
∆𝐺

𝑘𝑏𝑇     (10) 

     ∆G ∝ 𝐴𝑆𝐴      (11) 

 𝐴𝑆𝐴 ∝ ln (𝑘𝑐𝑎𝑡)     (12) 

pa = fraction of HisF molecule in the active conformation 
G = free energy change upon formation of the active conformation 

kb = Boltzmann constant 

T = absolute temperature 

ASA = accessible surface area of residue in position 23 

 

It can be concluded that there is a strong correlation between integrity of loop1, the changes in its 

flexibility and HisF activity. This certainly suggests a direct involvement of loop1 in the critical 

conformational changes during the catalytic cycle. The exact structural nature of the 

conformational change, however, has to be the topic of further studies. 

 

4.1.10 Evaluation of the consequences for the catalytic mechanism of HisF 
The results presented in this chapter demonstrate the intricate way in which the active site loops 

are involved in HisF catalysis. In the case of loop5, a stable structure is needed and no side amino 

acid side chains are involved in its function. In contrast, loop1 needs a delicate balance between 

its structurally defined conformations and flexibility. The high number of loop1 residues that 

impact HisF catalysis when mutated highlights the central role of this loop. The steady-state 

catalytic parameters of the analysed variants show that its influence is different to that observed, 

for example, in ProFAR isomerase (HisA) or in indole glycerol phosphate synthase (TrpC). In 

HisA, loop closure is involved in substrate binding and in TrpC, loop flexibility controls product 

release.[66,67] In HisF, the effect is only on the catalytic rate kcat, which shows an involvement in 

chemical turnover. Nevertheless, loop1 does not carry residues capable of catalysis. The residues 

carrying out the general acid/base catalysis are D11 and D130, which are to be found in -strand 

1 and 5, respectively.[100] 

These observations strongly imply a direct link between conformations and motions of loop1 and 

HisF catalysis. Along these lines, it could be observed that the conformations of loop1 in crystal 

structures appear to exist in solution as well. Both PRE-NMR measurements as well as the recent 

smFRET[110] data demonstrate that the open conformation of loop1 is the most frequently adopted 

conformation of apo HisF in solution, but that the closed conformation exists as well. From the 

available experimental data, it cannot conclusively be determined how the conformational 

equilibrium changes upon PrFAR binding. However, the kinetic analysis of PrFAR binding in 

wild-type HisF as well as the variants G20P and F23A demonstrated the connection of loop1 to 

an induced fit type motion. Taken together, these findings support the hypothesis that loop1 

changes from an open to a closed conformation after PrFAR binding. The kinetic analysis showed 

that several conformational changes result from PrFAR binding. The exact structural nature of 

the PrFAR-bound state of HisF still needs to be investigated in greater detail in order to elucidate 

all effects that contribute to the observed induced fit. 
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Loop1 is close to the catalytic residue D11 in -strand 1. Thus, it is reasonable to assume that it 

exerts its influence on this residue. Since the pKa value of aspartate residues is generally very low 

(< 2), the protonation required for enzymatic catalysis is facilitated by the generation of a 

hydrophobic environment, which stabilizes the protonated form of the aspartate side chain.[137] 

The environment of D11 is already relatively hydrophobic due to the flanking residues V18 and 

I52. Both residues have been shown to be important for HisF catalysis by mutagenesis. When 

loop1 is in the closed conformation, F23 might come into close proximity of these two resides. 

An interaction of F23 with V18 and I52 would create an even more hydrophobic environment for 

D11 and would shield it from solvent. In TIM, it has been shown that the closure of an active site 

loop leads to the shielding of a catalytic aspartate residue from solvent to favour the protonated 

form needed for catalysis.[64] It is likely that in HisF the same principle applies and that the 

formation of the closed loop1 conformation leads to protonation of D11 to facilitate its catalytic 

function. 

Concerning its environment, a similar observation can be made for D130. It is partly covered by 

loop5 and only accessible to solvent from the active site. When PrFAR binds and displaces water 

molecules from its binding site, D130 is completely shielded from solvent. Thus, the protonated 

state will also be favoured for D130. This is supported by the observation that by shortening loop5 

and thus exposing D130 to solvent even in the PrFAR bound state, the catalytic rate is 

significantly reduced. 

A plausible reaction mechanism for HisF has been proposed previously.[100] Although this 

suggestion makes reasonable assumptions, it is partly not supported by biochemical data available 

today and principles observed in organic synthesis. It was assumed that the formation of the imine 

formed by nucleophilic attack of ammonia occurs spontaneously (Fig. 8). The formation of imines 

by the nucleophilic attack of ammonia or an amine on ketones progresses via a stable hemiaminal 

intermediate. The resolution of the hemiaminal to form the imine is generally acid-catalysed.[153] 

The pH of the ammonia dependent HisF reaction, however, is 8.5 to ensure a sufficient ammonia 

concentration, as at low pH ammonia is mostly present in the unreactive form of ammonium ions. 

In these conditions, spontaneous imine formation seems unlikely. A possible alternative to the 

spontaneous mechanism is hence that one of the aspartate residues in its protonated state catalyses 

the formation of the imine by acid-catalysed resolution of the hemiaminal (Fig. 27B). 

The second step of HisF catalysis is assumed to be the hydrolysis of AICAR. Thus, the 

susceptibility for hydrolysis has to be increased as a result of the imine formation. A principle 

often observed in organic synthesis is that the formation of an imine has an influence on the 

acidity of hydrogens bound to the carbon atom at the alpha position. However, an influence on 

positions further than the -carbon is generally not observed. Since the hydrolysis is assumed to 

occur at the gamma position from the imine, the susceptibility should not be strongly influenced 

by the presence of the imine. The analysis of the binding of the two HisF products in this work 

revealed that the presence of each product influences the binding affinity and release rate of the 

other and that it is more likely that ImGP leaves the active site first. The release rates were also 

shown not to be rate limiting, but rather the chemical turnover. If AICAR was produced and 

released before ImGP, this would lead to a strong increase in ImGP release rate. This in turn 

would result in the release of the intermediate instead of the fully formed ImGP, since the rate for 

chemical turnover is significantly slower than the dissociation. In the light of these new data, it 

appears more likely that ImGP and AICAR are produced simultaneously. 

To account for the simultaneous formation of both products, instead of hydrolysis, the imidazole 

ring formation could be achieved by an intramolecular cyclisation reaction, catalysed by one of 

the two aspartate residues. This could be achieved by either base catalysis (Fig. 27C) or acid 

catalysis (Fig. 27D). It should be noted at this point that there has been some speculation 

considering the position of the double bond of the amineamide of PrFAR.[106] The amineamide is 

formed in the synthesis of ProFAR by phosphoribosyl-AMP cyclohydrolase.[154] Because in this 
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reaction, the aromatic ring of the AMP residue is broken, the double bond is initially situated 

between N3 and C2 of ProFAR (and thus possibly PrFAR, Fig. 27A). However, there is the 

possibility of tautomeric isomerisation. The current reaction mechanism is reliant on this 

isomerisation, because the mechanism is only possible if the double bond is between C2 and N1 

of PrFAR. The alternative mechanism proposed in Fig. 27C also makes this assumption. The 

reaction progresses by the intramolecular nucleophilic attack of the imine nitrogen on C2 and the 

catalysis is performed by abstracting a proton from C1’’ under the formation of a negatively 

charged intermediate. This intermediate is then resolved by the protonation of N3 by an aspartate, 

leading to the simultaneous formation of ImGP and AICAR. 

A more likely mechanism, which is in fact independent of the tautomeric state of PrFAR, would 

assume both aspartate residues to be protonated (Fig. 27D). After imine formation, the protonation 

of the amineamide by the catalytic aspartate would lead to an intermediate with a delocalised 

positive charge on N1, C2 and N3. The reaction then progresses similar to the base catalysed 

mechanism with the nucleophilic attack of the imine at the amineamide carbon, which is 

facilitated by the positive charge. This mechanism is independent of the tautomeric form of 

PrFAR because the aspartate could protonate either N1 or N3, depending on which forms the 

double bond with C2.  

The current suggestion of the catalytic mechanism of HisF assumes one of the catalytic aspartate 

residues to be protonated and one to be charged. This is also the case for the mechanism relying 

on base catalysis suggested here (Fig. 27C). However, due to the benefits of the independence of 

the tautomeric form of PrFAR and the facilitation of the intramolecular cyclisation by the 

generation of the positive charge, the mechanism based on acid catalysis (Fig. 27D) appears more 

likely. This would also be in agreement with the observation that shielding of both aspartate 

residues is beneficial for HisF catalysis. 
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Fig. 27: New proposals for the catalytic mechanism of HisF. (A) Structure of PrFAR with numbering of the atoms 
according to the standard numbering of purines. For clarity, the coloured parts of the PrFAR molecule are abbreviated 
R1 (blue) and R2 (red). (B) The first step in HisF catalysis is assumed to be the formation of the imine intermediate. 
This is most likely catalysed by an aspartate residue, which protonates the leaving water molecule and can then 
deprotonate the Schiff-base to form the imine. (C) Proposal for a base catalysed formation of the imidazole ring of 
ImGP that progresses via a negatively charged intermediate. The charged aspartate residue deprotonates C1’’, allowing 
the nucleophilic attack of the imine nitrogen on C2. (D) Proposal for an acid catalysed formation of the imidazole ring 
that progresses via a positively charged amineamide intermediate. For this proposal, the aspartate residue protonates 
either N1 or N3, which can both be double bonded to C2 due to tautomeric isomerisation. This leads to the positively 

charged intermediate. In this charged form, the C2 is more prone to a nucleophilic attack from the imine nitrogen. 
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4.1.11 Outlook 
The results presented in this chapter demonstrate that the critical role of loop1 could be exerted 

by the transition from an open to a closed conformation. This has implications for the catalytic 

mechanism in that the protonation of D11 would be favoured by this to facilitate catalysis. These 

findings will have to be substantiated by analysing the protonation states of the catalytic residues 

D11 and D130. This could be achieved by quantum mechanical calculations or, since by the 

presence or absence of ammonia, turnover of PrFAR can be controlled, also experimentally, for 

instance in 1H-1H-TOCSY NMR experiments. 

The structural knowledge of the conformations of loop1, especially of the closed conformation, 

still lacks sufficient detail to make definitive statements for their functional implications. This 

could be addressed for example by the assignment of the NMR signals of variants used for PRE 

measurements, which would allow for a much improved precision in the localisation of loop1 in 

these experiments. A method that could complement the data from PRE and smFRET experiments 

very well would be the determination of distances via EPR. These experiments are conducted at 

very low temperatures, close to absolute zero. HisF samples could be flash frozen in relevant 

scenarios such as in the presence of PrFAR or even during catalysis. This would prevent 

degradation of PrFAR both by enzymatic turnover and thermal decay. Therefore, the results from 

these experiments would be very reliable, which is always critical for methods that require 

incubation of samples at relatively high temperatures for extended periods of time. 

The data on kinetic rate constants of HisF could be validated by the use of HisF variants that carry 

the CouA residue in other positions. Placing the CouA residue in other positions would have the 

added benefit that it should be sensitive to other conformational changes than when incorporated 

in position 132. In this way, more details of these motions could be revealed. In order to gain 

further insight into the microscopic rates of the complex chemical reaction catalysed by HisF, the 

reaction mechanism needs to be analysed in more detail. To distinguish between the proposed 

reaction mechanisms, it should first be clarified whether the reaction progresses via a positively 

or a negatively charged intermediate, which could be achieved by the use of isotopically labelled 

PrFAR in NMR experiments. These studies would go hand in hand with the clarification of the 

protonation states of the catalytic aspartate residues. 

The order of dissociation of the reaction products ImGP and AICAR could possibly be clarified 

in more detail by repetition of the binding and dissociation experiments with different 

combinations of the pre-formed HisF:product complexes. Since this requires a high amount of the 

two substances, a chemical synthesis of ImGP would have to be established to make these 

experiments feasible. 

Finally, it would be of great interest to do all analyses performed and suggested here on the full 

ImGPS complex. It is known that loop1 flexibility is influenced by the presence of HisH, but HisF 

catalysis is not. Inclusion of HisH into these studies would also entail the kinetic analysis of the 

HisH reaction and how these rates are in turn kinetically coupled with those of the HisF reaction. 

This naturally includes the transmittance of the allosteric signal as well as conformational changes 

necessary for HisH activation. The last two points will be addressed in the following chapter. 
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4.2 Studies on the molecular mechanism of HisH activation 
The second aim of this thesis is to gain further insight into the allosteric communication between 

HisF and the glutaminase subunit of ImGPS, HisH. For clarity, in this chapter all residues were 

given a prefix, “f” signifying that the residue is found in the HisF subunit and “h” that it is part of 

HisH. 

