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Predicting m-shopping in the two largest m-commerce markets: The US and China 

Abstract 

This research examines the factors affecting consumers’ mobile shopping (m-shopping) 

intentions in China and the United States. Drawing on the hedonic-motivation system 

adoption model (HMSAM), it is proposed that perceived ease of use affects m-shopping 

intentions; furthermore, this relationship is mediated by perceived usefulness, perceived 

enjoyment, and control. A survey-based cross-sectional methodology involving a total of 

720 respondents constitutes the methods of this study. In the US, 409 responses from 

American citizens or residents were obtained from surveys administered online by 

MTurk. In China, 311 responses from Chinese consumers were obtained from surveys 

administered online by Sojump. Perceived usefulness, an extrinsic motive, directly affects 

behavioral intentions, especially for Chinese consumers, and this effect is also much 

stronger and complemented by an indirect effect for the Chinese (relative to American) 

consumers. In contrast, intrinsic motives of joy and control, which are strongly impacted 

by perceived ease of use, do not influence intentions in either market. However, joy exerts 

an indirect influence on m-shopping intentions, but only for Chinese consumers. These 

results pertain to the specific context of mobile shopping and establish further the 

importance of distinguishing between utilitarian and hedonic factors, especially across 

different markets. 

Keywords: mobile shopping; mobile commerce; hedonic motivation system adoption 

model; perceived ease of use; perceived usefulness; perceived enjoyment. 

1. Introduction 

The worldwide growth of electronic commerce is increasingly driven by mobile shopping 

(m-shopping), which encompasses both browsing and purchasing on mobile devices. One 

in four e-commerce dollars is spent on a mobile device (ComScore, 2018). Mobile 

commerce (m-commerce) is expected to reach 3.5 trillion USD in 2021 and make up 

staggering three-quarters of all e-commerce sales (eMarketer, 2017). The m-shopping trend 

is even more evident in fast emerging countries like China, where 91.2 percent of the 

Singles’ Day sales came from mobile sales in 2017 (Lee, 2017). In established markets, 

such as the United States, m-shopping is also rising, although mobile devices seem mainly 

used for browsing rather than the actual purchase. In fact, during 2017’s online holiday 

shopping, desktop accounted for 41% of all traffic but still commanded 60% of sales. In 

2018, on Black Friday, mobile accounted for 34% of purchases, while on Cyber Monday, 

over 54% of retail visits came from mobile devices but only 28% of purchases. Therefore, 

mobile commerce is a platform of rising interest and importance worldwide (Chou, Li, & 

Ho, 2018; Verkijika, 2018; Baabdullah et al., 2019; Al-Adwan, Alrousan, Al-Soud, & Al-

Yaseen, 2019).  

As past research reported some resistance to mobile commerce in Western markets 

(Watson, McCarthy, & Rowley, 2013), mobile commerce seems more widely accepted and 

practiced in countries like China than in the US (Lee, 2017). Classical technology 

acceptance variables such as perceived usefulness (i.e., the degree to which a person 

believes that using a particular system would enhance his or her job performance [Sultan, 

Rohm, & Gao, 2009]), perceived ease of use (i.e., the degree to which a person believes 
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that using a particular system would be free of effort [Davis, 1989, p. 320]), perceived 

enjoyment (i.e., the extent to which the activity of using a specific system is perceived 

enjoyable of its ability, apart from any performance consequences [Lowry et al., 2012, p. 

7), perceived control (i.e., the user’s perception of being in charge of the interaction 

[Agarwal & Krahanna, 2000, p. 674]), and intentions might explain critical differences in 

this regard (Bruner & Kumar, 2005). This study investigates consumers’ intentions to use 

m-shopping in two countries China and the United States, comparatively. China and the 

US were selected not only because they are the two largest m-commerce markets 

worldwide and attract many marketers’, investors’, and business developers’ attention, but 

also because there remain sharp differences in m-commerce adoption across both of these 

markets. The interest in comparing both markets if further motivated by past research 

highlighting key differences across both markets concerning digitization, such as in social 

media (Jiao, Ertz, Jo, & Sarigöllü, 2018), or in mobile shopping continuance (Lu, Yu, Liu, 

& Wei, 2017). For all those reasons, the paper conducts a country comparison between 

those two markets. 

Also, the paper seeks to answer a specific research gap in the literature. While extant 

research focused on the study of either hedonic factors (e.g., Liu, Yang, & Ling, 2020) or 

utilitarian ones (e.g., Choi, 2018), especially with the classic technology of acceptance 

model (TAM), Unified theory of acceptance and use of technology (UTAUT), or UTAUT2 

models (e.g., Sarkar, Chauhan, & Khare, 2020; Sun & Chi, 2018; Verkijika, 2018; Alrawi, 

Samy, Yusoff, & Shanmugam, 2019; Shaw & Seergueva, 2019; Marinković, Đorđević, & 

Kalinić, 2020), or both factors but in limited settings (e.g., browsing) (e.g., Zheng, Men, 

Yang, & Gong, 2019), the article explores to what extent m-shopping has expanded beyond 

utilitarian use and is used for enjoyment as well. Such a transition is typically observed in 

the evolution of technology (Ko, Kim, & Lee, 2009). Although some technology adoption 

model (e.g., UTAUT2) have considered pleasure-related factors to explain behavioral 

intentions, the perceived enjoyment constructs have usually been proposed only as 

extensions or modifications to the seminal models (e.g., Wong, Tan, Ooi, & Lin, 2015; Liu, 

Yang, & Ling, 2020), instead of constituting foundational aspects (Lowry et al., 2012; Yoo, 

Sanders, & Cerveny, 2018) (e.g., from UTAUT to UTAUT2). This suggests that the 

hedonism-related variable is not a critical constitutive aspect of the model but rather an 

add-on. The current research posits that m-shopping entails a gamification aspect, much 

like what is proposed for online gaming (Lowry et al., 2012). Therefore, the study uses the 

hedonic-motivation system adoption model (HMSAM), which integrates from its inception 

both utilitarian and hedonic constructs in a cohesive whole (Lowry et al., 2012). More 

specifically, this model combines the constructs about classic technology adoption models, 

including the technology of the acceptance model with variables from 

gratification/gamification theories. As such, the HMSAM encompasses both the utilitarian 

and hedonic aspects of m-shopping in its core foundations. 

Past research focused singularly on either China or the US has identified key differences 

across markets regarding the resonance of utilitarian and hedonic factors. It appears that 

the Chinese are mainly influenced by perceived usefulness (i.e., utility) (Zhou, 2013, 2014; 

Yang, Wang, & Wei, 2014), whereas Americans have a higher need to balance usefulness 

with hedonism (Ericson, Herring, & Ungerman, 2014; Chick, 2015; Shankar et al., 2016). 