The molecular mechanism of allosteric signal transmission and the conformational change within 

the HisH active site leading to activation are still poorly understood. The allosteric signal is 

thought of as a “one way street”, since the reaction catalysed by HisF is almost unaffected by the 

presence or absence of HisH and can be performed with free ammonia instead of glutamine, both 

by isolated HisF as well as the full ImGPS complex.[100,104] HisH activity on the other hand is 

strictly dependent on the presence of HisF and is strongly activated in a V-type manner (increase 

in kcat) by PrFAR binding to HisF. The current hypothesis is that PrFAR binding induces an 

increase in HisF dynamics and that these conformational fluctuations are transferred to HisH. 

This is then assumed to lead to the breaking of a specific hydrogen bond, which allows for the 

correct formation of the oxyanion hole.[103,142,148] 

Fig. 6 shows the established catalytic mechanism of class I glutamine amidotransferases. 

Specifically, the glutaminase reaction of HisH relies on the nucleophilic attack of hC84 on the 

carboxamide of glutamine. Whether the catalytic cysteine is deprotonated by solvent or directly 

by the catalytic histidine is not known at present. The second prerequisite of glutaminase catalysis 

is the stabilization of the negative charge on the carboxamide oxygen atom of the tetrahedral 

intermediates by the oxyanion hole. This facilitates both the release of ammonia and the 

hydrolysis of the covalent thioester intermediate. In HisH proteins, the oxyanion hole is assumed 

to be formed by the highly conserved h49-PGVG-52 motif. It can thus be deduced that there are 

only few prerequisites for HisH catalysis that can be regulated by allostery: The correct 

protonation state of the catalytic residues hH178 and hC84, the formation of the oxyanion hole as 

well as the conformational requirements for substrate binding, product release and the correct 

orientation of the catalytic residues for catalysis. 

Before studying the molecular mechanism of HisH activation, an assay developed for high 

throughput screening of peptide inhibitors of ImGPS was adapted for reliable continuous 

measurements of HisH glutaminase activity in the absence and presence of allosteric 

activators.[127] Subsequently, the allosteric signal originating in HisF was studied. The effect of 

mutations in loop1, which has previously been shown to be allosterically connected to HisH,[100] 

as well mutations of residues potentially involved in signal transmittance were tested. Finally, 

different aspects of the molecular basis of HisH activation were examined, especially in 

connection with the two prerequisites for HisH activity stated above, namely the correct 

protonation state of the catalytic residues as well as the proper formation of the oxyanion hole. 

 

4.2.1 Continuous measurement of HisH activity independent of NAD+ 
Since glutamine hydrolysis does not generate a spectroscopically measurable change, the 

measurement of HisH activity generally relies on the use of coupled enzymatic assays. In most 

previous works, the assay used relied on the oxidation of glutamate by glutamate dehydrogenase 

(GDH), which uses NAD+ as cosubstrate.[100] The concurrent reduction of NAD+ to NADH allows 

for the spectroscopic observation of the reaction progress via the change in absorbance at 340 nm. 

While this assay is very sensitive and offers the possibility for comparing activities of different 

HisH variants, it has been observed that NAD+ weakly binds to HisF.[108] This binding leads to a 

moderate allosteric stimulation of HisH, making a reliable determination of the basal activity 

impossible. Also, NAD+ might interfere with the binding of HisF ligands with higher allosteric 

activation potential, lowering the final HisH activity. One alternative method to observe HisH 

activity is the decoupling of the glutaminase and GDH reactions in a discontinuous assay.[108] This 
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however leads to a tremendous increase in experimental effort as well as to a large experimental 

error. 

In a study that aimed to identify peptide inhibitors of ImGPS, an alternative assay was 

developed.[127] This assay uses glutamate oxidase (GOX) for oxidation of glutamate and 

horseradish peroxidase (HRP) to detect the produced H2O2 through oxidation of a chromophore 

molecule. This assay was adapted here in order to improve the quality of HisH activity data and 

the ease of comparison of basal and allosterically activated glutamine turnover. 

Steady-state glutaminase kinetics of wild-type ImGPS either in the presence of 70 µM ProFAR 

as allosteric activator or in the absence of any allosteric activator are shown in Fig. 28. They 

clearly show that this assay allows for a reliable and precise measurement of HisH activity both 

in the activated and the unstimulated basal state. 

 

 

Fig. 28: Steady-state kinetic of the glutaminase reaction in wild-type ImGPS recorded with the GOX-based assay 

at 25 °C. HisH activity was monitored in 10 mM Tris/HCl, pH 7.0 in a volume of 100 µl in a 96 well plate by the 
absorbance of the quinolone dye produced by HRP at 505 nm. Reaction rates (v) were recorded with (A) 0.1 µM ImGPS 
in the presence of 70 µM ProFAR and (B) with 35 µM ImGPS in the absence of allosteric effectors in technical 

triplicates, normalized to the protein concentration (E0) and plotted against the concentration of glutamine. The lines 
represent a mathematical fits of the data points to the Michealis-Menten equation. 

 

The steady-state parameters of the ProFAR activated reaction are in good agreement with those 

from previous work (Table 7). In the absence of allosteric activation, the kcat values is 

approximately 18-fold lower than the one measured in the discontinuous assay. The reason for 

this is most likely the higher sensitivity of the assay, since the measured value is lower than the 

error of the previous data. The possibility to measure several different glutamine concentrations 

allowed for a full Michaelis-Menten analysis of the data and hence for the determination of a 

KM
Gln value of the basal HisH activity. This revealed that in addition of the very strong V-type 

activation (3,100-fold increase in kcat), a relatively small K-type activation (3.8-fold reduction of 

KM
Gln) could be observed. This led to the considerable 11,460-fold activation in the catalytic 

efficiency kcat/KM
Gln

 by ProFAR. Overall, these results demonstrate the usefulness of the newly 

adapted assay for studies on the allosteric activation of HisH. 
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Table 7: Steady-state kinetic parameters for the glutaminase reaction of wild-type ImGPS at 25 °C 

 This work List 2009
[108]

 

kcat (min
−1

, basal) 0.0017 ± 0.0003 0.03 ± 0.01 

KM
Gln

 (mM, basal) 2.46 ± 0.91 n.d. 
kcat/KM (M

−1
/s

−1
, basal) 0.012 n.d. 

kcat (min
−1

, ProFAR activated) 5.28 ± 0.19 4.8 ± 0.6 

KM
Gln

 (mM, ProFAR activated) 0.64 ± 0.08 0.8 ± 0.3 
kcat/KM

Gln
 (M

−1
/s

−1
, ProFAR activated) 137.5 100 

n.d.: not determined, 70 µM ProFAR 

 

 

4.2.2 Determination of the influence of HisF loop1 on HisH activation 
The analysis of the allosteric communication between HisF and HisH was started with the 

investigation of the initial generation of the allosteric signal in HisF. As demonstrated in chapter 

4.1.2, loop1 of HisF has a strong influence on HisF activity. It has also been observed previously 

that loop1 has an allosteric connection to HisH.[100] Loop1 is more prone to trypsin cleavage in 

the full ImGPS complex than in isolated HisF, which is an indication of increased flexibility. It is 

thus quite likely that loop1 plays a role in ImGPS allostery and is involved in initiating the 

stimulation signal upon PrFAR binding. 

To test this hypothesis, HisF variants with mutations within or in the vicinity of loop1 (see chapter 

4.1.3) were tested for the capability to stimulate glutaminase activity in HisH. To this end, the 

glutamine turnover of the respective ImGPS complexes was measured in the presence of the 

allosteric activator ProFAR (ProFAR concentration: 70 µM, measurements with variants fV18A 

and fI52A were performed by Leon Babel[139]). All tested mutations show an influence on the 

HisH activity to varying degree (Table 8).  

 

 

Table 8: Allosteric activation of wild-type HisH by HisF loop1 variants at 25 °C 

HisF variant kcat HisH (min
-1

) kcat wt/mut 

wild-type 5.3 ± 0.19 - 

fV18A 2.61 ± 0.46 2 

fK19A 0.42 ± 0.26 12.3 

fG20A 0.19 ± 0.01 27.9 

fG20P b.d. > 50.000 

fT21G 0.27 ± 0.05  19.6 

fT21P b.d. > 50.000 

fN22A 2.0 ± 0.14 2.7 

fF23A 0.25 ± 0.20 21.2 

fE24P 0.39 ± 0.13 13.6 

fG30A 0.12 ± 0.05 44.2 

fG30P b.d. > 50.000 

fY39F 0.55 ± 0.04 9.6 

fI52A 0.28 ± 0.04 18.9 

fH228A 0.11 ± 0.08 48.2 
b.d.: below detection limit, assuming a detection limit of 10−5 AU min−1 [155] 
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The kcat of HisH was reduced 2 – 50-fold in all alanine, glycine, and phenylalanine mutations. 

Most of these effects were weaker than the effects of the same mutations on HisF activity (see 

chapters 4.1.2 and 4.1.3). For example, the variant fV18A led only to a ~2-fold decrease in kcat of 

HisH, whereas it caused a ~11-fold reduction in kcat of HisF. Likewise, the variant fF23A led only 

to a ~21-fold decrease in kcat of HisH, whereas it caused a ~436-fold reduction in kcat of HisF. As 

the only exception, the mutation fK19A hampered HisH stimulation 12.6-fold, while the HisF 

reaction was only affected 2-fold. In conclusion, the reduction of HisH activity was generally 

lower than the effect on HisF activity. 

An interesting observation is that three of the four variants introducing proline into HisF loop1 

reduced not only HisF activity below detection, but also the stimulation of HisH activity (no 

significant turnover within 60 min with 25 µM ImGPS, 10 mM glutamine and 70 µM ProFAR). 

fE24P is the only mutation which still afforded measurable HisH stimulation.  

Overall, these data show that HisF loop1 is an important element in the allosteric communication 

in ImGPS. The missing correlation between the influence on HisF activity and HisH stimulation 

suggests that different conformations or motions of the loop are relevant for each of these two 

processes. 

 

 

4.2.3 The transmittance of the allosteric signal in ImGPS 
Once the binding of PrFAR to the HisF active site has generated the allosteric signal, it has to be 

transmitted through the HisF protein to the interface with HisH and subsequently to the HisH 

active site. Several studies concerned with the question how this happens exactly have been 

published, but no hypothesis was conclusively proven experimentally.[102,106,156,157] The current 

hypothesis is that instead of a chain of interacting residues, the signal is transmitted through the 

global ms-motions of the HisF protein.[142,148] There are however still many unanswered questions: 

How does this increase in molecular dynamics transfer to HisH? Which exact residues are 

involved and which are of central importance? Is this correlation really a sign of causality or is 

there a well-defined active conformation, which is simply more dynamic than the inactive 

conformation? 

 

4.2.3.1 Characterization of the HisF variant fV48A 

The side chain of residue fV48 contributes to the ammonia channel of HisF, in approximately the 

same distance from both the HisH and the HisF active sites. In a previous study, the mutation 

fV48A was found to result in a decreased capacity of HisF to allosterically stimulate HisH 

activity, suggesting that the residue is directly involved in signal transmittance.[142] It seemed 

rewarding to perform a detailed characterization of this variant for gaining further insight into the 

transmittance of the allosteric signal in ImGPS. First of all, fV48A was tested for its HisF activity 

and capability of activating wild-type HisH. The steady-state kinetics of the ammonia dependent 

HisF reaction show no significant difference when comparing fV48A to wild type HisF (Table 

9). Although a previous study reported a decrease in binding affinity of fV48A for PrFAR,[142] the 

KM value for PrFAR is also almost unchanged. The authors of this study measured PrFAR binding 

via the change in fluorescence of fW156. As explained in chapter 4.1.8.1, fW156 fluorescence is 

quenched unspecifically by PrFAR (Fig. Appendix 4). It is possible that the authors mistook this 

artefact for the binding signal. The reduced capability of fV48A to allosterically activate HisH on 

the other hand could be confirmed and the kcat of the glutaminase reaction was decreased 15.1-

fold (Table 9). This indicates that fV48 is relevant for allosteric communication, but not for HisF 

catalysis. 
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Table 9: Ammonia dependent HisF activit and HisH activation in ImGPS fI7A, fV48A and fL169A at 25 °C 

ImGPS variant kcat HisF (s
−1

) KM
PrFAR

 HisF (µM) kcat HisH (min
−1

) 

wild-type 2.4 ± 0.1 4.5 ± 0.5 5.3 ± 0.19 

fI7A 1.6 ± 0.2 4.4 ± 1.0 0.5 ± 0.08 

fV48A 2.4 ± 0.1 5.0 ± 1.1 0.35 ± 0.07 

fL169A 3.1 ± 0.3 5.1 ± 1.1 0.26 ± 0.05 

 

 

To determine whether there are significant changes in the HisF conformation that might lead to 

the change in HisH activation, the three-dimensional structure of fV48A was determined by X-

ray crystallography. While crystallization was not successful for the full ImGPS complex, crystals 

could be obtained for the isolated fV48A protein. X-ray diffraction was observed to a resolution 

of 1.2 Å and the phases were solved by molecular replacement with the structure of “wild-type” 

HisF fT21S (PDB-code: 1THF). For full data collection and refinement statistics, see Table 

Appendix2. The structure shows very little differences to the wild type enzyme. However, 

changes could be observed in the side-chain conformation of residues fI7 and fL169, which are 

in proximity of fV48. All three residues are part of the ammonia channel. In addition to the 

conformation observed in wild-type HisF, both fI7 and fL169 adopt a second, alternative 

conformation in the variant fV48A, (Fig. 29). This indicates that these two residues have a higher 

degree of conformational freedom in fV48A than in wild-type HisF, which might lead to a 

disturbance of protein dynamics and hence, allosteric signal transmittance.  