However, this has never been investigated formally, especially not with an all-

encompassing model as the HMSAM. Since the HMSAM comprises intrinsic variables 
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referring to both motive types, it is ideal for exploring whether differences across both 

markets and identify more clearly what drives Chinese’ higher m-shopping adoption. To 

this end, the conceptual model is tested empirically on data from China and the U.S. and 

offers implications based on the comparative findings. This study seeks to answer two 

questions:  

1) What, if any, are the determinants of m-shopping? 

2) How does the impact of m-shopping determinants differ between China and the US? 

The key contribution of the study is to apply the HMSAM, which was developed 

initially to explain gaming, to the specific context of predicting m-shopping adoption to 

understand better the differences in m-shopping adoption across China and the US. It is 

anticipated that, as this model subsumes both hedonic and utilitarian concepts, which might 

resonate differently with the Chinese and the Americans, there are increased possibilities 

to identify the key variables explaining differences in m-shopping adoption across those 

focal markets. The research offers several contributions to the literature. The consumer-

focused and perception-based knowledge yielded by this study provides insights into the 

subjective perceptions lying at the crux of m-shopping behavior. This knowledge will 

enable innovators, entrepreneurs, and managers to modulate appropriate managerial 

features of their apps and platforms or influence key consumer variables to implement 

effectively thriving m-shopping businesses. This study contributes to this objective in two 

ways, over and above the past literature. 

First, the article explores and compares the critical determinants of m-shopping across 

two key markets in global m-commerce. Notably, the study provides deeper insights into 

the relative importance of utilitarian and hedonic variables in explaining m-shopping using 

a model that places both kinds of predictors on an equal level of importance. In fact, 

although some technology adoption models, such as the unified theory of adoption and 

usage of technology (UTAUT), have considered pleasure-related factors to explain 

behavioral intentions, the perceived enjoyment constructs have usually been proposed only 

as extensions or modifications to the seminal models (e.g., Davis, 1989, Liu, Yang, & Ling, 

2020), as opposed to constituting focal aspects (Lowry et al., 2012; Yoo, Sanders, & 

Cerveny, 2018; Alrawi, Samy, Yusoff, & Shanmugam, 2019). In the case of UTAUT, this 

has resulted in UTAUT2, suggesting that hedonism-related variable is not a key 

constitutive aspect of the model but rather an add-on. The current research posits that m-

shopping entails a gamification aspect, much like what is proposed for online gaming 

(Lowry et al., 2012). Consequently, using the HMSAM model, which posits hedonism-

related predictors at its core, the study provides a clearer perspective on the relative 

importance of those hedonism-related factors compared to utilitarian ones. 

Second, the paper shows key differences between consumers in China and the US in the 

HMSAM paths predicting m-shopping intentions. 

Third, Du and Li (2019) showed that popular theories in mobile commerce are TAM, 

game theory, empirical analysis, expectation confirmation model, UTAUT/UTAUT2, 

commitment-trust theory, decision-making process, theory of reasoned action, network 

externalities, interpretive structural model, neural network and support vector machines. In 

contrast, the HMSAM has not been explored yet in the context of m-commerce despite its 

inherent value for placing utilitarian and hedonic benefits on an equal footing. The paper 

thus also contributes to past literature by investigating this model in the context of m-

commerce. 
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2. Conceptual framework and hypotheses 

2.1. The hedonic-motivation system adoption model (HMSAM) 

The hedonic-motivation system adoption model (HMSAM) combines technology 

acceptance and gratifications/gamification perspectives in an online context (Lowry et al., 

2012). HMSAM provides an improved understanding of hedonic-motivation systems 

adoption (Santo & Iswari, 2017), including online gaming, virtual worlds, online shopping, 

learning/education, online dating, digital music repositories, social networking, gamified 

systems, and general gamification (Karlsson & Sveninge, 2017). HMSAM is not an 

extension of the technology acceptance model. Instead, it is based on an alternative 

theoretical perspective (Karlsson & Sveninge, 2017), namely, flow theory 

(Csikszentmihalyi, 1989). Thus, it is instrumental in understanding gamification elements 

of online systems use (Karlsson & Sveninge, 2017), and in this study, it enables to capture 

the hedonic aspect of m-shopping. Besides, as Lowry et al. (2012) suggested, the HMSAM 

remains a relatively parsimonious model to explain and predict the role of motivation in 

intentions to adopt the technology. However, since the HMSAM was initially developed 

for online gaming, we first had to adapt it to the m-shopping context. 

Five HMSAM measurement factors may affect Behavioral Intention to Use (and, 

Immersion in) an application; Perceived Usefulness (PU), Perceived Ease of Use (PEOU), 

Curiosity, Control, and Joy. PU and PEOU predict technology adoption intentions (Davis, 

1989) and capture the utilitarian facet of m-shopping. Control and Joy related to the 

hedonic aspect of m-shopping (Lowry et al., 2012) and were also identified as crucial 

antecedents in online purchasing (Hubert et al., 2017). Curiosity, an antecedent to 

immersion, is not investigated in the current study since we do not investigate immersion. 

Detailed discussions on the four constructs and their relationships are presented below. 

Fundamentally, this model differs from the alternatives (e.g., TAM, UTAUT, UTAUT2) 

in one significant aspect: the critical antecedent of intentions, i.e., PEOU, is related not 

only to PU and intentions but also to control and enjoyment. Therefore, drawing on the 

HMSAM, the research hypotheses are as follows in their application to m-shopping 

behavior: 

 

2.2. Hypothesis development 

 

2.2.1. Antecedent factor 

 

Perceived ease of use (PEOU) is “the degree to which a person believes that using a 

particular system would be free of effort” (Davis, 1989, p. 320). We propose PEOU as an 

antecedent of perceived usefulness, perceived enjoyment, and control in keeping with 

Lowry et al. (2012). We also suggest PEOU as a direct determinant of behavioral 

intentions. Therefore, PEOU exerts both an indirect effect through PU, perceived 

enjoyment, and control on m-shopping intentions and directly affects those intentions. 

The impact of PEOU on PU has been well-established in the literature (Lowry et al., 

2012; Van der Heijden, 2004; Davis, 1989). PU measures extrinsic motivations. Thus, if 

consumers perceive that mobile devices are easy to use for shopping purposes, this 

perception should increase their perceived usefulness of the medium (Aldás-Manzano, 
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2009) and directly enhance their intentions to use m-shopping (Watson, McCarthy, & 

Rowley, 2013). Thus:  

 

H1: Perceived ease of use relates positively to perceived usefulness. 

 

Systems that are easy to use encourage enjoyment (Van der Heijden, 2004; Lee & Quan, 

2013). Besides, PEOU is a strong predictor of perceived enjoyment (Lowry et al., 2012; 

Merikivi, Tuunainen, & Nguyen, 2017). We posit these findings can be extended to m-

shopping settings. M-shopping is primarily performed in short sessions while on the move 

or while doing other things simultaneously. Therefore, it is suggested that the perceived 

ease of use has a critical role in contributing to an enjoyable experience (Sultan, Rohm, & 

Gao, 2009). M-shopping platforms should be easy to use to focus on shopping, and the 

pleasurable aspects, rather than dealing with user interface issues, mainly as m-shopping is 

performed on small touchscreens. Hence, we consider the role of PEOU as a direct 

antecedent to perceived enjoyment: 

 

H2: Perceived ease of use relates positively to perceived enjoyment. 

 

A system that is easier to use will naturally be considered as being more easily 

controllable (Lowry et al., 2012). Although it has been traditionally argued that perceived 

control determines perceptions about the ease of use of a system (e.g., Venkatesh, 2000), 

Lowry et al. (2012) provided empirical support for the reverse, that is, for the relationship 

between perceived ease of use and perceived control. In fact, the ease with which a system 

can be used will increase the controllability of that system. However, this link has not yet 

been validated empirically in the m-shopping context. Thus:   

 

H3: Perceived ease of use relates positively to perceived control. 

 

We further propose that PEOU (i.e., the antecedent factor) is related to perceived 

usefulness, perceived enjoyment, and control (Sultan, Rohm, & Gao, 2009). 

 

Perceived usefulness (PU). PU is defined as “the degree to which a person believes that 

using a particular system would enhance his or her job performance” (Davis, 1989, p. 320). 

In m-shopping, PU should be understood as usefulness in shopping effectiveness (Davis, 

1989). Past research showed that utility, a concept related to PU, is positively associated 

with use intentions (Watson, McCarthy, & Rowley, 2013). Likewise, in a gaming context, 

HMSAM posits a positive relationship between PU and intentions (Lowry et al., 2012). In 

the specific context of m-shopping, we might thus hypothesize the same because the PU of 

m-shopping in its utilitarian and hedonic sense can be explained from various aspects, 

including their ‘always on’ and ‘portable’ features (Wong et al., 2012). The PU of m-

shopping can also pertain to good deals and savings, for example. These can be accessed 

on mobile, primarily via geofencing, which signals users discounts and promotions offered 

by merchants located nearby (i.e., locational targeting of mobile promotions and special 

events) (Fong, Fang & Luo, 2015; Ho, Dewan, & Ho, 2020). This would translate into 

productivity and value for users spurring m-shopping usage intentions. Thus:  
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H4: Perceived usefulness of m-shopping relates positively to m-shopping intentions. 

 

Perceived enjoyment. Perceived enjoyment or joy refers to “the extent to which the 

activity of using a specific system is perceived enjoyable of its ability, apart from any 

performance consequences” (Lowry et al., p. 7). It squarely fits with hedonism (Lowry et 

al., 2012), an essential construct in studying systems use (Lowry et al., 2012; Van der 

Heijden, 2004; Lin & Bhattacherjee, 2010). The extant literature in consumer-oriented 

information systems depicts perceived enjoyment as one of the most critical drivers to use 

continuance (Lowry et al., 2012; Van der Heijden, 2004). With the advent of mobile 

technology, utilitarian and hedonic concepts have begun to intermingle (Shaw & 

Sergueeva, 2019). For example, utilitarian browsing influences indirectly impulsive mobile 

purchases via hedonic browsing (Zheng, Men, Yang, & Gong, 2019). For this reason, 

hedonic motivation is the foundation of the HMSAM (Lowry et al., 2012). A study by 

Merikivi, Tuunainen, and Nguyen (2017) on North American consumers further showed 

that joy is significantly related to behavioral intention. More specifically, Nysveen, 

Pedersen, and Thorbjørnsen (2005) emphasized how joy was a significant predictor of m-

shopping intentions. Thus: 

 

H5: Perceived enjoyment of m-shopping relates positively to m-shopping intentions.  

 

Perceived Control. Perceived control, or control, is “the user’s perception of being in 

charge of the interaction” (Agarwal & Karahanna, 2000, p. 674). The need for control is a 

fundamental basis for intrinsic motivation (Deci & Ryan, 1985). Although the HMSAM 

model does not posit a direct link from control on intentions in gaming, past research 

suggest that such a relationship might hold in a m-shopping context (e.g., Watson, 

McCarthy, and Rowley, 2013). First, it should be mentioned that one of the most 

fundamental aspects of human existence is increasing personal control over one’s 

environment (Bandura, 2001). Indeed, when the need or sense of control is fulfilled, 

consumers feel empowered, increasing intentions. Watson, McCarthy, and Rowley (2013) 

provided empirical evidence of the relationship between control and intentions to use QR 

codes, an essential part of mobile commerce. We might further deduce that users will be 

more likely to use it once they perceive to have control over mobile technology. Thus:  

 

H6: Perceived control of m-shopping relates positively to m-shopping intentions. 

 

2.2.2. Dependent variable 

 

Behavioral intent toward m-shopping is the key outcome variable in this study. Behavioral 

intent is defined as “the strength of one’s intention to perform a specified behavior” 

(Fishbein & Ajzen, 1975, p. 288). In this study, this construct relates to the consumers’ 

intentions to engage in m-shopping. 

 

PEOU also exerts a direct effect on m-shopping intentions (Liang & Yeh, 2011). When 

consumers perceive a system as easier to learn and use, they are more likely to accept it 

(Pikkarainen, Pikkarainen, Karjaluoto, & Pahnila, 2004). To reduce consumers' physical 

effort, mobile devices must be easy to navigate and simple in design and processing power 
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(Ranganathan & Grandon, 2002). Additionally, online shopping websites must also be 

optimized for mobile usage (Yang, 2010). For example, mobile websites must have more 

explicit links to critical sites with fewer graphics loads to boost sales (Wong et al., 2012). 

Considering that several studies revealed explicitly or implicitly the linkage between 

PEOU with m-shopping intentions (e.g., Nysveen, Pedersen, & Thorbjørnsen, 2005), we 

posit the following:  

 

H7: Perceived ease of use relates positively to m-shopping intentions. 