 

 

 

Fig. 29: Structural comparison of HisF V48A and “wild-type” HisF (fT21S). Structures of (A) HisF T21S (PDB-
code 1THF, dark red) and (B) HisF V48A (light red) in cartoon representation. The region of the ammonia tunnel is 
shown in top-view from the HisF active site and side-chains of residues surrounding position f48 are depicted as sticks. 
The residues fI7 and fL169 clearly show a second conformation (orange) in the variant fV48A, one of which is not 
present in other HisF structures. 
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In order to determine whether the two identified residues are connected to the allosteric effect 

similar to that observed for fV48A, both positions were mutated to alanine. The respective 

variants were tested for HisF activity and their capability of activating wild-type HisH. In both 

fI7A and fL169A, much as in fV48A, HisF activity was not impaired (Table 9). However, both 

mutations significantly reduced capability of activating HisH similar to the 15-fold reduction 

observed for the mutation fV48A (approximately 10-fold and 20-fold reduction in kcat for fI7A 

and fL169A, respectively, Table 9). These findings indicate that the flexibility and motions of 

residues in the hydrophobic core of HisF are correlated with the ability of HisF to activate HisH. 

However, the observation of greater conformational freedom seems contradictory to the 

conclusions drawn from observations made in NMR experiments, which indicated that allosteric 

activation is facilitated by an increase in HisF dynamics. 

These results, especially in the light of other research that relates protein dynamics to ImGPS 

allostery,[142,148] highlights that conformational flexibility may play a major role in ImGPS 

function. While in a previous study, the residues fI7 and fL169 were noticed to be dynamic,[103] 

they were not considered important for allosteric communications. Even though the results 

presented here are based on a static crystal structure, they give a further indication of the 

importance of conformational dynamics in ImGPS allostery and highlight that the mechanism of 

transmittance is still poorly understood. Further studies will have to be conducted to identify other 

relevant residues and to clarify the connection between conformational dynamics in HisF and 

allosteric activation of HisH. 

 

4.2.3.2 Spectroscopic detection of the allosteric communication in ImGPS 

A paradigm of allostery is that the allosteric signal, which is caused by the binding of the allosteric 

effector, results in conformational changes at the target active site, which lead to the functional 

change. Since many conformational changes are relatively slow, they can become rate limiting in 

enzymatic reactions. It is therefore of considerable interest to measure the rates of these 

conformational changes. 

Change in protein conformation always causes a change in the microenvironment of amino acid 

residues in the regions of the protein involved in this change. In spectroscopically active residues, 

this can result in a change in absorption and/or fluorescence properties, depending on the 

magnitude of the change in microenvironment and the sensitivity of the probe. Spectroscopically 

active residues can thus be incorporated at specific sites in order to observe the changes to this 

region. It is the aim of the experiments presented in this chapter to spectroscopically monitor the 

conformational change in the ImGPS complex upon PrFAR binding to HisF. 

As a spectroscopic probe in ImGPS, the wild-typical residue hW123 has been used to quantify 

the binding strength of HisF and HisH,[100,158,159] since it is situated in the protein-protein interface 

and thus its environment changes drastically upon complex formation. As a residue in the 

interface, it is most likely also affected by allosteric communication. However, it is to be expected 

that the changes in absorbance and fluorescence are quite small. Also, as mentioned above 

(chapter 4.1.8.1), the unspecific quenching of tryptophan fluorescence by PrFAR makes a reliable 

quantification of such an effect very difficult. Residue hW123 can thus be assumed to be a poor 

spectroscopic probe for the intended experiments. Therefore, similar to the procedure for 

measuring substrate and product binding in HisF (chapters 4.1.8.2 and 4.1.8.3), the unnatural 

amino acid CouA was incorporated into HisH to generate a spectroscopic signal. To keep the 

influence on activity and complex formation to a minimum, position h136 was chosen for CouA 

incorporation (Fig. 30). Residue hY136 is part of the HisF/HisH interface, but is situated in its 

periphery. This makes a significant contribution to complex formation unlikely. Also, it is over 

25 Å distant from the PrFAR binding site, making a direct sensing of PrFAR binding improbable. 

Finally, hY136 is not in the direct vicinity of the HisH active site, reducing the risk of a reduction 

in HisH activity. 
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Fig. 30: Position of hY136 used for the spectroscopic observation of ImGPS allostery. The structure of wild type 
ImGPS is shown in cartoon representation. HisF is coloured in red, HisH in blue. hY136 (cyan spheres) is situated in 
the interface between HisF and HisH. It is positioned over 25 Å distant from the binding site of PrFAR (blue sticks, 
from an overlay with the complex structure of the PrFAR bound yeast enzyme, PDB code 1OX5) in HisF and 
approximately 12 Å distant from the HisH catalytic triad (blue spheres). 

 

The variant hY136CouA was purified in comparatively low yield (approximately 1 mg/l 

expression culture). SDS-PAGE analysis (Fig. 31A) showed however, that the protein could be 

isolated with a purity of at least 90%. To ensure the formation of a functional ImGPS complex, 

the binding affinity between wild type HisF and hY136CouA was determined by fluorescence 

spectroscopy, taking advantage of the highly sensitive CouA fluorescence (ex = 350 nm, em = 

440 nm) as a binding signal. Titration of HisF led to a significant increase in CouA fluorescence. 

The fit with a quadratic equation (equation (4)) shows that the dissociation constant is too low to 

be reliably determined (KD < 10 nM) with the protein concentrations that had to be used here (Fig. 

31B). This is in agreement with measurements performed for the wild type complex by following 

the hW123 fluorescence (KD < 50 nM).[100] As a result, the impact of CouA incorporation on 

complex formation appears to be negligible. As a final control that the ImGPS complex is fully 

functional, HisH activity was measured. Glutaminase activity of ImGPS hY136CouA was 

determined in the presence of ProFAR as allosteric activator (70 µM). The resulting kcat of 7.2 ± 

0.3 min−1 is in good agreement with wild type activity (kcat = 5.2 ± 0.2 min−1), proving that the 

fluorescently labelled complex is fully functional and should be a suitable wild type model for 

further experiments. 
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Fig. 31: Overview of the properties of HisH Y136CouA. (A) SDS-PAGE gel without staining (right hand side) under 
UV light (366 nm) and after Coomassie-staining (left hand side). Samples are: molecular weight standard (lanes 1), 
wild type HisH (lanes 2) and HisH Y136CouA (lanes 3). (B) Titration of HisH Y136CouA with wild type HisF 

monitored by changes in fluorescence (ex = 350 nm, em = 440 nm). The line represents a fit to a quadratic equation 
(see equation (4)) which showed that the dissociation constant of the complex is < 10 nM. (C) Titration of the HisH 

Y136CouA:HisF wild-type complex with PrFAR monitored by changes in fluorescence (ex = 350 nm, em = 440 nm). 
The line represents a fit to a simple hyperbolic equation (equation (5)), which yielded a dissociation constant for PrFAR 
binding of 1.17 ± 0.04 µM. 
 

To test whether PrFAR binding to HisF is sensed at the protein interface by hY136CouA, PrFAR 

was titrated to the fully formed HisH Y136CouA:HisF complex while monitoring the CouA 

fluorescence (Fig. 31C). The small detected change in CouA fluorescence was plotted against the 

PrFAR concentration and the data fitted to a hyperbolic equation (equation (5)). This yielded an 

apparent dissociation constant of 1.17 ± 0.04 µM, which is in good agreement with other PrFAR 

binding studies that gave a KD of 1.1 µM (chapter 4.1.8.2) and 0.45 µM.[103] This result shows 

that CouA at the subunit interface of ImGPS senses PrFAR binding to the active site HisF, which 

is located about 25 Å apart from the chromophore.  

To assess the kinetics of PrFAR binding to the hY136CouA:HisF wild-type complex, stopped-

flow experiments were performed under the same conditions as for isolated His K132CoA 

(chapter 4.1.8.3). The binding transients could be fitted well to single exponential functions, 

yielding the pseudo first order rate constants kobs of the binding event. The secondary plot of the 

observed rate constants against the PrFAR concentration yielded a hyperbola (Fig. 32) similar as 

the one that was observed for the PrFAR titration curve of isolated HisF followed through 

fK132CouA (Fig. 23).  
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Fig. 32: Kinetic measurement of PrFAR binding to the ImGPS hY136CouA at 25 °C. Pseudo first order rates of 
PrFAR binding to ImGPS hY136CouA (dots) follows a hyperbolic trend (solid line). This trend is identical in the 
presence of 10 mM glutamine (open circles and dashed line). 

 

The binding of the HisH substrate glutamine might also lead to conformational changes, which 

could in turn influence the rate of the transmission of the allosteric signal. To test for such an 

effect, the measurements were repeated in the presence of saturating concentrations of glutamine 

(10 mM). The observed rate constants were almost identical to those observed without glutamine 

(Fig. 32). Since it is assumed that the rate of allosteric communication is very fast, this does not 

necessarily mean that the rate is not influenced. However, it appears be much faster than PrFAR 

binding both in the presence and absence of glutamine and can thus not be determined in this 

experimental set-up. 

Finally, the allosteric communication was observed in an ImGPS complex containing a HisF 

variant with reduced capability of HisH activation (cf. Table 8). The variant fF23A was chosen 

for this purpose, since in this variant, the induced fit type conformational change upon PrFAR 

binding in HisF was eliminated (chapter 4.1.8.3; Fig. 23). The use of HisF fF23A led to a linear 

dependency of kobs on the PrFAR concentration, indicating that the binding follows a simple 

bimolecular mechanism (Fig. 33). Hence, these stopped flow experiments again showed a very 

similar trend as the data recorded for isolated HisF followed through fK132CouA (Fig. 24). That 

the signal can still be observed at all indicates that the conformational change that leads to the 

change in CouA fluorescence observed here is independent of the induced-fit motion in HisF. 

Since results in chapter 4.2.2 indicate that the motion of HisF loop1 is crucial for HisH activation, 

the conformational change followed here is most likely not the full rearrangement necessary for 

HisH activation. Further requirements will be discussed in chapter 4.2.4.2. 
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Fig. 33: Measurement of PrFAR binding to the ImGPS hY136CouA fF23A compared to ImGPS hY136CouA at 

25 °C. Pseudo first order rates of PrFAR binding to ImGPS hY136CouA (dots) follows a hyperbolic trend (solid line). 
The rates of PrFAR binding to ImGPS hY136CouA fF23A (open circles) follows a linear trend (dashed lines). 
 

 

 

 

4.2.4 Evaluation of changes in the HisH active site upon allosteric activation 
Considerable effort has been made to unravel the nature of the conformational changes which 

happen in the HisH active site upon allosteric activation and ultimately cause the increase in 

catalytic activity. However, many details remain enigmatic. Therefore, one aim of this thesis is to 

gather more detailed information on the changes in the HisH active site in order to further the 

understanding of the molecular mechanism of this tightly regulated system. 

As shown in Fig. 6, the catalysis of class I glutamine amidotransferases such as HisH relies on 

three different factors: The nucleophilic attack of hC84 on the carboxamide of glutamine, the 

acid/base catalysis of hH178 (deprotonation of hC84 and protonation of the leaving ammonia 

group) and electrostatic catalysis by stabilizing the negatively charged oxyanion intermediates. 

The V-type activation of HisH, i.e. the catalytic rate is increased, suggests that at least one of 

these three catalytic factors is changed during allosteric activation. 

Two models that explain the activation of HisH on a molecular level have been proposed 

previously. In accordance with the requirements stated above, one model hypothesizes that the 

oxyanion hole is formed by the amide of hV51 within the conserved h49-PGVG-52 motif. In all 

available structures, this amide is turned away from the active site and engaged in a hydrogen 

bond with hP10. Hence, the peptide bond would have to “flip” to let the amide point towards the 

bound glutamine molecule.[103] This model is based on evidence from MD simulations, which 

suggest that the backbone of hV51 shows increased flexibility when PrFAR is bound to the HisF 

active site, and NMR-experiments, which demonstrated that amides of the h49-PGVG-52 motif 

show peak broadening in 1H15N-TROSY experiments indicating increased flexibility on the µs-

ms timescale.[102–104,157] Also, in some other GATases, the amide of the corresponding position of 

hV51 is involved in oxyanion stabilisation.[95,160] Another study found that in the crystal structure 

of ImGPS containing a bound glutamine (PDB-code: 3ZR4), the amide of hG52 is already 

positioned to interact with substrate molecule and could, hence, qualify as the oxyanion hole.[105] 

In combination with data from the constitutively active ImGPS hY138A hK181A, it was 

suggested that the reaction is actually in a constant equilibrium and activation is accomplished by 

the opening of the intermolecular channel, allowing ammonia to diffuse away from the HisH 
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active site. This implies that it is actually the release of the reaction products, which is 

accelerated.[105] 

While the two hypotheses make reasonable assumptions, conclusive evidence for the parts of the 

HisH active site, which are allosterically influenced is still missing. Two factors that have hitherto 

not been studied in connection to allostery in ImGPS are the the nucleophilic nature of hC84 and 

acid/base catalysis of hH178. In order to get a more complete picture, these two points will be 

addressed in this chapter. 

Cysteine residues are commonly occurring catalytic residues because they are particularly suited 

as nucleophiles (hC84 in HisH from ImGPS). The nucleophilic form of cysteine is the 

deprotonated thiolate. Since the pKa value of a free cysteine in solution is above 8,[22] solvent 

accessible cysteines are mostly protonated at physiological pH. A very common motif in enzyme 

active sites is the stabilization of the negative charge of the thiolate via a positively charged 

histidine residue (hH178 in HisH from ImGPS). Considerable shifts in pKa have been observed 

up to as much as 6.6 pH units, yielding a final pKa of 3.4.[161,162] Histidine in turn is also mostly 

uncharged at physiological pH, as its pKa value is approximately 6.[22] Thus, the positive charge 

of catalytic histidine residues has to be stabilized by another negative charge of a strongly acidic 

residue. In class I glutaminases this role is carried out by a glutamate (hE180 in HisH from 

ImGPS). This chain of charge-stabilisation leads to a catalytic triad commonly found not only in 

glutaminases, but also many other enzymes such as proteases. The pivotal residue in this triad is 

histidine, since the glutamate residue has a very low pKa of approximately 4 and its negative 

charge can be assumed to be present permanently. The cysteine deprotonation in turn is mostly 

dependent on the protonation state of the histidine due to the electrostatic stabilization of the 

negative charge. It should be noted that while histidine residues are capable of both acid and base 

catalysis, both of which is needed for the glutaminase reaction (Fig. 6) the expectation from other 

enzyme systems would be that the positively charged form of hH178 is more critical to HisH 

catalysis.[137,163] 

In this chapter, the possibility will be explored the protonation states of hH178 and hC84 are 

changed upon allosteric activation and contribute to the increase in glutaminase activity of HisH. 

Also, the role of the amide of hV51 in forming the oxyanion hole will be examined more closely. 

 

4.2.4.1 pH dependency of the HisH reaction 

Enzymatic reactions using nucleophilic attack or acid/base catalysis involve so-called titratable 

groups. These can be catalytic amino acid side chains, which need to have a defined protonation 

state for catalysis, and chemical groups within the substrate molecule or reaction intermediates. 

This is particularly true for reactions using acid/base catalysis, since the protonation and 

deprotonation of the substrate molecule is part of the chemical mechanism. The central role of 

titratable groups is reflected in a strong pH-dependency of the reaction rates of the respective 

enzymes. If the pKa values of catalytic HisH residues indeed change during allosteric activation, 

it would be expected that the pH-dependency significantly changes with different activation 

strength. 

The pH-dependency of HisH catalysis has hitherto not been studied. This is mostly owed to the 

fact that the reaction is monitored in a coupled enzymatic assay detecting production of glutamate. 

The most commonly used auxiliary enzyme which generates a spectroscopic signal and has 

glutamate as substrate, is glutamate dehydrogenase (GDH). This enzyme is however also strongly 

pH dependent and shows only low activity at pH values lower than 8.[164] Thus, the HisH activity 

could not be followed at physiological pH or lower. As shown in Fig. 10, the assay using the 

oxidation of glutamate by GOX can be followed at a wider range from pH 5.6 to pH 9.2. Thus, 

the use of this assay allows the study of HisH pH-dependency. 
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Measurement of ImGPS glutaminase activity at different pH values were carried out by Dr. 

Andrea Keuttinger (Institute of Biophysics and Physical Biochemistry, University of 

Regensburg). To cover a broad range of pH values (6.3 to 9.0) with the same buffer system, Bis-

Tris buffer (20 mM) was used. To assess the influence of different strength of allosteric activation 

on the observable pKa values, measurement were performed for the basal activity as well as the 

ProFAR and PrFAR activated states. Under all three conditions, the reaction rate shows a bell-

shaped dependency on pH (Fig. 34), as is expected for enzymes with at least two titratable groups 

involved in catalysis.  

 

Fig. 34: pH dependency of the glutaminase reaction of wild type ImGPS at 25 °C. HisH activity was followed in 
the coupled assay using GOX for the oxidation of glutamate in 20 mM Bis-Tris/HCl buffer. All measurements were 
carried out in glutamine saturation (10 mM). Error bars represent the standard error of a technical triplicate 
measurement (three biological replicates for basal activity). The data were fitted to equation (13) to yield the displayed 
curves. (A) Basal activity was measured using 25 µM ImGPS. (B) Glutaminase activity in the presence of the allosteric 

activators ProFAR (70 µM, dots) and PrFAR (100 µM, circles) was measured with 0.1 µM and 0.02 µM ImGPS, 
respectively. 

 

The bell-shape of the titration curve of the HisH activity is indicative of a reaction mechanism 

that relies on at least two different titratable groups that have opposite effects on activity when 

protonated. The involvement of more groups cannot be ruled out, since their effect would 

superpose with that of either of the first two titratable groups. In a mathematical description of 

this data, two macroscopic pKa values (pKa1 and pKa2) as well as a maximum kcat (kcat,max) can be 

determined using equation (13):[165] 

𝑘𝑐𝑎𝑡 =  
𝑘𝑐𝑎𝑡,𝑚𝑎𝑥

10−𝑝𝐻

10−𝑝𝐾𝑎1
 + 

10−𝑝𝐾𝑎2

10−𝑝𝐻  + 1
      (13) 

 

The fits describe all three data sets quite well (Fig. 34). The values yielded from the fits clearly 

show the expected increase in kcat,max from basal to ProFAR- and PrFAR-activation (Table 10).  

 

Table 10: values obtained from pH-dependency measurements of wild-type ImGPS at 25 °C 

 

Ligand 

 

kcat,max 

(min
−1

) 

V- type 

activation 

factor 

 

pKa1 

 

pKa2 

pH 

optimum 

None 

(basal activity) 

4.1 ± 0.3 

x 10-3 

- 6.3 ± 0.1 8.3 ± 0.1 7.64 

ProFAR 10.7 ± 0.7 2610 6.4 ± 0.1 7.9 ± 0.1 7.05 

PrFAR 29.6 ± 1.0 7220 6.4 ± 0.1 8.7 ± 0.1 7.57 
Errors are standard errors derived from the mathematical fit to equation (13). 
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According to this data, ProFAR activates HisH activity 2610-fold and PrFAR 7220-fold. As can 

already be seen in Fig. 34, the pH optima differ between the different strengths of activation. 

Interestingly, the basal activity and PrFAR-stimulated activity both have a pH optimum at 

approximately 7.6, while the optimum for the ProFAR-stimulated reaction is significantly lower, 

at 7.1. This is a direct result of shifts in the pKa values. While pKa1 was quite stable at 6.4 (6.3 for 

the basal activity), pKa2 shifted between 8.3, 7.9 and 8.7 for the basal, ProFAR activated and 

PrFAR activated HisH reaction, respectively. To better evaluate the changes of the pKa2 values 

one has to consider that pKa values are on a logarithmic scale. Using the Henderson-Hasselbach-

equation (equation (14)), the amount of the protonated species can be calculated.[166] Assuming a 

physiological pH of 7.4, the titratable group associated with pKa1 is mainly deprotonated in all 

cases (90.9 % in the ProFAR and PrFAR activated states, 92.6 % for the basal activity). On the 

other hand, the group possessing pKa2 is protonated to 88.8 %, 76.2 % and 95.2 % in the basal, 

ProFAR activated and PrFAR activated state, respectively. 

 

𝑝𝐻 = 𝑝𝐾𝑎 + log (
[𝐴−]

[𝐴𝐻]
)  

[𝐴𝐻]

[𝐴−]
=

1

10𝑝𝐻−𝑝𝐾𝑎
      (14) 

 

If the shift in the pKa value of a catalytic residue was the sole determinant in HisH activation, a 

much more pronounced difference in pKa values and in addition a clear correlation between 

activation strength and the respective pKa change would be expected. This is clearly not the case. 

However, the changes in pH optimum and pKa2 highlight that the protonation states are at least 

slightly tuned during the activation process. 

Even though the influence of the observed pKa values is small, the question remains to which 

titratable groups they can be assigned. In HisH, the most obvious candidates as titratable groups 

are hC84 and hH178. hC84 acts as a nucleophile, the thiolate being the more nucleophilic species 

of cysteine residues. Thus, for an efficient reaction, hC84 should be mainly deprotonated an it 

would be reasonable to assign it to pKa1, since in this case it would be around 90 % deprotonated 

at physiological pH. The role of hH178 is more complicated, since it has both acid and base 

catalysis function (Fig. 6). Thus, the optimal pKa value would be around physiological pH, which 

gives 50 % protonated and deprotonated species, ensuring that both reactions are performed 

efficiently. On the other hand, the positive charge of hH178 also stabilizes the negative charge of 

hC84, which would in turn stabilize the protonated state and cause an increase of the pKa value. 

pKa2 is, depending on the strength of activation, 0.9 to 1.3 pH units higher than physiological pH 

and would thus represent a good trade-off for these two functions of hH178. Finally, as can be 

seen in Fig. 6, the nitrogen of the carboxamide group of glutamine needs to be protonated to be 

able to leave as free ammonia and thus also qualifies as a titratable group. For this group, a high 

pKa value would be most favourable, since it would ensure protonation. Thus it might also 

influence the macroscopically observed pKa2. 

In conclusion, while the microscopic pKa values of titratable groups play an important role in 

HisH activity, the macroscopically measured pKa values observed via the kcat of the HisH reaction 

are not strongly altered during allosteric activation. Other effects dominate of the activation 

mechanism to explain the more than 2000-fold activation of the kcat. This could, for instance, be 

the correct formation of the oxyanion hole, which will be discussed in more detail in chapter 

4.2.4.5. 
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4.2.4.2 Detection of changes in hH178 protonation during activation 

In the previous chapter, it could be observed that a pKa value (pKa2) of a catalytic residue changes 

with different activation strength. To further assess this observation and determine whether this 

shifted pKa can indeed be assigned to hH178, NMR experiments were performed in cooperation 

with Dr. Jan-Philip Wurm (group of Prof. Remco Sprangers, Institute of Biophysics and Physical 

Biochemistry, University of Regensburg). For this purpose, HisH was produced with histidine 

residues labelled with 13C at the  position. Since this is the carbon atom located between the two 

nitrogen atoms of the imidazole ring, its chemical shift in NMR spectra is highly sensitive to the 

protonation state of the respective histidine residue.[167] The signals of labelled histidine residues 

were recorded at physiological pH (7.4) in HMQC experiments in the presence and absence of 

ProFAR and/or glutamine. To avoid glutamine turnover during the experiments, measurements 

were performed with the ImGPS complex containing the mutation hC84S. Since HisH contains 

six histidine residues, the signals of the two residues inside or close to the active site (hH178 and 

hH53) were identified by mutagenesis (Fig. Appendix 5). 

The signal of hH178 in the absence of glutamine and ProFAR showed a high chemical shift value 

in the 13C-dimension, indicating that it is mainly deprotonated at physiological pH (Fig. 35A). 

Addition of either ProFAR as an allosteric activator or glutamine as the HisH substrate led to no 

significant change in the hH178 signal. However, when ProFAR and glutamine were added 

simultaneously, a significant change in chemical shift towards lower values in the 13C-dimension 

of the signal of hH178, could be observed (Fig. 35B). This indicates that protonation of hH178 is 

significantly increased in the presence of ProFAR and glutamine. The signal of hH53 also shifted, 

but protonation was not altered significantly. 

 

 

Fig. 35: NMR spectra of HisH labelled with 13C-histidine at 25 °C. To probe the protonation state of the catalytic 

histidine of HisH, hH178, HisH was labelled with 13C-histidine. The peak of hH178 (1) was assigned by mutation to 
alanine. (A) The spectrum of apo state (black) is virtually identical to that with 350 µM ProFAR (blue). Spectra were 
recorded with wild-type ImGPS (B) Addition of 10 mM glutamine (orange) induces small chemical shift changes to 
several histidine residues, including hH53 (3) and hH178 (4), probably due to the proximity of its binding site. Only 
after addition of a combination of glutamine and ProFAR (blue), two residues show significant changes in chemical 
shift. The peak with the smaller shift belongs to hH53 (5) and the one with the larger shift to hH178 (6). This shift is 
strong evidence for an increased protonation of hH178 in the presence of both ImGPS substrates. ImGPS complexes 
used for measurements with glutamine contained the mutation hC84S.  