 

Since we posited a mediating influence of perceived usefulness, perceived joy, and 

control, we further propose an indirect effect of PEOU on intentions through these 

constructs in addition to the direct effect. The mediation of PU and perceived enjoyment 

on that relationship is predicted by the HMSAM (Lowry et al., 2012). However, this is not 

the case for perceived control. We nonetheless posit that control might also exert a 

mediation effect due to its relationship with PEOU (Lowry et al., 2012), on the one hand, 

and intention, on the other (Watson, McCarthy, & Rowley, 2013). Hence: 

 

H8: (a) Perceived ease of use relates positively to m-shopping intentions through (b) 

greater perceived usefulness, (c) greater perceived joy, and (d) greater control. 

 

The conceptual model is shown in Figure 1. 

 

Note: PEOU = perceived ease of use, PU = perceived usefulness. 

Figure 1. Conceptual model 
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2.2. A country comparison 

 

Despite claims of intersegmentation (Alqahtani, 2015), i.e., converging of cultures 

worldwide towards a common core culture (Jenkins, 2006), cultural differences in mobile 

marketing acceptance do persist (Sultan, Rohm, & Gao, 2009). This explains the persistent 

need for country comparison studies in the m-commerce area (e.g., Verkijika, 2018).  

China and the US were chosen based on size, access, and anticipated dissimilarities in 

m-shopping usage due to cultural differences. Besides, although both countries are the two 

largest m-commerce markets, the Chinese market is much more active than the US market 

(eCommerce News, 2018). Only about 35% of e-commerce sales are conducted on a 

mobile device in the US, whereas this proportion rises to 56% in China (Villegas, 2020). 

These statistics echo past studies that showed that consumers from emerging countries in 

general, and Asians, in particular, are the most active in m-shopping (Statista, 2014; Global 

Web Index, 2020). The appeal of mobile commerce in the Chinese market is also evidenced 

by the growth of Chinese mobile commerce platforms such as Taobao, JD.com, and Tmall 

(the top three commerce platforms making up a 78% share) (Disfold, 2020).  

In China, high governmental investments into the mobile infrastructure, including rural 

infrastructure (Leong, Pan, Newell, & Cui, 2016), have made mobile more accessible to 

many consumers. Besides, the mobile phone manufacturing market grew extensively in 

China, thus increasing competition and driving down the prices of mobile phones (Jin & 

Von Zedtwitz, 2008; Passport, 2016). Finally, China is a very protected market with limited 

exposure to foreign brands (e.g., Amazon, Walmart), which spurred the emergence of 

multiple local players who competed domestically before reaching a critical size that 

enabled them to expand globally, especially in neighboring countries (Disfold, 2020). 

Alibaba is a typical example of that strategy since it first evolved in the Chinese market 

until reaching a critical size which resulted in the creation of four distinct businesses: 

Taobao, Tmall, and Alibaba1688, dedicated to the Chinese market; and Alibaba.com as 

well as AliExpress focused exclusively on wholesale exports outside of China (Disfold, 

2020).  

Chinese in higher socio-economic status and urban areas are exposed to emerging 

technologies, such as mobile devices, to a similar extent as the US (Sultan, Rohm, & Gao, 

2009). Finally, in the US, there are often significant self-regulatory and public policy 

efforts related to m-shopping, but these efforts may be less so in China (Sultan, Rohm, & 

Gao, 2009).  

 Collectively, the abovementioned factors suggest that consumers in the US and China 

are likely to exhibit some differences and similarities in their m-shopping intentions. 

Hence, we study the factors that explain consumers’ intention to engage in m-shopping 

across markets (i.e., the USA and China) and empirically test the model in Figure 1. Culture 

acts, therefore, as a valid explanatory context variable. 

3. Methodology 

3.1. Research context and data collection 

The questionnaire was designed initially in English, then translated into Chinese, and back-

translated into English by three bilingual persons to ensure comparability. A pretest for the 

questionnaire was conducted with 30 students in large state universities located in China 

and the U.S, respectively. The pretest helped shorten the questionnaire and identify 
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ambiguous wording. After revision, the final survey was implemented online MTurk in the 

U.S, and its equivalent Sojump, in China. The data was gathered from Chinese respondents 

in May 2017 and for American respondents in February 2017. Both Sojump and MTurk 

target regular consumers in both countries, but respondents need to be registered on those 

platforms to participate in the survey. The survey contained items to assess m-shopping 

intentions, perceived ease of use, perceived usefulness, perceived enjoyment, control, and 

behavioral intentions, aiming to estimate the model in Figure 1 and various other items 

about general m-shopping behavior.  

Although non-random procedures, the choice of Sojump and MTurk sample for this 

study were motivated by previous findings indicating that data obtained from these frames 

are at least as reliable as those obtained via traditional methods (Buhrmester, Kwang, & 

Gosling, 2011; Casler, Bicker, & Hackett, 2013). Besides, MTurk, in particular, helps 

researchers gather quality and diverse samples (Goodman & Paolacci, 2017). Sojump being 

very similar to MTurk, the same reason motivated the choice of Sojump for the Chinese 

sample.  

3.2. Sample profile 

In the US, 409 responses from American citizens or residents were obtained from 

surveys administered online by MTurk. In China, 311 responses from Chinese 

consumers were obtained from surveys administered online by Sojump.  

  The average age was 28 years old, the sample was composed of a majority of 

males (61.5%), with an average age of 29 years old. Also, compared to the Americans, 

the Chinese tend to be more frequently online (on the Internet) (χ2 = 12.97, df = 4, p < 

.05), own more mobile devices (χ2 = 29.45, df = 3, p < .001), spend more time on their 

mobile devices (χ2 = 63.39, df = 2, p < .001), change their mobile devices more 

frequently (χ2 = 19.69, df = 3, p < .001), purchase more frequently on their mobile 

devices (χ2 = 23.27, df = 6, p < .010), and spend more on their mobile devices (χ2 = 

70.49, df = 6, p < .001). However, the Americans seem to be more satisfied with their 

telecommunications provider (χ2 = 201.59, df = 4, p < .001). More details per market 

are shown in Table 1.  