 

 

These experiments clearly demonstrate that the catalytic residue hH178 changes its protonation 

state upon allosteric activation of HisH. Furthermore, this confirms that hH178 is one of the 

titratable groups observed in the pH dependency experiments (chapter 4.2.4.1). Since the 

deprotonation of hC84 is dependent on the presence of the positive charge of hH178, it can be 

surmised that this residue, too, changes it protonation state upon binding of both products and is 

also one of the observed titratable groups. Due to the increase in protonation state, hH178 can be 
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assigned to pKa2, since this is the pKa of a titratable group for which an increased protonation is 

favourable for the reaction. Although the change in this pKa value in the measurement of the pH-

dependency of the glutaminase reaction was relatively small, a significant change in protonation 

was observed here. There are several possible explanations for this apparent discrepancy. The pKa 

values measured in the pH dependency are macroscopic effects that were recorded with the 

overall activity as the readout. The NMR experiments specifically follow hH178 and are 

performed without (or very low) turnover of glutamine. In the pH-dependency, the pKa values of 

other titratable groups can play a role, such as that of the leaving ammonia. Furthermore, the 

protonation state of hH178 has to change during the course of the reaction, which will certainly 

influence the observed pKa. Finally, in the substrate bound state observed in the NMR 

experiments, hH178 might interact with other protein residues or the glutamine molecule, which 

may also alter the chemical shift of hH178. 

Remarkably, the observed effect is triggered by glutamine binding simultaneously with ProFAR. 

Usually, allostery is thought of as solely being caused by ligand binding in one site affecting 

another. ImGPS therefore appears to be a special case in which the substrate induced 

conformational change in HisH is allosterically triggered by the binding of the ligand HisF. 

Recent NMR studies detected a conformational change in the entire ImGPS complex which is 

dependent on the binding of both ProFAR and glutamine at the same time.[107] It is a reasonable 

assumption, that a conformation that is induced by binding of both substrates (or one analogue in 

this instance) constitutes the reaction competent conformation. The fact that the binding of 

glutamine and ProFAR to ImGPS increase the protonation of hH178, which is essential for the 

initiation of the glutaminase reaction, therefore support the hypothesis that conformational 

changes observed in other NMR experiments represent the active ImGPS conformation.[107] It 

remains to be determined whether the change in hH178 protonation is a direct result of this 

conformational change and which particular rearrangements occur in the HisH active site when 

the active conformation is adopted. 

 

4.2.4.3 Study of allosteric activation and pH dependency of HisH with the inhibitor acivicin 

A well-established method for gaining information on the molecular mechanism of enzymes is 

the use of inhibitors. For glutaminases, several inhibitors are available, some of which are so-

called “suicide” inhibitors. They received their name for their property of reacting irreversibly 

with the catalytic residue (hC84 in the case of HisH), forming a chemically stable analogue of a 

reaction intermediate (in the case of HisH the thioester). Acivicin is such an inhibitor which has 

been used in studies with yeast His7 and E. coli ImGPS. It possesses an isoxazol ring substituted 

with a chlorine atom instead of the carboxamide group of glutamine. The leaving group is a 

chloride ion and the formed covalent bond with the catalytic cysteine is not cleavable by 

hydrolysis (Scheme 6). It is assumed that the reaction of acivicin in a glutaminase also produces 

a negatively charged intermediate, similar to the oxyanion during the native glutaminase reaction 

and is thus dependent on the proper formation of an oxyanion hole.[156] 

 

Scheme 6: Mechanism of acivicin inactivation. The glutaminase active site cysteine, in its thiolate form, 
nucleophilically attacks the isoxazol ring of acivicin. As a leaving group, a chloride ion is formed. The newly formed 
S-C-bond is stable against hydrolysis and is an analogue of the thioester intermediate of the glutaminase reaction. 
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In the context of this thesis, the use of acivicin offers two advantages for the study of the molecular 

mechanism of HisH activation: i) the reaction only progresses to the thioester analogue and ii) the 

leaving group is a chloride ion, which does not need to be protonated for the reaction to occur. 

The first point allows for the determination of the influence of activation on the first half reaction 

of glutamine turnover, the formation of the thioester, independent of the second half reaction, the 

hydrolysis of the thioester. The second property is helpful in the investigation of the pH 

dependency of the HisH reaction. The chloride leaving group eliminates the leaving ammonia as 

a putative third titratable group in the HisH mechanism and also removes the necessity of hH178 

to protonate the leaving group. This leaves hH178 and hC84 as the only titratable groups that can 

influence activity, simplifying the analysis of pH dependency.  

To assess the amount of acivicin needed for inactivation studies, acivicin was titrated into a 

glutamine dependent ImGPS assay following the decrease in PrFAR absorbance as signal with 

both PrFAR and glutamine in saturating concentrations (40 µM and 10 mM respectively). In all 

conditions acivicin was added in an at least 4-fold molar excess to ImGPS. This make changes in 

acivicin concentration over the observed time negligible, leading to conditions of pseudo first 

order inactivation (Fig. 36A). Under pseudo-first order conditions, the amount of active HisH and 

thus, active ImGPS, decreases following a single exponential decay. Since the residual ImGPS 

activity is directly proportional to the amount of active protein, the reaction trajectories can be 

fitted to a single exponential equation. The time constant constitutes the rate of inactivation 

kinact,obs, which was plotted against the acivicin concentration, yielding a hyperbolic curve (Fig. 

36B).  

 

Fig. 36: Inactivation of HisH with acivicin at 25 °C. The glutamine dependent ImGPS reaction was measured in a 
quartz cuvette in a photo spectrometer by following the absorbance decrease at 300 nm of PrFAR to AICAR. Reaction 
mixtures contained 50 mM Tris/HCl pH 7.5, 40 µM PrFAR and 10 mM glutamine. ImGPS concentration was 0.2 µM 
to ensure at least 5-fold excess of acivicin to allow for the approximation of pseudo first order inactivation (A) Raw 
data, showing how the activity decreases over time in an exponential fashion, as expected for pseudo first order 
conditions. The curves were recorded in technical triplicates and fitted to a single exponential equation. (B) The mean 
values with error bar indicating the standard deviation that were obtained from fitting the raw data. The line represents 
a fit to a hyperbolic equation equivalent to a modified Michealis-Menten equation (equation (15)). 

 

The inactivation kinetics describe the inhibition constant Ki and the maximal rate of inactivation 

kinact, which are measures comparable to KM and kcat in the normal Michealis-Menten equation, 

respectively (equation (15)).[165]  

 

𝑘𝑖𝑛𝑎𝑐𝑡,𝑜𝑏𝑠 =
𝑘𝑖𝑛𝑎𝑐𝑡 ∙ [𝐼]

𝐾𝑖 ∙ (1 + 
[𝐺𝑙𝑛]

𝐾𝑀
𝐺𝑙𝑛) + [𝐼]

     (15) 
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This yielded values of 38 µM for Ki and 0.022 s−1 for kinact of the acivicin inactivation of HisH. 

Comparing these results with those from previous studies on yeast His7 and E. coli ImGPS shows 

that there are significant differences in the susceptibility for acivicin between ImGPS enzymes 

from different organisms (Table 11). 

 

Table 11: Kinetic parameters of acivicin inactivation at 25 °C 

 tmImGPS His7 ecImGPS 

Ki (µM) 38.1 ± 3.1 5.6 ± 1.1[156] < 9[156] 

kinact (s
−1

) 0.022 ± 0.008 0.164 ± 0.009[156] ≥ 10[156] 

kinact/KI (M
−1

s
−1

) 57.5 293[156] ≈ 10,000[156] 

Kac (µM, ProFAR, acivicin) 86.3 ± 26.1 - - 

Kac (µM, ProFAR, Gln) 23[100] - 430[97] 
Errors are standard errors from technical triplicate measurements or taken from the respective citation. Measurements 

with His7 and ecImGPS at 30 °C. 

 

To assess whether the inactivation by acivicin as a model reaction for the formation of the 

thioester is accelerated by the presence of an allosteric activator, a pre-incubation experiment was 

performed. In this experiment, 10 µM ImGPS were incubated with 200 µM acivicin and varying 

concentrations of the allosteric activator ProFAR. After defined time intervals, aliquots of the 

inactivation reaction were directly diluted 700-fold into a glutamine dependent ImGPS assay. 

This yielded an acivicin concentration of < 0.3 µM, making inactivation during the observed 

reaction time negligible (Ki = 38 µM). Due to the pseudo first order nature of the inactivation 

reaction, the logarithm of the observed residual activity was then plotted against the time of pre-

incubation with acivicin and fitted by linear regression. This yielded pseudo first order rates of 

inactivation for each ProFAR concentration (Fig. 37A). These inactivation rates were plotted 

against the ProFAR concentration and fitted with a hyperbolic function (Fig. 37B). This fit yielded 

an activation constant Kac of ProFAR for the acivicin inactivation of 86 ± 26 µM, which is about 

3-fold higher than the activation constant for the glutaminase activity of 23 µM (Table 11).[100] 

 

 

Fig. 37: Influence of ProFAR on the inactivation rate of acivicin at 25 °C. 10 µM of the fully formed ImGPS 
complex was incubated with 200 µM acivicin and varying concentrations of ProFAR at 25 °C in 50 mM Tris/HCl 
pH 7.5. After certain time intervals, aliquots were diluted 700-fold into a reaction mixture for measuring ImGPS activity 
(50 mM Tris/HCl, pH 7.5, 30 µM PrFAR, 10 mM Gln). (A) The residual activity was divided by the initial activity and 
the logarithm of this ratio was plotted against the incubation time. This was fitted to a linear equation, the slope 
signifying the pseudo first order rate constant of HisH inactivation. ProFAR concentrations are given on the right hand 
side of the plot. (B) The pseudo first order rate constant kinacct,obs was plotted against each ProFAR concentration used 

in the pre-incubation phase. The line represents a fit to a hyperbolic equation. 
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These data clearly indicate that ProFAR strongly accelerates the inactivation of HisH by acivicin 

and the strength of this effect is similar to the effect on glutamine hydrolysis. The allosteric 

mechanism of activating HisH glutaminase activity and acivicin inactivation therefore appear to 

be very similar. It can be concluded that ProFAR strongly activates the first half-reaction of 

glutamine hydrolysis, the formation of the thioester intermediate. 

Moreover, the pH-dependency of the acivicin inactivation rate was assessed in the same 

experimental set-up as for the ProFAR titration, but in ProFAR saturation (100 µM) at different 

pH values (Fig. 38). Since the readout of activity is independent of the pre-incubation conditions, 

a wide pH-range of 4–9.5 could be used. The data of the acivicin inactivation shows a trend similar 

to glutamine turnover (Fig. 34). A bell-shaped curve typical for a reaction dependent on at least 

two titratable groups could be observed. The reaction could only be measured in the presence of 

ProFAR, since the reaction rate without allosteric activation was too low to be detected and the 

activation with PrFAR led to full inactivation of HisH before a measurement of residual activity 

could be performed. 

 

 

Fig. 38: pH dependency of the acivicin inactivation of HisH in the presence of ProFAR at 25 °C. The acivicin 
inactivation rate was determined in pre-incubation experiments at different pH values in 20 mM buffer (pH 4.0 - 5.7: 
acetate/acetic acid, pH 6.0–7.2: Bis-Tris/HCl, pH 7.5–9.0: Tris/HCl, pH 9.2–10.0: Glycine/NaOH) with 200 µM 

acivicin and 100 µM ProFAR. Rate of inactivation was determined by measurement of the glutamine dependent ImGPS 
reaction following the turnover of PrFAR. The error bars indicate the standard deviation of technical triplicate 
measurements. The data were fitted to equation (13). The pKa values determined form the fit are 5.4 and 7.0. 

 

Since ammonia as the third possible titratable group in the HisH reaction is not present when 

using acivicin, the two pKa values calculated from the mathematical fit of the data can be assigned 

to hC84 and hH178, under the assumption that no other titratable groups contribute the pH-

dependency of HisH activity. The calculated pKa values are 5.4 and 7.0 for hC84 and hH178, 

respectively. These values are about 1 pH unit lower than those observed for the ProFAR activated 

glutaminase reaction (6.4 and 7.9). This might be the result of a difference in the electrostatic 

environment of the two residues with either acivicin or glutamine bound. Whether these 

differences are simply due to the change in the chemical nature of the ligand or whether they 

result from conformational changes induced by acivicin or glutamine binding can only be 

conjectured at this point. Overall, these data indicate that the pKa values of hC84 and hH178 are 

determining factors in the pH dependency of the HisH reaction. That hH178 is also necessary for 

the inactivation reaction with acivicin highlights the central importance of the stabilization of the 

negative charge of hC84 for HisH activity. 
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4.2.4.4 The role of fD98 in the HisH glutaminase reaction 

It has been observed in previous work that an aspartate residue situated in HisF (fD98) is of crucial 

importance to HisH activity.[105,108] In fact, a recent study showed that many, if not all, class I 

GATases have a conserved aspartate residue in the synthase subunit that points into the 

glutaminase active site and interacts with the residue next to the catalytic histidine, which 

corresponds to hK181 in ImGPS.[168] In ImGPS, mutation to alanine leads to a nearly complete 

inactivation in the position of fD98 or a great increase of basal activity in the position of 

hK181.[108] One hypothesis is that removal of the hK181 side chain leads to accelerated ammonia 

release through “unblocking” of the active site, increasing the rate of the glutaminase reaction. 

This is supported by the fact that the mutation of another bulky residue in the vicinity, hY138, to 

alanine has a similar effect and is synergistic to hK181A.[105] fD98 was thus assigned an allosteric 

role to transmit the activation signal via hK181 and regulating the “blockage” of the active site. 

However, the triple mutant ImGPS fD98A hY138A hK181A has again lower activity than the 

double mutant, indicating that fD98 still plays an important role in HisH activity even in the 

absence of the two large side chains.[108] The salt bridge between residues fD98 and hK181 is not 

present in the triple mutant as well as either single mutant fD98A and hK181A, which indicates 

that fD98 has not only an allosteric function, but also facilitates HisH activity in another way. In 

light of the results concerning hH178 protonation and pH dependency of the HisH reaction 

(chapters 4.2.4.2 and 4.2.4.3), it is conceivable that during allosteric activation, the negatively 

charged side chain of fD98 is brought into proximity of hH178 and/or the leaving ammonia group, 

increasing the respective pKa value(s) and thus tuning the protonation state(s) in favour of the 

glutaminase reaction. 

To test this hypothesis, fD98 was mutated to glutamate under the assumption that the elongation 

of the side chain might put the carboxyl group into closer proximity of hH178 and the reaction 

intermediates. Thus, this mutation might mimic, at least partially, the allosteric activation effect. 

Steady-state kinetics of the variant fD98E showed that this exchange indeed leads to a 10-fold 

increase of the unstimulated HisH activity without allosteric activator and a 5-fold increase with 

the addition of 70 µM ProFAR (Fig. 39A and B, respectively).  

 

 

Fig. 39: Steady state glutaminase kinetics of ImGPS fD98E at 25 °C. Activity was measured in the GOX assay in 
20 mM Tris/HCl pH 7.0 for wild-type ImGPS (dot) and ImGPS fD98E (empty cicles). (A) Without ProFAR activation, 
the mutation fD98E leads to an increase in kcat from 1.7 x 10-3 min-1 to 1.75 x 10-2 min-1, signifying a 10.3-fold change. 
(B) This factor is lowered to 4.6-fold for the ProFAR activated reaction with a kcat of 5.3 min-1 and 24.4 min-1 for wild-
type ImGPS and the fD98E mutant, respectively. The KM value is similar in both variants, although it appears to be 
lowered by activation with ProFAR from 2.5 mM (A) to 0.64 mM (B) and from 4.2 mM (A) to 0.24 mM (B) for wild-
type ImGPS and the fD98E mutant, respectively. 
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To elucidate the structural changes that are caused by the introduction of the mutation, the 

structure of HisF D98E in complex with wild-type HisH was determined by X-ray crystallography 

in collaboration with Dr. Chitra Rajendran (laboratory of prof. Christine Ziegler, Institute of 

Biophysics and Physical Biochemistry, University of Regensburg). Data collection and 

refinement statistics are summarized in Table Appendix3 . 

The overall structure of the ImGPS fD98E contains one ImGPS complex and is very similar to 

that of the wild-type enzyme (all atom RMSD = 2.2 Å, PDB-code 1GPW chains A and B). 

However, in a closer inspection of the mutation site and its immediate surroundings, subtle 

changes can be observed (Fig. 40). The carboxyl group of fE98 is 1.5 Å closer to the imidazole 

ring of hH178 than that of fD98 in wild-type ImGPS. The HisH active site is also slightly 

rearranged: hH178 forms a hydrogen bond with hE180 and there is an alternative conformation 

observed for hC84 pointing towards hH178. These changes may give an indication that the closer 

proximity of the fE98 side chain indeed has a positive influence on the HisH reaction rate. 

However, the structural changes have to be considered with some caution due to the lower 

resolution of the reference structure. 

 

 

Fig. 40: Structural comparison of wild type ImGPS and ImGPS fD98E. Close-up of the interface between HisF 
(red) and HisH (blue) in cartoon representation. Wild type ImGPS (PDB-code 1GPW) is shown in dark colours, ImGPS 

fD98E is light colours. Relevant residues are shown as sticks. (A) In wild type ImGPS, fD98 forms a salt bridge with 
hK181and is 7.7 Å distant from the catalytic hH178. hC84 points towards the glutamine binding site and hE180 oriented 
in a way that it might form hydrogen bonds with hH178. (B) In ImGPS fD98E, the salt bridge of fE98 with hK181 is 
still present, however, hK181 is moved slightly away from the HisH active site. hE180 shows an angle of about 180° 
to hH178 and forms a hydrogen bond with it in a distance of 2.9 Å. hC84 adopts two alternative conformations, one 
pointing into the glutamine binding site as in wild type ImGPS and one pointing towards hH178. For orientation, the 
oxyanion strand h49-PGVG-52 of HisH is marked by the position of hV51, which shows only small differences in 
conformation. 

 

In addition to the apo structure, a structure of an ImGPS complex containing the mutation fD98E 

with the HisH substrate glutamine and the HisF substrate analogue ProFAR could be solved (full 

data collection and refinement statistics in Table Appendix3). This complex additionally 

contained the mutation hC84S to minimize glutamine turnover. Due to the instability of ProFAR 

and the hydrolysis of glutamine during crystallization, both substances were added by soaking the 

crystals in a solution containing saturating concentrations of both substances. 

Similar to the apo structure, this structure contains only one copy of the complex which has a very 

high similarity to wild-type ImGPS (all atom PDB-code 1GPW, RMSD = 2.2 Å chains A and B) 

and the apo structure (all atom RMSD = 0,77 Å). Interestingly, loop1 of HisF is not resolved 

completely, indicating a higher flexibility than in most other structures, such as the apo structure 

of ImGPS fD98E. The residues of loop1 that could be resolved indicate that loop1 adopts a mostly 

closed-like conformation in this structure. Electron densities could be detected for both ligands in 

different quality. The density for the glutamine molecule is well defined in an omit map at 1 σ 

(Fig. 41A). ProFAR on the other hand is only partially resolved, showing only one phosphate 
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with the attached ribose moiety at the site that usually binds the “AICAR part” of PrFAR (Fig. 

41B). To reasonably represent the ribose moiety, the electron density of the omit map had to be 

lowered to 0.5 σ. 

 

 

Fig. 41: Structural analysis of ImGPS fD98E hC84S with bound ProFAR and Glutamine. ImGPS fD98E hC84S 
is shown in cartoon representation with HisH in blue and HisF in red. (A) Bound Glutamine with an omit electron 
density at 1 σ. (B) Partly resolved ProFAR molecule bound at the phosphate binding site close to loop5 (orange 
cartoon). For orientation, loop1 is also shown in orange cartoon, the residues not resolved (19–25) are indicated by a 

dashed line. The electron density is from an omit map at 0.5 σ. (C) Residues fE98 and hK181 clearly show one 
additional conformation compared to other structures. The electron density is shown at 0.5 σ from an omit map. (D) 
Measurement of the distances (marked by yellow dashed lines) shows that the side chains of fE98 and hK181 are both 
significantly close the active site residue hH178 in their respective alternative conformations than in the previously 
observed conformations.(E) In the alternative conformation, the side chain of fE98 interacts with hY138 via a hydrogen 
bond (2.9 Å distance). 
 

Interestingly, significant conformational changes can be observed for the residues fE98 and 

hK181. Both residues exhibit a lower quality of electron density. In an omit map at 0.5 σ, it is 

clearly visible that both residues can be detected not only in the identical conformation as in the 

apo structure of ImGPS fD98E, but also in a second, alternative conformation (Fig. 41C). Other 

residues are significantly closer to the catalytic hH178 in these alternative conformations 

compared to those observed in the apo structure (Fig. 41D, 5.8 Å for fE98 and 3.7 Å for hK181, 

which a reduction in distance of constitutes 1 and 2.9 Å, respectively). Another interesting 

observation is that in the alternative conformation, fE98 forms a hydrogen bond with the side 

chain of hY138 (Fig. 41E, 2.9 Å distance), a residue which also plays an important part in the 

process of allosteric communication as indicated by the increase in basal activity of the mutant 

hY138A.[105] 

The structural observations made in the two ImGPS structures containing the mutation fD98E 

have still to be interpreted with caution. The closer proximity of the fE98 carboxyl group in the 

alternative conformation implicates that this electrostatic influence might be a factor in the rate 

enhancement observed in this mutant. The alternative conformation of fE98 might also suggest a 

possible role of hY138 in the activation of HisH. While a removal of this interaction by mutation 

would certainly not explain the increase in basal activity in ImGPS hY138A, one could speculate 

that this interaction is counterproductive for activity, since it holds the carboxyl group of fE98 (or 

fD98) relatively far from hH178. Thus, removal of this interaction possibility for fD98 would 
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lead to an increase in activity. This would agree with the synergy with the mutation hK181A in 

increasing activity, which also keeps fD98 distant from hH178.[105,108] 

The incomplete binding of ProFAR indicates that the observed holo structure is not the final 

ternary complex and thus most likely does not contain all conformational changes necessary for 

activation of HisH. This is supported by the alternative conformation of hK181, in which the 

positively charged amino group comes in very close proximity of hH178. This clearly represents 

an electrostatic interaction that is detrimental to HisH activity, since it would counteract a 

protonation of hH178, which is essential for initiation of the glutaminase reaction. 

In any case, the ligand bound structure of ImGPS fD98E hC84S indicates that considerable 

conformational rearrangements and/or increase in conformational flexibility are induced within 

the HisH active site upon allosteric activation. The latter is in agreement with previous NMR 

studies.[148] Taking all results of this chapter into account, there are clear indications that the 

residue fD98 serves in a dual role in ImGPS. On the one hand, it forms a crucial link with hK181 

for allosteric communication. On the other hand, the results from steady-state kinetics combined 

with the structural analysis indicate that is might play a more direct part in HisH catalysis by 

increasing the protonation of hH178. To clarify the molecular details, such as whether the 

electrostatic influence is exerted solely on hH178 or also on a reaction intermediate of glutamine 

turnover, have to be addressed in further studies. These certainly need to contain structural studies, 

in which the conformational influence of the ImGPS ligands in analysed in more detail. 

 

4.2.4.5 Investigation of the role of hV51 in forming the oxyanion hole 

Stabilization of the two tetrahedral oxyanion intermediates during the hydrolysis of glutamine is 

certainly one of the most crucial functions performed by HisH. These chemically unstable states 

are stabilised electrostatically by the oxyanion hole (Fig. 6). Generally, oxyanions are stabilised 

by interaction with protein backbone amides.[169] The oxyanion hole is formed by different parts 

in their respective structures. In class I GATases, the oxyanion hole is formed by the conserved 

oxyanion strand (h49-PGVG-52 in ImGPS).[103,104] In some glutaminases, a second amide is 

involved, namely that of the residue directly neighbouring the catalytic cysteine (corresponding 

to hL85 in ImGPS).[160] There are two interpretations as to which amide in the highly conserved 

PGVG-motif in HisH forms the oxyanion hole. One hypothesis is based on observations from a 

crystal structure which shows that in the inactive state, the amide of hG52 is already positioned 

so it can form a hydrogen bond with the carboxamid of the glutamine substrate.[105] The other 

hypothesis states that the oxyanion hole is formed by the amide of hV51. However, this amide is 

turned away from the active site in all available crystal structures and forms a hydrogen bond with 

hP10 in the adjacent Ω-loop. The assumption is therefore that the hydrogen bond to hP10 is 

broken upon activation and the backbone flips into the active site. Previous studies,[100,108] as well 

as the experiments presented in chapter 4.2.4.1 showed that the increase in HisH activity is 

characterized by a strong increase in kcat. Since the kcat is generally associated with chemical 

turnover, an involvement of the oxyanion is a reasonable hypothesis. In this chapter, the role of 

hV51 will be explored.  

Two different HisH variants were constructed in order to elucidate the role of hV51 in forming 

the oxyanion hole: hV51P, which effectively eliminates the amide at position h51, since in proline 

residues the amide is incorporated into the cyclic side chain, and h1013, in which hP10 and 

hI13 were deleted in order to shorten the Ω-loop so that it is no longer possible for hV51 to form 

a hydrogen bond with hP10. To characterize the effect on HisH activity, steady-state kinetic 

measurements were performed for the glutaminase activity of the two variants. hV51P showed a 

basal activity similar to wild type and 0.3 % wild type activity after ProFAR activation (11.5 fold 

activation, Table 12).  h1013 on the other hand displayed a 17.6-fold increased basal activity. 
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Activation with 70 µM ProFAR led to a 50-fold increase in activity, yielding about 28 % wild 

type activity.  