 

Table 1. Demographic and behavioural characteristics of the sample 

 
Items US 

frequencies 

(%) 

 N = 409 

China 

Frequencies 

(%) 

N = 311 

Difference test 

(Chi-square or t-

test) 

Gender    
Male 62.3 57.1 χ2 = 35.47,  

p = 0.000 Female 37.7 42.9 

Average age 28 30  

Frequency of online presence    

Once a month 4.6 4.2 χ2 = 12.97,  

p = 0.011 Once a week 5.4 3.6 

Once every 2-3 days 5.9 1.3 

Every day 84.1 90.6 

Mobile devices owned (i.e., 

smartphone, tablet) 

   

1 32.3 18.4 χ2 = 29.45,  
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2-3 59.4 77.7 p = 0.000 

4 or more 8.3 3.9 

Average time spent on mobile 

device(s) per day 

   

Less than 2 hours 11.0 3.2 χ2 = 63.39,  
p = 0.000 Between 2-4 hours 52.6 31.1 

5 hours or more 36.4 65.7 

Frequency of mobile device(s) 

upgrade 

   

In less than 1-year use 6.6 11.3  

χ2 = 19.69,  

p = 0.000 

After a 1-year use 34.7 35.9 

After more than 2-years use 49.9 36.6 

After more time 8.8 16.2 

Satisfaction with telecommunication 

provider 

   

Very dissatisfied 1.7 8.8  

χ2 = 201.59, 
p = 0.000 

Dissatisfied 4.4 15.9 
Neutral 21.8 55.5 

Satisfied 48.9 17.5 

Very satisfied 23.2 2.3 

Frequency of purchase on personal 

mobile device 

   

Never 0.0 2.9  

 

χ2 = 23.27,  

p = 0.001 

Less than once a month 20.8 15.0 

Once a month 27.6 24.1 

Once every two weeks 19.8 28.3 

Once a week 17.4 13.7 

2-3 times a week 11.2 12.4 
Every day 3.2 3.6 

Average amount spent on mobile 

device per order 

   

Less than $50 per order 42.3 15.3  

 

χ2 = 70.49, 

p = 0.000 

$51-$100 23.2 36.5 

$101-$200 15.2 29.9 

$201-$300 9.5 9.7 

$301-$500 7.8 5.2 

$501-$1,000 1.2 2.4 

More than $1,000 per order 0.7 1.0 

3.3. Measures 

 

Past literature treated constructs such as PEOU or PU as unidimensional and reflective 

(e.g., Yang, 2010; Groß, 2018), and accordingly, we considered them as such. This also 

enabled us to use Cronbach’s alphas to extract the latent constructs. Each construct in the 

model was estimated by multiple items adapted from existing scales (Van der Heijden, 

2004; Lowry et al., 2012) applied to the m-shopping context. All items were measured on 

a Likert-type scale (from 1 = strongly disagree to 10 = strongly agree). The different 

constructs of interest, their respective items (post confirmatory factor analysis [CFA]), and 

psychometric properties are shown in Appendix 1. 

3.3. Analysis 

The dependent variable is m-shopping intentions. The independent variables are the 

four constructs related to mobile commerce conations identified in Figure 1.  
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Since the study takes a country comparison approach, it was essential to ensure that 

the measurement instrument is invariant across both market samples before testing the 

theoretical model (Steenkamp & Baumgartner, 1998; Byrne, 2006). First, exploratory 

factor analyses (EFAs) (SPSS 23.0) using the Maximum Likelihood extraction method 

and Oblimin rotation technique showed that all the items loaded significantly on their 

intended factor in both datasets. We performed several confirmatory factor analyses 

with EQS (6.4) for reliability, unidimensionality, discriminant, and convergent 

validities of the measures (Anderson & Gerbing, 1988). The CFAs were performed for 

both the U.S. and the Chinese samples through distinct measurement models.  

Raw indicators need to be removed from further analysis if they had low factor 

loadings (below .40) (Nunnally & Bernstein, 1994), large correlated error with other 

indicators, or if there were notable differences in factor loading structure between the 

two samples (Steenkamp & Baumgartner, 1998). Only one raw indicator was removed 

based on these criteria (i.e., the first item of perceived ease of use: I find mobile device 

shopping to be trouble-free). As shown in Table 1, the fit indices collectively indicate 

an appropriate measurement model fit (Hu & Bentler, 1999).  

Contrast tests then assessed the measurement model's invariance on the overall 

pattern of factor loadings across the two samples (Byrne, 2006). An overall 

unconstrained measurement model was compared to that of a constrained one. The χ2 

for the unconstrained model was 303.89 (df = 186), and that for the constrained model 

was 319.30 (df = 195). Since the χ2 difference, 15.41 (df = 9), was not significant and 

that both the constrained and the unconstrained model had similar fit indices (NFI, 

CFI, or RMSEA), it was determined that the measurement model is invariant across 

both samples (Steenkamp & Baumgartner, 1998). Invariance was further verified in 

pairwise comparisons on each factor loadings. There were no significant χ2 differences 

across the two samples except on the factor loadings of the two items whose constraints 

were relaxed, confirming the previously obtained results. 

As shown in Appendix 1, all the loadings from latent factors to their respective 

indicators were significant and high (ranging from .62 to .98) across either constrained 

or unconstrained model and Chinese or U.S. sub-sample. Furthermore, the composite 

reliability coefficients and Cronbach’s alphas were all above the threshold level of .60 

(Bagozzi & Yi, 1988), ensuring reliability for all the constructs. The average variances 

explained (AVE) for all the constructs were equal or greater than the cutoff level of 

.50 (Fornell & Larcker, 1981) for evidence of convergent validity. These psychometric 

properties ensure convergent validity across both samples (Anderson & Gerbing, 

1988). 

Discriminant validity was assessed with a pairwise restriction of models (Anderson 

& Gerbing, 1988), an approach that has been used extensively in past studies to ensure 

discriminant validity (e.g., Labrecque, Zanjani, & Milne, 2012; Ertz, Karakas, & 

Sarigöllü, 2016). The correlation between each pair of factors was fixed to equal 1.0, 

and the significance of the chi-square change was tested (Anderson & Gerbing, 1988). 

All the chi-square changes were significant, showing a better model fit for the model 

without these restrictions, evidence for discriminant validity (see Appendix 2). 

Several techniques were used to rule out common methods bias (CMB). From an 

ex-ante perspective, we randomized questions in the questionnaire by using item 

rotation within constructs so that items appeared in different order across respondents. 
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From a post hoc perspective, we used Harman’s single-factor test, and found that a 

single factor yields a considerably worse model fit across both the U.S. (χ2 = 527.98, 

df = 103; p = .000, NFI = 0.87; CFI = 0.89; IFI = .89, GFI = .89, AGFI = .85, SRMR 

= 0.049; RMSEA = 0.101), and Chinese (χ2 = 824.88, df = 103; p = .000, NFI = 0.66; 

CFI = 0.69; IFI = .69, GFI = .82, AGFI = .76, SRMR = 0.107; RMSEA = 0.131) 

datasets. This indicates that no single factor accounts for the covariance between the 

measures, and thus, common method bias is not an issue.   