 

Table 12: steady-state glutaminase activity of HisH V51P and HisH 1013 at 25 °C 

HisH 

variant 

kcat HisH (min
-1

) 

basal 

kcat HisH (min
-1

) 

(+ 70 µM ProFAR) 

 

activation factor 

wt 1.7 ± 0.3 x 10-3 5.3 ± 0.2 3,117 

h10 3 ± 0.1 x 10-2 1.5 ± 0.1 50 

V51P 1.3 ± 0.1 x 10-3 1.5 ± 0.1 x 10-2 11.5 

 

 

In principle, a certain loss in activity compared to the wild-type HisH reaction is not surprising in 

both variants, since the introduced mutations are in close proximity to the active site. However, 

both variants are still active and provide some insight into the formation of the oxyanion hole. 

For instance, if the amide of hV51 was the only amide forming the oxyanion hole and the 

oxyanion hole formation is the only factor that activates the kcat of HisH, it would be expected 

that the variant hV51P is completely inactive. However, the basal activity is unchanged compared 

to wild type and the variant is also still able to be allosterically activated. This indicates that there 

is at least one other amide that contributes to the oxyanion hole or the reaction can progress on 

the basal level without stabilization of the oxyanion intermediates. In any case, basal activity 

appears to not be dependent on the hV51 amide. The high reduction in kcat in the ProFAR activated 

state suggests an important role for activation of hV51, but whether this stems from a direct 

involvement in catalysis or structural factors remains to be clarified. 

The increase in basal activity in h1013 is a good indication that the weakening of the 

interaction of the PGVG-motif and the Ω-loop could be important for HisH activation. To 

elucidate if the deletion of two residues Ω-loop indeed eliminates the hydrogen bond and allows 

the hV51 amide to flip into the active site, the three-dimensional structure of the complex 

h1013:HisF was solved by X-ray crystallography in cooperation with Dr. Chitra Rajendran 

(group of Prof. Christine Ziegler, Institute of Biophysics and Physical biochemistry, University 

of Regensburg). The structure has a moderate resolution of 2.8 Å and contains three full ImGPS 

complexes (full data collection and refinement statistics in Table Appendix3). Overall, the 

structural similarity is very high to wild-type ImGPS (all atom RMSD = 2.2, PDB-code 1GPW, 

average of RMSD values of all complexes to each other), indicating no major conformational 

rearrangements. In two of the complexes, hV51 interacts with hG12 in the shortened Ω-loop, 

replacing the interaction with hP10 (Fig. 42A and B). In the third complex, no hydrogen bond 

formation can be observed. It should be noted that in all three complexes, the electron density for 

the Ω-loop is not well defined, which might be the result of an increase in flexibility by loop 

shortening. Otherwise, the HisH active site shows no significant conformational changes to wild-

type ImGPS (Fig. 42C). 
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Fig. 42: Structural comparison of wild-type ImGPS with ImGPS h1013. The active site of wild-type HisH (dark 

blue) and ImGPS h1013 (light blue) is shown in cartoon representation. (A) In wild type ImGPS, the backbone 

amide of hV51 is hydrogen bonded (dashed yellow line) to hP10. (B) In ImGPS h1013, the deletion of two residues 
eliminating the possibility of forming this hydrogen bond. Instead, a replacement hydrogen bond of hV51 is formed 

with hG12 (numbering of wild-type HisH, residue number 10 in ImGPS h1013). (C) A structural alignment of wild 

type ImGPS and ImGPS h1013 shows that the structure of the oxyanion strand as well as the catalytic triad of HisH 
is not significantly altered.  

 

There are two major conclusions that can be drawn from the results presented above: i) hV51 is 

likely not the only amide contributing to the oxyanion hole. Possible other candidates are hG52 

and hL85. ii) hV51 is a good candidate as part of the oxyanion hole, since the weakening of the 

connection to the Ω-loop increases basal activity. The identification of the second oxyanion hole 

amide and verification of involvement of the hV51 amide need further structural data for 

validation. 

 

 

4.2.4.6 Analysis of the relative acceleration of thioester formation and hydrolysis 

The results presented in the previous chapters showed that the formation of the thioester 

intermediate is strongly accelerated by allosteric activation. However, the question remains 

whether the second half-reaction of HisH catalysis, the hydrolysis of the thioester intermediate, 

is also accelerated. Unfortunately, there is no method that allows for the selective monitoring of 

thioester hydrolysis, since this would require the trapping of HisH in this intermediate state. 

However, information can be gathered about the relative rate of hydrolysis compared to the rate 

of thioester formation by determination of the amount of enzyme that carries the thioester under 

steady-state conditions. Assuming that thioester hydrolysis is slower that its formation, the 

thioester intermediate would accumulate. Conversely, if formation is the rate limiting step, 

formed thioester would be hydrolysed quickly, leading to a low amount of protein carrying the 

covalent intermediate. Therefore, the fraction of protein carrying the thioester intermediate under 

steady state conditions is an indicator of the relative rate of the two half reactions. 

To determine the fraction of protein carrying the thioester, ImGPS was incubated with 14C-

labelled glutamine, precipitated with trichloroactetic acid during steady state conditions and 

analysed for remaining radioactivity after filtration. For information on how allosteric activation 

relatively affects the rates of the two reaction steps, the experiments were carried out in the 

presence and absence of the allosteric activation. 

In these experiments, the thioester intermediate accumulated without allosteric activation to 

18.3 % in wild type ImGPS. Addition of either the substrate PrFAR or its analogue ProFAR 

significantly reduced this amount to 5.2 % and 1.3 %, respectively (Table 13). This observation 

suggests that the hydrolysis has been accelerated relative to the formation of the thioester.  
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Table 13: Amount of thioester intermediate of different ImGPS complexes under steady-state conditions 

 

ImGPS complex 

 

HisH:HisF wt 

 

HisH:fD98E 

hY138A 

hK181A:HisF 

% thioester (basal) 18.3 ± 4.5 1.1 ± 0.5 11.9 ± 2.5 

% thioester (+ProFAR) 1.3 ± 0.5 0.3 ± 0.1 16.8 ± 4.0 

% thioester (+PrFAR) 5.2 ± 1.7 n.d. n.d. 
Errors are the standard deviation derived from three independent measurements. n.d.: not determined 

 

The same experiments were conducted with two ImGPS variants that show increased basal 

activity, namely fD98E and hY183A hK181A. ImGPS fD98E had a strongly reduced amount of 

protein carrying the thioester, indicating that the hydrolysis is accelerated in this variant, as well. 

ProFAR addition leads to a further reduction, suggesting a similar mode of action as in wild type 

ImGPS. The variant hY138A hK181A on the other hand showed almost the same amount of 

thioester intermediate as the wild type and the addition of ProFAR even increased this amount. 

This indicates that for this variant, the rate of thioester formation is increased permanently and 

the hydrolysis cannot be accelerated so far as to become faster than thioester formation. At this 

point, it is difficult to interpret these results quantitatively, because this requires detailed 

knowledge of microscopic rate constants for binding and dissociation events as well as the 

chemical reaction steps. 

Considering the data of the acivicin inactivation experiments, these results demonstrate that both 

half-reactions of glutamine hydrolysis are accelerated by allosteric activation. Since the 

acceleration of the thioester formation is accelerated very strongly by ProFAR and PrFAR and 

accumulation of thioester-bound protein is not increased, the acceleration of the hydrolysis must 

also be very strong. In both wild-type ImGPS and ImGPS fD98E, the hydrolysis is accelerated 

even more strongly than the thioester formation, because the steady-state concentration of 

thioester carrying enzyme is significantly reduced. The results of the variants with increased basal 

activity highlight that there is a delicate balance between the two reaction steps and different 

activating mutations or even different allosteric activators lead to subtle differences in the active 

site conformation and thus to a difference in activation of either step. 

 

4.2.5 Evaluation of implications for the mechanism of HisH stimulation 
The goal of the experiments presented in this chapter was to improve the knowledge of the 

molecular mechanism of HisH stimulation in ImGPS and to test existing hypotheses on this 

allosteric process. The key hypotheses concerning HisH stimulation are: i) HisH stimulation is 

achieved by an increase in ammonia release,[105] ii) HisH stimulation is achieved by proper 

formation of the oxyanion hole, namely by flipping of the amide of hV51,[102,103,148] and iii) a 

global increase in conformational dynamics is the allosteric signal that leads to HisH 

stimulation.[142,148] 

The hypothesis of protein dynamics playing a role in ImGPS was supported insofar as there is 

clearly a connection to the highly flexible loop1 in HisF. The structural analysis of the mutant 

hV48A indicated that the dynamics of the HisF core exert an influence on the transmission of the 

allosteric signal. The hypothesis that HisH stimulation is achieved by increased release of 

ammonia could not be supported in this thesis. Rather, it could be shown that tuning of the 

protonation state of the catalytic residue hH178 plays an important role. Since the positive charge 

of hH178 stabilizes the negative charge of hC84, it is reasonable to assume that this protonation 

state is changed during activation as well. An important role in the conformational changes was 

also demonstrated for the residue fD98, which might be responsible for the change in protonation 

of hH178 and/or an increase in susceptibility for protonation of the leaving ammonia group. 

Indications were also found that support the hypothesis of the importance of the hV51 amide for 

HisH catalysis. While a second amide such as that of hG52 might be involved, hV51 is a likely 
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candidate for forming the ImGPS oxyanion hole. In addition, there is strong evidence of a distinct 

active conformation of the entire ImGPS complex. Conformational changes include and induced-

fit type change in HisF loop1 as well as changes in the overall conformation of the ImGPS 

complex.[107] While a functional role of the increase in ImPGS dynamics cannot be discounted, it 

is also possible that the active conformation is simply more dynamic than the inactive 

conformation, leading to a correlation of dynamics and HisH activity. Fig. 43 summarizes all 

results and the current understanding of ImGPS allostery as well as at which points open questions 

remain. 

 

 

Fig. 43: Model of the current understanding of ImGPS allostery. (1) Without bound substrates, ImGPS is in an 
inactive state. In this state, it is not completely sure to what extent hH178 and hC84 are charged. In the oxyanion strand, 
the amide of hV51 is turned away from the glutamine binding site, hG52 is turned so it could interact with a binding 
glutamine molecule. HisF loop1 is predominantly in the open conformation. (2) Allosteric activation requires the 
binding of both ImGPS substrates, PrFAR and glutamine. This binding leads to the formation of the active state (3). In 
this state, hH178 is positively charged and hC84 is negatively charged. Which amides form the oxyanion hole is also 
unclear. hV51 plays an important role and might flip into the HisH active site to contribute to the oxyanion hole, but 

another amide might also be involved. HisF loop1 undergoes an induced-fit type conformational change. The exact 
conformation it adopts is yet to be determined. This conformational change facilitates both the HisF reaction as well as 
the allosteric stimulation of HisH. After the completion of the ImGPS reaction and the release of the reaction products 
ImGP, AICAR and glutamate, ImGPS returns to the inactive state. 
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4.2.6 Outlook 
The results presented in this chapter provide valuable insights into the molecular mechanisms 

underlying the allosteric communication in ImGPS, but, in some ways, are only a start into a 

detailed investigation of this fascinating bi-enzyme complex. 

For instance, loop1 of HisF, which is crucial for turnover of PrFAR in HisF, appears to also play 

an important role in allostery. This role should be further investigated by expanding the kinetic 

analysis to the complete ImGPS reaction using CouA-containing ImGPS complexes. The use of 

stopped-flow fluorescence spectroscopy in this context would also allow for the expansion of the 

kinetic model to the entire, glutamine dependent ImGPS reaction. Since in the full complex, the 

kinetic relationships become even more complex than in isolated HisF, CouA could be 

incorporated at different sites, e.g. close to the interface, close to either active site or close to 

loop1 in HisF. This could enable the gathering of detailed information on binding of the substrates 

PrFAR and glutamine and the reaction products as well as the conformational changes in the 

physiological setting of the complete ImGPS complex. The different residues of importance 

within HisF loop1 that were identified in this work and ImGPS variants carrying mutations at 

these positions as well as mutations in HisH such as hC84S will certainly be instrumental for 

future studies. Some reaction rates might also be determined in a different way. The rate of 

thioester hydrolysis for example could be determined in a modified set-up of the assay to 

determine the steady-state thioester concentration used in this thesis. Dilution of the reaction 

mixture with unlabelled glutamine and analysis of aliquots after defined time intervals allows for 

the determination of the decay rate of the thioester.[170]  

The identification of the residues fI7 and fI169 as part of the allosteric network highlight that a 

more systematic mutational screening of HisF residues might shed further light on the mechanism 

of HisH activation. These studies would of course benefit greatly from more detailed structural 

information on the differences between the basal and activated states of ImGPS. Study of single 

mutations or and combinations of different activating and/or inactivating mutations in both NMR 

and crystallography experiments are promising for the clarification of the exact nature of the 

active HisH conformation. For instance, the mutation of hC84 to serine or alanine enables the 

study of substrate bound states and the mutation fD98E has given some insight into 

conformational changes during allosteric communication, which can certainly be exploited 

further. For structural studies, the use of ProFAR as a HisF ligand appears promising due to its 

higher stability as well as the fact that it is not turned over. 