4. Results 

We tested the structural model with EQS 6.4 (Hu & Bentler, 1999; Byrne, 2006) 

on both the U.S. and the China samples and found an appropriate fit between the data 

and the conceptual model (Hu & Bentler, 1999) (see Appendix 1). Four out of seven 

hypotheses received significant support in each dataset, while one received support in 

only one sample, and the two remaining hypotheses were rejected (see Table 2).  

 The accepted hypotheses were H1, H2, H3, H4, and H7 for the U.S. sample 

and H1, H2, H3, and H4 for the Chinese sample. The lack of support for H7 in the 

Chinese sample may indicate a total mediation effect of the three mediating variables 

on the PEOU-intentions link. No support was found for H5 and H6 in both the U.S. 

and the Chinese samples. 

The invariance of the structural model was then assessed across the two samples. 

To do so, a series of contrast tests were performed on the structural patterns across the 

two datasets (Byrne, 2006). As suggested by Jöreskog & Sörbom (1999), the structural 

equivalence of the overall conceptual model was estimated through a comparison of 

the χ2 of the two models. One overall model was unconstrained. Another overall model 

was assessed with the constraint that the loadings for the independent variables on 

their corresponding dependent variables were similar across the two samples. The χ2 

for the unconstrained model was 319.52 (df = 192), whereas the χ2 for the constrained 

model was 369.55 (df = 209). Since the χ2 difference of 50.03 (df=17) was significant 

(p < .001), the structural invariance of the overall conceptual model between the two 

samples was not established. This means that certain differences in path loadings exist 

across both samples (Hu & Bentler, 1999). 

The equivalence of the individual hypotheses was then assessed using a series of 

multi-group analyses (see Table 2, column 4). The multi-group contrast tests on each 

hypothesis showed that both samples differ on H1 and H2. According to these findings, 

the U.S. and Chinese consumers differ first regarding the extent to which the PEOU 

of m-shopping influences their perception of the usefulness of m-shopping. 

Specifically, Chinese consumers’ PEOU of m-shopping increased their tendency to 

perceive m-shopping as useful while this effect is lower in the U.S. sample. Both 

markets also differ on the extent to which their PEOU of m-shopping influences their 

perceived enjoyment of m-shopping. U.S. consumers’ perception of the ease of use of 

m-shopping increased significantly more their tendency to perceive joy in m-shopping. 

 We performed a bootstrapping analysis (SPSS 23.0) using the PROCESS 

macro (model 4) on 1 000 bootstrap samples to assess the mediation effect and test for 

H8a-d. As shown in Table 2, H8 suggesting an indirect effect of the proposed 

mediators on the PEOU-intentions relationship was supported across both samples. 

More specifically, for the U.S. sample, the accepted hypotheses were H8a-b, whereas, 
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for the Chinese sample, they were H8a-c. A series of t-tests on the standardized 

regression path coefficients showed the differences across sub-samples regarding the 

indirect effect. Overall, the Chinese respondents differed positively from the U.S. ones 

on the total indirect effect (H8a) and the more specific indirect effect via perceived 

usefulness nested in the overall indirect effect (H8b). Although the indirect effect via 

perceived joy (H8c) was significant for the Chinese, this effect did not differ 

significantly from the Americans. 

Table 2. Results of multi-group analyses and model tests on individual country samples. 

Hypotheses The U.S. 

(N = 409) 

China 

(N = 311) 

Δ𝜒2   
(df = 1) 

Structural equation modeling    

H1 perceived ease of use -> perceived usefulness .90*** .96*** 6.24* 

H2: perceived ease of use -> perceived enjoyment .89*** .68*** 159.90*** 

H3: perceived ease of use -> control .96*** .64***         3.23 
H4: perceived usefulness -> m-shopping intentions .38*** .54***         1.74 

H5: perceived enjoyment -> m-shopping intentions     - .14          .06         3.14 

H6: perceived control -> m-shopping intentions      - .58          .09 6.40* 

H7: perceived ease of use -> m-shopping intentions 

(direct effect) 

.83***       - .25         2.67 

𝑅2 for perceived usefulness        .81         .92  

𝑅2 for perceived joy        .79         .46  

𝑅2 for control        .92         .41  

𝑅2 for m-shopping intentions        .87         .79  

    

Model fit indices    

US: 𝜒2= 140.62, df = 96, p = .000, NFI = .97, CFI = .99, IFI = .99, GFI = .99, AGFI = .98, SRMR = 

.027, and RMSEA = .034. 

China: 𝜒2= 181.00 df = 96, p = .000, NFI = .93, CFI = .96, IFI = .96, GFI = .97, AGFI = .95, SRMR = 

.051, and RMSEA = .053. 

    

Bootstrapping U.S. 

(N = 409) 

China 

(N = 311) 

 

t-value 

H8a: perceived ease of use -> m-shopping 

intentions (indirect effect total)  

.38 (.24, .51) .59 (.47, .73) 2.12* 

H8b: perceived ease of use -> m-shopping 

intentions (indirect effect via perceived usefulness) 

.21 (.12, .33) .44 (.32, .56) 2.59* 

H8c: perceived ease of use -> m-shopping 

intentions (indirect effect via perceived joy) 

.08 (-.02, .20) .12 (.05, .20) .50 

H8d: perceived ease of use -> m-shopping 

intentions (indirect effect via control) 

.08 (-.06, .21) .03 (-.03, .09) .56 

    * p < 0.05. 

   ** p < 0.01. 

  *** p < 0.001.   

Five out of the eight hypothesized relationships under study were supported across 

both the U.S. and Chinese samples. The five hypotheses for which support was found 

included H1, H2, H3, H4, and H8. H7 was only supported in the U.S. dataset, whereas 

the remaining hypotheses (i.e., H5 and H6) were not supported in either sample. The 

new relationships posited by the HMSAM, namely the effect of PEOU on enjoyment 
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and control, were validated in both markets. The effect of PEOU on enjoyment, 

control, and intentions is stronger for Americans than for the Chinese. However, the 

effect of PEOU on PU is stronger for the Chinese. Yet, only PEOU and PU impact 

intentions significantly, whereas joy and control do not. Considering that the indirect 

effect of PEOU on intentions is significantly stronger for the Chinese via PU, the route 

influencing Chinese’ adoption of m-shopping is stronger and clearer via PU. In 

contrast, the route influencing Americans' adoption of m-shopping is less clear since, 

except for PEOU, no other variable exerts a significant direct or indirect effect on 

intentions. 

This might potentially explain the slightly lower adoption of m-shopping by 

Americans compared to the Chinese. The influence of PU for the Chinese is 

comparatively more decisive both directly and indirectly than for the Americans for 

whom the direct effect of PEOU on intentions does not compensate. 

5. Discussion and implications 

This study extends the extant literature on m-shopping by specifically regarding 

the similarities and differences between the two largest m-commerce countries that 

still show substantial dissimilarities in m-commerce adoption, China and the US. 

Overall, across both markets, respondents' likelihood to perceive m-shopping as 

useful exerts a significant influence on m-shopping intentions. Unexpectedly, 

however, consumers’ propensity to perceive joy or control in m-shopping is not a 

significant influencer of m-shopping intentions in either market, lending credit to 

research that emphasized the low explanatory power of enjoyment on m-shopping 

intentions in either emerging (Teo, Tan, Ooi, & Lin, 2015) or established (Groß, 2018) 

markets. Conversely, perceived usefulness, as the utilitarian factor, is strongly related 

to m-shopping adoption. This suggests that the perception of utilitarian benefits and 

advantages related to m-shopping constitutes an essential priming factor for 

subsequent involvement in m-shopping, emphasizing the importance of distinguishing 

between the utilitarian and hedonic aspects in m-shopping (Hubert et al., 2017).  

However, marked differences appear across the two markets. First, perceived ease 

of use relates positively to perceived usefulness, especially among the Chinese 

respondents, while perceived ease of use relates more positively to perceived 

enjoyment and control among the American respondents. Taken together, these results 

suggest that perceived ease of use influences more strongly utilitarian (hedonic) 

variables such as perceived usefulness among Chinese (American) consumers.  

The stronger impact of PEOU on perceived usefulness among Chinese users is in 

line with past research, such as Zhou (2013, 2014), who showed that the Chinese were 

particularly sensitive to the usefulness of m-shopping in explaining their continuance 

with that technology. Drawing on categorization theory, other researchers delved 

deeper into those usefulness aspects by emphasizing the perceived consistency and 

perceived integration between mobile services and the Web as sources of usefulness 

shaping m-shopping adoption (Yang, Wang, & Wei, 2014).  

Likewise, the stronger impact of PEOU on hedonic variables such as joy and 

control among Americans aligns with past research. Several studies emphasized that 

m-shopping has the best chances to succeed in an American context if functional needs 

are balanced with hedonic needs (Ericson, Herring, & Ungerman, 2014; Chick, 2015; 
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Shankar et al., 2016). Even in the context of social media, the effect of intrinsic 

motivation is more substantial for Americans than for the Chinese (Jiao, Ertz, Jo, & 

Sarigöllü, 2018). The stronger direct effect of PEOU on intentions also echoes past 

studies initiative in the United States, emphasizing that convenience is one of 

Americans' primary motivations to use mobile shopping (Ericson, Herring, & 

Ungerman, 2014; Chick, 2015; Shankar et al., 2016). 

Notably, except for Jiao, Ertz, Jo, and Sarigöllü (2018) in another context (i.e., 

social media), previous studies did not conduct a country comparison or cross-cultural 

study but emphasized crucial features of American and Chinese consumers. In light of 

these past findings, this study contributes to extant research by actually comparing 

both countries and revealing that intrinsic motives (joy and control) impact Chinese’ 

intentions to use m-shopping very little compared to extrinsic motives (usefulness). 

Hence, the higher propensity of the Chinese to use m-shopping is related to the fact 

that they are more likely to perceive m-shopping as useful, which may hold for other 

emerging markets. Besides, this compound effect of PEOU and PU on intentions for 

Chinese consumers explains their higher levels of intentions, whereas, for Americans, 

m-shopping intentions are rather contingent on a direct effect of PEOU (i.e., 

convenience). 

Therefore, the higher propensity to shop on mobile phones in China occurs 

because of heightened functionality perceptions. This is further evidenced by the 

stronger indirect effect of perceived usefulness on the PEOU-intentions relationship 

for Chinese rather than American consumers. Interestingly, and although this is not 

significantly different from the American sample, joy contributes to the indirect effect 

in the Chinese sample only, suggesting that the hedonic aspect of m-shopping, 

resulting from heightened PEOU, contributes to Chinese consumers’ intentions. This 

result indicates that although not a direct predictor of intentions, enjoyment indirectly 

contributes to Chinese consumers' intentions.  

This research shows a high proportion of similarities across markets consistent 

with past research on mobile settings (Sultan, Rohm, & Gao, 2009; Pentina, Zhang, 

Bata, & Chan, 2016; Jiao, Ertz, Jo, & Sarigöllü, 2018). However, there also appear to 

be distinctive features across the two markets. In essence, Americans are more likely 

to use m-shopping if they directly perceive it to be easy to use. On the other hand, 

Chinese consumers are also concerned about PEOU but are even more concerned 

about how that convenience may translate into usefulness and how that convenience 

synergistically interacts with PU and, to a lesser extent, creates joy, which in turn leads 

to the slightly higher m-shopping use of the Chinese, commonly observed across both 

markets. 

6. Managerial implications 

Managers must be aware of the drivers as well as obstacles to consumer intentions 

of m-shopping across markets. In this regard, this study offers several critical 

implications for practitioners involved in m-shopping programs and strategies.  

 

6.1. China 
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The results suggest that extrinsic motives epitomized by perceived usefulness lie 

at the crux of the impact of perceived ease of use on m-shopping intentions, especially 

among Chinese consumers. Managers targeting emerging markets will thus want to 

craft mobile strategies that stimulate goal achievement and functionality such as 

optimized sorting, scrolling, recommender agent, augmented reality features, digital 

payment solutions (e.g., Ali Pay, Apple Pay, PayPal, cryptocurrencies) on m-shopping 

apps and web platforms, which then could lead to a greater perception of the usefulness 

of m-shopping, and, to a lesser extent, joy perception. This result implies that m-

shopping may be optimally stimulated by emphasizing the utilitarian aspects of that 

practice and improving ease of use to trigger joy in an emerging market such as China. 

 

6.2. United States 

 

Perceived ease of use is a key antecedent to m-shopping intentions, especially in 

markets such as the US, where other means of shopping (e.g., laptop, kiosks) are more 

widespread. Therefore, managers aiming to develop apps in established markets will 

need to focus on perceived ease of use as this variable is directly related to intentions 

to use. They will therefore need to integrate the abovementioned technologies focusing 

on user-friendliness rather than performativity. A design based on user experience 

(UX) might be particularly valuable in this regard. 

7. Study limitations and future research avenues 

The focus on the HMSAM as a conceptual framework means other causal 

sequences and variables not tested in this study could impact m-shopping intentions. 

Additionally, we used a non-random sampling procedure with MTurk and Sojump. 