Concerning the observation of HisH activation by tuning of pKa values of the active site residues 

in HisH, different experiments may still provide more detailed information on this phenomenon. 

Mutations in the HisH active site could be explored further in the respect of the pH-dependency 

of the HisH reaction to gain further information on the different titratable groups involved in the 

HisH reaction and when and how their respective pKa values are altered. Systematic elimination 

of different titratable groups and study of the pH-dependency of the residual activity could 

improve the possible interpretation of the pH dependency of the HisH reaction. This should 

include not only hH178 and hC84, but also fD98 and hE180. The latter residue has largely been 

neglected thus far and most certainly has a profound impact on hH178 protonation. Another point 

that still should be addressed in the respect of pH dependency are effects on the ligand binding. 

It is likely that part of the differences in pH dependency of for instance the ProFAR and PrFAR 

activated HisH activity is also partly a result of a pH dependency of ligand binding, which may 

vary for the two activator molecules. The study of the differences in activation by ProFAR and 

PrFAR would also benefit from the measurement of pH dependency of the HisH reaction at 

different ProFAR concentrations (PrFAR cannot be titrated, as it is turned over during the 

measurement). This would allow for a more detailed description of the changes in pKa values at 

different levels of allosteric activation. 
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6 Appendix 
 

Table Appendix 1: Data collection and refinement statistics for the structures of HisF K19A, G20P, F23A and 

T21P 

Protein HisF K19A HisF G20P HisF F23A HisF T21P 

Wavelength (Å) 0.99 0.99 0.99 0.99 

Resolution range (Å) 37.92  - 1.197 
(1.24  - 1.197) 

47.46  - 1.314 
(1.361  - 1.314) 

35.07  - 1.196 
(1.239  - 1.196) 

38.01  - 1.199 
(1.242  - 1.199) 

Space group C 1 2 1 P 21 21 21 C 1 2 1 C 1 2 1 

Unit cell 78.8, 44.4, 63.7, 

 90, 112, 90 

44.3, 58.1, 82.4, 

 90, 90, 90 

79.3, 44.2, 63.5, 

 90, 111.8, 90 

79.5 44.4 63.9, 

 90, 112, 90 

Total reflections 401586 (33683) 609236 (29703) 405073 (35017) 395461 (32694) 

Unique reflections 59034 (5187) 49373 (3705) 62429 (5730) 63609 (6126) 

Multiplicity 6.8 (6.3) 12.3 (8.0) 6.5 (6.0) 6.2 (5.3) 

Completeness (%) 91.65 (81.31) 96.16 (73.49) 96.59 (89.73) 98.50 (95.76) 

Mean I/sigma(I) 28.50 (4.88) 12.86 (0.93) 37.69 (8.88) 23.84 (6.31) 

Wilson B-factor 11.97 19.54 12.05 8.43 

Rmerge 0.03345 (0.3501) 0.09083 (1.366) 0.02606 (0.179) 0.04658 (0.2919) 

Rmeas 0.03618 (0.3814) 0.09471 (1.461) 0.0283 (0.1962) 0.0509 (0.325) 

Rpim 0.01365 (0.1492) 0.02639 (0.5038) 0.0109 (0.07919) 0.02014 (0.1396) 

CC1/2 1 (0.946) 0.999 (0.367) 0.999 (0.982) 0.999 (0.949) 

CC* 1 (0.986) 1 (0.733) 1 (0.996) 1 (0.987) 

Reflections used in 

refinement 

58897 (5183) 49357 (3704) 62307 (5730) 63695 (6125) 

Reflections used for 

Rfree 

2023 (178) 1999 (150) 2012 (182) 1990 (187) 

Rwork 0.1946 (0.2434) 0.1960 (0.4334) 0.1955 (0.2188) 0.2001 (0.2933) 

Rfree 0.2129 (0.2473) 0.2163 (0.4395) 0.2084 (0.2128) 0.2204 (0.3299) 

CCwork 0.955 (0.881) 0.967 (0.663) 0.950 (0.897) 0.950 (0.788) 

CCfree 0.938 (0.856) 0.946 (0.456) 0.906 (0.829) 0.928 (0.716) 

Number of atoms 2260 2180 2245 2262 

  macromolecules 1949 1929 1954 1960 

  ligands 10 0 10 10 

  solvent 301 251 281 292 

Protein residues 255 250 255 255 

RMS (bonds) 0.005 0.006 0.005 0.005 

RMS (angles) 0.85 1.15 0.79 0.78 

Ramachandran 

favored (%) 

96.81 98.79 96.41 96.81 

Ramachandran 

allowed (%) 

2.79 1.21 3.59 3.19 

Ramachandran 

outliers (%) 

0.40 0.00 0.00 0.00 

Rotamer outliers (%) 0.00 0.48 0.00 0.00 

Clashscore 5.31 4.37 6.54 7.53 

Average B-factor 17.18 24.08 17.96 13.35 

  macromolecules 15.90 22.91 16.88 12.21 

  ligands 14.40 - 14.00 10.04 

  solvent 25.56 33.08 25.62 21.12 

Statistics for the highest resolution shell are shown in parentheses. 
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Table Appendix2: Data collection and refinement statistics for the structures of HisF Y39F, V48A and H228A 

Protein HisF Y39F HisF V48A HisF H228A 

Wavelength (Å) 0.99 0.99 0.99 

Resolution range (Å) 37.97  - 1.198 

(1.241  - 1.198) 

35.18  - 1.197 

(1.239  - 1.197) 

38.02  - 1.199 

(1.242  - 1.199) 

Space group C 1 2 1 C 1 2 1 C 1 2 1 

Unit cell 79.5, 44.3, 63.5, 
90, 111.9, 90 

79.5, 44.3, 63.8, 
90, 112, 90 

79.6, 44.4, 64, 
 90, 112, 90 

Total reflections 407485 (35010) 407827 (35614) 390335 (31914) 

Unique reflections 59272 (5358) 64855 (6196) 59212 (5203) 

Multiplicity 6.9 (6.5) 6.3 (5.5) 6.6 (6.0) 

Completeness (%) 91.84 (84.22) 99.56 (96.47) 91.14 (81.19) 

Mean I/sigma(I) 24.01 (7.23) 39.00 (14.45) 18.16 (8.90) 

Wilson B-factor 10.12 9.10 7.03 

Rmerge 0.04715 (0.2115) 0.02752 (0.1023) 0.07756 (0.2065) 

Rmeas 0.05107 (0.2301) 0.02994 (0.1134) 0.08429 (0.227) 

Rpim 0.01937 (0.08936) 0.01162 (0.04746) 0.03251 (0.09239) 

CC1/2 0.999 (0.978) 0.999 (0.992) 0.995 (0.966) 

CC* 1 (0.994) 1 (0.998) 0.999 (0.991) 

Reflections used in 

refinement 

59214 (5357) 64632 (6196) 59103 (5194) 

Reflections used for Rfree 2011 (180) 1989 (197) 1985 (169) 

Rwork 0.1880 (0.2020) 0.1870 (0.2047) 0.1940 (0.2507) 

Rfree 0.2043 (0.1905) 0.1978 (0.2241) 0.2093 (0.2549) 

CCwork 0.956 (0.908) 0.954 (0.902) 0.945 (0.826) 

CCfree 0.946 (0.941) 0.933 (0.900) 0.944 (0.766) 

Number of atoms 2283 2283 2313 

  macromolecules 1959 1958 1955 

  ligands 10 10 10 

  solvent 314 315 348 

Protein residues 255 255 255 

RMS (bonds) 0.005 0.005 0.005 

RMS (angles) 0.80 0.78 0.76 

Ramachandran favored (%) 96.81 96.41 96.81 

Ramachandran allowed (%) 3.19 3.59 3.19 

Ramachandran outliers (%) 0.00 0.00 0.00 

Rotamer outliers (%) 0.00 0.00 0.00 

Clashscore 5.78 6.29 6.04 

Average B-factor 14.90 13.45 12.57 

  macromolecules 13.59 12.13 11.06 

  ligands 12.06 10.06 9.86 

  solvent 23.21 21.82 21.13 

Statistics for the highest-resolution shell are shown in parentheses. 
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Table Appendix3 Data collection and refinement statistics for the ImGPS complex structures 

Protein Complex ImGPS fD98E ImGPS fD98E hC84S 

+ ProFAR/Gln 
ImGPS h1013 

Wavelength (Å) 0.99 0.99 0.99 

Resolution range (Å) 43.36  - 1.486  

(1.539  - 1.486) 

45.69  - 1.784 (1.848  - 

1.784) 

47.27  - 2.811 

(2.912  - 2.811) 

Space group P 21 21 21 P 21 21 21 P 32 

Unit cell 76.4, 76.6, 86.7, 

90, 90, 90 

75.312 76.596 86.941 90 

90 90 

94.5, 94.5, 166.3, 

 90, 90, 120 

Unique reflections 83160 (8207) 48477 (4719) 40292 (3967) 

Wilson B-factor 18.70 28.66 78.89 

Reflections used in 

refinement 

82925 (8205) 47031 (4265) 40292 (3967) 

Reflections used for Rfree 1988 (198) 1956 (172) 2014 (199) 

Rwork 0.2274 (0.3558) 0.1834 (0.3386) 0.1759 (0.2843) 

Rfree 0.2513 (0.3793) 0.2190 (0.3820) 0.2420 (0.3510) 

Number of non-hydrogen 

atoms 

4059 3854 10456 

  macromolecules 3510 3530 10456 

  ligands 4 23  

  solvent 545 301  

Protein residues 446 448 1339 

RMS(bonds) 0.007 0.006 0.009 

RMS(angles) 1.23 0.77 1.18 

Ramachandran favored (%) 97.27 97.51 91.40 

Ramachandran allowed (%) 2.51 2.27 6.34 

Ramachandran outliers (%) 0.23 0.23 2.26 

Rotamer outliers (%) 0.26 0.00 0.36 

Clashscore 9.33 6.48 16.75 

Average B-factor 27.19 34.59 91.50 

  macromolecules 25.83 33.92 91.50 

  ligands 23.88 45.86 - 

  solvent 35.98 42.42 - 

Statistics for the highest-resolution shell are shown in parentheses. 
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Fig. Appendix 1: H1-N15-TROSY Spectra of wild-type HisF and HisF C9S E24C. The direct comparison of the 
spectra of wild-type HisF (black) and HisF C9S E24C (red) shows that there are small chemical shift perturbations 
caused by the two mutations. This highlights that loop1 exerts an influence over the entire protein. 

 

 

 
Fig. Appendix 2: Spectra of M-TEMPO-labelled HisF variants before and after reduction. Spectra were recorded 

in the labelled form before (black) and after (red) reduction with ascorbate. The re-appearance of missing peaks 
indicates that they were indeed attenuated by the proximity of the spin-label. (A) HisF C9S E24C (wild-type model). 
(B) HisF C9S E24C F23A. (C) HisF C9S G20P E24C. 
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Fig. Appendix 3: PRE in HisF proteins with mutations altering loop1 dynamics. Cartoon representation of the 
wild-type HisF structure (PDB-code 1VH7) coloured according to the measured relative peak integrals observed in 
H1N15-TROSY spectra. The applied range is from 0 to 1.12 (maximum observed relative value) and is colour coded 
red (low values, high PRE) via yellow to blue (high values, low PRE). Grey colouring signifies a change in chemical 

shift of the respective residue relative to wild-type HisF caused by mutations made for labelling. These residues cannot 
be assigned to a specific signal without further experiments. The position of the M-TEMPO spin label is marked by a 

cyan sphere at the position of the C of C24. PRE measured for (A) HisF C9S E24C F23A and (B) HisF C9S G20P 
E24C. 

 

 

Fig. Appendix 4: Fluorescence titrations using HisF residue W156 as probe. All measurements were carried out in 
50 mM Tris/acetate pH 8.5 with 10 µM HisF wild-type or free tryptophan. Fluorescence was excited with light with a 
wavelength of 295 nm and emission followed at 327 nm. Data were corrected for dilution and plotted against ligand 
concentration in the cuvette. Red lines represent a fit to equation (4), black line a fit to equation (5). (A) Titration of 
HisF with ProFAR. (B) Titration of free tryptophan with ProFAR. (C) Titration of HisF with AICAR. (D) Titration of 
free tryptophan with AICAR. 
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Fig. Appendix 5: Identification of NMR peaks of labelled histidine residues in HisH by mutation. (A) Comparison 

of HQSC spectra of ImGPS with the mutations C84S (black) and hC84S/hH178A (red) identified the labelled peak as 
that of hH178. (B) Comparison of HQSC spectra of ImGPS with the mutation hC84S in the apo state (black) and in the 
presence of ProFAR and glutamine (green) with ImGPS with the mutations hC84S and hH52A show that the peak of 
hH178 shits from peak (1) to peak (3), while the peak with the smaller shift (3) is that of hH52. 
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