Although they are proven sampling frames (Casler, Bickel, & Hackett, 2013; 

Buhrmester, Kwang, & Gosling, 2011), future research could be conducted with a 

broader and more representative sampling frame to examine differences related to age, 

socioeconomic status, and gender. Finally, this study highlighted key differences 

between China and the US (established and emerging markets) regarding the 

importance of utility in emerging contexts instead of established ones. Although these 

differences have been explained by infrastructure and political contingencies, they 

might relate to more profound cultural divergences. Future research might investigate 

these cultural differences regarding perceived ease of use and perceived usefulness in 

greater depth by using Hofstede’s (Hofstede, 1980) dimensions, as in Chou, Li, and 

Ho (2018). Future research could investigate more directly the differences in extrinsic 

motives and intrinsic motives. 
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Appendix 1. Confirmatory factor analyses for US and Chinese data. 

Constructs and items 

(Van der Heijden, 2004; 

Lowry et al., 2012) 

Mean 

(s.d.) 

USA 

Mean 

(s.d.) 

China 

Difference 

test (F-value) 

Std. loadings 

USA 

Std. loadings 

China 

Perceived ease of use 
7.11 

(1.94) 

7.11 

(1.58) 
n.s. 

(α = .91, ρ = 

.89, AVE = 

.73) 

(α = .76, ρ = 

.74, AVE = 

.50) 

      

https://www.mobilepaymentstoday.com/blogs/an-introduction-to-mobile-commerce-in-china/
https://www.mobilepaymentstoday.com/blogs/an-introduction-to-mobile-commerce-in-china/
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I find it easy to shop on my 

mobile device for what I 

want. 

6.97 

(2.22) 

6.81 

(2.21) 
n.s. .88 .63 

Learning to shop on my 

mobile device is easy for me.  

7.36 

(2.09) 

8.01 

(1.97) 
17.78*** .81 .74 

It is simple to shop with my 

mobile device 

7.36 

(2.17) 

7.88 

(1.94) 
10.35** .87 .71 

      

Perceived usefulness 
6.71 

(2.02) 

7.12 

(1.82) 
7.64** 

(α = .87, ρ = 

.86, AVE = 

.68) 

(α = .84, ρ = 

.84, AVE = 

.64) 

      

Mobile device shopping 

increases my productivity. 

6.50 

(2.30) 

6.84 

(2.29) 
n.s. .73 .70 

Using mobile device 

shopping enhances my 

effectiveness in purchases. 

6.56 

(2.36) 

7.03 

(2.06) 
7.62** .85 .78 

I find mobile device 

shopping to be useful in my 

daily life. 

6.98 

(2.21) 

7.48 

(1.98) 
9.80** .88 .91 

      

Perceived enjoyment 
6.92 

(2.03) 

6.73 

(1.84) 
n.s. 

(α = .94, ρ = 

.94, AVE = 

.79) 

(α = .94, ρ = 

.95, AVE = 

.82) 

      

I find mobile device 

shopping to be enjoyable. 

7.09 

(2.17) 

6.74 

(2.07) 
4.83* .87 .92 

I have fun using mobile 
device shopping. 

6.70 
(2.35) 

6.80 
(2.09) 

n.s. .86 .97 

The m-shopping experience 

is enjoyable. 

6.86 

(2.18) 

6.71 

(1.90) 
n.s. .91 .91 

Mobile device shopping 

leaves me satisfied. 

6.89 

(2.19) 

6.62 

(1.94) 
n.s. .91 .81 

      

Control 
7.15 

(1.99) 

6.72 

(1.85) 
8.59** 

(α = .91, ρ = 

.91, AVE = 

.76) 

(α = .78, ρ = 

.81, AVE = 

.59) 

      

I have a lot of control on 

mobile device shopping. 

7.01 

(2.22) 

6.17 

(2.44) 
23.02*** .87 .62 

I can choose freely what I 

want to see or do via mobile 

device shopping. 

7.24 

(2.14) 

7.17 

(2.15) 
n.s. .88 .83 

I am allowed to control my 

interaction on mobile device 

shopping. 

7.19 

(2.12) 

6.80 

(2.07) 
6.08* .87 .83 

      

Behavioral intentions 
7.56 

(2.00) 

7.79 

(1.83) 
n.s. 

(α = .94, ρ = 

.94, AVE = 

.84) 

(α = .96, ρ = 

.96, AVE = 

.90) 

      
I would plan on using mobile 

device shopping in the future. 

7.48 

(2.17) 

7.56 

(1.95) 
n.s. .89 .90 

I would intend to continue 

using mobile device 

shopping in the future. 

7.50 

(2.17) 

7.85 

(1.90) 
4.70* .94 .98 
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I expect my use of mobile 

device shopping to continue 

in the future. 

7.64 

(2.08) 

7.99 

(1.89) 
5.27* .91 .96 

      

Measurement model fit 
indices: 

     

US Model: 𝜒2= 128.89, df = 93, p = .010, NFI = .97, CFI = .99, IFI = .99, GFI = .99, AGFI = .98, 

SRMR = .024, and RMSEA = .031. 

 

China Model: 𝜒2= 177.58 df = 93, p = .000, NFI = .93, CFI = .96, IFI = .96, GFI = .97, AGFI = .95, 

SRMR = .047, and RMSEA = .054. 

 

 

 

 

 

 

 

Appendix 2. Chi-square difference tests for assessing discriminant validity 

 USA (N = 409) China (N = 311) 

 𝜒2Value Δ𝜒2(df = 1) 𝜒2Value Δ𝜒2(df = 1) 

Unconstrained model (df = 93) 128.89 --- 177.58 --- 

Constrained model (df = 94)     

JOY-CONTROL 214.68 85.79*** 181.68 52.79*** 

JOY-PEOU 220.37 91.48*** 185.36 56.47*** 

JOY-PU 179.24 50.35*** 196.22 67.33*** 

JOY-INTENTIONS 195.66 66.77*** 197.04 68.15*** 

CONTROL – PEOU 258.91 130.02*** 179.69 50.80*** 

CONTROL – PU 181.94 53.05*** 180.97 52.08*** 

CONTROL – INTENTIONS 210.47 81.58*** 182.64 53.75*** 

PEOU – PU 188.15 59.26*** 195.61 66.72*** 

PEOU – INTENTIONS 239.24 110.35*** 194.76 65.87*** 

PU – INTENTIONS 189.60 60.71*** 214.83 85.94*** 

Notes: df = degrees of freedom; PEOU = Perceived ease of use; PU = Perceived usefulness. 

  * p < 0.05. 

 ** p < 0.01. 

*** p < 0.001. 

 


